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We provide upper bounds of the expected Wasserstein distance between a probability measure and its em-
pirical version, generalizing recent results for finite dimensional Euclidean spaces and bounded functional
spaces. Such a generalization can cover Euclidean spaces with large dimensionality, with the optimal depen-
dence on the dimensionality. Our method also covers the important case of Gaussian processes in separable
Hilbert spaces, with rate-optimal upper bounds for functional data distributions whose coordinates decay
geometrically or polynomially. Moreover, our bounds of the expected value can be combined with mean-
concentration results to yield improved exponential tail probability bounds for the Wasserstein error of
empirical measures under Bernstein-type or log Sobolev-type conditions.
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1. Introduction

Let μ, ν be two probability measures on a Banach space X , the Wasserstein distance of order p

(p ∈ [1,∞)) between μ, ν is

Wp(μ,ν) = inf
ξ∈C(μ,ν)

[
E(X,Y )∼ξ‖X − Y‖p

]1/p
,

where C(μ, ν) denotes the collection of all distributions on X 2 with marginal distributions being
μ and ν.

Wasserstein distances have a clear intuitive meaning: What is the minimum cost if we want
to obtain ν by transporting the probability mass in μ? Here the cost is defined as the prod-
uct of probability mass moved and the distance moved raised to the pth power. Therefore, the
Wasserstein distance is also called “optimal transport distance” or “earth mover’s distance”. The
problem of optimal transport can be traced back to [30] and [24].

Since the introduction in [38], the Wasserstein distances have become an important tool in
computer vision and statistical machine learning. In addition to the connection with optimal
transport, Wasserstein distances have some desirable features. For example, they can be mean-
ingfully defined for any two distributions without any requirement on the existence of density or
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absolute continuity. Other measurements, such as the Kullback-Leibler divergence, have more
stringent requirements on μ and ν. See [33] for a more thorough historical review of Wasser-
stein distances and their applications in statistics, and [40] for further details about Wasserstein
distances and optimal transport in a broader context.

In statistics and machine learning, we often do not have access to μ but only its empirical
version μ̂, which puts 1/n mass at each one of n independent samples from μ. A fundamental
problem is to understand Wp(μ̂,μ). When p = 1 the Kantorovich-Rubinstein duality [23] im-
plies that W1(μ̂,μ) is equivalent to the supremum of the empirical process indexed by Lipschitz-
1 functions. As a consequence, [13] provides sharp lower and upper bounds of EW1(μ̂,μ) for μ

supported on a bounded finite dimensional set. [34] studies the case when μ is the uniform dis-
tribution on a d-dimensional unit cube. For general distributions, [7,12,16] establish sharp upper
bounds of EWp(μ̂,μ) in finite dimensional Euclidean spaces. Recently, [32,41] provide similar
results for general distributions on a bounded metric space X .

In this paper, we study upper bounds of EWp(μ̂,μ) for distributions in unbounded Banach
spaces, including higher dimensional Euclidean spaces (X = R

d where d may grow to ∞ as
n increases) and separable Hilbert spaces (square-integrable functions on [0,1]) as important
examples. Our argument combines the strengths from several recent works and provides more
general and improved results in settings of practical interest. In addition to bounding EWp(μ̂,μ),
we also establish a concentration inequality for Wp(μ̂,μ) around its expected value, which is
dimension-free and offers improvements over existing results.

1.1. Motivating examples

The convergence of empirical measure in Wasserstein distances in high-dimensional and func-
tional spaces can be useful in different machine learning and statistical inference contexts. Here
we describe two examples in detail.

Example 1 (Unsupervised deep learning). The first example is the Wasserstein GAN [3],
where GAN stands for “generative adversarial network” [18], a flexible framework for unsu-
pervised learning. The goal of GAN is to approximate an unknown distribution μr on a sample
space X , given an i.i.d. sample from μr . A typical example is the hypothetical distribution of all
images. To this end, GAN starts from a simple underlying distribution μz on a possibly differ-
ent space Z , such as the standard multivariate Gaussian in Z = R

100, and then finds a mapping
g :Z �→X , such that the distribution induced by g(Z) on X , denoted by μg , is close to μr .

In practice, neither μr nor μg is available. But the empirical version μ̂r is given as the data,
and μ̂g can be generated by passing i.i.d. samples from μz through the black-box function g. So
one has to work with the empirical distributions instead of the original underlying distributions.
In particular, Wasserstein GAN tries to find a mapping g to minimize W1(μ̂g, μ̂r ) using deep
neural networks. We refer to the original papers [3,18] for the detailed realization and imple-
mentation of such a minimization problem. Since its invention, Wasserstein GANs have found
great success in image data due to the nice behavior of Wasserstein distances between mutually
singular distributions.

However, in machine learning, we are ultimately interested in the ability to approxi-
mate/predict future observations generated from the same underlying distribution. This leads
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to the problem of generalization. In the context of Wasserstein GAN, this problem further re-
duces to controlling W1(μg,μr). Given that the WGAN algorithm finds a g such that W1(μ̂g, μ̂r )

is small, one would know W1(μg,μr) is small if both W1(μg, μ̂g) and W1(μr, μ̂r ) are small.
Since WGAN is typically applied to images and videos, it is desirable to cover cases where X is
high-dimensional or infinite-functional.

Example 2 (Latent space representation of exchangeable random graphs). Exchangeable
random graphs [2,21,22] have been an important probabilistic tool in network research [4,28].
The existing parameterization of such exchangeable random graphs, called the graphon [28],
has some undesirable identifiability issues, making the corresponding statistical inferences chal-
lenging [1,17,43]. Recently, [27] established a new parameterization for exchangeable random
graphs to facilitate the statistical inferences for network data. There are three findings in [27].

(i) Under certain mild regularity conditions, an exchangeable random graph A can be pa-
rameterized by a distribution μA on a separable Hilbert space H.

(ii) For two exchangeable random graphs A1 and A2 with corresponding Hilbert space dis-
tribution parameters μ1 and μ2, the difference in graph limits between A1 and A2 (also
known as the cut-distance) can be upper bounded by W1(μ1,μ2).

(iii) Suppose we observe a partial realization of A with n nodes, then each node can be em-
bedded in the Hilbert space H as an i.i.d. sample from μA, and it is possible to find a
good approximation of μ̂A in Wasserstein-1 distance using the observed random graph
with n nodes. Here μ̂A is the empirical version of μA with 1/n probability mass at each
of the embedded nodes.

Combining the above three claims, one would be able to recover μA in Wasserstein-1 distance
from a partial realization of the exchangeable random graph A if one can show that W1(μ̂A,μA)

is small. Again, given the context we wish to consider this problem in an infinite-dimensional
separable Hilbert space without boundedness assumptions.

1.2. Overview of results

In Section 2, we develop a general argument for bounding EWp(μ̂,μ). This approach com-
bines the hierarchical transport program under moment conditions developed in [12,16], with
the abstract partition approach in [41]. Comparing to [12,16], both of which focus on fixed di-
mensionality, our argument uses covering numbers of a baseline set that is compatible with the
corresponding moment condition, leading to improved rates of convergence in high dimensional
settings, as well as applicability to general Banach spaces. Comparing to [32,41], both of whom
focus on bounded spaces, our result extends to the unbounded case using a moment condition.
The result of [41] is for fixed dimensionality, while the infinite dimensional example in [32] is a
special case of the moment condition used in this paper. An example that cannot be covered by
these existing works is infinite dimensional Gaussian processes.

In Section 3, we demonstrate the advantage of abstract partition in Euclidean spaces with
large dimensionality. If X =R

d and EX∼μ‖X‖q ≤ M
q
q for some p < q 	 d 	 logn. Then (see
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Theorem 3.1)

EWp(μ̂,μ) ≤ cp,qMqn−1/d ,

where the constant cp,q depends only on (p, q) but not d . In contrast, the results in [12,16,32,41]
have a constant as an unbounded function of d .

In Section 4, we further apply the general recipe to distributions on separable Hilbert
spaces under ellipsoid-type moment conditions. Let μ be a distribution on X = {x ∈ R

∞ :∑
m≥1 x2

m < ∞}. Let τ = (τm : m ≥ 1) be a sequence of nonnegative numbers and ρτ (x) =
[∑m≥1(xm/τm)2]1/2. The moment condition we consider here is Eρ

q
τ (X) = M

q
q < ∞. We con-

sider two popular cases of τ in functional data analysis. In the first case, τm = m−b for some
b > 1/2, which corresponds to a polynomial decay of the coordinates. In this case, we have (see
Theorem 4.1), for some constant cp,q,b depending only on (p, q, b),

EWp(μ̂,μ) ≤ cp,q,bMq(logn)−b.

In the second case τm = γ−m for some γ > 1, which corresponds to an exponential decay of
the coordinates. In this case we have (Theorem 4.2), for some constant cp,q,γ depending only on
(p, q, γ ),

EWp(μ̂,μ) ≤ cp,q,γ Mqe−
√

2 logγ logn.

These upper bounds are rate-optimal because in each case we can construct a corresponding μ

such that the upper bound is matched by a lower bound with the same rate.
In Section 5, we establish concentration inequalities for Wp(μ̂,μ). Assuming a sub-

exponential tail behavior of ‖X‖, the rate of concentration of Wp(μ̂,μ) around its expected value
can be as small as n−1/2 when p = 1, which can vanish faster than the optimal upper bound of
EWp(μ̂,μ) in high-dimension settings. The new concentration inequality is dimension-free. In
the case of p = 1, it provides a better concentration rate compared to [6] and [16] under the
sub-exponential tail condition. We also extend an argument of [5,19] from the case of X =R

1 to
more general cases. Our concentration results are based on a variation of McDiarmid’s inequality
and the Lipschitz property of Wasserstein distances.

Notation

B
r
x = {y ∈X : ‖x − y‖ ≤ r} is the ball of radius r centered at x.
N is the set of all positive integers.
For a random variable Z, ‖Z‖p = (E|Z|p)1/p denotes the Lp norm of Z.
‖x‖ denotes the norm of x in the Banach space X .
L2 denotes the separable Hilbert space {x ∈R

∞ :∑m≥1 x2
m < ∞}.

For B ⊆X and a ∈R: aB = {ax : x ∈ B}.
For a set B and a measure μ, μ|B is the confinement of μ on B: (μ|B)(A) = μ(B ∩ A).

2. A general upper bound

Given a distribution μ on an unbounded space X and its empirical version μ̂ of sample size n.
The Wasserstein distance Wp(μ̂,μ) is determined by essentially two aspects of the problem: the



Wasserstein convergence of empirical measure 771

complexity of the support of μ and the tail behavior of μ. We describe these two aspects in detail
and introduce the corresponding techniques.

2.1. Covering and partition in X

The first quantity that affects Wp(μ̂,μ) comes from the dimensionality (or complexity) of the
space X . Suppose for now that μ is supported on a bounded subset B0 ⊂ X . The complexity of
B0 can be described by its ε-covering number.

Definition 1 (ε-covering). For B ⊆X , and ε ∈ (0,1], the ε-covering number, denoted as Nε(B)

is

Nε(B) = inf

{
N ∈N : ∃x1, . . . , xN ∈ B, s.t. B ⊆

N⋃
i=1

B
ε
xi

}
.

logNε(B) is called the ε-entropy number of B and the speed at which it increases as ε de-
creases plays an important role in the empirical process theory.

Given an ε ∈ (0,1], let x1, . . . , xNε(B0) be the centers of an ε-covering of B0. Let F1 = B
ε
x1

∩
B0, and Fi = (Bε

xi
∩ B0)\(⋃1≤j<i Fj ) for 2 ≤ i ≤ Nε(B0), then A= {Fi : 1 ≤ i ≤ Nε(B0)} is a

partition of B0 satisfying maxF∈A diam(F ) ≤ 2ε and card(A) ≤ Nε(B0).
A basic tool for controlling Wp(μ̂,μ) is to construct a sequence of nested ε�-partitions for a

sequence of geometrically decaying (ε� : � ∈ 0 ∪ N). [12,16] use B0 = [−1,1]d and recursive
dyadic partitions of B0. The use of general ε-partitions first appeared in [41].

In our proof of upper bound, we consider ε� = 3−(�+1) as in [41] and define

N̄�(B0) = N3−(�+1) (B0), � ∈ 0 ∪N. (1)

The complexity of B0 will be reflected in the upper bound of Wp(μ̂,μ) through N̄�.
The following lemma is a basic result in upper bounding Wp(μ,ν) in the bounded support

case using a hierarchical partition.

Lemma 2.1. Let μ and ν be two probability measures supported on B0. Let �∗ ∈ {0} ∪ N and
{B0} =A0,A1, . . . ,A�∗ be a sequence of nested partitions of B0 such that supF∈A�

diam(F ) ≤
c3−� for some constant c, then there exists a constant cp depending only on p such that

W
p
p (μ, ν) ≤ cp

(
3−p�∗ +

�∗∑
�=0

3−p�
∑

F∈A�

∣∣ν(F ) −μ(F)
∣∣).

Lemma 2.1 first appears in its general form as Proposition 1 of [41], which extends the Eu-
clidean space version with dyadic hypercube partition in [12,16]. In Appendix B, we give an
alternative proof of it, adapting the elegant Markov chain argument in [12].
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In Lemma 2.1, the sum over � comes from the fact that the best way to transport the mass in
μ to μ̂ is through its blurred versions on the ε�-partition. Let A� be the partition of B0 at level �,
the blurred version, μ�, of μ is (using the convention 0/0 = 0)

μ� =
∑

F∈A�

μ�|F , with μ�|F = μ̂(F )

μ(F )
μ|F .

These blurred versions can be used to construct a chain of transports that link between μ and μ̂,
while each having small transport cost.

2.2. Telescope decomposition and moment condition

Now we drop the assumption that μ is supported on a bounded set B0. The second quantity
that affects Wp(μ̂,μ) comes from the tail behavior of μ, which we control using a “telescope
decomposition” of X , combined with a moment condition.

Let ρ :X �→ {0} ∪R
+ be a homogenous functional satisfying

(R1) ρ(ax) = |a|ρ(x) for all a ∈R;

(R2) B0,ρ
def= {x : ρ(x) ≤ 1} ⊆ B

1
0.

Condition (R1) simply requires homogeneity of ρ. Condition (R2) ensures that ρ dominates the
Banach space norm.

When X = R
d , an example of ρ is ρ(x) = ‖x‖ and the corresponding B0,ρ is the unit

Euclidean ball. When X = L2, an example of ρ is ρτ (x) = [∑m≥1(xm/τm)2]1/2 for some
τ ∈ (R+)∞ satisfying τm ≤ 1 for all m.

Sometimes the dimensionality of B
1
0 is too high to yield any meaningful upper bound. For

example, if X = L2 then Nε(B
1
0) =∞ for all values of ε smaller than a constant. However, B0,ρ

can be substantially smaller than B
1
0 for appropriate choices of ρ, so that we can still obtain

useful upper bounds.
To deal with unbounded support of μ, we decompose μ to its confinements on a sequence of

“telescoping” subsets (Bj : j ∈ 0 ∪N), where B0 = B0,ρ and

Bj = (2jB0
)\Bj−1, ∀j ∈N.

The tail behavior of μ is characterized by μ|Bj
for large values of j . Our analysis will consider

μ̃j , the induced measure of
μ|Bj

μ(Bj )
after the mapping x �→ 2−j x, and apply the bounded support

results to μ̃j .
The following “telescoping lemma” generalizes the corresponding argument in [16] to the case

of general Banach spaces and general moment conditions.

Lemma 2.2. Let ρ be a function that satisfies (R1) and (R2). Let μ and ν be two probability
measures on X such that ρ(x) < ∞ almost surely under μ and ν. For j ≥ 0, define μ̃j (ν̃j ) to be
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the normalized probability measure induced by μ|Bj
(ν|Bj

) after the mapping x �→ 2−j x. Then
there exists a constant cp depending only on p such that

W
p
p (μ, ν) ≤ cp

∑
j≥0

2pj
[(

μ(Bj )∧ ν(Bj )
)
W

p
p (μ̃j , ν̃j )+

∣∣μ(Bj )− ν(Bj )
∣∣]. (2)

The exponentially increasing factor 2pj in the above sum needs to be offset by the small terms
μ(Bj )∧ ν(Bj ). This motivates the following moment condition:

∥∥ρ(X)
∥∥

q
= Mq < ∞ (3)

for some constant q > p.
If the moment condition (3) holds with Mq = 1 for X ∼ μ, then the contribution of

W
p
p (μ̃j , ν̃j ) in (2) becomes less important as j gets larger, because μ(Bj ) ≤ 2−q(j−1).
The moment condition ‖ρ(X)‖q = Mq < ∞ for X ∼ μ serves another purpose: It implies that

ρ(x) < ∞ μ-almost surely. In this paper, we are mainly interested in the case ν = μ̂, whose
support is no larger than that of μ. As a result, we have ρ(x) < ∞ almost surely under μ and
ν, as required by Lemma 2.2. An important consequence is that {Bj : j ≥ 0} forms a partition of
the supports of μ and ν.

2.3. A general upper bound

Theorem 2.3. Let N̄� be defined as in (1) with B0 = B0,ρ for a function ρ satisfying conditions
R1 and R2. Assume the moment condition (3) holds with q > p ≥ 1 for X ∼ μ, then for any
�∗ ∈N, we have

EW
p
p (μ̂,μ) ≤ cp,qM

p
q

∑
j≥0

2pj

{
2−qj 3−p�∗ +

�∗∑
�=0

3−p�
[
2−qj ∧ (N̄�2−qj n−1)1/2]}

. (4)

Theorem 2.3 looks similar to its counterparts in [12,16,32,41], and has combined advantages
from them. Comparing to [12,16], (4) uses a finite sum over � which allows for the use of cus-
tomized ε-partitions. We shall see in Section 3 that this can improve the dependence on the
Euclidean dimensionality d when X =R

d . This also allows us to cover the case of X = L2 with
appropriately chosen ρ functions, as detailed in Section 4. On the other hand, [32,41] do not have
the outer sum over j and only have the term for j = 0, which only works for bounded support.
We prove Theorem 2.3 in Appendix B.

The details in (4) reflect the trade-off between the depth of the partition (indexed by �), the
sample size n, and the importance of each telescoping layer Bj . The most intriguing part of
(4) is the term 2−qj ∧ (N̄�2−qjn−1)1/2, where the “∧” comes from the fact E|μ(F) − μ̂(F )| ≤
(2μ(F)) ∧ (μ(F )/n)1/2 for any F . It suggests that for different layers Bj , the critical partition
levels �∗j (the value of � such that 2−qj � (N̄�2−qjn−1)1/2) will be different.
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3. Euclidean spaces: Optimal dependence on d

In this section, we assume X =R
d , together with ρ(x) = ‖x‖, the Euclidean norm.

Theorem 3.1. If X =R
d and E(‖X‖q) = M

q
q < ∞ for X ∼ μ and some q > p ≥ 1, then

EWp(μ̂,μ) ≤ cp,qMqn
−[ 1

(2p)∨d
∧( 1

p
− 1

q
)]
(logn)ζp,q,d /p, (5)

where cp,q is a constant depending only on (p, q) (not d), and

ζp,q,d =

⎧⎪⎪⎨
⎪⎪⎩

2 if d = q = 2p,

1 if “d �= 2p and q = dp

d − p
∧ 2p” or “q > d = 2p”,

0 otherwise.

Remark 1. Theorem 3.1 can be compared with Theorem 1 of [16] and Example 2 of [32] (the
latter assumes bounded support, which corresponds to the case of q =∞). The key difference is
that our constant cp,qMq does not depend on d , while in all existing similar results the constants
depend on d in an unbounded manner. Such an improved dependence on d makes a qualitative
difference when we want to project the infinite dimensional sample points onto a subspace whose
dimension increases as the sample size n. This is particularly the case in the latent space network
representation example described in Section 1.1.

Remark 2. The logarithm factor in (5) is active only in the boundary cases such as d = 2p

or q = 2p, and is upper bounded by (logn)2/p in the worst case. For the cases without such a

logarithm factor, the optimality of the main factor n
−[ 1

(2p)∨d
∧( 1

p
− 1

q
)] has been discussed in detail

in [16].

We give the proof of Theorem 3.1 in Appendix C. To highlight the novel ingredients in our
proof, here we consider the case d > 2p.

Suboptimality of hypercube partition. If we follow the proof of [16] that uses B0 =
[−1,1]d and A� as dyadic partition of B0 with hypercubes of side length 21−�, then the con-
stant factor in (5) will have a factor of

√
d that comes from the diameter of B0.

Covering numbers of the unit Euclidean ball. To avoid such a
√

d factor, we can choose
B0 = B

1
0, the d-dimensional unit ball centered at 0. However, the best upper bound for the cover-

ing number of B1
0 is Nε(B

1
0) ≤ ε−d(d + 1)c for some constant c ≥ 3/2 [39], Theorem 3.1. Thus,

we need to work with the upper bound N̄� ≤ 3(�+c0)d for some different positive constant c0 > 1.
Directly factoring out the 3c0d/2 factor from the N̄

1/2
� term in (4) will bring the undesirable (and

indeed unnecessary) 3c0d/2 factor to the final upper bound.

Our proof avoids this by directly keeping track of each N̄�. The effect of d shows up differ-
ently in (4) for small and large value of j ’s, which are controlled by different techniques. Here
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we briefly describe the case when j is small. When d > 2p, for small values of j the main con-
tributing term in the inner sum of (4) is 3−p�N̄

1/2
� 2−qj/2n−1/2, which is an increasing geometric

sequence and hence bounded by the last term. The key observation here is that the last term in
this sequence is bounded by 3−p�2−qj by construction, and hence there is no need to use the
detailed formula for N̄� as a function of (�, d). This is indeed a benefit of the abstract partition
scheme where the diameter of covering balls is dimension-free.

4. Functional spaces

In this section, we consider the separable Hilbert space X = L2 = {x ∈ R
∞ :∑∞

m=1 x2
m < ∞}.

This functional space is isomorphic to L2([0,1]), the space of square integrable functions on
[0,1], which is a commonly assumed data space in functional data analysis.

Now let μ be a probability measure on L2. As discussed in Section 2.2, we can use an ellip-
soidal moment condition on μ to deal with the infinite dimensionality. The function ρ used for
our moment conditions has the following form

ρτ (x) =
[ ∞∑

m=1

(
xm

τm

)2
]1/2

,

where τ = (τm : m ≥ 1) is a sequence of positive numbers with supm τm ≤ 1.
The moment condition (3) becomes stronger if τm’s are small. We consider two types of such

τ sequences, which correspond to different speeds at which τm vanishes. Relevance of these
scenarios in functional data analysis is discussed in Section 4.3.

We adopt a minimax perspective to illustrate the optimality of the upper bounds. Consider a
class of distributions with a specified tail behavior, if we can show that a lower bound of the
same rate is achieved by at least one member in this class, then the upper bound rate cannot be
improved uniformly within such a class of distributions.

4.1. Polynomial decay

In this case, we consider τ sequences with

τm = m−b, ∀m ≥ 1 (6)

for some b > 1/2.
The class of distributions of interest are those satisfy the moment condition (3) with ρ = ρτ

and τ given in (6). In this case ρτ (x) = [∑m(mbxm)2]1/2. Formally, define the distribution class

Ppoly(q, b,Mq) :=
{

μ : EX∼μ

[ ∞∑
m=1

(
mbXm

)2] q
2

≤ M
q
q

}
. (7)
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Theorem 4.1. If p, q , b are constants such that 1 ≤ p < q and b > 1/2, then there exist positive
constants cp,q,b , c̄p,q,b depending on (p, q, b) such that

cp,q,bMq(logn)−b ≤ sup
μ∈Ppoly(q,b,Mq)

EWp(μ̂,μ) ≤ c̄p,q,bMq(logn)−b.

The poly-log rate in Theorem 4.1 comes from the fact that the metric entropy (logarithm of
the covering number) of B0,ρτ has a polynomial dependence on ε−1 and hence an exponential
dependence on � if ε = 3−(�+1). This is in sharp contrast with the Euclidean case, where the
metric entropy is a linear function of log(ε−1) and hence a linear function of � if ε = 3−(�+1).

One can compare Theorem 4.1 with Example 4 of [32], which independently provides similar
matching upper and lower bounds for a different function class. To make them directly com-
parable, we consider a typical special case where X consists of Lipschitz functions on [0,1]
satisfying f (0) = f (1). Such an X is a Hölder class, so example 4 of [32] suggests an upper
bound of order (logn)−1. On the other hand, the Hölder class is a subset of Ppoly(q, b,Mq) with
b = 1 under the trigonometric basis, which is a Sobolev ellipsoid (see Chapter 1.7.1 of [35]).
Therefore, Theorem 4.1 also implies an upper bound of order (logn)−1.

4.2. Exponential decay

In this case, we consider τ sequences with exponential decay:

τm = γ−(m−1), ∀m ≥ 1 (8)

for some γ > 1.
The corresponding class of distributions satisfy the moment condition (3) with ρ = ρτ and τ

given in (8). In this case, ρτ (x) = [∑m(γ m−1xm)2]1/2. Define the distribution class

Pexp(q, γ,Mq) :=
{

μ : EX∼μ

[ ∞∑
m=1

(
γ m−1Xm

)2] q
2

≤ M
q
q

}
. (9)

Theorem 4.2. If p, q , γ are constants such that 1 ≤ p < q and γ > 1, then there exist positive
constants cp,q,γ , c̄p,q,γ depending only on (p, q, γ ) such that

cp,q,γ Mqe−
√

2 logγ logn ≤ sup
μ∈Pexp(q,γ,Mq)

EWp(μ̂,μ) ≤ c̄p,q,γ Mqe−
√

2 logγ logn.

The lower and upper bounds in Theorem 4.2 seem to be new in the literature. Theorem 4.2
shows that, even when the coordinates decay exponentially, the functional space is still funda-
mentally different from Euclidean spaces. As we will see in Lemma 4.3 below, the metric entropy
is a quadratic, instead of linear, function of log(ε−1), so we can only have a sub-polynomial rate
of convergence in Theorem 4.2. Moreover, the exponential decay makes the problem qualita-
tively different from the polynomial decay, as this sub-polynomial rate is faster than the poly-log
rate in Theorem 4.1.
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In both Theorems 4.1 and 4.2, our proofs reflect that when X has higher dimensionality than
Euclidean space, Wp(μ̂,μ) is determined by the value ε such that Nε(B0) � n.

The lower and upper bounds of the covering numbers Nε(B0) and N̄� required in the proof
of Theorem 4.2 are provided in the following lemma, which adapts the covering number bounds
for finite dimensional ellipsoids in [14,15] to infinite dimensional ellipsoids using a truncation
argument. Equivalent forms of this result have appeared in the literature (see, for example, [42],
Theorem 7). The version presented here is more direct applicable for our purpose.

Lemma 4.3. Let B0 = {x ∈ L2 : ρτ (x) ≤ 1} with τ given in (8). Then for ε ∈ (0,1],

logNε(B0) ≥ [log(ε−1)]2
2 logγ

and for � ∈N,

log N̄� = logN3−(�+1) (B0) ≤ cγ (� + c1)
2 + log c0

with cγ = (log 3)2

2 logγ
and c0, c1 positive constants depending on γ .

4.3. Functional principal components

In the previous two subsections, we see that Wp(μ̂,μ) tends to be smaller if the majority proba-
bility mass of μ can be covered by an ellipsoid B0 = B0,ρτ , with fast decaying axes τm. Intuitively
speaking, this corresponds to an orthogonal basis of L2, denoted as {φm : m ≥ 1} such that the
variability of the coordinate projections 〈X,φm〉 decays fast when X ∼ μ. Such an explanation
suggests an immediate connection to functional principal components analysis [20,31], where
one can choose {φm : m ≥ 1} to be the eigenvectors of the covariance operator of μ.

To facilitate discussion, we assume that EX∼μX = 0 and EX∼μ‖X‖2 < ∞. Then we can write
the random function (in a separable Hilbert space, such as L2) X ∼ μ in its Karhunen–Loève
decomposition

X =
∞∑

m=1

σmZmφm, (10)

where σ1 ≥ σ2 ≥ · · · ≥ 0 are the standard deviations of the coordinate projections of X ranked
in decreasing order, and (Zm : m ≥ 1) are uncorrelated random variables with mean 0 and unit
variance. Standard theory shows that such a basis (ψm : m ≥ 1) leads to the fastest decay of the
tail squared sum

∑
j≥m σ 2

j for all m.
The speed at which σm decays as m increases measures the “regularity” of the functional data

distribution μ. Here we can make explicit connections between the eigen-decay of μ and the
ellipsoidal moment conditions considered in the previous two subsections.

Proposition 4.4. If the standardized principal component scores (Zm : m ≥ 1) of μ satisfy
supm ‖Zm‖q = M < ∞ with q ≥ 2, then the following hold.
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1. (Polynomial decay) If

σm ≤ c0m
−(b0+1/2)

for some constants b0 > 1/2, c0 > 0, then the moment condition (3) holds with τ sequence
given in (6) for any constant b ∈ (1/2, b0) and Mq = cb,b0,qc0M , where cb,b0,q is a constant
depending only on (b, b0, q).

2. (Exponential decay) If

σm ≤ c0γ
−(m−1)
0

for some constants γ0 > 1, c0 > 0, then the moment condition (3) holds with τ sequence
given in (8) for any γ ∈ (1, γ0) and Mq = cγ,γ0,qc0M for some constant cγ,γ0,q depending
only on (γ, γ0, q).

5. Concentration inequalities

In this section, we consider the concentration of measure for Wp(μ̂,μ). In particular, we are
interested in the following two types of concentration inequalities.

1. Mean-concentration. The goal is to find good upper bounds of the probability

P
[∣∣Wp(μ̂,μ)−EWp(μ̂,μ)

∣∣> t
]

for t ∈R
+.

2. 0-concentration. The goal is to upper bound

P
[
Wp(μ̂,μ) > t

]
.

[8,16] have considered 0-concentration of W
p
p (μ̂,μ). We argue that concentration around the

mean can be more informative, since in some important cases (for example, p = 1 and d large
or infinite) the rate of concentration around the mean can be much smaller than the mean value
itself. Nevertheless, a good mean-concentration can lead to a good 0-concentration, because if
EWp(μ̂,μ) ≤ Rn then

P
[
Wp(μ̂,μ) > t

]≤ P
[
Wp(μ̂,μ)−EWp(μ̂,μ) > (t − Rn)+

]
.

5.1. A Bernstein-type McDiarmid’s inequality

Let Xi (1 ≤ i ≤ n) be independent (not necessarily identically distributed) samples from proba-
bility distributions μi on spaces Xi , and X′

1, . . . ,X
′
n be independent copies of each Xi . Denote

X = (X1, . . . ,Xn) and X′
(i) = (X1, . . . ,Xi−1,X

′
i ,Xi+1, . . . ,Xn), which is identical to X except

that the ith entry is replaced by X′
i . Let f :∏n

i=1 Xi �→R be a function such that E|f (X)| < ∞,
and define

Di = f (X)− f
(
X′

(i)

)
.
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To establish concentration around the mean for a function of independent random inputs, a
classical tool is McDiarmid’s inequality, which requires the difference Di to be bounded with
probability one. This is not enough for our purpose if we take f (X) = Wp(μ̂,μ) and the support
of μ is unbounded. To fix this problem, we need a stronger version of McDiarmid’s inequal-
ity that holds under weaker conditions. In particular, we consider the following Bernstein-type
moment condition.

∃σi,M > 0 s.t. E
(|Di |k | X−i

)≤ 1

2
σ 2

i k!Mk−2, ∀ integer k ≥ 2, a.s., (11)

where X−i = (X1, . . . ,Xi−1,Xi+1, . . . ,Xn) is the random vector obtained by removing Xi from
X.

When f (X) =∑n
i=1 Xi , then equation (11) reduces to the classical Bernstein’s tail condition,

which is used to prove the Bernstein’s inequality for sums of independent random variables. The
following theorem extends the Bernstein’s inequality to general functions of independent inputs.

Theorem 5.1 (Bernstein-type McDiarmid’s Inequality). Assume (11) holds, then

P(f −Ef ≥ t) ≤ exp

(
− t2

2σ 2 + 2tM

)
(12)

where σ 2 =∑n
i=1 σ 2

i .

Theorem 5.1 can be derived from the more general martingale concentration inequalities [10],
Theorem 1.2A (see also [36]). In Appendix D, we give a simple and short proof that is similar to
the standard proofs of Bernstein’s inequality and McDiarmid’s inequality.

Remark 3. Applying Theorem 5.1 to −f leads to the same concentration bound for the event
f −Ef ≤−t . Thus, Theorem 5.1 implies the absolute deviation bound

P
(|f −Ef | ≥ t

)≤ 2 exp

(
− t2

2σ 2 + 2tM

)
.

Remark 4. We discuss a few related works. [25] extends McDiarmid’s inequality to unbounded
differences by assuming sub-Gaussianity of Di . It is well known that sub-Gaussianity is strictly
stronger than Bernstein’s tail condition [37]. In fact, the Bernstein’s tail condition is nearly equiv-
alent to being sub-exponential. An unpublished manuscript [44] extends McDiarmid’s inequality
to a Bernstein-type condition. However, this result still assumes that the differences Di are uni-
formly bounded. When X1 = · · · = Xn =X and Xi ’s are i.i.d., Theorem 5.1 rediscovers a result
of [11], Proposition 3.1.

5.2. Concentration of Wp(μ̂,μ)

Now let f (X) = Wp(μ̂,μ), and μ̂′ the empirical measure given by X′
(i). Since the ordering of

sample points does not matter in Wp(μ̂,μ), the particular choice of i does not matter. By triangle
inequality |f (X)− f (X′

(i))| ≤ Wp(μ̂, μ̂′) ≤ n−1/p‖Xi − X′
i‖.
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If we assume that

E
(‖Xi‖k

)≤ 1

2
s2k!V k−2, ∀ integer k ≥ 2, (13)

for some constants s, V , then straight calculation shows that such f (X) = Wp(μ̂,μ) satisfies
the Bernstein-type tail condition (11) with σi = 2sn−1/p and M = 2V n−1/p . Thus, we have the
following corollary.

Corollary 5.2. If Xi ∼ μ satisfies (13) with some constants s, V , then for all t > 0

P
[∣∣Wp(μ̂,μ)−EWp(μ̂,μ)

∣∣≥ t
]≤ 2 exp

(
− t2

8s2n1−2/p + 4V tn−1/p

)
.

Corollary 5.2 is useful when p ∈ [1,2), implying that Wp(μ̂,μ) − EWp(μ̂,μ) =
OP (n−(1/p−1/2)). In the most interesting case p = 1, the rate becomes the desired n−1/2. This
result is dimension-free, assuming only the tail condition (13). Condition (13) is implied by the
sub-exponential tail condition. Following [37], for a random variable Z and real number α ≥ 1,
define the Orlicz ψα norm of Z as

‖Z‖ψα = inf
{
c > 0 : Ee|Z/c|α ≤ 2

}
. (14)

If ‖‖Xi‖‖ψ1 = C < ∞, then (13) holds with V = C and s = √
2C. This condition is called

“sub-exponential” because ‖‖Xi‖‖ψ1 < ∞ if and only if P(‖Xi‖ ≥ t) ≤ ce−c′t for some positive
constants c, c′.

Remark 5. In the special case of p = 1, there have been related mean-concentration results using
variants of McDiarmid’s inequality. For example, [6] also provides n−1/2 mean-concentration
for W1(μ̂,μ), but requires a stronger sub-Gaussian tail of ‖Xi‖. In a more recent work, [11]
establishes a similar mean-concentration result applicable to the case p = 1, under a condition
that can be translated to a sub-exponential tail of ‖Xi‖ in our context.

Euclidean spaces

If X = R
d with d > 2, and ‖‖Xi‖‖ψ1 < ∞, the sub-exponential condition implies finiteness

of all moments, and Theorem 3.1 implies that EW1(μ̂,μ) ≤ c1n
−1/d . Applying the one-sided

version of Corollary 5.2 we get a 0-concentration bound,

P
[
W1(μ̂,μ) ≥ t

]≤ P
[
W1(μ̂,μ)−EW1(μ̂,μ) ≥ t − c1n

−1/d
]

≤ exp
[−cn

(
t − c1n

−1/d
)2
+
]
, (15)

where c is a constant depending only on ‖‖Xi‖‖ψ1 . The bound given in (15) can be compared
with [16], Theorem 2, equation (1), which assumes a stronger condition ‖‖Xi‖‖ψα < ∞ for
some α > 1. In the interesting regime of t � n−1/d (on the same scale as the optimal upper
bound of EW1(μ̂,μ)), the result of [16] only provides a probability bound of order O(1), while
(15) provides a bound of exp(−c(c2 − c1)

2n1−2/d) for t = c2n
−1/d with c2 > c1.
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Functional spaces

When X = L2, the convergence rate of EW1(μ̂,μ) is typically sub-polynomial in n, so the
polynomial concentration rate given in Corollary 5.2 when p ∈ [1,2) can be quite meaning-
ful. To better understand the sub-exponential condition (14) for functional data, we consider the
Karhunen–Loève decomposition (10). The sub-exponential condition can be satisfied under stan-
dard decay assumptions of the principal score variance σ 2

m, and corresponding tail bounds on the
standardized principal component scores Zm. The following proposition can be obtained after
some straightforward applications of triangle inequality and some basic properties of Orlicz ψα

norms.

Proposition 5.3. Assuming the K-L decomposition (10), then ‖‖Xi‖‖ψ1 < ∞ if one of the fol-
lowing holds.

1.
∑∞

m=1 σ 2
m < ∞, and supm ‖Zm‖ψ2 < ∞.

2.
∑∞

m=1 σm < ∞, and supm ‖Zm‖ψ1 < ∞.

Part 1 of Proposition 5.3 covers square-integrable Gaussian processes as an important special
case (i.e., Zm ∼ N(0,1) for all m). Part 2 suggests that the tail condition on the PC scores Zm

can be relaxed at the cost of a faster decay of eigenvalues.

5.3. Concentration by Lipschitz property of Wp(μ̂,μ)

One can obtain concentration results for larger values of p by exploiting the Lipschitz property
of Wp(μ̂,μ) as a function of (x1, . . . , xn) ∈X n. Similar ideas have been explored in the special
case of X =R (see Section 7.1 of [5], and also [19]).

For x = (x1, . . . , xn) and x′ = (x′
1, . . . , x

′
n), define distance ‖x − x′‖2 =∑n

i=1 ‖xi − x′
i‖2.

Then one has, by triangle inequality,

∣∣Wp(μ̂,μ)−Wp

(
μ̂′,μ

)∣∣≤ Wp

(
μ̂, μ̂′)≤ n−1/p

(
n∑

i=1

∥∥xi − x′
i

∥∥p

)1/p

≤ n
− 1

2∨p
∥∥x − x′∥∥.

Therefore, Wp(μ̂,μ) is n
− 1

2∨p -Lipschitz as a function from X n to R. Such a Lipschitz property
can lead to useful mean-concentration results provided the random vector X has nice tail be-
havior. There are many different characterizations of such tail behavior of X [9]. Here we use
log Sobolev inequality for its presentation simplicity and generality. Extension to other similar
conditions, such as the Poincaré inequality, shall be straightforward.

Definition 2. A probability measure μ on a metric space X is said to satisfy a log Sobolev
inequality with constant C, if

Eμ

[
f (X)2 logf (X)2]−Eμ

[
f (X)2] logEμ

[
f (X)2]≤ 2CEμ

∥∥∇f (X)
∥∥2

for all smooth function f : X �→ R such that the expectations are finite, where ‖∇f (x)‖ =
supy limt↓0

|f (x+ty)−f (x)|
t‖y‖ .
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The log Sobolev inequality holds for strongly log-concave densities on X =R
d . If the density

of X has the form e−U(x) with U � I/C, then it satisfies Definition 2 with the same constant C.
For more details about log Sobolev inequalities, see [26].

Combining the Lipschitz property of Wp(μ̂,μ) and the log Sobolev inequality under product
measure [26], Theorem 5.3 and Corollary 5.7, we have

Theorem 5.4. If the distribution μ satisfies log Sobolev inequality with constant C, then

P
[
Wp(μ̂,μ)−EWp(μ̂,μ) ≥ t

]≤ exp

(
−n

2
2∨p t2

2C

)
.

Theorem 5.4 gives the same rate as Corollary 5.2 for p = 1, with strict improvement for p > 1
and non-trivial bounds for all values of p. In particular, with X =R

d and a strongly log-concave
distribution μ, the mean concentration of Wp(μ̂,μ) has order n−1/p , and is dominated by the

mean value EWp(μ̂,μ), which, as implied by Theorem 3.1, has order n
− 1

(2p)∨d .

Appendix A: Additional background for optimal transport

Definition 3 (Transport and coupling). Let μ, ν be two measures supported on the same mea-
surable set F ⊆X with the same amount of mass μ(F) = ν(F ) > 0. A coupling between μ and
ν is a measure ξ on F × F such that

∫
y∈F

ξ(dx, dy) = μ(dx) and
∫
x∈F

ξ(dx, dy) = ν(dy).
Equivalently, a coupling ξ between μ and ν can also be represented by the correspond-

ing transition kernel K(·, ·) such that for each x ∈ F , K(x, ·) is a measure on F , and∫
x∈F

K(x, ·)μ(dx) = ν. We call such a transition kernel a transport from μ to ν.

The following lemma is due to [12], which is the building block for the construction of optimal
transport from μ to μ̂.

Lemma A.1. Let μ, ν be two measures with same mass on their common support F . Let
C1, . . . ,Ck be a partition of F such that

ν|Ci
= ν(Ci)

μ(Ci)
μ|Ci

, ∀1 ≤ i ≤ k.

Then there exists a coupling ξ between μ and ν such that

ξ
({

(x, y) ∈ F 2 : x �= y
})= 1

2

k∑
i=1

∣∣ν(Ci)− μ(Ci)
∣∣.

Proof. Let δ = 1
2

∑k
i=1 |μ(Ci)− ν(Ci)|, and define

ξ = ξ1 + δ−1ξ2
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where ξ1 is the measure induced from the univariate measure μ∧ν after the mapping x �→ (x, x),
and ξ2 is the product measure (μ − ν)+ × (ν −μ)+. The claim can be directly verified. �

Appendix B: Proofs for the general bound

In this section, we provide proofs for Lemma 2.1, Lemma 2.2, and Theorem 2.3. Lemma 2.1
has been proved in [41], here we present an alternative proof based on the Markov chain method
in [12]. The proofs of Lemma 2.2 and Theorem 2.3 combines the proof ideas in [16] with the
general and finite partition approach.

Proof of Lemma 2.1. Let μ0 = μ. For � ≥ 0, define measure μ�+1 as

μ�+1 =
∑

F∈A�+1

ν(F )

μ�(F )
μ�|F .

Again we use the convention 0/0 = 0.

Facts.

1. For all F ∈A� we have μ�+1(F ) = μ�(F ) = ν(F ).
2. μ�+1|C = ν(C)

μ(C)
μ|C , for C ∈A�+1.

3. W
p
p (μ�, ν) ≤ 2p3−p�.

Facts 1–2 are straightforward to verify. To see the third one, use the fact that μ�(F ) = ν(F )

for all F ∈ A�, one can construct a transport from μ�|F to ν|F using a product measure, with
cost no more than ν(F )[diam(F )]p . The desired claim follows by summing over all F ∈A�.

Next, we need a low-cost transport from μ� to μ�+1. Due to Facts 1 and 2 above, for each
F ∈A�, Lemma A.1 ensures the existence of a coupling ξF between μ�|F and μ�+1|F such that

ξF

({
(x, y) ∈ F 2 : x �= y

})≤ 1

2

∑
C∈A�+1,C⊆F

∣∣μ�+1(C)− μ�(C)
∣∣

= 1

2

∑
C∈A�+1,C⊆F

∣∣∣∣ν(C) − ν(F )

μ(F )
μ(C)

∣∣∣∣.
Let

ξ� =
∑

F∈A�

ξF .

We have

ξ�

({
(x, y) : x �= y

})= 1

2

∑
F∈A�

∑
C∈F∩A�+1

∣∣∣∣ν(C) − ν(F )
μ(C)

μ(F )

∣∣∣∣
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Let Z0, . . . ,Z�∗ be a Markov chain with Z0 ∼ μ and (Z�+1 | Z� = z) ∼ K�(z, ·), where K�

is the transition kernel corresponding to ξ�. By construction, K� only moves points inside each
F ∈A� so ‖Z� −Z�′ ‖ ≤ 2 × 3−� for all �′ > �.

Let L = inf{0 ≤ � ≤ �∗ − 1 : Z�+1 �= Z�}. If Z0 = · · · = Z�∗ then define L =∞. By construc-
tion we have

Z0 = · · · = ZL, ‖ZL −Z�‖ ≤ 3−L, ∀� > L.

Then

E‖Z0 −Z�∗‖p

≤ E
[
1
(
L < �∗

)‖ZL −Z�∗‖p
]≤ 2p

E3−pL

= 2p
�∗−1∑
�=0

3−p�
P(L = �) ≤ 2p

�∗−1∑
�=0

3−p�
P(Z� �= Z�+1)

= 2p−1
�∗−1∑
�=0

3−p�
∑

F∈A�

∑
C∈A�+1,C⊆F

∣∣∣∣ν(C) − ν(F )
μ(C)

μ(F )

∣∣∣∣

= 2p−1
�∗−1∑
�=0

3−p�
∑

F∈A�

∑
C∈A�+1,C⊆F

∣∣∣∣ν(C) −μ(C) +μ(F)
μ(C)

μ(F )
− ν(F )

μ(C)

μ(F )

∣∣∣∣

≤ 2p−1
�∗−1∑
�=0

3−p�
∑

F∈A�

∑
C∈A�+1,C⊆F

[∣∣ν(C) −μ(C)
∣∣+ μ(C)

μ(F )

∣∣ν(F ) − μ(F)
∣∣]

= 2p−1
�∗−1∑
�=0

3−p�

[ ∑
C∈A�+1

∣∣ν(C) − μ(C)
∣∣+ ∑

F∈A�

∣∣ν(F ) −μ(F)
∣∣]

≤ (1 + 3p
)
2p−1

�∗∑
�=1

3−p�
∑

F∈A�

∣∣ν(F ) −μ(F)
∣∣.

Let (Z�∗ ,Z) be distributed as the optimal coupling between μ�∗ and ν. Then combining the
last inequality and Fact 3 above we obtain

W
p
p (μ, ν) ≤ E‖Z0 −Z‖p ≤ 2p−1(

E‖Z0 − Z�∗‖p +E‖Z�∗ − Z‖p
)

≤ cp

[
3−p�∗ +

�∗∑
�=1

3−p�
∑

F∈A�

∣∣ν(F ) −μ(F)
∣∣].

�

Proof of Lemma 2.2. The moment condition ensures that μ and ν are supported on
⋃

j≥0 Bj .
The remaining of the proof mainly mimics that of [16].



Wasserstein convergence of empirical measure 785

Let ξ̃j be the optimal coupling between μ̃j and ν̃j , and ξj the image of ξ̃j after the map
(x, y) �→ 2j (x, y).

Let η = 1
2

∑
j≥0 |μ(Bj ) − ν(Bj )| and define

ξ =
∑
j≥0

(
μ(Bj ) ∧ ν(Bj )

)
ξj + η−1α × β

where

α =
∑
j≥0

(
μ(Bj ) − ν(Bj )

)
+

μ|Bj

μ(Bj )
, β =

∑
j≥0

(
ν(Bj ) −μ(Bj )

)
+

ν|Bj

ν(Bj )
.

Then ξ is a coupling between μ and ν. It also holds that α(X ) + β(X ) = η.
Now ∫ ∫

‖x − y‖pη−1α(dx)β(dy)

≤ 2p−1
∫ ∫ (‖x‖p + ‖y‖p

)
η−1α(dx)β(dy)

= 2p−1η−1
[∫

‖x‖pα(dx)

∫
β(dy) +

∫
α(dx)

∫
‖y‖pβ(dy)

]

≤ 2p−1
∑
j≥0

2jp
[(

μ(Bj ) − ν(Bj )
)
+ + (ν(Bj ) − μ(Bj )

)
+
]

= 2p−1
∑
j≥0

2pj
∣∣μ(Bj ) − ν(Bj )

∣∣.
Then

W
p
p (μ,ν)

≤
∫ ∫

‖x − y‖pξ(dx, dy)

=
∑
j≥0

(
μ(Bj ) ∧ ν(Bj )

) ∫ ∫ ‖x − y‖pξj (dx, dy)+
∫ ∫

‖x − y‖pη−1α(dx)β(dy)

≤
∑
j≥0

2jp
(
μ(Bj ) ∧ ν(Bj )

)
W

p
p (μ̃j , ν̃j ) + 2p−1

∑
j≥0

2pj
∣∣μ(Bj ) − ν(Bj )

∣∣
≤
∑
j≥0

2pj
[(

μ(Bj ) ∧ ν(Bj )
)
W

p
p (μ̃j , ν̃j ) + 2p−1

∣∣μ(Bj ) − ν(Bj )
∣∣], (16)

which concludes the proof. �
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Proof of Theorem 2.3. Without loss of generality, we assume ‖ρ(X)‖q = 1, since otherwise we
can always consider X/‖ρ(X)‖q .

With ν = μ̂, the plan is to use Lemma 2.1 to control the term W
p
p (μ̃j , ν̃j ) in Lemma 2.2. The

fact that ν = μ̂ and the moment condition imply the conditions required by Lemma 2.2. First,
observe that

(
μ(Bj )∧ ν(Bj )

) �∗∑
�=1

3−p�
∑

F∈A�

∣∣μ̃(F ) − ν̃(F )
∣∣

≤ μ(Bj )

�∗∑
�=1

3−p�
∑

F∈A�

∣∣μ̃(F ) − ν̃(F )
∣∣

≤ μ(Bj )

�∗∑
�=1

3−p�
∑

F∈A�

∣∣∣∣μ((2jF ) ∩Bj )

μ(Bj )
− ν((2jF ) ∩Bj )

ν(Bj )

∣∣∣∣

≤
�∗∑

�=1

3−p�
∑

F∈A�

[∣∣μ((2jF
)∩ Bj

)− ν
((

2jF
)∩Bj

)∣∣+ ∣∣∣∣1 − μ(Bj )

ν(Bj )

∣∣∣∣ν((2jF
)∩ Bj

)]

≤
�∗∑

�=1

3−p�
∑

F∈A�

∣∣μ((2jF
)∩Bj

)− ν
((

2jF
)∩ Bj

)∣∣+ 3−p

1 − 3−p

∣∣μ(Bj )− ν(Bj )
∣∣.

Now applying Lemma 2.1 to each of W
p
p (μ̃j , ν̃j ), combining with the last inequality, and

plugging in (16), we get

W
p
p (μ, ν)

≤ cp

∑
j≥0

2pj

[(
μ(Bj ) ∧ ν(Bj )

)
3−p�∗ + ∣∣μ(Bj )− ν(Bj )

∣∣

+
�∗∑

�=1

3−p�
∑

F∈A�

∣∣μ((2jF
)∩ Bj

)− ν
((

2jF
)∩Bj

)∣∣+ ∣∣μ(Bj )− ν(Bj )
∣∣]

≤ cp

∑
j≥0

2pj

[
μ(Bj )3

−p�∗ +
�∗∑

�=0

3−p�
∑

F∈A�

∣∣μ((2jF
)∩ Bj

)− ν
((

2jF
)∩Bj

)∣∣]. (17)

By the moment condition, Markov’s inequality implies that

μ(Bj ) ≤ 2−q(j−1).
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Because nμ̂(A) is a binomial random variable with parameters μ(A) and n, we have E|μ̂(A) −
μ(A)| ≤ (2μ(A)) ∧√

μ(A)/n for all A. Therefore,∑
F∈A�

E
∣∣μ̂((2jF

)∩Bj

)−μ
((

2jF
)∩Bj

)∣∣

≤
∑

F∈A�

[
2μ
((

2jF
)∩ Bj

)]∧√μ
((

2jF
)∩Bj

)
/n

≤ [2μ(Bj )
]∧ [

√
card(A�)μ(Bj )

n

]
,

where the last step uses Cauchy–Schwarz.
Now the proof is complete if we can show that there exists a sequence of nested partitions

A1, . . . ,A�∗ such that supF∈A diam(F ) ≤ 2 × 3−�, and card(A�) ≤ N̄� = N3−(�+1) (B0). Propo-
sition 3 of [41] guarantees the existence of such a sequence of partitions. �

Appendix C: Proofs for Euclidean and functional spaces

Proof of Theorem 3.1. Recall that now B0 is the unit ball in R
d . Use the result of [39], we have,

for some constant c

N̄� = N3−(�+1) (B0) ≤ 3(�+c)d

Then Theorem 2.3 implies

W
p
p (μ̂n,μ) ≤ cp

∑
j≥0

2pj

{
2−qj 3−p�∗ +

�∗∑
�=0

3−p�
[
2−qj ∧ (3d(�+c)/22−qj/2n−1/2)]}.

Now let

�∗j =
⌊

log2 n − qj

d log2 3
− c

⌋
,

and

�∗ = �∗0 =
⌊

log2 n

d log2 3
− c

⌋
.

If � is an integer, then

2−qj ≥ 3d(�+c)/22−qj/2n−1/2 ⇔ � ≤ �∗j .

Let j∗
n = sup{j ∈ Z : �∗j ≥ 0} =  q−1(log2 n− cd log2 3)".

If d ≥ (2c)−1 log3 n then n−(1/d) ≥ 3−2c is a constant and the claim of theorem follows from
Theorem 2.3, where the right-hand side is trivially bounded by a constant depending only on
(p, q).
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Now we focus on the case d ≥ (2c)−1 log3 n, which implies that j∗
n ≥ 0.

When j ≤ j∗
n , then �∗j ≥ 0, and (“�” means up to a constant factor cp,q )

�∗∑
�=0

3−p�
[
2−qj ∧ (3d(�+c)/22−qj/2n−1/2)]

≤
�∗j∑

�=0

3−p�3d(�+c)/22−qj/2n−1/2 +
�∗∑

�=�∗j+1

3−p�2−qj

� 2−qj/2n−1/23cd/2

�∗j∑
�=0

3−(p−d/2)� + 2−qj
(
2−qj n

)−p/d
.

When j > j∗
n , then �∗j < 0, and

�∗∑
�=0

3−p�
[
2−qj ∧ (3d(�+c)/22−qj/2n−1/2)]≤ �∗∑

�=0

3−p�2−qj � 2−qj .

Thus,
∑

j>j∗
n

2pj 2−qj � 2−qj∗
n (1−p/q) � (n3−cd)−(1−p/q) and

∑
j≥0

2pj
�∗∑

�=0

3−p�
[
2−qj ∧ (3d(�+c)/22−qj/2n−1/2)]

�
j∗
n∑

j=0

2pj

{
2−qj/2n−1/23cd/2

�∗j∑
�=0

3−(p−d/2)� + 2−qj
(
2−qjn

)−p/d

}

+ (n3−cd
)−(1−p/q)

. (18)

Case 1: p > d/2. The terms in the sum
∑�∗j

�=0 3−(p−d/2)� is geometrically decreasing and
hence the sum is bounded by the first term by a constant factor. Moreover, for j ≤ j∗

n we have
(2−qj n)−p/d ≤ cp,q(2−qj n)−1/2. So (18) is bounded by (ignoring constant factors)

j∗
n∑

j=0

2pj 2−qj/2n−1/2 + n−(1−p/q). (19)

Case 1.1: p < q/2. Both terms in (19) are bounded by n−1/2.
Case 1.2: p = q/2. The first term in (19) equals (1 + j∗

n )n−1/2 ≤ cp,q(logn)n−1/2, and the
second term in (19) equals n−1/2.

Case 1.3: p ∈ (q/2, q). The first sum in (19) equals n−1/22(p−q/2)j∗
n ≤ cp,qn−(1−p/q), the

same as the second term.
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Case 2: p = d/2. Now (18) reduces to (ignoring constant factors)

j∗
n∑

j=0

2pj 2−qj/2n−1/2(�∗j + 1
)+ n−(1−p/q). (20)

Case 2.1: p < q/2. The first term is a geometric sum bounded by n−1/2 logn, which dominates
the second term.

Case 2.2: p = q/2. The first term is of order n−1/2(logn)2, which dominates the second term.

Case 2.3: p > q/2. The first term becomes n−1/2∑j∗
n

j=0 2(p−q/2)j (�∗j + 1). Let j̃∗
n =

q−1(log2 n− cd log2 3), and a = 2p−q/2

j∗
n∑

j=0

2(p−q/2)j
(
�∗j + 1

)≤ j∗
n∑

j=0

2(p−q/2)j

(
log2 n− qj

d log2 3
− c + 1

)

= q

d log2 3

j∗
n∑

j=0

aj
(
j̃∗
n − j + cp,q

)

≤ cp,q

j∗
n∑

j=0

aj
(
j∗
n − j

)+ cp,qaj∗
n . (21)

Standard calculation shows that

j∗
n∑

j=0

aj
(
j∗
n − j

)= a

(a − 1)2

(
aj∗

n − 1
)− j∗

n

a − 1

≤ cp,qaj∗
n .

Thus (21) is bounded by

cp,q2(p−q/2)j∗
n ≤ cp,qnp/q−1/2

and (20) is bounded by cp,qn−(1−p/q).
Case 3: p < d/2. In this case 3−(p−d/2)� is an increasing geometric sequence as � changes

from 0 to �∗j . Thus (18) becomes, using the fact that 3�∗j ≤ 3−c(n2−qj )1/d ,

j∗
n∑

j=0

2pj
{
2−qj/2n−1/23cd/23(d/2−p)�∗j + 2−qj

(
2−qjn

)−p/d}

+ (n3−cd
)−(1−p/q)

≤
j∗
n∑

j=0

2−jq(1−p/d−p/q)n−p/d + (n3−cd
)−(1−p/q)

. (22)
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Case 3.1: d <
qp

q−p
(or 1 −p/d −p/q < 0). The first term is the sum of an increasing geometric

sequence, which is bounded by the last term n−p/d2j∗
n q(p/d+p/q−1) ≤ cp,qn−(1−p/q), matching

the second term.
Case 3.2: d = qp

q−p
(or 1 − p/d − p/q = 0). The first term is of order n−p/d logn and domi-

nates the second term.
Case 3.3: d >

qp
q−p

(or 1 − p/d − p/q > 0). The first term is of order n−p/d . Now if d ≤
2qp/(q − p) then the second term is bounded by n−(1−p/q) and hence dominated by the first
term. If d > 2qp/(q − p), then by assumption that d ≤ (2c)−1 log3 n we have 3−cd ≥ n−1/2 so
the second term is bounded by n−(1−p/q)/2 which is dominated by the first term.

Finally, note that the contribution from
∑

j≥0 2−pj 2−qj 3−p�∗ is bounded by n−p/d , which is
dominated in all the nine cases. �

Proof of Theorem 4.1. Again it suffices to prove for the case Mq = 1. In our proof “�” means
inequality holds up to a constant depending only on (p, q, b).

According to Corollary 2.4 of [29], we have, as ε → 0,

logNε(B0) =
(
1 + o(1)

)
bε−

1
b .

As a consequence we have, for some positive constant cb fixed through this proof, and all � ∈N,

N̄� ≤ 2cb3�/b

.

Again, in order to use Theorem 2.3, the key is to break down the term

2−qj ∧ (N̄1/2
� 2−qj/2n−1/2).

Let

�∗j = ⌊b[log3(log2 n − qj) − log3 cb

]⌋
and �∗ = �∗0 =  b(log3 log2 n− log3 cb)" so that � ≤ �∗j ⇒ 2−qj ≥ N̄

1/2
� 2−qj/2n−1/2.

Let j∗
n =  q−1(log2 n − cb)" so that j ≤ jn ⇔ �∗j ≥ 0.

If log2 n < cb then n < 2cb = O(1). The claim of the theorem follows trivially from Theo-
rem 2.3. Now we focus on the case log2 n ≥ cb so that j∗

n ≥ 0.
So when j ≤ j∗

n ,

�∗∑
�=0

3−p�
[
2−qj ∧ (N̄1/2

� 2−qj/2n−1/2)]

= 2−qj/2n−1/2

�∗j∑
�=0

3−p�2(cb/2)3�/b + 2−qj

�∗∑
�=�∗j+1

3−p�

� 2−qj/2n−1/2 + 2−qj 3−p�∗j

� 2−qj/2n−1/2 + 2−qj (log2 n− qj)−bp.
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To see the first inequality, observe that the terms 3−p�2(cb/2)3�/b
becomes super-geometrically

increasing with rate at least 2 after a constant number of terms. Thus, the sum is bounded by a

constant plus the last term, which is 3−p�∗j 2(cb/2)3
�∗
j
/b ≤ 3−p�∗j n1/22−qj/2.

When j > j∗
n , we have �∗j < 0 and hence

�∗∑
�=0

3−p�
[
2−qj ∧ (N̄1/2

� 2−qj/2n−1/2)]� 2−qj .

Combining the above two inequalities with Theorem 2.3 we obtain

EW
p
p (μ̂,μ)

� 3−p�∗ +
j∗
n∑

j=0

2pj
[
2−qj/2n−1/2 + 2−qj (log2 n− qj)−bp

]+ ∑
j>j∗

n

2pj 2−qj

�
j∗
n∑

j=0

2−(q−p)j (log2 n− qj)−bp + n−1/2
j∗
n∑

j=0

2−(q/2−p)j

+ (logn)−bp + n−(1−p/q), (23)

where the (logn)−bp upper bounds 3−p�∗ , and n−(1−p/q) upper bounds
∑

j>j∗
n

2pj 2−qj .
Now we control the first two terms in (23). For the first term, if we pick cb large enough so that

cb ≥ q2(q/p−1)/(2b)

2(q/p−1)/(2b)−1
, then for all 0 ≤ j ≤ j∗

n the terms 2−(q−p)j (log2 n − qj)−bp in the first sum

decreases super-geometrically with rate 2−(q−p)/2 and hence bounded by the first term, which is
of order (logn)−pb.

For the second term, we consider three cases.
Case 1: p < q/2, then the sequence 2−(q/2−p)j is geometrically decreasing and the sum is

bounded by the first term which is 1. So the second part in (23) is bounded by n−1/2.
Case 2: p = q/2, the sum becomes n−1/2(1 + j∗

n ) � n−1/2 logn.
Case 3: p > q/2, the sum is dominated by the last term, which is n−1/22(p−q/2)j∗

n �
n−1/2np/q−1/2 = n−(1−p/q).

In all these cases, (23) is dominated by the first term and hence

EW
p
p (μ̂,μ) � (logn)−bp,

which implies the desired upper bound using p ≥ 1 and Jensen’s inequality.
Now we prove the lower bound. Let εn = ( 2

b
logn)−b . By Corollary 2.4 of [29], we have

lim
n→∞

logNεn(B0)

2 logn
= 1.

Therefore, there exists a constant n0 ∈N such that Nεn ≥ n for all n ≥ n0.
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For n < n0, the result is trivial because the desired lower bound is essentially a constant and
one can pick μn to be a distribution with two point masses that are a constant distance apart.

For n ≥ n0, let x1, . . . , xn be points in B0 such that min1≤i<j≤n ‖xi − xj‖ ≥ εn. Let μn be the
measure that puts n−1 mass at each xi (1 ≤ i ≤ n).

If μ̂n({xi}) = 0 for some xi , then any transport between μ̂n and μn costs probability mass at
least n−1 and distance at least εn to just cover the point xi alone. Thus, we have the following
lower bound

Wp(μ̂n,μn) ≥
{

n∑
i=1

ε
p
n n−11

[
μ̂n

({xi = 0})]
}1/p

= εnκ
1/p
n ,

where κn is the proportion of xi ’s such that μ̂n({xi}) = 0. As a result

EWp(μ̂n,μn) ≥ εnE
(
κ

1/p
n

)
.

Elementary calculation shows that Eκn → e−1. Also κn has bounded difference in the sense that
if one out of the n independent sample points is changed arbitrarily, then κn changes no more
than 1/n. Thus, by McDiarmid’s inequality, P(|κn − Eκn| ≥ t) ≤ 2 exp(−2nt2) for all t > 0.
Now for n larger than some constant n1 we have Eκn ≥ (2e)−1. Choosing t = (4e)−1 we have
P(κn ≥ (4e)−1) → 1. Therefore E(κ

1/p
n ) ≥ c for some universal positive constant c. �

Proof of Lemma 4.3. For ε ∈ (0,1), let J1 = $logγ (ε−1)%, so that τm/ε > 1 ⇔ m ≤ J1 Let B1 =
{x ∈ R

J1 :∑J1
m=1(xm/τm)2 ≤ 1}. Then B1 is the projection of B0 onto the first J1 coordinates.

Thus Nε(B0) ≥ Nε(B1). But Theorem 1 of [14] implies that

logNε(B1) ≥
J1∑

m=1

log(τm/ε) = J1 log
(
ε−1)− logγ

J1(J1 − 1)

2

and the lower bound claim follows by logγ (ε−1) ≤ J1 < logγ (ε−1)+ 1.
For the upper bound, let θ ∈ (0,1/2) be a constant. For example, we can pick θ = 1/3. Define

J2 = $logγ (ε
√

1 − θ)−1%, so that τm/ε ∈ (
√

1 − θ,1] ⇔ m ∈ (J1, J2]. Let

B2 =
{

x ∈R
J2 :

J2∑
m=1

(xm/τm)2 ≤ 1

}
,

B3 =
{
x ∈R

∞ :
∑
m≥1

(xm/τJ2+m)2 ≤ 1

}
.

Then B0 ⊂ B2 × B3.
By construction τJ2+1/ε ≤√

1 − θ , so B3 can be covered by the ball centered at 0 with radius√
1 − θε. As a consequence,

N√
2−θε(B0) ≤ N√

2−θε(B2 ×B3) ≤ Nε(B2).
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By Theorem 2 of [14], we have (c0, c1, depending only on γ , θ , may change from line to line)

logNε(B2) ≤
J1∑

m=1

log(τm/ε)+ J2 log(3/θ)

= logγ

2

⌈
logγ

(
ε−1)⌉(2 logγ

(
ε−1)− ⌈logγ

(
ε−1)⌉+ 1

)
+
⌈

logγ

(
ε−1)+ logγ

1√
1 − θ

⌉
log(3/θ)

≤ logγ

2

(
logγ

(
ε−1)+ 1

)2 + c1 logγ

(
ε−1)+ c0

= 1

2 logγ

(
log
(
ε−1)+ c1

)2 + c0.

The desired result can be obtained by plugging in ε = 3−(�+1)/
√

2 − θ . �

Proof of Theorem 4.2. By Lemma 4.3, we have for � ∈N

log N̄� ≤ cγ (� + c1)
2 + log c0

for cγ = (log 3)2

2 logγ
and positive constants c1, c0 depending on γ only. Then

N̄� ≤ c0e
cγ (�+c1)

2
.

Let j∗
n =  q−1 log(n/c0)−c2

1cγ

log 2 ".

If j∗
n < 0, then n < c0e

c2
1cγ and the claim follows trivially. Now we focus on the case j∗

n ≥ 0.
Let �∗j =  [ (log(n/c0)−qj log 2)+

cγ
]1/2 − c1", and �∗ = �∗0 =  [ log(n/c0)

cγ
]1/2 − c1".

When j ≤ j∗
n , we have �∗j ≥ 0 so

�∗∑
�=0

3−p�
[
2−qj ∧ (N̄1/2

� 2−qj/2n−1/2)]

� c
1/2
0 2−qj/2n−1/2

�∗j∑
�=0

3−p�ecγ (�+c1)
2/2 + 2−qj

�∗∑
�=�∗j+1

3−p�

� 2−qj/2n−1/2 + 2−qj 3
−p

√
log(n/c0)−qj log 2

cγ .

To see the last inequality, observe that after a constant number of terms in the first sum in the line
above, the terms 3−p�ecγ (�+c1)

2/2 become super-geometrically increasing with rate at least 2. So
the first sum is upper bounded (up to constant factor) by the last term plus 1.
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When j > j∗
n , we have �∗j = 0 and

�∗∑
�=0

3−p�
[
2−qj ∧ (N̄1/2

� 2−qj/2n−1/2)]�2−qj .

Combining the above two inequalities with Theorem 2.3, we get

EW
p
p (μ̂,μ)

� 3−p�∗ +
j∗
n∑

j=0

2pj 2−qj/2n−1/2 +
j∗
n∑

j=0

2pj 2−qj 3
−p

√
log(n/c0)−qj log 2

cγ +
∑
j>j∗

n

2pj 2−qj

�
j∗
n∑

j=0

2pj 2−qj 3
−p

√
log(n/c0)−qj log 2

cγ +
j∗
n∑

j=0

2pj 2−qj/2n−1/2

+ 3−p
√

logn/cγ + n−(1−p/q), (24)

where the term 3−p
√

logn/cγ controls 3−p�∗ , and 3−p
√

logn/cγ +n−(1−p/q) controls
∑

j>j∗
n

2pj ×
2−qj .

If we choose c1 large enough so that c1 ≥ qp
q−p

log 3
cγ

then it can be verified that the terms in the

first sum in (24) is super-geometrically decreasing with rate 2−(q−p). Thus, the sum is bounded

by the first term 3−p
√

(log(n/c0))/cγ � 3−p
√

(logn)/cγ .
The second sum in (24) can be controlled using the same argument as for the second term in

(23) in the proof of Theorem 4.1, which is bounded by n−[(1−p/q)∧(1/2)](logn)1(q=2p), and is
dominated by the first term in (24).

Therefore, the first and third terms dominate in (24) and final rate is

EW
p
p (μ̂, μ̂) � 3−p

√
(logn)/cγ = e−p

√
2 logλ logn,

which concludes the proof of upper bound.
For the lower bound. Let εn = e−

√
2 logγ logn then by Lemma 4.3 we have

logNε ≥ 1

2 logγ

[
log(1/ε)

]2 = logn.

So Nε ≥ n. Let x1, . . . , xn ∈ B0 be such that mini �=j ‖xi − xj‖ ≥ ε. Let μn be the distribution
putting n−1 mass at each xi . The rest of the proof are identical to the lower bound proof of
Theorem 4.1. �

Proof of Proposition 4.4. We only prove for the polynomial decay case, the exponential case is
similar. Without loss of generality, we assume c0 = M = 1, as both constants can be recovered
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after scaling. Then

∥∥ρτ (X)
∥∥q

q
= E

{[∑
m≥1

(
Xm

τm

)2]q/2}
=
∥∥∥∥∑

m≥1

(
Xm

τm

)2∥∥∥∥
q/2

q/2

≤
[∑

m≥1

∥∥∥∥
(

Xm

τm

)2∥∥∥∥
q/2

]q/2

=
[∑

m≥1

∥∥∥∥Xm

τm

∥∥∥∥
2

q

]q/2

=
[∑

m≥1

‖Xm‖2
q

τ 2
m

]q/2

≤
[∑

m≥1

(σm/τm)2
]q/2

,

where the inequality uses Minkowski inequality since we assume q/2 ≥ 1. The claimed results
follow by replacing σm by the assumed upper bound, and τm by the assumed form in (6) or (8). �

Appendix D: Proof of concentration inequality

Proof of Theorem 5.1. Let �i = E[f (X1, . . . ,Xn) | Xi
1]−E[f (X1, . . . ,Xn) | Xi−1

1 ], where X
j
i

denotes (Xi,Xi+1, . . . ,Xj ).
For two random vectors (Y,Z) and a function g, we use the notation EY g(Y,Z) to denote

the conditional expectation of g(Y,Z) given Z (the notation means that we integrate over Y in
g(Y,Z)).

For any i and c > 0

E
(
ec�i | Xi−1

1

)= EXi
exp
{
c
[
EXn

i+1
f (X)−EXn

i+1,X
′
i
f
(
X′

(i)

)]}
= EXi

exp
{
EXn

i+1,X
′
i
c
[
f (X)− f

(
X′

(i)

)]}
≤ EXi

EXn
i+1,X

′
i
exp(cDi)

= EXn
i+1

EXi,X
′
i
exp(cDi).

Using the fact that EXi,X
′
i
Di = 0, we get

EXi,X
′
i
exp(cDi) = EXi,X

′
i

(
1 + cDi +

∑
k≥2

ckDk
i

k!
)

= 1 +EXi,X
′
i

∑
k≥2

ckDk
i

k!

≤ 1 + 1

2
σ 2

i c2
∑
k≥0

(cM)k
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≤ exp

(
1

2
σ 2

i c2
∑
k≥0

(cM)k
)

= exp

(
1

2
σ 2

i c2(1 − cM)−1
)

,

provided that cM < 1.
For any t, c > 0, c < M−1, we have

P(f −Ef ≥ tσ ) ≤ e−ctσ
Eec(f−Ef ) = e−ctσ

Eec
∑n

i=1 �i

≤ e−ctσ
E
[
ec
∑n−1

i=1 �iE
(
ec�n | Xn−1

1

)]
≤ e−ctσ exp

(
1

2
σ 2

n c2(1 − cM)−1
)
E
[
ec
∑n−1

i=1 �i
]

≤ e−ctσ
n∏

i=1

exp

(
1

2
σ 2

i c2(1 − cM)−1
)

= e−ctσ exp

(
1

2
σ 2c2(1 − cM)−1

)
,

where σ 2 =∑n
i=1 σ 2

i .
The claimed result follows by choosing c = t

σ+tM
. �
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