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Hawkes process is a class of simple point processes with self-exciting and clustering properties. Hawkes process
has been widely applied in finance, neuroscience, social networks, criminology, seismology, and many other fields.
In this paper, we study precise deviations for Hawkes processes for large time asymptotics, that strictly extends
and improves the existing results in the literature. Numerical illustrations will also be provided.

Keywords: Hawkes processes; large deviations; precise deviations

1. Introduction

The Hawkes process is a simple point process Nt with the stochastic intensity given by:

λt = ν +
∫ t−

0
h(t − s) dNs, (1.1)

where ν > 0 and h : R+ → R+ being locally bounded. We assume that N0 = 0, that is, the Hawkes
process starts at time zero with empty history. The Hawkes process is named after Alan Hawkes [23]. In
the literature, ν is called the baseline intensity, and h is called the exciting function, or kernel function,
encoding the influence of past events on the intensity. Brémaud and Massoulié [9] generalized the
dynamics (1.1) and the formula for the intensity (1.1) by a nonlinear function of

∫ t−
0 h(t − s) dNs , and

hence came the name nonlinear Hawkes processes. The original model (1.1) proposed by Hawkes [23]
is thus sometimes referred to as the linear Hawkes process.

For the Hawkes process (1.1), the occurrence of a jump increases the intensity of the point process,
and thus increases the likelihood of more future jumps. On the other hand, the intensity declines when
there is no occurrence of new jumps. The self-exciting and clustering property makes the Hawkes
process very appealing in applications in finance and many other fields. The Hawkes process is widely
used in the modeling of the limit order books in high frequency trading, see, for example, Alfonsi
and Blanc [4] for optimal execution, and Abergel and Jedidi [1] for ergodicity in Hawkes based limit
order books models, and also the modeling of the duration between trades, see, for example, Bauwens
and Hautsch [7] or the arrival process of buy and sell orders, see, for example, Bacry et al. [5]. The
Hawkes process also finds applications in dark pool trading [16]. In the context of credit risk modeling,
Errais et al. [14] used a top down approach using the affine point process, which includes Hawkes
process as a special case. Giot [20], Chavez-Demoulin et al. [10] tested Hawkes processes in the risk
management context. Aït-Sahalia et al. [2,3] used Hawkes processes to model two key aspects of asset
prices: clustering in time and cross sectional contamination between regions. The Hawkes process has
also been used to explain the supply and demand microstructure in an interest rate model in Hainaut
[22]. The applications other than finance include: neuroscience, see, for example, [31,33], genome
analysis, see, for example, [21,33], networks and sociology, see, for example, [12,40], queueing theory,
see, for example, [17], insurance, see, for example, [35,41], criminology, see, for example, [28,32],
seismology, see, for example, [29,30] and many other fields.
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In this paper, we consider the linear Hawkes process Nt with N0 = 0 with the intensity (1.1). We
assume throughout this paper that

‖h‖L1 =
∫ ∞

0
h(t) dt < 1, and

∫ ∞

0
th(t) dt < ∞. (1.2)

Let us first review the limit theorems for linear Hawkes processes in the literature. It is well known
that under the assumption ‖h‖L1 < 1, there exists a unique stationary Hawkes process defined on R

with the intensity λt = ν + ∫ t−
−∞ h(t − s) dNs , and we have the law of large numbers Nt

t
→ ν

1−‖h‖
L1

as

t → ∞. Bacry et al. [6] obtained a functional central limit theorem for multivariate Hawkes process
and as a special case of their result,

Nt − ν
1−‖h‖

L1
t

√
t

→ N

(
0,

ν

(1 − ‖h‖L1)3

)
, (1.3)

in distribution as t → ∞ under the assumption that
∫ ∞

0 t1/2h(t) dt < ∞. For the central limit theorem

(1.3), also see Hawkes and Oakes [24]. Moreover, Bordenave and Torrisi [8] proved that P(Nt

t
∈ ·)

satisfies a large deviation principle, with the rate function:

I (x) = x log

(
x

ν + x‖h‖L1

)
− x + x‖h‖L1 + ν, (1.4)

if x ≥ 0 and I (x) = +∞ otherwise. We refer to [13] for the theory of large deviations. Note that the
rate function in the paper [8] is written as the Legendre transform expression, and the formula (1.4) is
first mentioned in [42]. Also notice that in [8], the assumption

∫ ∞
0 th(t) dt < ∞ is needed, and indeed

this assumption is not necessary, see, for example, [27]. A moderate deviation principle is obtained in
[42] that fills in the gap between the central limit theorem and the large deviation principle. Other works
on the asymptotics of linear Hawkes processes, including the nearly unstable Hawkes processes, that
is, when the ‖h‖L1 is close to 1, see, for example, [25,26], and the large initial intensity asymptotics
for the Markovian case [18,19], and the large baseline intensity asymptotics [17].

For nonlinear Hawkes processes, [43] studies the central limit theorem, and [44] obtains a process-
level, that is, level-3 large deviation principle, and hence has the scalar large deviations as a by-product.
An alternative expression for the rate function when the system is Markovian is obtained in [45].
Recently, Torrisi [36,37] studies the rate of convergence in the Gaussian and Poisson approximations
of the simple point processes with stochastic intensity, which includes as a special case, the nonlinear
Hawkes process.

The large deviations [8] and moderate deviations [42] for linear Hawkes processes are of the
Donsker–Varadhan type, which only gives the leading order term, but not the higher order ones. More
precise deviations are desirable in many applications, which motivates us to study the precise devia-
tions for linear Hawkes processes. In this paper, we will derive the precise deviations for linear Hawkes
processes, using the recent mod-φ convergence theory developed in [15]. To apply the mod-φ conver-
gence theory, two key steps are to show the convergence of the moment generating function at a certain
speed, and verify the limit corresponds to an infinitely divisible distribution. The moment generating
function for linear Hawkes processes has semi-explicit formula, and then the precise deviations results
follow from the mod-φ convergence theory after careful analysis and a series of propositions and lem-
mas. The paper is organized as follows. We will state the main results of our paper in Section 2. In
particular, we will give precise large deviations results in Section 2.1 and precise moderate deviations
and fluctuation results in Section 2.2. We provide numerical illustrations in Section 3. All the proofs
will be given in the Appendix.
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2. Main results

In this paper, we apply the recently developed mod-φ convergence method [15] to obtain precise large
deviations for linear Hawkes processes for the large time asymptotic regime. We will also obtain the
precise moderate deviations and some fluctuations results.

Let us first recall the definition of mod-φ convergence, see, for example, Definition 1.1.1. in [15].
Let (Xn)n∈N be a sequence of real-valued random variables and E[ezXn] exist in a strip S(c,d) := {z ∈
C : c <R(z) < d}, with c < 0 < d extended real numbers, that is, we allow c = −∞ and d = +∞ and
R(z) denotes the real part of z ∈ C throughout this paper. We assume that there exists a non-constant
infinitely divisible distribution φ with

∫
R

ezxφ(dx) = eη(z), which is well defined on S(c,d), and an
analytic function ψ(z) that does not vanish on the real part of S(c,d) such that locally uniformly in
z ∈ S(c,d),

e−tnη(z)
E

[
ezXn

] → ψ(z), (2.1)

where tn → +∞ as n → ∞. Then we say that Xn converges mod-φ on S(c,d) with parameters (tn)n∈N
and limiting function ψ .

Assume that φ is a lattice distribution, that is, a distribution with support included in γ +λZ for some
constants γ,λ > 0. Also assume that the sequence of random variables (Xn)n∈N converges mod-φ at
speed O((tn)

−v) (Definition 2.1.1. in [15]), that is,

sup
z∈K

∣∣e−tnη(z)
E

[
ezXn

] − ψ(z)
∣∣ ≤ CK(tn)

−v, (2.2)

where CK > 0 is some constant, for any compact set K ⊂ S(c,d). Then Theorem 3.2.2. in [15] states
that for any x ∈ R in the interval (η′(c), η′(d)) such that tnx ∈N, we have

P(Xn = tnx) = e−tnF (x)

√
2πtnη′′(θ∗)

(
ψ

(
θ∗) + a1

tn
+ a2

t2
n

+ · · · + av−1

tv−1
n

+ O

(
1

tvn

))
, (2.3)

as n → ∞, where θ∗ is defined via η′(θ∗) = x, and F(x) := supθ∈R{θx − η(θ)} is the Legendre
transform of η(·), and if x ∈R and x ∈ (η′(0), η′(d)), then, as n → ∞,

P(Xn ≥ tnx) = e−tnF (x)

√
2πtnη′′(θ∗)

1

1 − e−θ∗

(
ψ

(
θ∗) + b1

tn
+ b2

t2
n

+ · · · + bv−1

tv−1
n

+ O

(
1

tvn

))
, (2.4)

where (ak)
∞
k=1, (bk)

∞
k=1 are rational fractions in the derivatives of η and ψ at θ∗.

The mod-φ convergence developed in [15] also implies the precise moderate deviations and extended
central limit theorem, see Theorem 3.3.1. and Corollary 3.3.5. in [15]. More precisely, the second
part of Corollary 3.3.5. in [15] states that assuming the mod-φ convergence holds, then for any y =
o((tn)

1/2−1/m), where m ≥ 3, m ∈N, one has

P
(
Xn ≥ tnη

′(0) + √
tnη′′(0)y

) = (1 + o(1))

y
√

2π
· e−∑m−1

i=2
F(i)(η′(0))

i!
(η′′(0))i/2yi

(tn)(i−2)/2 . (2.5)

The precise moderate deviations and extended central limit theorem then follow from (2.5). See [15]
for further discussions. Note that the precise deviations in (2.3) and (2.4) require mod-φ convergence
at speed O((tn)

−v), while the fluctuations result in (2.5) only requires mod-φ convergence.
Finally, [15] suggested in their Remark 3.2.5. how (ak)

∞
k=1, (bk)

∞
k=1 in (2.3) and (2.4) can be com-

puted without providing detailed formulas. For the sake of applications and implementations, we will
spell out the explicit formulas for (ak)

∞
k=1 and (bk)

∞
k=1 in the next proposition and the proof will be

provided in the Appendix.
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Proposition 1. For any function f , denote its k-th order derivative by f (k). Let Sn be the set consisting
of all the n-tuples of non-negative integers (m1, . . . ,mn) satisfying: 1 · m1 + 2 · m2 + 3 · m3 + · · · + n ·
mn = n.

(i) For every k ≥ 1,

ak =
2k∑


=0

ψ(2k−
)(θ∗)
(2k − 
)!

∑
S


(−1)m1+···+m


m1!1!m1m2!2!m2 · · ·m
!
!m


·

∏

j=1

(
1

η′′(θ∗)
η(j+2)(θ∗)

(j + 2)(j + 1)

)mj (−1)k(2(k + m1 + · · · + m
) − 1)!!
(η′′(θ∗))k

. (2.6)

(ii) For every k ≥ 1,

bk =
2k∑

n=0

∑
Sn

e−(m1+···+mn)θ∗
(m1 + · · · + mn)!(1 − e−θ∗

)−(m1+···+mn)−1

m1!1!m1m2!2!m2 · · ·mn!n!mn
·

n∏
j=1

(−1)j ·mj

·
2k−n∑

=0

ψ(2k−n−
)(θ∗)
(2k − n − 
)!

∑
S


(−1)m1+···+m


m1!1!m1m2!2!m2 · · ·m
!
!m


·

∏

j=1

(
1

η′′(θ∗)
η(j+2)(θ∗)

(j + 2)(j + 1)

)mj (−1)k(2(k + m1 + · · · + m
) − 1)!!
(η′′(θ∗))k

. (2.7)

2.1. Precise large deviations

Our main results for the precise large deviations for the Hawkes process is stated as follows. It provides
the full expansion to arbitrary order in the large time asymptotic regime, which generalizes the large
deviations result in [8].

Theorem 2. Given v ∈N. Assume (1.2) and the following condition hold:
∫ ∞

0
sv+1h(s) ds < ∞. (2.8)

(i) For any x > 0, and tx ∈ N, as t → ∞,

P(Nt = tx) = e−tI (x)

√
I ′′(x)

2πt

(
ψ

(
θ∗) + a1

t
+ a2

t2
+ · · · + av−1

tv−1
+ O

(
1

tv

))
, (2.9)

where for any R(z) ≤ ‖h‖L1 − 1 − log‖h‖L1 ,

ψ(z) := eνϕ(z), and ϕ(z) :=
∫ ∞

0

[
F(s; z) − x(z)

]
ds, (2.10)

which is analytic in S(−∞,‖h‖
L1 −1−log‖h‖

L1 ), and F is the unique solution that satisfies

F(t; z) = ez+∫ t
0 (F (t−s;z)−1)h(s) ds , (2.11)
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with the constraint |F(t; z)| ≤ 1
‖h‖

L1
, and it is analytic in S(−∞,‖h‖

L1 −1−log‖h‖
L1 ), and x(z) :=

F(∞; z) exists and it satisfies the equation

x(z) = ez+‖h‖
L1 (x(z)−1), (2.12)

and it is analytic in S(−∞,‖h‖
L1 −1−log‖h‖

L1 ). And I (x) is defined in (1.4), I ′′(x) = ν2

x(ν+‖h‖
L1 x)2 ,

and

θ∗ = log

(
x

ν + ‖h‖L1x

)
− ‖h‖L1x

ν + ‖h‖L1x
+ ‖h‖L1 , (2.13)

where (ak)
∞
k=1 are rational fractions in the derivatives of η and ψ at θ∗ whose formulas are

given in (2.6), where η(z) := ν(x(z) − 1).
(ii) For any x > ν

1−‖h‖
L1

and tx ∈N, as t → ∞,

P(Nt ≥ tx) = e−tI (x)

√
I ′′(x)

2πt

1

1 − e−θ∗

(
ψ

(
θ∗) + b1

t
+ b2

t2
+ · · · + bv−1

tv−1
+ O

(
1

tv

))
, (2.14)

where (bk)
∞
k=1 are rational fractions in the derivatives of η and ψ at θ∗ whose formulas are

given in (2.7).

Note that the mod-φ convergence theory developed in [15] works for the a sequence of random
variables Xn associated with discrete times tn, see (2.1). In Theorem 2, although Nt is a continuous-
time process, the restriction tx ∈N guarantees that t takes values along tn := n

x
so that t takes discrete

values and we can define Xn := Nn/x to apply the mod-φ convergence theory developed for discrete
times in [15].

In order to apply and implement Theorem 2, we need to compute the sequences (ak)
∞
k=1 and (bk)

∞
k=1

whose formulas are provided in Proposition 1 which rely on the derivatives of η and ψ at θ∗. Next, we
provide recursive formulas to compute the derivatives of η and ψ at θ∗ of any order.

Proposition 3.

(i) η(θ∗) = ν(x(θ∗)−1), and for k ≥ 1, η(k)(θ∗) = νx(k)(θ∗). For k ≥ 1, x(k)(θ∗) can be computed
recursively as:

x(k)
(
θ∗) = x(θ∗)

1 − ‖h‖L1x(θ∗)
∑
Tk

k! · ‖h‖m1+···+mk−1

L1

m1!1!m1m2!2!m2 · · ·mk−1!(k − 1)!mk−1
·
k−1∏
j=1

(
x(j)

(
θ∗))mj

+ x(θ∗)
1 − ‖h‖L1x(θ∗)

k−1∑

=0

(
k




)∑
S



! · ‖h‖m1+···+m


L1

m1!1!m1m2!2!m2 · · ·m
!
!m

·


∏
j=1

(
x(j)

(
θ∗))mj ,

where Tk denotes the set of (k − 1)-tuples of non-negative integers (m1, . . . ,mk−1) satisfying
the constraint 1 · m1 + 2 · m2 + 3 · m3 + · · · + (k − 1) · mk−1 = k.
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(ii) For every k ≥ 1,

ψ(k)
(
θ∗) =

∑
Sk

k! · νm1+···+mk · ψ(θ∗)
m1!1!m1m2!2!m2 · · ·mk!k!mk

·
k∏

j=1

(∫ ∞

0

[
F (j)

(
s; θ∗) − x(j)

(
θ∗)]ds

)mj

, (2.15)

where F (k)(·; θ∗), k ≥ 1, can be computed recursively as

F (k)
(
t; θ∗)

= F
(
t; θ∗) ·

∫ t

0
F (k)

(
t − s; θ∗)h(s) ds

+ F
(
t; θ∗) ·

∑
Tk

k!
m1!1!m1 · · ·mk−1!(k − 1)!mk−1

k−1∏
j=1

(∫ t

0
F (j)

(
t − s; θ∗)h(s) ds

)mj

+ F
(
t; θ∗) ·

k−1∑

=0

(
k




)∑
S



!
m1!1!m1 · · ·m
!
!m


×

∏

j=1

(∫ t

0
F (j)

(
t − s; θ∗)h(s) ds

)mj

. (2.16)

The main strategy of the proof of Theorem 2 is to show the mod-φ convergence and apply Theo-
rem 3.2.2. in [15]. The proof of Theorem 2 relies on a series of lemmas and propositions that we will
state later. We will first recall and discuss some well-known properties for the linear Hawkes process
that will be used extensively in our proofs later.

Hawkes and Oakes [24] first discovered that a linear Hawkes process has an immigration-birth rep-
resentation. The immigrants (roots) arrive according to a standard Poisson process N̄ with intensity
ν > 0. Each immigrant generates children according to a Galton–Watson tree. Indeed, for an immigrant
that arrives at time s, children are generated according to a Poisson process with intensity h(t − s) at
time t ≥ s, and each child will generate children independently following the same mechanism. It turns
out that the total number of children generated by the immigrant follows a Poisson distribution with
parameter ‖h‖L1 and conditional on the total number of children generated by the immigrant, say K ,
then the birth times of the children subtracting the arrival time of the immigrant are distributed as the
order statistics of k i.i.d. random variables with density h(·)/‖h‖L1 . Finally, the Hawkes process Nt is
the number of all the immigrants and their descendants that arrive on the time interval [0, t].

By using the immigration-birth representation for linear Hawkes processes, it is known that (see,
e.g., [16,27,42])

E
[
ezNt

] = eν
∫ t

0 (F (s;z)−1) ds , (2.17)

where F satisfies the equation:

F(t; z) = ez+∫ t
0 (F (t−s;z)−1)h(s) ds , t ≥ 0, (2.18)
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which holds for any z ∈ C, such that

R(z) ≤ θc := ‖h‖L1 − 1 − log‖h‖L1 . (2.19)

Note that by the immigration-birth representation, we can interpret F(t; z) as F(t; z) = E[ezSt ],
where St is the number of all the descendants of an immigrant that arrives at time 0, on the time
interval [0, t] including the immigrant. Moreover, let us define x(z) = E[ezS∞]. It is well known that
x(z) satisfies the algebraic equation, see, for example, [27]:

x(z) = ez+‖h‖
L1 (x(z)−1). (2.20)

This algebraic equation may have more than one solution. It is known that for z ∈ R, there are at most
two solutions of this algebraic equation and E[ezS∞] is the smaller solution, see, for example, [27]. By
dominated convergence theorem, for R(z) ≤ θc, where θc is defined in (2.19), we have F(t, z) → x(z),
as t → ∞. The limit x(·) has the following properties (Part (ii) of the following Proposition 4 follows
from Theorem 3.2.1. in [8]).

Proposition 4. For any θ ∈ R, and θ ≤ θc, where θc is defined in (2.19), we have

(i) x(θ)‖h‖L1 ≤ 1.
(ii) x′(θ) → ∞ as θ ↑ θc.

We know that E[ezSt ] satisfies the equation (2.11). Thus, as a by-product of the immigration-birth
representation for linear Hawkes processes, we get the existence of the solution of (2.11). Let us notice
that for any R(z) ≤ θc,

∣∣F(t; z)∣∣ = ∣∣E[
ezSt

]∣∣ ≤ E
[∣∣ezSt

∣∣] = E
[
eR(z)St

] ≤ 1

‖h‖L1
. (2.21)

Therefore, it suffices to consider the solution of the equation (2.11) that satisfies the constraint
|F(t; z)| ≤ 1

‖h‖
L1

. With this additional constraint, the equation (2.11) has a unique solution.

Proposition 5. Let z ∈C and R(z) ≤ θc. The equation (2.11) with the constraint |F(t; z)| ≤ 1
‖h‖

L1
has

a unique solution.

The key to prove the main result Theorem 2 is to verify the mod-φ convergence. More precisely, we
need to show that

e−tη(z)
E

[
ezNt

] → ψ(z) := eνϕ(z), (2.22)

as t → ∞ locally uniformly in z for R(z) < ‖h‖L1 − 1 − log‖h‖L1 , where ϕ(z) = ∫ ∞
0 [F(s; z) −

x(z)]ds, is analytic in z and η(z) = ν(x(z) − 1), and eη(z) = eν(x(z)−1) = E[ezY ], for some random
variable Y , where Y has an infinitely divisible distribution. We will show the mod-φ convergence
below via a series of lemmas.

First, we show that Y is infinitely divisible. The infinite divisibility is a limitation of the method of
mod-φ convergence. Fortunately, the limiting distribution in the case of the linear Hawkes process is
indeed infinitely divisible.

Lemma 6. Y has an infinitely divisible distribution.
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To show the mod-φ convergence, the main technical lemma is given as follows.

Lemma 7. For any R(z) < θc, where θc is defined in (2.19),

ϕ(z) =
∫ ∞

0

[
F(s; z) − x(z)

]
ds (2.23)

is well-defined and analytic, and as t → ∞,

e−t (ν(x(z)−1))
E

[
ezNt

] → eνϕ(z), (2.24)

locally uniformly in z. In addition, if
∫ ∞

0 sv+1h(s) ds < ∞, then for any compact set K , there exists
some CK > 0 such that supz∈K |e−t (ν(x(z)−1))

E[ezNt ] − eνϕ(z)| ≤ CKt−v .

To this end, we have established the mod-φ convergence for the linear Hawkes process for the large
time limit. The proofs of all the propositions, lemmas and Theorem 2.1 will be given in the Appendix.

2.2. Precise moderate deviations and fluctuations

The mod-φ convergence also implies the precise moderate deviations and extended central limit the-
orem, see Theorem 3.3.1. and Corollary 3.3.5. in [15]. By using Corollary 3.3.5. in [15], which is
re-stated in our (2.5), we have the following result.

Theorem 8. Assume (1.2) holds. If y = o(t1/2−1/m), where m ≥ 3, then as t → ∞,

P

(
Nt ≥ ν

1 − ‖h‖L1
t + √

t

√
ν

(1 − ‖h‖L1)3/2
y

)
= (1 + o(1))

y
√

2π
e
−∑m−1

i=2
I (i)(η′(0))

i!
(η′′(0))i/2yi

t(i−2)/2 , (2.25)

where I (·) is defined in (1.4) and for any i ≥ 2,

I (i)(x) = (i − 2)!(−1)i−2x1−i

(
(i − 1)

( ‖h‖L1x

ν + ‖h‖L1x

)i

− i

( ‖h‖L1x

ν + ‖h‖L1x

)i−1

+ 1

)
, (2.26)

and η′(0) = ν
1−‖h‖

L1
, and η′′(0) = ν

(1−‖h‖
L1 )3 .

Remark 9. By letting m = 3 in Theorem 8 and I ′′(η′(0)) = 1/η′′(0), we get an extended central limit
theorem, that is, for any y = o(t1/6), as t → ∞,

P

(
Nt ≥ ν

1 − ‖h‖L1
t + √

t

√
ν

(1 − ‖h‖L1)3/2
y

)
= �(y)

(
1 + o(1)

)
, (2.27)

where �(y) := ∫ ∞
y

1√
2π

e−x2/2 dx. Note that (2.27) extends the univariate case of the Hawkes process

central limit theorem considered in [6] since we allow y = o(t1/6).
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Remark 10. By Theorem 3.3.1. in [15], we can also study the moderate deviations result. If 1  y √
t for t → ∞ ,1 that is, the moderate deviations regime, and if we let:

st := ν

1 − ‖h‖L1
+

√
ν

(1 − ‖h‖L1)3/2

y√
t
, (2.28)

then, with η′(θ∗) = st , as t → ∞,

P

(
Nt ≥ ν

1 − ‖h‖L1
t + √

t

√
ν

(1 − ‖h‖L1)3/2
y

)
= e−tI (st )

θ∗√2πtη′′(θ∗)
(
1 + o(1)

)
. (2.29)

Remark 11. By letting m = 4 in Theorem 8 and I ′′(η′(0)) = 1/η′′(0) and I ′′′(η′(0)) = −η′′′(0)/

(η′′(0))3, we get a precise moderate deviation result, that is, for any y = o(t1/4), as t → ∞,

P

(
Nt ≥ ν

1 − ‖h‖L1
+ √

t

√
ν

(1 − ‖h‖L1)3/2
y

)
= (1 + o(1))

y
√

2π
e− y2

2 e
η′′′(0)

6(η′′(0))3/2
y3√

t . (2.30)

Note that (8) gives a precise moderate deviation result, and it provides a more precise tail estimate

than [42]. To see this, let y = (1−‖h‖
L1 )3/2

√
ν

a(t)√
t
x, where x is a constant independent of t . Then for

t1/2  a(t)  t3/4, as t → ∞, we have

P

(
Nt ≥ ν

1 − ‖h‖L1
t + a(t)x

)

=
√

ν(1 + o(1))

(1 − ‖h‖L1)3/2
√

2π

√
t

a(t)x
e− (1−‖h‖

L1 )3

2ν
a(t)2

t
x2

e
η′′′(0)

6(η′′(0))3
a(t)3

t2
x3

=
√

ν(1 + o(1))

(1 − ‖h‖L1)3/2
√

2π

√
t

a(t)x
e− (1−‖h‖

L1 )3

2ν
a(t)2

t
x2

e

(1+2‖h‖
L1 )(1−‖h‖

L1 )4

6ν2
a(t)3

t2
x3

,

where η′(0) = ν
1−‖h‖

L1
, η′′(0) = ν

(1−‖h‖
L1 )3 , and η′′′(0) = ν

1+2‖h‖
L1

(1−‖h‖
L1 )5 .2

3. Numerical illustrations

In this section, we illustrate our precise deviations results by comparing the approximation of the tail
probability P(Nt ≥ xt) by using our formulas and by using Monte Carlo simulations. Since the event
{Nt ≥ xt} we are interested in is a rare event, we will first develop the importance sampling. Rare event
simulations using importance sampling have been studied for affine point processes, a generalization
of the linear Hawkes process when the exciting function is exponential, see [38,39]. We are interested
in the importance sampling for linear Hawkes processes with general exciting function, which are non-
Markovian in general, and is not covered in [38,39]. The importance sampling has also been used to
estimate the ruin probability in a risk model where the arrival process of the claims follows a Hawkes
process [35].

1For any two functions f and g, f (t)  g(t) as t → ∞ means f (t)
g(t)

→ 0 as t → ∞.
2The derivation of η′′′(0) will be given in the proof of Theorem 8.
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We are interested to estimate right tail probability P(Nt ≥ xt), where x > ν
1−‖h‖

L1
. Note that {Nt ≥

xt} is a rare event for x > ν
1−‖h‖

L1
. The idea of the importance sampling is to change the measure from

P to a new measure P̂ under which the event {Nt ≥ xt} becomes a typical event.
Let us define a new probability measure P̂ under which the Nt process is again a linear Hawkes

process, but with baseline intensity γ ν and the exciting function γ h(·), where γ is a positive constant
to be chosen later. Under the new measure, the Nt process has the intensity λ̂t = γ λt . We have the
following result which will be proved in the Appendix.

Proposition 12.

P(Nt ≥ xt) = e−tI (x)
Ê

[
1{Nt≥xt} · e((γ−1)‖h‖

L1 −logγ )(Nt−xt)−(γ−1)
∫ t

0 H(t−u)dNu
]
, (3.1)

where H(t) := ∫ ∞
t

h(s) ds, and I (x) is given in (1.4).

Our numerical illustrations include three different methods: (1) importance sampling; (2) precise
deviations up to the first-order approximation; (3) precise deviations up to the second-order approxi-
mation.

(1) Importance sampling. We simulate under Ê a Hawkes process Nt with intensity:

λ̂t = γ ν + γ

∫ t−

0
h(t − s) dNs, (3.2)

where γ = x
ν+‖h‖

L1 x
. Note that under the new measure P̂, we have P̂(Nt

t
→ γ ν

1−γ ‖h‖
L1

) = 1. By choos-

ing γ as γ = x
ν+‖h‖

L1 x
, we have γ ν

1−γ ‖h‖
L1

= x, and it follows that {Nt ≥ xt} is a typical event under

the new measure P̂.
Using importance sampling Monte Carlo method (Proposition 12), we estimate

e−tI (x)
Ê

[
1{Nt≥xt} · e((γ−1)‖h‖

L1 −logγ )(Nt−xt)−(γ−1)
∫ t

0 H(t−u)dNu
]
, (3.3)

where H(t) := ∫ ∞
t

h(s) ds denotes the right tail of the exciting function, and I (x) = x log( x
ν+x‖h‖

L1
)−

x + x‖h‖L1 + ν as is given in (1.4).
(2) Precise deviations up to the first-order approximation. We approximate P(Nt ≥ xt) by the for-

mula:

e−tI (x)

√
I ′′(x)

2πt
c0, (3.4)

where c0 = 1
1−e−θ∗ ψ(θ∗), and I ′′(x) = ν2

x(ν+‖h‖
L1 x)2 is the second derivative of I (x) defined in (1.4),

and θ∗ = log( x
ν+‖h‖

L1 x
) − ‖h‖

L1 x

ν+‖h‖
L1 x

+ ‖h‖L1 , where

ψ(θ) = eν
∫ ∞

0 [F(s;θ)−x(θ)]ds, (3.5)

where F is the unique solution that satisfies

F(t; θ) = eθ+∫ t
0 (F (t−s;θ)−1)h(s) ds, (3.6)
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Table 1. Numerical illustration of P(Nt ≥ xt) for h(t) = e−2t , ν = 1 and x = 4,5

x = 4 IS 1st Order 2nd Order x = 5 IS 1st Order 2nd Order

t = 5 4.71E−02 9.19E−02 −2.08E−02 t = 5 1.37E−02 2.68E−02 1.40E−03
t = 10 2.06E−02 3.06E−02 1.18E−02 t = 10 3.19E−03 4.59E−03 2.41E−03
t = 25 1.62E−03 2.02E−03 1.52E−03 t = 25 3.49E−05 4.14E−05 3.35E−05
t = 40 1.46E−04 1.66E−04 1.41E−04 t = 40 4.20E−07 4.66E−07 4.11E−07
t = 50 2.93E−05 3.29E−05 2.89E−05 t = 50 2.14E−08 2.45E−08 2.22E−08

with the constraint |F(t; θ)| ≤ 1
‖h‖

L1
, and x(θ) = F(∞; θ) is the unique solution to:

x(θ) = eθ+(x(θ)−1)‖h‖
L1 , (3.7)

with the constraint |x(θ)| ≤ 1
‖h‖

L1
. Note that we need to solve (3.6) and (3.7) numerically.

(3) Precise deviations up to the second-order approximation. We approximate P(Nt ≥ xt) by adding
a higher-order term to Eqn. (3.4) as follows:

e−tI (x)

√
I ′′(x)

2πt

(
c0 + c1

t

)
, (3.8)

where c0 = ψ(θ∗)
1−e−θ∗ , and c1 = b1

1−e−θ∗ , where the formula for b1 can be computed by applying Proposi-
tion 1 and Proposition 3. The details for the computations of b1 can be found in the Appendix.

In our numerical illustrations, we take baseline intensity ν = 1, and consider two different excit-
ing functions: h(t) = e−2t ; h(t) = 1

(1+t)3 . In both cases, ‖h‖L1 = 1
2 , and in the first case, H(t) =∫ ∞

t
h(s) ds = 1

2e−2t , and in the second case, H(t) = ∫ ∞
t

h(s) ds = 1
2(1+t)2 . We then compare the three

different methods (1), (2) and (3) by comparing (3.3), (3.4) and (3.8). We summarize the results in
Table 1 when the exciting function has exponential decay h(t) = e−2t and Table 2 when the exciting
function has polynomial decay h(t) = 1

(1+t)3 . In Table 1, we take x = 4 and x = 5, and consider the
times t = 5,10,25,40,50. Numerically, we compute that c0 = 4.8 and c1 = −22. In Table 2, we take
x = 4 and x = 5, and consider the times t = 5,10,25,40,50. Numerically, we compute that c0 = 3.51
and c1 = −24. In both tables, the column IS provides the numerical results using the importance sam-
pling; the column 1st Order provides the numerical results using the precise deviations formula up to
the first-order approximation; the column 2nd Order provides the numerical results using the precise
deviations formula up to the second-order approximation. In both tables, we observe that as time t gets
larger, the approximations get better. First-order approximation tend to overestimate the tail probability

Table 2. Numerical illustration of P(Nt ≥ xt) for h(t) = 1/(1 + t)3, ν = 1 and x = 4,5

x = 4 IS 1st Order 2nd Order x = 5 IS 1st Order 2nd Order

t = 5 3.04E−02 7.39E−02 −4.37E−02 t = 5 7.50E−03 1.94E−02 −7.60E−03
t = 10 1.33E−02 2.46E−02 5.02E−02 t = 10 1.63E−03 3.33E−03 1.01E−03
t = 25 1.12E−03 1.62E−03 1.11E−03 t = 25 1.95E−05 2.99E−05 2.16E−05
t = 40 1.03E−04 1.34E−04 1.07E−04 t = 40 2.39E−07 3.38E−07 2.79E−07
t = 50 2.28E−05 2.65E−05 2.23E−05 t = 50 1.28E−08 1.78E−08 1.53E−08
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while second-order approximation tend to underestimate the tail probability in Table 1 while that is not
the case in Table 2. This is due to the positivity of c0 and negativity of c1. As a result, when t is small,
second-order approximation could give negative values which are unrealistic, for example, when t = 5
in Table 1 and Table 2. In both tables, as t becomes larger, second-order approximation provides better
approximation than the first-order approximation.

Appendix: Proofs

A.1. Proofs of the results in Section 2.1

Proof of Proposition 4. Consider θ ∈ R, and x(θ) = eθ+‖h‖
L1 (x(θ)−1). Then x(θ) is increasing in

θ by x(θ) = E[eθS∞] and the definition of S∞. Moreover, for θ = θc = ‖h‖L1 − 1 − log‖h‖L1 , we
have x(θc) = 1

‖h‖
L1

e‖h‖
L1 −1+‖h‖

L1 (x(θc)−1), which implies that x(θc)‖h‖L1 = 1. Thus, for any θ ≤ θc,

x(θ)‖h‖L1 ≤ 1, which proves (i). We also notice that x′(θ) = (1 + ‖h‖L1x′(θ))x(θ), and therefore as
θ ↑ θc, x′(θ) = x(θ)

1−‖h‖
L1 x(θ)

→ ∞, that proves (ii), which also follows from Theorem 3.2.1. in [8]. �

Proof of Proposition 5. Suppose F1 and F2 are two solutions that satisfy (2.11) with |Fj | ≤ 1
‖h‖

L1
,

for j = 1,2. Note that for any z1, z2 ∈C,

∣∣ez1 − ez2
∣∣ =

∣∣∣∣∣
∞∑

n=1

zn
1 − zn

2

n!

∣∣∣∣∣

≤ |z1 − z2|
∞∑

n=1

|z1|n−1 + |z1|n−2|z2| + · · · + |z1||z2|n−2 + |z2|n−1

n!

≤ |z1 − z2|
∞∑

n=1

n(|z1| + |z2|)n−1

n! = |z1 − z2|e|z1|+|z2|.

Hence, for any T > 0 and for any 0 ≤ t ≤ T ,

∣∣F1(t; z) − F2(t; z)
∣∣ = ∣∣ez

∣∣∣∣e∫ t
0 (F1(t−s;z)−1)h(s) ds − e

∫ t
0 (F2(t−s;z)−1)h(s) ds

∣∣
≤ ∣∣ez

∣∣∣∣∣∣
∫ t

0

(
F1(t − s; z) − F2(t − s; z))h(s) ds

∣∣∣∣
· e|∫ t

0 (F1(t−s;z)−1)h(s) ds|+|∫ t
0 (F2(t−s;z)−1)h(s) ds|

≤ ∣∣ez
∣∣‖h‖L∞[0,T ]e

2( 1
‖h‖

L1
+1)‖h‖

L1
∫ t

0

∣∣F1(s; z) − F2(s; z)
∣∣ds.

Note that F1(0; z) = F2(0; z) = ez from (2.11). By Gronwall’s inequality, we conclude that F1 ≡ F2. �

Proof of Lemma 6. Note that Y = ∑K
i=1 Zi in distribution, where K is Poisson random variable

with parameter ν and Zi are i.i.d. random variable interpreted as the total number of the nodes in a
Galton–Watson tree with the number of children being born in each generation Poisson distributed
with parameter ‖h‖L1 , independent of K . A compound Poisson random variable is infinitely divisible,
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which is evident from the expression of its characteristic function. Hence, Y has an infinitely divisible
distribution. �

Proof of Lemma 7. Firstly, it is obvious that for any s > 0, and t > 0, F(s, z), x(z), and
∫ t

0 (F (s, z) −
x(z)) ds are analytic in S(−∞,θc). Since ‖h‖L1 < 1 and x(0) = 1, for R(z) < ‖h‖L1 − 1 − log‖h‖L1 ,
we have |x(z)|‖h‖L1 ≤ x(R(z))‖h‖L1 < 1. Therefore, for any compact subset K ⊂ {z ∈ C;R(z) <

‖h‖L1 − 1 − log‖h‖L1}, we have

sup
z∈K

∣∣x(z)
∣∣‖h‖L1 ≤ x

(
R(z)

)‖h‖L1 < 1.

Since
∫ ∞
s

h(u)du → 0 as s → ∞ and F(s; z) = E[ezSs ] → x(z) = E[ezS∞], we have that

∫ s

0
sup
z∈K

[
F(s − u; z) − x(z)

]
h(u)du → 0, as s → ∞.

Note that

F(s; z) − x(z) = x(z)
[
e
∫ s

0 [F(s−u;z)−x(z)]h(u)du−(x(z)−1)
∫ ∞
s h(u)du − 1

]
,

and for any fixed δ > 0 such that (1 + δ) supz∈K |x(z)|‖h‖L1 < 1, there exists M > 0, so that for any
s ≥ M and z ∈ K , we have

∣∣F(s; z) − x(z)
∣∣ ≤ (1 + δ)

∣∣x(z)
∣∣[∫ s

0

∣∣F(s − u; z) − x(z)
∣∣h(u)du + ∣∣x(z) − 1

∣∣ ∫ ∞

s

h(u)du

]
.

Therefore, we get that for any T > M ,

∫ T

M

sup
z∈K

∣∣F(s; z) − x(z)
∣∣ds ≤ (1 + δ) sup

z∈K

∣∣x(z)
∣∣ ∫ T

M

∫ s

0
sup
z∈K

∣∣F(s − u; z) − x(z)
∣∣h(u)duds

+ (1 + δ) sup
z∈K

∣∣x(z)
∣∣∣∣x(z) − 1

∣∣ ∫ T

M

∫ ∞

s

h(u)duds

≤ (1 + δ) sup
z∈K

∣∣x(z)
∣∣ ∫ T

0

∫ s

0
sup
z∈K

∣∣F(s − u; z) − x(z)
∣∣h(u)duds

+ (1 + δ) sup
z∈K

∣∣x(z)
∣∣∣∣x(z) − 1

∣∣ ∫ ∞

0

∫ ∞

s

h(u)duds,

which implies that

∫ T

0
sup
z∈K

∣∣F(s; z) − x(z)
∣∣ds

≤
∫ M

0
sup
z∈K

∣∣F(s; z) − x(z)
∣∣ds + (1 + δ) sup

z∈K

∣∣x(z)
∣∣ ∫ T

0

∫ s

0
sup
z∈K

∣∣F(s − u; z) − x(z)
∣∣h(u)duds

+ (1 + δ) sup
z∈K

∣∣x(z)
∣∣∣∣x(z) − 1

∣∣ ∫ ∞

0

∫ ∞

s

h(u)duds

=
∫ M

0
sup
z∈K

∣∣F(s; z) − x(z)
∣∣ds + (1 + δ) sup

z∈K

∣∣x(z)
∣∣ ∫ T

0

[∫ T

u

sup
z∈K

∣∣F(s − u; z) − x(z)
∣∣ds

]
h(u)du
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+ (1 + δ) sup
z∈K

∣∣x(z)
∣∣∣∣x(z) − 1

∣∣ ∫ ∞

0

∫ ∞

s

h(u)duds

≤
∫ M

0
sup
z∈K

∣∣F(s; z) − x(z)
∣∣ds + (1 + δ) sup

z∈K

∣∣x(z)
∣∣‖h‖L1

∫ T

0

∣∣F(s; z) − x(z)
∣∣ds

+ (1 + δ) sup
z∈K

∣∣x(z)
∣∣[sup

z∈K

∣∣x(z)
∣∣ + 1

]∫ ∞

0
sh(s) ds,

which holds for any T > M , and thus we have

∫ ∞

0
sup
z∈K

∣∣F(s; z) − x(z)
∣∣ds

≤
∫ M

0 supz∈K |F(s; z) − x(z)|ds + (1 + δ) supz∈K |x(z)|[supz∈K |x(z)| + 1] ∫ ∞
0 sh(s) ds

1 − (1 + δ) supz∈K |x(z)|‖h‖L1
. (A.9)

Hence, we conclude that
∫ ∞
t

supz∈K |F(s; z) − x(z)|ds → 0 as t → ∞, and so

∫ t

0

(
F(s, z) − x(z)

)
ds →

∫ ∞

0

(
F(s, z) − x(z)

)
ds, (A.10)

as t → ∞, locally uniformly in z for R(z) < θc. Hence, ϕ(z) is well-defined and is analytic in S(−∞,θc).
By equations (2.17), (A.10) and the definitions of ψ(z) and ϕ(z) in (2.10) we have proved that locally
uniformly in z for R(z) < θc,

e−t (ν(x(z)−1))
E

[
ezNt

] = eν
∫ t

0 (F (s,z)−x(z)) ds → eνϕ(z) = ψ(z), as t → ∞.

To show the mod-φ convergence at speed O(t−v), that is, for any compact set K , there exists some
CK > 0 such that supz∈K |e−t (ν(x(z)−1))

E[ezNt ] − eνϕ(z)| ≤ CKt−v , it suffices to show that for any
compact set K ⊂ {z ∈ C;R(z) < ‖h‖L1 − 1 − log‖h‖L1},

∫ ∞

0
tv sup

z∈K

∣∣F(t; z) − x(z)
∣∣dt < ∞. (A.11)

To see this, notice that

sup
z∈K

∣∣e−t (ν(x(z)−1))
E

[
ezNt

] − eνϕ(z)
∣∣ = sup

z∈K

∣∣eνϕ(z)
(
eν

∫ ∞
t (F (s;z)−x(z)) ds − 1

)∣∣

≤ sup
z∈K

eν|ϕ(z)|(eν
∫ ∞
t supz∈K |F(s;z)−x(z)|ds − 1

)
.

Thus it suffices to show that

∫ ∞

t

sup
z∈K

∣∣F(s; z) − x(z)
∣∣ds ≤ cKt−v, (A.12)
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for some cK > 0. For any T > 0, by integration by parts,

∫ T

0
tv sup

z∈K

∣∣F(t; z) − x(z)
∣∣dt

= −
∫ T

0
tv d

(∫ ∞

t

sup
z∈K

∣∣F(s; z) − x(z)
∣∣ds

)

= −T v

∫ ∞

T

sup
z∈K

∣∣F(s; z) − x(z)
∣∣ds + v

∫ T

0
tv−1

∫ ∞

t

sup
z∈K

∣∣F(s; z) − x(z)
∣∣ds dt. (A.13)

On the other hand, by Fubini’s theorem and (A.11), we have

v

∫ ∞

0
tv−1

∫ ∞

t

sup
z∈K

∣∣F(s; z) − x(z)
∣∣ds dt = v

∫ ∞

0

∫ s

0
tv−1 sup

z∈K

∣∣F(s; z) − x(z)
∣∣dt ds

=
∫ ∞

0
sv sup

z∈K

∣∣F(s; z) − x(z)
∣∣dt ds < ∞. (A.14)

Hence, we get limT →∞ T v
∫ ∞
T

supz∈K |F(s; z) − x(z)|ds = 0 by letting T → ∞ in (A.13) and apply-
ing (A.14). This implies (A.12).

Next, let us prove (A.11). Notice that there exists M > 0 so that for any s ≥ M ,

sup
z∈Z

∣∣F(s; z) − x(z)
∣∣ ≤ (1 + δ) sup

z∈K

∣∣x(z)
∣∣ ∫ s

0
sup
z∈K

∣∣F(s − u; z) − x(z)
∣∣h(u)du

+ (1 + δ) sup
z∈K

∣∣x(z)
∣∣ sup
z∈K

∣∣x(z) − 1
∣∣ ∫ ∞

s

h(u)du.

Therefore, for every s ≥ 0,

sup
z∈K

∣∣F(s; z) − x(z)
∣∣ ≤ (1 + δ) sup

z∈K

∣∣x(z)
∣∣ ∫ s

0
sup
z∈K

∣∣F(s − u; z) − x(z)
∣∣h(u)du + g(s), (A.15)

where

g(s) := C1

∫ ∞

s

h(u)du + C21{s≤M}, (A.16)

where

C1 := (1 + δ) sup
z∈K

∣∣x(z)
∣∣ sup
z∈K

∣∣x(z) − 1
∣∣, C2 := sup

0≤s≤M

sup
z∈K

∣∣F(s; z) − x(z)
∣∣. (A.17)

Let p(s) := supz∈K |F(s; z)−x(z)| and q(s) := (1+δ) supz∈K |x(z)|h(s) for every s ≥ 0. Then, (A.15)
can be re-written as p(s) ≤ ∫ s

0 q(s − u)p(u)du + g(s), s ≥ 0, which implies

p(s) ≤
∫ s

0
q(s − u)

(∫ u

0
q(u − v)p(v) dv + g(u)

)
du + g(s)

=
∫ s

0
q∗2(s − u)p(u)du +

∫ s

0
q∗1(s − u)g(u)du + g(s), s ≥ 0.
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By iterating and following the same argument as in the proof of generalized Gronwall’s inequality in
[11], we have

p(s) ≤ g(s) +
∫ s

0

∞∑
k=1

q∗k(s − u)g(u)du,

which is equivalent to

sup
z∈K

∣∣F(s; z) − x(z)
∣∣ ≤ g(s) +

∫ s

0
G(s − u)g(u)du, (A.18)

where

G(t) :=
∞∑

k=1

(
(1 + δ) sup

z∈K

∣∣x(z)
∣∣)k

h∗k(t), (A.19)

where h∗k(t) is the k-th order convolution of h, that is, h∗0(t) := h(t) and h∗m(t) := ∫ t

0 h∗(m−1)(t −
s)h(s) ds for every m ∈ N. Hence, it remains to show that

∫ ∞

0
svg(s) ds < ∞, (A.20)

∫ ∞

0
sv

∫ s

0
G(s − u)g(u)duds < ∞. (A.21)

Let us first prove (A.20). Note that

∫ ∞

0
svg(s) ds = C1

∫ ∞

0
sv

∫ ∞

s

h(u)duds + C2

∫ M

0
sv dv, (A.22)

and by our assumption,
∫ ∞

0
sv

∫ ∞

s

h(u)duds =
∫ ∞

0

∫ u

0
svh(u)ds du = 1

v + 1

∫ ∞

0
uv+1h(u)du < ∞, (A.23)

thus (A.20) follows.
Next, let us prove (A.21). Note that

∫ ∞

0
sv

∫ s

0
G(s − u)g(u)duds

= C1

∫ ∞

0
sv

∫ s

0
G(s − u)

∫ ∞

u

h(x) dx duds + C2

∫ ∞

0
sv

∫ s

0
G(s − u)1{u≤M} duds,

and it is easy to check that
∫ ∞

0
sv

∫ s

0
G(s − u)1{u≤M} duds =

∫ ∞

0

∫ ∞

u

svG(s − u)ds1{u≤M} du

=
∫ M

0

∫ ∞

0
(s + u)vG(s) ds du

≤ 2v−1M

∫ ∞

0

(
sv + Mv

)
G(s)ds,
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where we used the inequality (a + b)v ≤ 2v−1(av + bv) for any a, b > 0 and v ≥ 1. We can compute
that

∫ ∞

0
G(s)ds =

∞∑
k=1

(
(1 + δ) sup

z∈K

∣∣x(z)
∣∣)k

∫ ∞

0
h∗k(s) ds =

∞∑
k=1

(
(1 + δ) sup

z∈K

∣∣x(z)
∣∣)k‖h‖k

L1,

which is finite since (1 + δ) supz∈K |x(z)|‖h‖L1 < 1. Next, let us show that

∫ ∞

0
svG(s) ds < ∞. (A.24)

Notice that

∫ ∞

0
svG(s) ds =

∞∑
k=1

(
(1 + δ) sup

z∈K

∣∣x(z)
∣∣)k

∫ ∞

0
svh∗k(s) ds

=
∞∑

k=1

(
(1 + δ) sup

z∈K

∣∣x(z)
∣∣)k

∫ ∞

0
sv

∫ s

0
h(s − u)h∗(k−1)(u) duds

=
∞∑

k=1

(
(1 + δ) sup

z∈K

∣∣x(z)
∣∣)k

∫ ∞

0

∫ ∞

u

svh(s − u)dsh∗(k−1)(u) du

=
∞∑

k=1

(
(1 + δ) sup

z∈K

∣∣x(z)
∣∣)k

∫ ∞

0

∫ ∞

0
(s + u)vh(s)dsh∗(k−1)(u) du.

Note that for any δ′ > 0, there exists some C(δ′) > 0 such that for any s, u ≥ 0,

(s + u)v ≤ C
(
δ′)sv + (

1 + δ′)uv. (A.25)

Therefore,
∫ ∞

0
svh∗k(s) ds

≤ C
(
δ′)∫ ∞

0
svh(s) ds

∫ ∞

0
h∗(k−1)(u) du + (

1 + δ′)∫ ∞

0
h(s) ds

∫ ∞

0
uvh∗(k−1)(u) du

= C
(
δ′)∫ ∞

0
svh(s) ds‖h‖k−1

L1 + (
1 + δ′)‖h‖L1

∫ ∞

0
uvh∗(k−1)(u) du.

Let us define Ak := ∫ ∞
0 svh∗k(s) ds. Then, we have:

Ak ≤ C
(
δ′)‖h‖k−1

L1 A1 + (
1 + δ′)‖h‖L1Ak−1. (A.26)

It follows that

Ak ≤ C
(
δ′)‖h‖k−1

L1

[
1 + (

1 + δ′)‖h‖L1 + ((
1 + δ′)‖h‖L1

)2 + · · · + ((
1 + δ′)‖h‖L1

)k−2]
A1

+ ((
1 + δ′)‖h‖L1

)k−1
A1.
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Choose δ′ > 0 to be sufficiently small so that (1 + δ′)‖h‖L1 < 1. Then, we have

Ak ≤ C(δ′)
1 − (1 + δ′)‖h‖L1

‖h‖k−1
L1 A1 + (

1 + δ′)k−1‖h‖k−1
L1 A1

≤
(

C(δ′)
1 − (1 + δ′)‖h‖L1

+ 1

)(
1 + δ′)k−1‖h‖k−1

L1 A1.

Choose δ′ > 0 to be sufficiently small so that (1 + δ)(1 + δ′) supz∈K |x(z)|‖h‖L1 < 1. Hence, we
conclude that∫ ∞

0
svG(s) ds

=
∞∑

k=1

(
(1 + δ) sup

z∈K

∣∣x(z)
∣∣)k

Ak

≤ (1 + δ) sup
z∈K

∣∣x(z)
∣∣A1

(
C(δ′)

1 − (1 + δ′)‖h‖L1
+ 1

) ∞∑
k=1

(
(1 + δ) sup

z∈K

∣∣x(z)
∣∣(1 + δ′)‖h‖L1

)k−1

=
(1 + δ) supz∈K |x(z)|A1(

C(δ′)
1−(1+δ′)‖h‖

L1
+ 1)

1 − (1 + δ)(1 + δ′) supz∈K |x(z)|‖h‖L1
< ∞.

Finally, we can compute that
∫ ∞

0
sv

∫ s

0
G(s − u)

∫ ∞

u

h(x) dx duds

=
∫ ∞

0

∫ ∞

u

svG(s − u)ds

∫ ∞

u

h(x) dx du

=
∫ ∞

0

∫ ∞

0
(s + u)vG(s) ds

∫ ∞

u

h(x) dx du

≤ 2v−1
∫ ∞

0

∫ ∞

0

(
sv + uv

)
G(s)ds

∫ ∞

u

h(x) dx du

= 2v−1
∫ ∞

0
svG(s) ds

∫ ∞

0
sh(s) ds + 2v−1

∫ ∞

0
G(s)ds · 1

v + 1

∫ ∞

0
sv+1h(s) ds < ∞.

This completes the proof. �

Proof of Theorem 2. By Lemma 6, and Lemma 7, we have established the mod-φ convergence.
Hence, by Theorem 3.2.2. in [15], for any x > 0, and tx ∈N,

P(Nt = tx) = e−tI (x)

√
2πtη′′(θ∗)

(
ψ

(
θ∗) + a1

t
+ a2

t2
+ · · · + av−1

tv−1
+ O

(
1

tv

))
, (A.27)

and for any x > η′(0) = ν
1−‖h‖

L1
and tx ∈ N,

P(Nt ≥ tx) = e−tI (x)

√
2πtη′′(θ∗)

1

1 − e−θ∗

(
ψ

(
θ∗) + b1

t
+ b2

t2
+ · · · + bv−1

tv−1
+ O

(
1

tv

))
, (A.28)
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where I (x) is defined in (1.4) and η′(θ∗) = x. Note that η(θ) = ν(x(θ) − 1), where x(θ) =
eθ+‖h‖

L1 (x(θ)−1). Thus, η′(θ) = νx′(θ), and

x′(θ) = (
1 + ‖h‖L1x

′(θ)
)
eθ+‖h‖

L1 (x(θ)−1) = (
1 + ‖h‖L1x

′(θ)
)
x(θ), (A.29)

which implies that

x(θ) = x′(θ)

1 + ‖h‖L1x′(θ)
. (A.30)

Notice that η′(θ∗) = x, and thus x′(θ∗) = η′(θ∗)
ν

= x
ν

, and x(θ∗) = x′(θ∗)
1+‖h‖

L1 x′(θ∗)
x

ν+‖h‖
L1 x

. Therefore,

x

ν
= x′(θ∗) = (

1 + ‖h‖L1x
′(θ∗))eθ∗+‖h‖

L1 (x(θ∗)−1) =
(

1 + ‖h‖L1x

ν

)
e
θ∗+ ‖h‖

L1 x

ν+‖h‖
L1 x

−‖h‖
L1

,

which implies that θ∗ = log( x
ν+‖h‖

L1 x
) − ‖h‖

L1 x

ν+‖h‖
L1 x

+ ‖h‖L1 . Hence, we have verified that

I (x) = θ∗x − η
(
θ∗) = x log

(
x

ν + x‖h‖L1

)
− x + x‖h‖L1 + ν. (A.31)

Moreover, by the property of Legendre transform, η′′(θ∗) = 1
I ′′(x)

, which together with

I ′(x) = θ∗ = log

(
x

ν + ‖h‖L1x

)
− ‖h‖L1x

ν + ‖h‖L1x
+ ‖h‖L1 , (A.32)

implies that

I ′′(x) = ν2

x(ν + ‖h‖L1x)2
. (A.33)

�

A.2. Proofs of the results in Section 2.2

Proof of Theorem 8. Since we have established mod-φ convergence, and Nt is lattice distributed, the
result follows from Corollary 3.3.5. in [15], which is restated in our (2.5).

Next, let us show that (2.26) holds. Recall from (A.33) that I ′′(x) = ν2

x(ν+‖h‖
L1 x)2 . Therefore, for any

i ≥ 2, by Leibniz formula,

I (i)(x) = ν2 di−2

dxi−2
x−1 · (ν + ‖h‖L1x

)−2

= ν2
i−2∑
j=0

(i − 2)!
(i − 2 − j)!j ! (−1)i−2(i − 2 − j)!‖h‖j

L1(j + 1)!x−1−(i−2−j)
(
ν + ‖h‖L1x

)−j−2

= ν2(i − 2)!(−1)i−2 x1−i

(ν + ‖h‖L1x)2

i−2∑
j=0

(j + 1)

( ‖h‖L1x

ν + ‖h‖L1x

)j
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= ν2(i − 2)!(−1)i−2 x1−i

(ν + ‖h‖L1x)2

d

dy

i−2∑
j=0

yj+1
∣∣∣∣
y= ‖h‖

L1 x

ν+‖h‖
L1 x

= ν2(i − 2)!(−1)i−2 x1−i

(ν + ‖h‖L1x)2

(i − 1)yi − iyi−1 + 1

(y − 1)2

∣∣∣∣
y= ‖h‖

L1 x

ν+‖h‖
L1 x

,

which implies (2.26).
Finally, let us compute η′(0), η′′(0) for Theorem 8 as well as η′′′(0) for Remark 11. Let us re-

call that η(θ) = ν(x(θ) − 1), where x(θ) = eθ+‖h‖
L1 (x(θ)−1). Thus, we can compute x′(θ) = (1 +

‖h‖L1x′(θ))x(θ) and x′′(θ) = [‖h‖L1x′′(θ) + (1 + ‖h‖L1x′(θ))2]x(θ) and

x′′′(θ) = [‖h‖L1x
′′′(θ) + 2

(
1 + ‖h‖L1x

′(θ)
)‖h‖L1x

′′(θ)
]
x(θ)

+ [‖h‖L1x
′′(θ) + (

1 + ‖h‖L1x
′(θ)

)2](1 + ‖h‖L1x
′(θ)

)
x(θ).

Note that x(0) = 1. By letting θ = 0, we get the formulas for η′(0), η′′(0) and η′′′(0). �

A.3. Proof of Proposition 1(i): Derivations of (ak)
∞
k=1

Before we proceed, let us first introduce the Faà di Bruno’s formula that will be used repeatedly in our
proofs.

Lemma 13 (Faà di Bruno’s formula).

dn

dxn
f

(
g(x)

) =
∑
Sn

n!f (m1+···+mn)(g(x))

m1!1!m1m2!2!m2 · · ·mn!n!mn
·

n∏
j=1

(
g(j)(x)

)mj , (A.34)

where the sum is over the set Sn consisting of all the n-tuples of non-negative integers (m1, . . . ,mn)

satisfying the constraint 1 · m1 + 2 · m2 + 3 · m3 + · · · + n · mn = n.

We recall from the proof of Theorem 3.2.2. and Remark 3.2.5. in [15] that for Z-valued random
variables Xn,

P(Xn = tnx) = e−tnF (x)

√
2πtnη′′(θ∗)

(
ψ

(
θ∗) + a1

tn
+ · · · + av−1

tv−1
n

+ O
(
t−v
n

))
, (A.35)

as n → ∞, where ak = ∫ ∞
−∞ α2k(w)e

− w2
2√

2π
dw, where αk’s are defined via the expansion:

2v−1∑
k=0

αk

t
k/2
n

+ O
(
t−v
n

) =
2v−1∑
k=0

ψ(k)(θ∗)
k!

(
iw√

tnη′′(θ∗)

)k

e
− w2

η′′(θ∗)

∑2v−1
k=1

η(k+2)(θ∗)
(k+2)! ( iw√

tnη′′(θ∗)
)k

. (A.36)

Let us define f (x) = e−x and

g(x) = w2

η′′(θ∗)

∞∑
k=1

η(k+2)(θ∗)
(k + 2)! xk. (A.37)
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Then we can compute that g(0) = 0 and for every j ∈N,

g(j)(0) = w2

η′′(θ∗)
η(j+2)(θ∗)

(j + 2)(j + 1)
. (A.38)

By Faà di Bruno’s formula, it follows that

f
(
g(x)

) =
∞∑

n=0

∑ n!(−1)m1+···+mn

m1!1!m1m2!2!m2 · · ·mn!n!mn
·

n∏
j=1

(
w2

η′′(θ∗)
η(j+2)(θ∗)

(j + 2)(j + 1)

)mj xn

n! . (A.39)

It follows that

αk

t
k/2
n

=
k∑


=0

ψ(k−
)(θ∗)
(k − 
)!

∑
S


(−1)m1+···+m


m1!1!m1m2!2!m2 · · ·m
!
!m


·

∏

j=1

(
w2

η′′(θ∗)
η(j+2)(θ∗)

(j + 2)(j + 1)

)mj (iw)k

(η′′(θ∗))k/2
,

which implies that

αk(w) =
k∑


=0

ψ(k−
)(θ∗)
(k − 
)!

∑
S


(−1)m1+···+m


m1!1!m1m2!2!m2 · · ·m
!
!m


·

∏

j=1

(
1

η′′(θ∗)
η(j+2)(θ∗)

(j + 2)(j + 1)

)mj (i)kwk+2(m1+···+m
)

(η′′(θ∗))k/2
.

By the property of standard normal random variable,

∫ ∞

−∞
wm · e− w2

2√
2π

dw = (m − 1)!!, (A.40)

if m is even and 0 if m is odd. Hence, the formula for ak follows.

A.4. Proof of Proposition 1(ii): Derivations of (bk)
∞
k=1

We recall from the proof of Theorem 3.2.2. and Remark 3.2.5. in [15] that for integer-valued random
variables Xn,

P(Xn ≥ tnx) = e−tnF (x)

√
2πtnη′′(θ∗)

1

1 − e−θ∗

(
ψ

(
θ∗) + b1

tn
+ b2

t2
n

+ · · · + bv−1

tv−1
n

+ O

(
1

tvn

))
, (A.41)

where bk = ∫
R

β2k(w)e
− w2

2√
2π

dw, where βj (w) are given via the expansion:

gn(w) =
2ν−1∑
k=0

βk(w)

(tn)k/2
+ O

(
t−v
n

)
, (A.42)
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where

gn(w) :=
∞∑

k=0

e−kθ∗
e
−k iw√

tnη′′(θ∗) · ψ
(

θ∗ + iw√
tnη′′(θ∗)

)

· etn(η(θ∗+ iw√
tnη′′(θ∗)

)−η(θ∗)−η′(θ∗) iw√
tnη′′(θ∗)

+ w2
2tn

)

=
ψ(θ∗ + iw√

tnη′′(θ∗)
)

1 − e
−θ∗− iw√

tnη′′(θ∗)

· etn(η(θ∗+ iw√
tnη′′(θ∗)

)−η(θ∗)−η′(θ∗) iw√
tnη′′(θ∗)

+ w2
2tn

)
.

Note that
2ν−1∑
k=0

βk(w)

(tn)k/2
+ O

(
t−v
n

) = 1

1 − e
−θ∗− iw√

tnη′′(θ∗)

2ν−1∑
k=0

αk(w)

(tn)k/2
. (A.43)

We define f (x) = 1
1−e−θ∗

x
, and g(x) = e−x . Then,

f
(
g(x)

) =
∞∑

n=0

∞∑
n=0

dn

dxn
f

(
g(0)

)xn

n! , (A.44)

where we can compute that f (k)(x) = e−kθ∗
k!(1 − e−θ∗

x)−k−1, and g(k)(x) = (−1)ke−x , and by Faà
di Bruno’s formula, we get

dn

dxn
f

(
g(0)

) =
∑
Sn

n!e−∑n
j=1 mj θ∗

(
∑n

j=1 mj)!(1 − e−θ∗
)
−∑n

j=1 mj −1

m1!1!m1m2!2!m2 · · ·mn!n!mn
·

n∏
j=1

(−1)j ·mj . (A.45)

By the formula for αk(w), we have

βk(w) =
k∑

n=0

∑
Sn

e
−∑n

j=1 mj θ∗
(
∑n

j=1 mj)!(1 − e−θ∗
)
−∑n

j=1 mj −1

m1!1!m1m2!2!m2 · · ·mn!n!mn
·

n∏
j=1

(−1)j ·mj (A.46)

·
k−n∑

=0

ψ(k−n−
)(θ∗)
(k − n − 
)!

∑
S


(−1)m1+···+m


m1!1!m1m2!2!m2 · · ·m
!
!m


·

∏

j=1

(
1

η′′(θ∗)
η(j+2)(θ∗)

(j + 2)(j + 1)

)mj (i)kwk+2(m1+···+m
)

(η′′(θ∗))k/2
.

Hence, the formula for bk follows.

A.5. Proof of Proposition 3(i): Computations of η(k)(θ∗)

We recall that η(θ) = ν(x(θ) − 1) so that

η(k)
(
θ∗) = νx(k)

(
θ∗), k ∈ N. (A.47)
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Note that

x(θ) = eθ+‖h‖
L1 (x(θ)−1) = eθ−‖h‖

L1 e‖h‖
L1 x(θ). (A.48)

Therefore, by Leibniz formula,

x(k)
(
θ∗) =

k∑

=0

(
k




)
eθ∗−‖h‖

L1
d


dθ

e‖h‖

L1 x(θ)

∣∣∣∣
θ=θ∗

. (A.49)

By Faà di Bruno’s formula, we get

d


dθ

e‖h‖

L1 x(θ)

∣∣∣∣
θ=θ∗

=
∑
S



! · ‖h‖m1+···+m


L1 · e‖h‖
L1 x(θ∗)

m1!1!m1m2!2!m2 · · ·m
!
!m

·


∏
j=1

(
x(j)

(
θ∗))mj . (A.50)

Hence,

x(k)
(
θ∗) = eθ∗−‖h‖

L1
dk

dθk
e‖h‖

L1 x(θ)

∣∣∣∣
θ=θ∗

+
k−1∑

=0

(
k




)
eθ∗−‖h‖

L1
d


dθ

e‖h‖

L1 x(θ)

∣∣∣∣
θ=θ∗

(A.51)

= eθ∗−‖h‖
L1 ‖h‖L1 · e‖h‖

L1 x(θ∗) · x(k)
(
θ∗)

+ eθ∗−‖h‖
L1

∑
Tk

k! · ‖h‖m1+···+mk−1

L1 · e‖h‖
L1 x(θ∗)

m1!1!m1m2!2!m2 · · ·mk−1!(k − 1)!mk−1
·
k−1∏
j=1

(
x(j)

(
θ∗))mj

+
k−1∑

=0

(
k




)
eθ∗−‖h‖

L1
∑
S



! · ‖h‖m1+···+m


L1 · e‖h‖
L1 x(θ∗)

m1!1!m1m2!2!m2 · · ·m
!
!m

·


∏
j=1

(
x(j)

(
θ∗))mj ,

where Tk denotes the set of (k − 1)-tuples of non-negative integers (m1, . . . ,mk−1) satisfying the
constraint 1 · m1 + 2 · m2 + 3 · m3 + · · · + (k − 1) · mk−1 = k. Note that x(θ∗) = eθ+‖h‖

L1 (x(θ∗)−1).
Also that θ∗ = arg maxθ≥0{θx −ν(x(θ)−1)}. Thus, x = νx′(θ∗), which gives x′(θ∗) = x

ν
and x(θ∗) =

x
ν+‖h‖

L1 x
.

For k ≥ 1, x(k)(θ∗) can be computed recursively as:

x(k)
(
θ∗) = x(θ∗)

1 − ‖h‖L1x(θ∗)
∑
Tk

k! · ‖h‖m1+···+mk−1

L1

m1!1!m1m2!2!m2 · · ·mk−1!(k − 1)!mk−1
·
k−1∏
j=1

(
x(j)

(
θ∗))mj

+ x(θ∗)
1 − ‖h‖L1x(θ∗)

k−1∑

=0

(
k




)∑
S



! · ‖h‖m1+···+m


L1

m1!1!m1m2!2!m2 · · ·m
!
!m

·


∏
j=1

(
x(j)

(
θ∗))mj .

A.6. Proof of Proposition 3(ii): Computations of ψ(k)(θ∗)

Let us recall that

ψ(θ) = eν
∫ ∞

0 [F(s;θ)−x(θ)]ds . (A.52)
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where F(·; θ) satisfies: F(t; θ) = eθ+∫ t
0 (F (t−s;θ)−1)h(s) ds . Let F (k)(·; θ) denote the k-th partial deriva-

tive of F(·; θ) w.r.t. θ . By Faà di Bruno’s formula, we have

ψ(k)
(
θ∗) =

∑
Sk

k! · νm1+···+mk · ψ(θ∗)
m1!1!m1m2!2!m2 · · ·mk!k!mk

·
k∏

j=1

(∫ ∞

0

[
F (j)

(
s; θ∗) − x(j)

(
θ∗)]ds

)mj

. (A.53)

Moreover, by Leibniz formula, we can compute that

F (k)
(
t; θ∗) =

k∑

=0

(
k




)
eθ∗−∫ t

0 h(s) ds d


dθ

e
∫ t

0 F(t−s;θ)h(s) ds

∣∣∣∣
θ=θ∗

. (A.54)

By Faà di Bruno’s formula, similar to deriving the formulas for x(k)(θ∗), we get (2.16).

A.7. Computations of a1 and b1 for Theorem 2

By Proposition 1, we can compute that

a1 = −1

2

ψ ′′(θ∗)
η′′(θ∗)

+ 1

24

ψ(θ∗)η(4)(θ∗) + 4ψ ′(θ∗)η(3)(θ∗)
(η′′(θ∗))2

− 15

72

ψ(θ∗)(η(3)(θ∗))2

(η′′(θ∗))3
, (A.55)

b1 = −ψ
(
θ∗)1

2

e−θ∗ + e−2θ∗

(1 − e−θ∗
)2

1

η′′(θ∗)
− 1

2
ψ ′′(θ∗) 1

η′′(θ∗)

+ ψ
(
θ∗)[η(4)

(
θ∗) 1

24

3

(η′′(θ∗))2
− 1

2

(
η(3)

(
θ∗))2 1

36

15

(η′′(θ∗))3

]

+ e−θ∗

1 − e−θ∗
ψ ′(θ∗)
η′′(θ∗)

+ ψ ′(θ∗)η(3)
(
θ∗) 1

2(η′′(θ∗))2
− e−θ∗

1 − e−θ∗ η(3)
(
θ∗) 1

2(η′′(θ∗))2
. (A.56)

Thus to obtain a1 and b1, we need to compute ψ(θ∗), ψ ′(θ∗), ψ ′′(θ∗), η′′(θ∗), η(3)(θ∗) and η(4)(θ∗)
as provided in Proposition 3. We recall that ψ(θ) = eν

∫ ∞
0 [F(s;θ)−x(θ)]ds . Thus,

ψ ′(θ∗) = ν

∫ ∞

0

[
F (1)

(
s; θ∗) − x′(θ∗)]ds · ψ(

θ∗), (A.57)

ψ ′′(θ∗) =
[(

ν

∫ ∞

0

[
F (1)

(
s; θ∗) − x′(θ∗)]ds

)2

+ ν

∫ ∞

0

[
F (2)

(
s; θ∗) − x′′(θ∗)]ds

]
· ψ(

θ∗). (A.58)

We first recall that:

F
(
t; θ∗) = eθ∗+∫ t

0 (F (t−s;θ∗)−1)h(s) ds, t ≥ 0. (A.59)

By differentiating (A.59) w.r.t. θ∗ and applying (A.59) again, we obtain:

F (1)
(
t; θ∗) =

[
1 +

∫ t

0
F (1)

(
t − s; θ∗)h(s) ds

]
F

(
t; θ∗), t ≥ 0. (A.60)
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Finally by differentiating (A.60) w.r.t. θ∗ and applying (A.60) again, we obtain:

F (2)
(
t; θ∗) =

[∫ t

0
F (2)

(
t − s; θ∗)h(s) ds +

(
1 +

∫ t

0
F (1)

(
t − s; θ∗)h(s) ds

)2]
F

(
t; θ∗), (A.61)

for any t ≥ 0. Let us recall that η(θ∗) = ν(x(θ∗) − 1) and

η′′(θ∗) = νx′′(θ∗), η(3)
(
θ∗) = νx(3)

(
θ∗), η(4)

(
θ∗) = νx(4)

(
θ∗). (A.62)

We can compute from the formulas in Proposition 3 that

x′(θ) = x(θ)

1 − ‖h‖L1x(θ)
, x′′(θ) = (1 + ‖h‖L1x′(θ))2x(θ)

1 − ‖h‖L1x(θ)
, (A.63)

x(3)(θ) = (3(1 + ‖h‖L1x′(θ))‖h‖L1x′′(θ) + (1 + ‖h‖L1x′(θ))3)x(θ)

1 − ‖h‖L1x(θ)
, (A.64)

x(4)(θ) = (3(‖h‖L1x′′(θ))2 + 3(1 + ‖h‖L1x′(θ))‖h‖L1x(3)(θ))x(θ)

1 − ‖h‖L1x(θ)

+ (6‖h‖L1(1 + ‖h‖L1x′(θ))2x′′(θ) + (1 + ‖h‖L1x′(θ))4)x(θ)

1 − ‖h‖L1x(θ)
. (A.65)

Thus x′(θ∗), x′′(θ∗), x(3)(θ∗) and x(4)(θ∗) can be computed from x(θ∗). Note that θ∗ =
arg maxθ≥0{θx − ν(x(θ) − 1)}. Thus, x = νx′(θ∗), which gives x′(θ∗) = x

ν
and x(θ∗) = x

ν+‖h‖
L1 x

.

Hence, we get

x′(θ∗) = x

ν
, x′′(θ∗) =

(
1 + ‖h‖L1x

ν

)2
x

ν
, (A.66)

x(3)
(
θ∗) =

(
1 + ‖h‖L1x

ν

)3(
1 + 3‖h‖L1x

ν

)
x

ν
, (A.67)

x(4)
(
θ∗) = 3

(
1 + ‖h‖L1x

ν

)4((‖h‖L1x

ν

)2

+
(

1 + 3‖h‖L1x

ν

)‖h‖L1x

ν

)
x

ν

+
(

1 + ‖h‖L1x

ν

)4(
1 + 6‖h‖L1x

ν

)
x

ν
. (A.68)

A.8. Proof of Proposition 12

Proof of Proposition 12. By change of measure for counting processes, see, for example, [34]

E[1{Nt≥xt}] = Ê

[
1{Nt≥xt}

dP

dP̂

∣∣∣∣
Ft

]
(A.69)

= Ê
[
1{Nt≥xt} · e

∫ t
0 log(

λs

λ̂s
) dNs−

∫ t
0 (λs−λ̂s ) ds]

= Ê
[
1{Nt≥xt} · e−(logγ )Nt+(γ−1)

∫ t
0 λs ds

]
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= Ê
[
1{Nt≥xt} · e−(logγ )Nt+(γ−1)νt+(γ−1)

∫ t
0

∫ s−
0 h(s−u)dNu ds

]

= Ê
[
1{Nt≥xt} · e−(logγ )Nt+(γ−1)νt+(γ−1)

∫ t−
0 [∫ t

u h(s−u)ds]dNu
]

= Ê
[
1{Nt≥xt} · e−(logγ )Nt+(γ−1)νt+(γ−1)‖h‖

L1 Nt−(γ−1)
∫ t

0 H(t−u)dNu
]

= e−tI (x)
Ê

[
1{Nt≥xt} · e((γ−1)‖h‖

L1 −logγ )(Nt−xt)−(γ−1)
∫ t

0 H(t−u)dNu
]
,

where we recall that H(t) = ∫ ∞
t

h(s) ds denotes the right tail of the exciting function. �
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