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We prove an exponential deviation inequality for the convex hull of a finite sample of i.i.d. random points
with a density supported on an arbitrary convex body in R

d , d ≥ 2. When the density is uniform, our result
yields rate optimal upper bounds for all the moments of the missing volume of the convex hull, uniformly
over all convex bodies of Rd : We make no restrictions on their volume, location in the space or smoothness
of their boundary. For general densities, the only restriction we make is that the density is bounded from
above, even though we believe this restriction is not necessary. However, the density can have any decay
to zero near the boundary of its support. After extending an identity due to Efron, we also prove upper
bounds for the moments of the number of vertices of the random polytope. Surprisingly, these bounds do
not depend on the underlying density and we prove that the growth rates that we obtain are tight in a certain
sense. Our results are non asymptotic and hold uniformly over all convex bodies.

Keywords: convex body; convex hull; covering number; density support estimation; deviation inequality;
random polytope

1. Introduction

Probabilistic properties of random polytopes have been studied extensively in the literature in
the last fifty years. Consider a collection of i.i.d. uniform random points in a convex body K in
R

d . Their convex hull is a random polytope whose volume and number of vertices have been
first analyzed in the seminal work of Rényi and Sulanke [19,20]. They derived the asymptotics
of the expected volume in the case d = 2, when K is either a polygon, with a given number
of vertices, or a convex set with smooth boundary. More recently, considerable efforts were
devoted to understanding the behavior of the expected volume. Several particular cases were
investigated: For instance, when K is a d-dimensional simple polytope1

 [1], a d-dimensional
polytope [2] or a d-dimensional Euclidean ball [6]. Groemer [9] (see also the references therein)
proved that if K has volume one, the expected volume of the random polytope is minimum
when K is an ellipsoid. Bárány and Larman [3] showed that if K has volume one, then one
minus the expected volume has the same asymptotic behavior as the volume of the (1/n)-wet
part of K , defined as the union of all caps of K (a cap being the intersection of K with a half
space) of volume at most 1/n. Here, n is the number of uniform random points in K . This
remarkable result reduces the initial probabilistic problem to computation of such a deterministic
volume. This purely analytical problem was then extensively studied. When K has a smooth

1A d-dimensional simple polytope is a convex polytope such that each of its vertices is adjacent to exactly d edges.
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boundary, a key point was the introduction of the affine surface area, see [22,23], and the volume
of the (1/n)-wet part is of the order n−2/(d+1). When K is a polytope, it is of a much smaller
order, namely, (lnn)d−1/n [3]. The expected volume is actually maximal when K is a simple
polytope [3]. As a conclusion, the expectation of the volume is now very well-understood, when
the underlying distribution is uniform. Much less is known about its higher moments and the tails
of its distribution. Asymptotic results such as central limit theorems are available [16,17,24], with
recent developments in the high dimensional setup (see [10,26] and the references therein), but
in this work, we focus on finite sample bounds.

Using a jackknife inequality for symmetric functions, Reitzner [18] proved that if the boundary
of K is smooth, the variance of the volume is bounded from above by n−(d+3)/(d+1), and he
conjectured that this is the right order of magnitude for the variance. In addition, he proved that
the second moment of the missing volume (i.e., the volume of K minus the volume of the random
polytope) is asymptotically of the order n−4/(d+1), with explicit constants that depend on the
affine surface area of K . Using martingale inequalities, Vu [27] obtained deviation inequalities
for arbitrary convex bodies of volume one, involving quantities such as the volume of the wet
part, and derived precise deviation inequalities in the two important cases when K is a polytope
or has a smooth boundary. However, these inequalities involve constants which depend on K

but are not explicit. As a consequence, upper bounds on the moments of the missing volume are
proved, again with non explicit constants depending on K : Let K have volume one and Vn stand
for the missing volume, then there exist positive constants α, c and ε0 such that

P
[∣∣Vn −E[Vn]

∣∣ ≥ √
λv

] ≤ 2e−λ/4 + e−cεn,

∀ε ∈ (
α(lnn)/n, ε0

]
, λ ∈ (

0, n
∣∣K(ε)

∣∣], (1)

where v = 36ng(ε)2|K(ε)|, g(ε) = sup{|F | : F star-shaped ⊆ K(ε)}, and K(ε) is the ε-wet part
of K defined in [3]. Moreover, if K has a smooth boundary and volume one, there exist positive

constants c and α, which depend on K , such that for any λ ∈ (0, (α/4)n
− (d−1)(d+3)

(d+1)(3d+5) ], the following
holds [27]:

P
[∣∣Vn −E[Vn]

∣∣ ≥
√

αλn− d+3
d+1

] ≤ 2 exp(−λ/4) + exp
(−cn

d−1
3d+5

)
. (2)

This inequality yields upper bounds on the variance and on the q-th moment of the missing
volume, respectively of orders n−(d+3)/(d+1) and n−2q/(d+1), for q > 0, for a smooth convex
body K of volume one, up to constant factors that depend on K in an unknown way. Note that
these two inequalities proved by Vu remain true when K has any positive volume, if |Vn −
E[Vn]| is replaced by |Vn − E[Vn]|/|K|, where |K| is the volume of K . In our paper, we do
not assume that the underlying distribution is uniform on K . We prove deviation inequalities
and moment inequalities for a weighted missing volume, for general densities supported on the
convex body K . In the uniform case, our results yield a deviation inequality which, unlike (1) and
(2), which hold for a very small range of λ, captures the whole tail of the distribution of Vn. Our
inequality is uniform over all convex bodies K , no matter their volume and boundary structure,
and our constants do not depend on K . Our approach is based on a very simple covering number
argument and is not restricted to the uniform distribution, which, to the best of our knowledge,
makes our deviation inequalities completely new.
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In addition, we derive moment inequalities for the number of vertices of the random polytope.
In the uniform case, we prove that the rates in our upper bounds are tight, uniformly on all
convex bodies. As a consequence, we also prove that the growth of the moments of the number
of vertices is the highest when the underlying density is uniform.

2. Notation and statement of the problem

Let d ≥ 2 be an integer. We denote by | · | the Lebesgue measure in R
d , ρ the Euclidean distance

in R
d , Bd the unit Euclidean ball with center 0, and κd its volume.

If G ⊆ R
d and ε > 0, we denote by Gε = {x ∈ R

d : ρ(x,G) ≤ ε} the closed ε-
neighborhood of G. Here, ρ(x,G) = infy∈G ρ(x, y). If G is measurable, we denote by |G| its
volume.

The symmetric difference between two sets G1 and G2 is denoted by G1�G2 and their Haus-
dorff distance is denoted and defined as dH (G1,G2) = inf{ε > 0 : G1 ⊆ Gε

2,G2 ⊆ Gε
1}. We

denote by Kd the class of all convex bodies in R
d , that is, the convex and compact sets with

nonempty interior, and by K1
d the collection of all those included in Bd . The convex hull of n

i.i.d. random points X1, . . . ,Xn is denoted by K̂n. If X1, . . . ,Xn have a density f with respect to
the Lebesgue measure in R

d , we denote by Pf their joint probability measure and by Ef the cor-
responding expectation operator (we omit the dependency in n unless stated otherwise). If f is
the uniform density on a convex body K , we rather use the notation PK and EK . In general, when
the density f of X1 is supported on a convex body K , we denote by df (K, K̂n) = ∫

K\K̂n
f (x)dx

and by Vn the missing volume of K̂n, that is, Vn = |K| − |K̂n|. The integral df (K, K̂n) can be
interpreted as the weighted missing volume. We are interested in deviation inequalities for Z,
where Z is either df (K, K̂n) or Vn, that is, in bounding from above PK [Z > ε], for ε > 0. We
are also interested in upper bounds for the moments EK [Zq ], q > 0. Our main result is stated in
Section 3: We prove a deviation inequality for the weighted missing volume, and we investigate a
special class of densities, satisfying the so called margin condition, for which we are also able to
control the unweighted missing volume. In Section 4, we investigate the moments of the number
of vertices of the random polytope, with no restrictions on K and on the underlying density on K ,
as long as it is bounded from above. Finally, in Section 5, we focus on the uniform case, and we
derive a deviation inequality for the missing volume, and prove that the rates of the subsequent
moment inequalities are tight. Last section is devoted to some proofs.

3. Deviation inequality for the weighted missing volume of
random polytopes

Our main result is the following theorem.

Theorem 1. Let n ≥ 1. Let K ∈ K1
d , f be a density supported on K and X1, . . . ,Xn be i.i.d. ran-

dom points with density f . Assume that f ≤ M almost everywhere, for some positive number M .
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Then, there exist positive constants C1 and C2 that depend on d only, such that the following
holds.

Pf

[
n
(
df (K, K̂n) − C1(M + 1)n−2/(d+1)

)
> x

] ≤ C2e
−x, ∀x ≥ 0.

Proof. This proof is inspired by Theorem 1 in [12], which derives an upper bound for the risk of
a convex hull type estimator of a convex function. It is based on an upper bound of the covering
number of K1

d , proven by [4]. For δ > 0, a δ-net of K1
d for the Hausdorff distance is a finite

subset Nδ of K1
d such that for all G ∈ K1

d , there exists G∗ ∈ Nδ with dH (G,G∗) ≤ δ. The cov-
ering number of K1

d for the Hausdorff distance is the function that maps δ > 0 to the mimimum
cardinality of a δ-net of K1

d for the Hausdorff distance. The following lemma is proven in [4].

Lemma 1. The covering number of K1
d for the Hausdorff distance is not larger than c1e

δ−(d−1)/2
,

for all δ > 0, where c1 > 0 depends on d only.

Our next lemma shows that the Nikodym distance (i.e., the volume of the symmetric differ-
ence) between two sets in K1

d is dominated by their Hausdorff distance. The proof is deferred to
the Appendix.

Lemma 2. There exists a positive constant α1 which depends on d only, such that∣∣G�G′∣∣ ≤ α1dH

(
G,G′), ∀G,G′ ∈K1

d .

Let δ = n−2/(d+1) and {K1, . . . ,KN } be a δ-net of K1
d , where N is a positive integer satisfying

N ≤ c1e
δ−(d−1)/2

, cf. Lemma 1. Let J ≤ N be such that dH (K̂n,KJ ) ≤ δ. By Lemma 2, this
implies that |KJ \ K̂n| ≤ |K̂n�KJ | ≤ α1δ and hence, since f is nonnegative,

df (K, K̂n) ≤
∫

K\KJ

f +
∫

KJ \K̂n

f ≤
∫

K\KJ

f + α1Mδ.

In addition, since dH (K̂n,KJ ) ≤ δ, it is true that K̂n ⊆ Kδ
J , yielding Xi ∈ Kδ

J , for all i =
1, . . . , n. Therefore, for all ε ∈ (0,1),

Pf

[
df (K, K̂n) > ε

] ≤ Pf

[
df (K,KJ ) > ε − α1Mδ

]
≤ Pf

[∃j ∈ {1, . . . ,N}, df (K,Kj ) > ε − α1Mδ

and Xi ∈ Kδ
j ,∀i = 1, . . . , n

]
≤

∑
j∈Iε−α1Mδ

Pf

[
X1 ∈ Kδ

j

]n

=
∑

j∈Iε−α1Mδ

(∫
Kδ

j

f

)n

, (3)
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where we used the union bound, and for η ∈ R, we denoted by Iη = {j ∈ {1, . . . ,N} :
df (K,Kj ) > η}. Note that∫

Kδ
j

f =
∫

Kj

f +
∫

Kδ
j \Kj

f ≤ 1 − df (K,Kj ) + ∣∣Kδ
j \ Kj

∣∣M. (4)

By Lemma 2, the last term is bounded from above by α1Mδ and (4) entails, if j ∈ Iε−α1Mδ ,∫
Kδ

j

f ≤ 1 − ε + 2α1Mδ.

Hence, (3) becomes

Pf

[
df (K, K̂n) > ε

] ≤ N(1 − ε + 2α1Mδ)n

≤ c1 exp
(−n(ε − 2α1Mδ) + δ−(d−1)/2)

= c1 exp
(−n

(
ε − (2α1M + 1)δ

))
. (5)

Note that since df (K, K̂n) ≤ 1 almost surely, (5) actually holds for all ε > 0 (we have assumed
ε ∈ (0,1) so far). This ends the proof by taking ε of the form x

n
+ (2α1M + 1)δ. �

As a consequence of Theorem 1, we get upper bounds for all the moments of df (K, K̂n).

Corollary 1. Let the assumptions of Theorem 1 hold. Then, for all q > 0, there exists Aq > 0
that depends on q and d only such that

Ef

[
df (K, K̂n)

q
] ≤ Aq(M + 1)qn−2q/(d+1).

Proof. The proof is based on an application of Fubini’s theorem. Namely, if Z is a nonnegative
random variable and q > 0, then

E
[
Zq

] = q

∫ ∞

0
tq−1

P[Z > t]dt.

Let Z = df (K, K̂n) and let δ = C1(M + 1)n−2/(d+1). Then,

Ef

[
Zq

] = q

∫ ∞

0
tq−1

P[Z > t]dt

= q

∫ δ

0
tq−1

P[Z > t]dt + q

∫ ∞

δ

tq−1
P[Z > t]dt

≤ δq + q

∫ ∞

0
(t + δ)q−1

P[Z > t + δ]dt

= δq + q

n

∫ ∞

0

(
x

n
+ δ

)q−1

P[Z > x/n + δ]dx
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≤ δq + C2q

n

∫ ∞

0

(
x

n
+ δ

)q−1

e−x dx

≤ δq + C2q max(1,2q−2)

n

∫ ∞

0
2q−2

(
xq−1

nq−1
+ δq−1

)
e−x dx

≤ aqδq,

for some constant aq that depends on d and q only. �

The inequalities that we have obtained for df (K, K̂n) yield guarantees for the missing volume
|K \K̂n| under some conditions on f . An important such condition is called the margin condition
(see [15,25]). The density f satisfies the margin condition with parameters α ∈ (0,∞], L, t0 > 0
if and only if ∣∣{x ∈ K : f (x) ≤ t

}∣∣ ≤ Ltα,

for all t ∈ (0, t0]. For example, a margin condition with α = ∞ is satisfied by any density f

that is almost everywhere bounded away from zero on K . Let us give two other important cases
where a margin condition is satisfied.

Slow decay of f near the boundary of K: Assume that f does not decay too fast near the
boundary of K (which we denote by ∂K). Namely, assume the existence of positive numbers ρ0,
c and γ such that for all x ∈ K ,

f (x) ≥ c min
(
ρ0, ρ(x, ∂K)

)γ
. (6)

Then, f satisfies the margin condition with t0 = cρ
γ

0 , L = τ

c1/γ and α = 1/γ , where τ is any
number that is no smaller than the surface area of K (e.g., take τ to be the surface area of the
unit ball, if K ∈ K1

d ).
Projection of higher dimensional convex bodies: Let D > d be an integer and K0 ∈ K1

D .
Let Y1, . . . , Yn be i.i.d. uniform random points in K0. Identify R

d with a linear subspace of RD .
Let K be the orthogonal projection of K0 onto R

d and let Xi be the orthogonal projection of
Yi onto R

d , for i = 1, . . . , n. Assume that K0 satisfies the r-rolling ball condition, where r > 0:
Namely, assume that for all x ∈ ∂K0, there exists a ∈ K0 with x ∈ BD(a, r) ⊆ K0. Then, we
have the following lemma, whose proof is deferred to the Appendix.

Lemma 3. The density f of the Xi ’s satisfies (6), with ρ0 = r , c = r(D−d)/2κDκD−d and γ =
(D − d)/2.

Hence, as we already saw in the previous example, f satisfies the margin condition with
α = 2/(D − d).

The following lemma gives a (deterministic) control of df (K, K̂n) on the missing volume. For
completeness of the presentation, we provide its proof in the Appendix (see also Proposition 1 in
[25]).
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Lemma 4. Let f satisfy the margin condition with parameters α, L, t0 and let K ′ be a convex
set included in K with df (K,K ′) ≤ tα+1

0 . Then,

∣∣K \ K ′∣∣ ≤ (L + 1)df

(
K,K ′)α/(α+1)

.

Proof. For all t ∈ (0, t0],∣∣K \ K ′∣∣ =
∫

K

1x /∈K ′ dx

=
∫

Kf (t)

1x /∈K ′ dx +
∫

K\Kf (t)

1x /∈K ′ dx

≤ ∣∣Kf (t)
∣∣ + 1

t

∫
K\Kf (t)

f (x)1x /∈K ′ dx

≤ Ltα + 1

t
df

(
K,K ′) (7)

where Kf (t) = {x ∈ K : f (x) ≤ t}. If df (K,K ′) ≤ tα+1
0 , take t = df (K,K ′)α+1 in (7). �

If f satisfies a margin condition, the deviation and moment inequalities that we have for
df (K, K̂n) transfer to the missing volume, as shown in the next two results.

Theorem 2. Let f satisfy the margin condition with parameters α, L and t0 and assume that
f ≤ M for some positive number M . Then, there exist a positive integer n0 that depends on d ,
t0 and M and positive constants C3 and C4 that depend on d , α and L such that, for all n ≥ n0
and for all x ≥ 0,

Pf

[
n

α
α+1

(|K \ K̂n| − C3(M + 1)α/(α+1)n
− 2α

(α+1)(d+1)
)
> x

] ≤ C4e
−x(α+1)/α + C4e

−nt0/2.

Here, C3 = C
α/(α+1)

1 and C4 = C2, where C1 and C2 are the constants appearing in Theorem 1
and n0 is the first integer n that satisfies C1(M + 1)n−2/(d+1) ≤ t0/2.

Proof. For ε > 0, write

Pf

[|K \ K̂n| > ε
]

= Pf

[|K \ K̂n| > ε,df (K, K̂n) ≤ t0
] + Pf

[|K \ K̂n| > ε,df (K, K̂n) > t0
]

≤ Pf

[
df (K, K̂n) > ε(α+1)/α

] + Pf

[
df (K, K̂n) > t0

]
(8)

and apply Theorem 1 with ε = C
α/(α+1)

1 (M + 1)α/(α+1)n
−2α

(α+1)(d+1) + xn
−α
α+1 to get the desired

result. �

As a consequence of the deviation inequality of Theorem 2, we get the following moment
inequalities.
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Corollary 2. Recall the notation and assumptions of Theorem 2. Then, for all q > 0, there exists
a positive constant A′

q that depends on d , α, L, t0 and q only, such that

Ef

[|K \ K̂n|q
] ≤ A′

q(M + 1)
αq

α+1 n
− 2αq

(α+1)(d+1) , ∀n ≥ n0.

Proof. The proof is based on the same argument as in the proof of Corollary 1 and is omitted. �

It is easy to see that the constants C3 and C4 in Theorem 2 are bounded, as functions of α.
Hence, when α = ∞, which includes the case of the uniform distribution on K , the rate obtained
in Theorem 2 coincides with that obtained in Section 5. As a byproduct, the deviation inequality
given in Theorem 4 below, for the missing volume, still holds, with different constants, for any
density that is bounded away from zero and infinity (see Remark 2 in Section 5).

4. Moment inequalities for the number of vertices of random
polytopes

In this section, we are interested in the number of vertices of random polytopes. Let μ be any
probability measure in R

d . Let X1,X2, . . . be i.i.d. realizations of μ and K̂n be the convex hull
of the first n of them, for n ≥ 1. Denote by Vn the set of vertices of K̂n and Rn its cardinality,
that is, the number of vertices of K̂n. Efron [7] proved a simple but elegant identity, which relates
the expected missing mass E[1 − μ(K̂n)] to the expected number of vertices E[Rn+1] of K̂n+1.
Namely, one has

E
[
1 − μ(K̂n)

] = E[Rn+1]
n + 1

, ∀n ∈N
∗. (9)

In the case when μ is the uniform probability measure on a convex body K , extensions of
this identity to higher moments of |K\K̂n| can be found in [5]. Here, we prove the following
inequalities that hold for any distribution μ. The proof is deferred to the Appendix.

Lemma 5. For all positive integers q ,

E

[
q−1∏
j=0

Rn+q − j

n + q − j

]
≤ E

[(
1 − μ(K̂n)

)q]
.

If μ has a bounded density f with respect to the Lebesgue measure and is supported on a
convex body K , combining Corollary 3 and Corollary 5 yields the following inequality:

Ef

[
Rn(Rn − 1) . . . (Rn − q + 1)

] ≤ Aq(M + 1)qn
q(d−1)
d+1 , ∀n ∈N

∗,∀q ∈ N
∗,

where Aq is the same constant as in Corollary 3 and M is an almost everywhere upper bound
of f . Since the polynomial xq is a linear combination of the polynomials x(x −1) . . . (x −k+1),
0 ≤ k ≤ q , we get the following result.
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Theorem 3. Let K be a convex body and f satisfy the assumptions of Theorem 1. Then, for all
positive integers q , there exists a positive constant Bq that depends on d and q only such that

Ef

[
R

q
n

] ≤ Bq(M + 1)qn
q(d−1)
d+1 . (10)

Remark 1. The boundedness assumption on f in Theorem 3 seems unavoidable, in the follow-
ing sense: Let μ be a probability measure that puts positive mass on countably many points in K ,
near its boundary and let f be the density of a regularized version of μ, truncated so it remains
supported on K . Then, with high probability, Rn can be arbitrarily large.

5. The case of uniform distributions

As discussed in the introduction, the case of the uniform distribution on a convex body K is an
extremely important case in the stochastic geometry literature. In this section, we use the results
proven in the previous sections in order to derive universal inequalities for the convex hull of
uniform random points. By universal, we mean uniform for all convex bodies, irrespective of
their volume, or facial structure.

Theorem 4. There exist three positive constants ℵ1, ℵ2 and ℵ3, which depend on d only, such
that:

sup
K∈Kd

PK

[
n

( |K\K̂n|
|K| − ℵ1n

−2/(d+1)

)
> x

]
≤ ℵ2e

−ℵ3x, ∀x > 0. (11)

Note that the rate n−2/(d+1) is a worst case scenario rate, and it is sharp for smooth convex
bodies K , but suboptimal for polytopes, for which the decay, in expectation, is of the order of
(lnn)d−1/n, with constants depending on K (see, e.g., [3]).

Proof. In order to prove Theorem 4, we first state two lemmas, the first of which is about the so
called John’s ellipsoid of a convex body.

Lemma 6. For all K ∈ Kd , there exist a ∈R
d and an ellipsoid E such that

a + d−1(E − c) ⊆ K ⊆ E. (12)

Proof of Lemma 6 can be found in [13] and [11]. If E is an ellipsoid of maximum volume
satisfying (12) for some a ∈R

d , then a + d−1(E − c) is called John ellipsoid of K .
Let K ∈ Kd and X1, . . . ,Xn be i.i.d. uniform random points in K . Let E be an ellipsoid that

satisfies (12), and T an affine transformation in R
d which maps E to the unit ball Bd . Note

that T X1, . . . , T Xn are independent and uniformly distributed in T K , and their convex hull is

T K̂n. Hence, the distribution of |K\K̂n|
|K| = |T K\T K̂n|

|T K| is the same as that of |T K\K̂ ′
n|

|T K| , where K̂ ′
n is



Deviation inequalities for random polytopes 2497

the convex hull of X′
1, . . . ,X

′
n, which are i.i.d. uniform random points in T K . Therefore, for all

ε > 0,

PK

[ |K \ K̂n|
|K| > ε

]
= Pf

[
df (T K, K̂n) > ε

]
, (13)

where f is the uniform density on T K . The density f is bounded from above by M = 1/|T K| ≤
dd/|T E| = dd/κd , by definition of E and T . Hence, applying Theorem 1 yields the desired
result, since all the constants in that theorem depend on d only. �

Remark 2. Similar arguments could be used to prove a deviation inequality with the same
rate rate n−2/(d+1), for a density f that is nearly uniform on K , that is, that satisfies 0 <

m ≤ f (x) ≤ M for all x ∈ K , where m and M are positive numbers. Indeed, for all invert-
ible affine transformations T , dg(T K, K̂ ′

n) and df (K, K̂n) have the same distribution, where
g(y) = |detT |−1f (T −1y), y ∈ T K and K̂ ′

n is the convex hull of n i.i.d. points with density g.

In addition, df (K, K̂n) ≥ m
M

|K\K̂n|
|K| . Therefore, the same reasoning as in the proof of Theorem 4

yields

Pf

[
n

( |K\K̂n|
|K| − ℵ′

1n
−2/(d+1)

)
> x

]
≤ ℵ′

2e
−ℵ′

3x, ∀x > 0,

where ℵ′
1, ℵ′

2 and ℵ′
3 are positive constants that depend only on d and on the ratio M/m.

A drawback of Theorem 4 is that it involves constants which depend at least exponentially on
the dimension d . However, this seems to be the price for getting a uniform deviation inequality
on Kd .

The following moment inequalities are a consequence of Theorem 4.

Corollary 3. For every positive number q , there exists a positive constant Aq , which depends on
d and q only, such that

sup
K∈Kd

EK

[( |K\K̂n|
|K|

)q]
≤ Aqn−2q/(d+1). (14)

Note that this corollary could also be derived from Vu’s result [27], combined with a result of
[8] (see Remark 3 below).

This upper bound is tight, as shown in the next corollary.

Corollary 4. For every positive number q , there exist positive constants aq and Aq , which de-
pend on d and q only, such that

aqn−2q/(d+1) ≤ sup
K∈Kd

EK

[( |K\K̂n|
|K|

)q]
≤ Aqn−2q/(d+1).
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Proof. The upper bound is given in Corollary 3. For the lower bound, first note that

sup
K∈Kd

EK

[( |K\K̂n|
|K|

)q]
≥ sup

K∈K1
d

EK

[( |K\K̂n|
|K|

)q]

≥ κ
−q
d sup

K∈K1
d

EK

[|K\K̂n|q
]

≥ aqn−2q/(d+1),

using [14], Theorem 5.2. �

Remark 3. An analogous result to Theorem 4 could be derived from Vu’s result (2) combined
with an elegant result proven by Giannopoulos and Tsolomitis [8], Theorem 3.6. Let K ∈ Kd

d

have volume one and φ be a non decreasing function defined on the positive real line. Then, the
expectation EK [φ(|K̂n|)] is minimized when K is an ellipsoid. The key argument is that this
expectation does not increase when K is replaced by its Steiner symmetral with respect to a
hyperplane, and performing such a transformation iteratively on K leads to a Euclidean ball at
the limit. When φ is the indicator function of the interval (x,∞), for x > 0, Giannopoulos and
Tsolomitis’ result implies that P[Vn ≥ x] is maximized when K is an ellipsoid. Hence, applying
(2) to an ellipsoid of volume one yields a uniform deviation inequality as in Theorem 4. However,
the range for x would be much smaller than ours, which allows to capture the whole right tail of
Vn. Yet, it would still yield similar bounds for the moments of Vn, as in Corollary 3.

Let K ∈ Kd and n and q be positive integers. Hölder’s inequality yields EK [Rq
n ] ≥ EK [Rn]q

yielding, by Efron’s identity (9),

EK

[
R

q
n

] ≥ nq
EK

[ |K\K̂n−1|
|K|

]q

.

Hence, one gets the following theorem:

Theorem 5. Let n and q be positive integers. Then, for some positive constants bq and bq which
depend on d and q only,

bqn
q(d−1)
d+1 ≤ sup

K∈Kd

EK

[
R

q
n

] ≤ bqn
q(d−1)
d+1 .

Proof. The lower bound is a consequence of Corollary 4, together with Hölder’s inequality,
as explained above. For the upper bound, let K ∈ Kd and let K̃ = λK , with λ = |K|−1/d be
a dilated (or contracted) version of K of volume 1. Then, by affine equivariance, EK [Rn]q =
E

K̃
[Rn]q . Hence, Theorem 3, with f being the uniform density on K̃ and M = 1, yields the

desired result. �

Combined with Theorem 3, this theorem has two consequences. First, the rate in the upper
bound of Theorem 3 is tight, uniformly on all arbitrary convex bodies and bounded densities.
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Second, the uniform case is the worst case, that is, yields the largest possible rate for the expected
number of vertices of K̂n. Namely, the following holds. For K ∈ K1

d and M > 0, denote by
F(K,M) the collection of all densities that are supported on K and bounded by M . For two
positive sequences un and vn, write un = O(vn) if the ratio un/vn is bounded, independently
of n.

Theorem 6. For all M > 0 and all positive integer q ,

sup
K∈K1

d

sup
f ∈F(K,M)

Ef

[
R

q
n

] = O
(

sup
K∈K1

d

EK

[
R

q
n

])
.

Remark 4. We do not know whether the supremum over K could be removed in Theorem 6:
We propose the following open question. Is it true that for all M > 0 and K ∈ K1

d ,

sup
f ∈F(K,M)

Ef [Rn] = O
(
EK [Rn]

)
?

Appendix: Proof of the lemmas

Proof of Lemma 2. Let G ∈ Kd . Steiner formula (see Section 4.1 in [21]) states that there exist
positive numbers v1(G), . . . , vd(G), such that

∣∣Gλ\G∣∣ =
d∑

j=1

vj (G)λj , λ ≥ 0. (A.1)

Besides, the vj (G), j = 1, . . . , d , are increasing functions of G. In particular, if G ∈ K1
d , then

vj (G) ≤ vj (Bd).
Let G,G′ ∈ K1

d , and let λ = dH (G,G′). Since G and G′ are included in the unit ball, λ is
not greater than its diameter, so λ ≤ 2. By definition of the Hausdorff distance, G ⊆ G′λ and
G′ ⊆ Gλ. Hence, ∣∣G�G′∣∣ = ∣∣G\G′∣∣ + ∣∣G′\G∣∣ ≤ ∣∣G′λ\G′∣∣ + ∣∣Gλ\G∣∣

≤ 2
d∑

j=1

vj (Bd)λj ≤ λ

d∑
j=1

vj (Bd)2j .

The lemma is proved by setting α1 = ∑d
j=1 vj (Bd)2j .

Note that since δ ≤ 1, Steiner formula (A.1) implies, for G ∈K1
d , that

∣∣Gδ\G∣∣ ≤ α2δ, (A.2)

where α2 = ∑d
j=1 vj (Bd). �
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Proof of Lemma 3. For x ∈ K ,

f (x) = VolD−d((x + H) ∩ K0)

VolD(K0)
,

where, for all integers p, Volp stands for the p-dimensional volume and H stands for the
orthogonal space of R

d in R
D . Let x ∈ K with t = ρ(x, ∂K) ≤ r . Let x′ ∈ ∂K such that

ρ(x, ∂K) = ρ(x, x′). Let x0 ∈ ∂K0 whose orthogonal projection onto R
d is x′. By the r-rolling

condition, there exists a ∈ K0 with x′ ∈ BD(a, r) ⊆ K0. Note that x′ − a ∈R
d (Rd being identi-

fied with a subspace of RD , orthogonal to H ) since the (unique) tangent space to K0 at x′ needs
to be tangent to BD(a, r) as well. Therefore,

VolD−d

(
(x + H) ∩ K0

) ≥ VolD−d

(
(x + H) ∩ BD(a, r)

)
and (x + H) ∩ BD(a, r) is a (D − d)-dimensional ball with radius h, where h = √

2rt − t2 ≥√
rt . Hence, for all x ∈ K with ρ(x, ∂K) ≤ r ,

f (x) ≥ (rt)(D−d)/2κD−d

VolD(K0)
≥ (rt)(D−d)/2κD−dκD,

which proves the lemma. �

Proof of Lemma 5. For precision’s sake, we denote by P
⊗n the n-product of the probability

measure μ, that is, the joint probability measure of the random variables X1, . . . ,Xn, and by
E

⊗n the corresponding expectation operator. First, note that the expectation E
⊗n[(1 − μ(K̂n))

q ]
can be rewritten as:

E
⊗n

[(
1 − μ(K̂n)

)q] = E
⊗n

[
P

⊗q [Xn+1 /∈ K̂n, . . . ,Xn+q /∈ K̂n | X1, . . . ,Xn]
]

= P
⊗(n+q)[Xn+j /∈ K̂n,∀j = 1, . . . , q]. (A.3)

Using the symmetric role of X1, . . . ,Xn+q , and since the event {Xn+j /∈ K̂n,∀j = 1, . . . , q}
contains the event {Xn+j ∈ Vn+q,∀j = 1, . . . , q}, (A.3) yields

E
⊗n

[(
1 − μ(K̂n)

)q]
≥ P

⊗n+q [Xn+j ∈ Vn+q,∀j = 1, . . . , q]

= 1(
n + q

q

) ∑
1≤i1<···<iq≤n+q

P
⊗n+q [Xij ∈ Vn+q,∀j = 1, . . . , q]

= 1(
n + q

q

)E
⊗n+q

[ ∑
1≤i1<···<iq≤n+q

1(Xij ∈ Vn+q,∀j = 1, . . . , q)

]
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= 1(
n + q

q

)E
⊗n+q [

(
Rn+q

q

)
]

= E
⊗n+q [Rn+q(Rn+q − 1) . . . (Rn+q − q + 1)]

(n + q)(n + q − 1) . . . (n + 1)
,

which proves the lemma. �
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