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Virtual age models are very useful to analyse recurrent events. Among the strengths of these models is their
ability to account for treatment (or intervention) effects after an event occurrence. Despite their flexibility for
modeling recurrent events, the number of applications is limited. This seems to be a result of the fact that in
the semiparametric setting all the existing results assume the virtual age function that describes the treatment
(or intervention) effects to be known. This shortcoming can be overcome by considering semiparametric
virtual age models with parametrically specified virtual age functions. Yet, fitting such a model is a difficult
task. Indeed, it has recently been shown that for these models the standard profile likelihood method fails
to lead to consistent estimators. Here we show that consistent estimators can be constructed by smoothing
the profile log-likelihood function appropriately. We show that our general result can be applied to most of
the relevant virtual age models of the literature. Our approach shows that empirical process techniques may
be a worthwhile alternative to martingale methods for studying asymptotic properties of these inference
methods. A simulation study is provided to illustrate our consistency results together with an application to
real data.

Keywords: effective age process; recurrent event data; semiparametric inference; smoothed profile
likelihood; virtual age process

1. Introduction

Virtual age models also called effective age models are useful in understanding the dynami-
cal aspects of recurrent events arising in epidemiology (see, e.g., relapse times of a disease),
economics (see, e.g., cycles between economic crises), industry (see, e.g., repair times of a sys-
tem), climate (occurrence times of extremal climatic events), etc. The strength of these models
is that they allow to model explicitly the effect of an intervention or treatment performed just
after an event occurrence. Virtual age models have been introduced by Kijima [12,13] and basi-
cally they assume that the intensity at time t of a counting process N(t) = ∑

j≥1 1{Xj ≤t}, where
X0 = 0 < X1 < X2 < · · · are the event times, can be written as (λ ◦ ε)(t) where λ is a determin-
istic hazard rate function and ε is (possibly) a random function that may depend on the history
of the process or some covariates. When ε(t) ≡ t , the process N is a nonhomogeneous Poisson
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process with intensity λ, while if ε(t) = t − XN(t−), the process N is a renewal process. As a
consequence we see that the function ε specifies the virtual age or effective age just after an event
which has to reflect the effect of the treatment in case of a disease, or the effect of an economic
policy, or the efficiency of a maintenance in industry etc. Clearly, in many applications this ef-
fect is a priori unknown, and must be estimated based on data. To be able to do so, Doyen and
Gaudoin [7] introduced some parametrized versions εθ of the effective age function ε where the
Euclidean parameter θ measures the efficiency of a medical treatment, an industrial maintenance
policy, etc.

In the semiparametric or nonparametric setting, all the existing results assume that the virtual
age function is known. For instance, Dorado et al. [6] proposed an estimator of �, the cumulative
hazard rate function of λ, for a general (yet known) effective age function and studied its asymp-
totic properties. During the last two decades the model considered by Dorado et al. [6] has been
enriched by adding covariates effects and frailties. One of the most complex versions of these
models has been proposed by Peña [17] and recent semiparametric estimation and asymptotic
results based on the profiled likelihood estimation method (in the sense of Murphy and van der
Vaart [16]) have been obtained by Adekpedjou and Stocker [1] and Peña [18]. We also refer to
Lindqvist [15] for a review of basic modeling approaches for maintenance models for repairable
systems in reliability as well as to Lawless [14] and Cook and Lawless [5] for extensive discus-
sions on the various existing models and inference methods available to deal with recurrent events
data. However, as mentioned above, assuming that the effective age function is known limits the
applicability of these models. One possibility to overcome this shortcoming is to consider virtual
age models for which both the virtual age function and λ are parametrically specified and to apply
the usual maximum likelihood approach. Alternatively, one can consider parametrically specified
virtual age functions with a nonparametrically specified λ. Constructing consistent estimators for
such a model is not straightforward. Beutner et al. [3] recently showed that the standard profile
likelihood method fails to lead to consistent estimators. This phenomenon has also been observed
for the semiparametric accelerated failure time model where the standard profile likelihood func-
tion does not lead to consistent estimators for the unknown Euclidean parameter. To overcome
this failure of the standard profile likelihood method, Zeng and Lin [26] showed that profiling out
with a smoothed version of the pseudo-estimator of the unknown baseline hazard rate function
is enough to obtain consistency and efficiency of the profile likelihood estimator at the price of
adding a new parameter required to define the level of regularization. These authors generalized
their approach to the case of recurrent events in Zeng and Lin [27].

In this paper, we present a general result that shows that consistent estimators for virtual age
models with parametrically specified virtual age function and nonparametrically specified λ can
be obtained by smoothing the profiled log-likelihood function appropriately. We apply the gen-
eral result to a large class of models including most of the relevant virtual age models of the
literature like, for instance, the Doyen and Gaudoin [7] Arithmetic Reduction of Age (ARA)
models that include Kijima [12] Type-I and Type-II models. To the best of our knowledge, all the
asymptotic results obtained so far for these models are based on appropriately adapted martingale
methods. Adapting traditional martingale methods is necessary because virtual age models re-
quire to switch from the calendar time scale to the effective age scale where martingale properties
are not satisfied (see, e.g., Peña et al. [20]); the effective age scale follows an idea introduced by
Sellke and Siegmund [22] (see also Sellke [21]). In addition to overcoming the limitation of an
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a priori known effective age function our approach also shows that empirical process techniques
may be a worthwhile alternative to martingale methods for studying the asymptotic properties of
these inference methods. Basically our empirical processes are based on independent and identi-
cal copies of Z = (T ,X) with probability distribution P where T is a right censoring time and
X = (X1,X2, . . . ) is the nondecreasing sequence of event times. The right censored counting
process N is defined by N(t) = ∑

j≥1 1{Xj ≤t∧T } for t ∈ [0, s] where [0, s] is the period of study.
Then defining the class of functions Hs = {z = (τ, x1, x2, . . . ) �→ ht (z) = ∑

j≥1 1{xj ≤t∧τ }; t ∈
[0, s]} and using the usual empirical processes notations (see van der Vaart and Wellner [25] or
van der Vaart [24]) we can identify (N(t))t∈[0,s] and (δZh)h∈Hs

where δZ is the Dirac measure
at the random (infinite dimensional) point Z.

The paper is organized as follows. In the next section, we define the class of virtual age models
and propose a general method of estimation based on a regularized version of the profiled like-
lihood function. Then general conditions are given under which consistency results are obtained
for both the Euclidean and the functional parameter. In Section 3, we show that the general con-
ditions are fulfilled for a large class of semiparametric models with very few assumptions on the
model parameters. Identifiability of the model parameters is also discussed under various cen-
soring schemes. A short simulation study is provided in Section 4 to illustrate empirically our
consistency results. Section 5 is devoted to estimation of parametric and semiparametric ARA
models using reliability data. The final section is devoted to concluding remarks and perspectives.

2. Consistent estimation by profiling and smoothing

2.1. General model and notations

As outlined above the aim is to do inference for a simple counting process N = {N(t), t ∈ [0, s]}
where s ∈ R+. As usual, N is defined on a measurable space (�,F) endowed with the natural
filtration. The jump times or event times of N will be denoted by X = (X1,X2, . . . ). They are
assumed to take their values in X which denotes the set of increasing sequences of non negative
real numbers without accumulation point, that is, x = (xn)n∈N ∈ X if 0 ≤ x1 < x2 < · · · and
xn → +∞ as n → ∞. We specify the statistical model for N via its compensator which is
assumed to be of the form

A(t) =
∫ t

0
Y(u)λ

(
εθ (u)

)
du

with respect to the natural filtration. Here the process Y equals either 0 or 1. The predictable
stochastic process εθ describes the virtual age. The unknown model parameters are λ ∈A where
A is an infinite set of hazard rate functions on R

+ and the Euclidean parameter θ ∈ 	. Re-
garding the sample paths of εθ which describe the possible developments of the virtual age
over time we assume that they take values in Sθ = {eθ : R+ → R

+|eθ (t) = eθ
0(t)1[x0,x1](t) +∑

j≥2 eθ
j−1(t)1(xj−1,xj ](t), for some x ∈X }, where x0 = 0. We allow eθ

j−1, j ≥ 1, to depend on

x0, . . . , xj−1 so that eθ may depend on x. Note, however, that the dependency of eθ and eθ
j−1 on

x and x0, . . . , xj−1, respectively, is not made explicit. The interpretation is that eθ
j−1(t) gives us
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the effective age at calendar time t ∈ (xj−1, xj ]. Here are two examples. Further examples can,
for instance, be found in Lindqvist [15] and Peña [19].

Example 2.1 (ARA1 or Kijima I with non-random repair). For an ARA1 model, see [7,
13] and [12] for this model, we have θ ∈ [0,1], eθ

0(t) = t which means that regardless of θ

calendar time and virtual age coincide until the first treatment/intervention, and for j ≥ 2 we
have ej−1(t) = t − θxj−1. Let us first look at the two extreme cases θ = 0 and θ = 1. If θ = 0
then for all j ≥ 2 we have ej−1(t) = t so that eθ (t) = t , t ≥ 0. Hence, calendar time and virtual
age always coincide. Thus, N will be a non-homogeneous Poisson process with intensity λ; see
also first paragraph of the Introduction. If θ = 1, then for all j ≥ 2 we have eθ

j−1(t) = t − xj−1

and consequently eθ (t) = t − xj−1 for t ∈ (xj−1, xj ]. Because eθ
j−1 describes the virtual age for

the calendar time interval t ∈ (xj−1, xj ] we see that after an event occurrence at xj−1 the virtual
age is set back to 0. This, of course, is a renewal process. More generally, the events’ effects
in this model correspond to the rejuvenation induced by the j th event time (for j ≥ 1) which
satisfies eθ

j (xj−) − eθ
j−1(xj ) = −θ(xj − xj−1). Consequently, the reduction of the virtual age is

proportional to the difference between the last and the second to last jump (with proportionality
factor θ ).

Example 2.2 (ARA∞ or Kijima II with non-random repair). For an ARA∞ model, see [7,13]
and [12] for this model, we have 	 = [0,1] and eθ

j−1(t) = t − θ
∑j−1

l=1 (1 − θ)j−1−lxl , j ≥ 1,

where we use the convention
∑b

i=a · = 0 for a > b. We see that for this specification the functions
eθ
j−1 depend on the entire jump history. Clearly, as before, we have for θ = 1 a renewal processes

and taking θ = 0 results in non homogeneous Poisson processes. Here again, the events’ effects
in this model correspond to the rejuvenation eθ

j (xj−) − eθ
j−1(xj ) = −θeθ

j−1(xj ). For an ARA∞
case, the event effect reduces the virtual age proportional to its value at the considered event time.

Because we assumed the predictable process εθ to take values only in Sθ it will be of the
form εθ

0(t)1[X0,X1](t) + ∑
j≥2 εθ

j−1(t)1(Xj−1,Xj ](t) where we again suppress the dependency of

εθ and εθ
j−1 on X and X0, . . . ,Xj−1, respectively. In Example 2.1, it then reads as

εθ (t) = t for t ≤ X1, εθ (t) = t − θXj−1 for Xj−1 < t ≤ Xj and j ≥ 2,

and in Example 2.2 as

εθ (t) = t − θ

j−1∑
l=1

(1 − θ)j−1−lXl for Xj−1 < t ≤ Xj and j ≥ 1.

Now let us turn to inference on λ and θ . For this we allow N to be censored, that is, we con-
sider N(t) = ∑

j≥1 1{Xj ≤t∧T } for t ≥ 0, so that Y(u) = 1{T ≥u} for a censoring time T . Un-
der Assumption B1 on the virtual age function stated in Section 2.3, we know that M(t) =
N(t) − ∫ t

0 Y(u)λ(εθ (u)) du is a square integrable martingale with respect to the natural filtra-
tion. For inference on λ and θ , it is beneficial to disentangle them. To this end, Peña et al. [20]
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introduced doubly indexed processes that, by a change of variables (see, for instance, Peña [17]),
are given by

Mθ(s, t) = Nθ(s, t) −
∫ t

0
Y θ (s, u)λ(u)du,

where Nθ(s, t) = fθ,t (Z) and Y θ (s, t) = gθ,t (Z) are defined by

fθ,t (z) =
∑
j≥1

1{eθ (xj )≤t;xj ≤s∧τ } =
∑
j≥1

1{eθ
j−1(xj )≤t;xj ≤s∧τ }

and

gθ,t (z) = 1{t≤x1∧s∧τ } +
∑
j≥2

1{eθ (xj−1+)<t≤eθ (xj ∧s∧τ);xj−1<s∧τ }

= 1{t≤x1∧s∧τ } +
∑
j≥2

1{eθ
j−1(xj−1)<t≤eθ

j−1(xj ∧s∧τ);xj−1<s∧τ },

respectively, where we suppress the dependence of f and g on s. Note that this particular form of
gθ,t is valid under Assumption B1 below. Although it has moment properties comparable to those
of martingales (in particular PMθ(s, t) = 0), the process t �→ Mθ(s, t) is no longer a martingale,
making the study of estimators based on t �→ Mθ(s, t) rather complicated (see, e.g., Dorado et
al. [6], Peña et al. [20], Peña [18]).

2.2. Estimation method

Now we consider Zn = {Z1, . . . ,Zn} where the Zi = (Ti ,Xi ) are n > 1 i.i.d. copies of Z =
(T ,X). We write Xi = (Xi,j )j≥1 and Xi,0 = 0. Since the model is known up to parameters
(θ, λ) ∈ 	 × A, following Jacod [11] (see also Andersen et al. [2], Section II.7, Peña [19],
Beutner et al. [3]) the log-likelihood function can be written as


n,s(θ, λ|Zn) = 1

n

n∑
i=1

∫ ∞

0
logλ(u)Nθ

i (s, du) − Y θ
i (s, u)�(du),

= 1

n

n∑
i=1

∫ M

0
logλ(u)Nθ

i (s, du) − Y θ
i (s, u)�(du), (2.1)

where, as in the Introduction, � is the cumulative hazard rate function corresponding to λ.
As above, the existence of M is given by Assumption B1 below, and Nθ

i (s, t) = fθ,t (Zi ) and
Y θ

i (s, t) = gθ,t (Zi ), 1 ≤ i ≤ n. Considering the empirical measure Pn = 1
n

∑n
i=1 δZi

we write

N̄θ
n (s, t) = Pnfθ,t = 1

n

n∑
i=1

Nθ
i (s, t) and Ȳ θ

n (s, t) = Pngθ,t = 1

n

n∑
i=1

Y θ
i (s, t).
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Since the process t �→ N̄θ
n (s, t) − ∫ t

0 Ȳ θ
n (s, u)λ(u)du is centered, a “method-of-moment” type

estimator for �(t) = ∫ t

0 λ(u)du is defined by

�θ
n(s, t) =

∫ t

0

N̄θ
n (s, du)

Ȳ θ
n (s, u)

.

We call �θ
n(s, t) a pseudo-NPMLE of � since for θ known it is a NPMLE (Nonparametric

Maximum Likelihood Estimator) of � as proved in Beutner et al. [3]. The first general version
of this estimator was derived by Dorado et al. [6] and it has been extended to more general
models using the doubly indexed counting processes of Peña et al. [20]. The common approach
to estimate θ based on (2.1) profiles out � and λ using �θ

n and λ̆θ
n, respectively, where λ̆θ

n equals
the jump heights of �θ

n at the jump points of N̄θ
n ; for full details see [3], Section 2.2. The resulting

profile likelihood function equals (see again [3], Section 2.2)∫ M

0
log

(
λ̆θ

n(s, u)
)
dN̄θ

n (s, du). (2.2)

Yet, in contrast to other semiparametric models this approach fails for the model considered here;
see Sections 2 and 4 in [3]. On the other hand, one would expect that (2.2) converges to


s(θ) =
∫ M

0
log

(
λθ (s, t)

)
νθ (s, dt), (2.3)

where

λθ (s, t) = d�θ(s, t)

dt
with �θ(s, t) =

∫ t

0

νθ (s, du)

yθ (s, u)
dt so that λθ (s, t) =

dνθ

dt
(s, t)

yθ (s, t)
,

with

νθ (s, t) = Pfθ,t = ENθ(s, t) and yθ (s, t) = Pgθ,t = EY θ (s, t).

Furthermore, it can be showed (cf. Proposition 2.3 below) that 
s(θ) has a unique maximum at
the true θ0. Because N̄θ

n only depends on the model and the data this suggests the inconsistency
of the classical profile likelihood method proved by Beutner et al. [3] comes from the fact that
λ̆θ

n is an inappropriate estimator to have convergence of (2.2) to (2.3) and consequently that (2.2)
is inappropriate for estimating the Euclidean parameter. It then further indicates that a consistent
estimator for θ might be obtained from (2.2) if we use another technique for the estimation of λ.
To this end, define for t ∈ [0,M]

λθ
n(s, t) = 1

bn

∫
R

κ

(
t − u

bn

)
�θ

n(s, du), (2.4)

where �θ
n(s, du) ≡ 0 on (M,∞), κ is a probability density function (kernel function) and bn is

a bandwidth tending to 0 as n tends to infinity. Then introducing


n,s(θ) =
∫ M

0
log

(
λθ

n(s, t)
)
N̄θ

n (s, dt),

we estimate θ by θn = arg maxθ∈	 
n,s(θ), �(t) by �n(s, t) = �
θn
n (s, t) and λn(s, t) = λ

θn
n (s, t).
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2.3. Consistency results

In the sequel, we denote the total variation
∫ b

a
|f (s, dt)| of t �→ f (s, t) on [a, b] by TVf [a, b],

and if it is finite, we say that t �→ f (s, t) ∈ BV[a, b]. Hereafter any true model parameter is
indexed by 0. Our main consistency results are obtained under assumptions below. First, As-
sumptions A contains technical properties of the kernel function and the bandwidth.

Assumptions A (On the kernel and the bandwidth).

A1. The bandwidth (bn)n∈N satisfies bn = cn−d for d ∈ (0,1/2) and a fixed real number
c > 0.

A2. The kernel function κ is a pdf with support in [−1,1] and κ ∈ BV[−1,1].

Assumptions B below impose conditions on the statistical model. These conditions must be
checked once the effective age functions eθ

j−1, 	 and A are specified. In Section 3, we show that
these conditions hold for a large class of models.

Assumptions B (On the model and its parameters).

B1. eθ
0 is the identity function. For t ∈ (xj−1, xj ] the functions eθ

j−1, j ≥ 2, are non negative.

For a fixed constant s > 0 there exists an M such that for j ≥ 2 we have eθ
j−1(t) ≤ M

for t ≤ s. In addition, for j ≥ 2 the functions eθ
j−1 are nondecreasing, continuous and

differentiable with derivative equal to 1.
B2. (i) There exists α > 0 and A < ∞ such that α ≤ yθ (s, t) ≤ A for all (θ, t) ∈ 	×[0,M].

In addition, (θ, t) �→ yθ (s, t) is continuous on 	 × (0,M), supθ∈	

∫ M

0 |yθ (s, dt)| <

∞ and supθ∈	

∫ M

0 | 1
yθ (s,dt)

| < ∞.

(ii) There exists α̃ > 0 and Ã < ∞ such that α̃ ≤ λθ (s, t) ≤ Ã for all (θ, t) ∈
	 × [0,M]. In addition, (θ, t) �→ λθ (s, t) is continuous on 	 × (0,M) and
supθ∈	

∫ M

0 |λθ (s, dt)| < ∞.
B3. If the following equation holds with probability one∫ M

0
logλθ (s, u)Nθ (s, du) − Y θ (s, u)�θ (s, du)

=
∫ M

0
logλ0(u)Nθ0(s, du) − Y θ0(s, u)�0(du) (2.5)

we have θ = θ0.

Assumption C (Convergence rate of basic processes). With bn as in Assumption A.1. we have
with probability 1

b−1
n sup

(θ,t)∈	×[0,M]

∣∣N̄θ
n (s, t) − νθ (s, t)

∣∣ → 0 and b−1
n sup

(θ,t)∈	×[0,M]

∣∣Ȳ θ
n (s, t) − yθ (s, t)

∣∣ → 0.
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We show below that under Assumptions A–C we have that θn is strongly consistent. Moreover,
it will be seen that under these assumptions �n(s, ·) and λn(s, ·) are both uniformly strongly
consistent. If one only wants to prove convergence in probability and uniform convergence in
probability, respectively, one can replace the almost sure convergence in Assumption C by con-
vergence in probability, and the results below continue to hold if one replaces there almost surely
by in probability. The “in probability” version of Assumption C would obviously hold if one
assumes that F = {z �→ fθ,t (z); (θ, t) ∈ 	×[0,M]} and G = {z �→ gθ,t (z); (θ, t) ∈ 	×[0,M]}
are P -Donsker classes of functions. This in turn would be implied by assumption D1 below. Of
course, there are other methods to ensure that F and G are P -Donsker; see, for instance, [8,9,24]
and [25].

Lemma 2.1 below gives sufficient conditions for Assumption C to be satisfied. Because these
conditions are also extremely useful later on to show that ARAm models satisfy Assumptions B
we state these conditions as

Assumptions D.

D1. For all r ∈ N, there exists Cr < ∞ such that
∑

k≥1 krP (Xk ≤ s) ≤ Cr ;
D2. F = {z �→ fθ,t (z); (θ, t) ∈ 	 × [0,M]} and G = {z �→ gθ,t (z); (θ, t) ∈ 	 × [0,M]} have

ε-bracketing numbers of polynomial order.

Lemma 2.1. Assume that Assumptions D hold. Then Assumption C holds.

Proof. Let us start with N̄θ
n . Let ε > 0, proving the result is by the Borel–Cantelli lemma equiva-

lent to prove that
∑

n≥1 P {b−1
n supf ∈F |(Pn − P)f | > ε} < ∞. The proof we give for this relies

on Theorem 2.14.9 in van der Vaart and Wellner [25]. This theorem requires the functions of
the function class to have sup-norm less than or equal to one. To achieve this for an integer k,
we set Xk = {(xj )j∈N ∈ X ;xj > s for j > k} and Zk = R

+ × Xk . Then for k ≥ 0 Zk ⊂ Zk+1
and because X has no accumulation point Z = ⋃

k≥0 Zk . Define Fk = {k−1f|Zk
;f ∈ F} for any

positive integer k. Note that if f belongs to Fk then ‖f ‖∞ ≤ 1. We have for a nondecreasing
sequence of integers (kn)n≥1 and Gn = √

n(Pn − P){
b−1
n sup

f ∈F

∣∣(Pn − P)f
∣∣ > ε

}
⊂

{
sup
f ∈F

|Gnf | > bnn
1/2ε

}
⊂

({
sup

f ∈Fkn

|Gnf | > bnn
1/2ε

kn

}
∩

{
max

1≤i≤n
Ni(s) ≤ kn

})
∪

{
max

1≤i≤n
Ni(s) > kn

}

⊂
{

sup
f ∈Fkn

|Gnf | > bnn
1/2ε

kn

}
∪

{
max

1≤i≤n
Ni(s) > kn

}
.

By Assumption D2 there exist positive constants c′ and V such that N[](ε,F,L2(P )) ≤ c′/εV ,
thus from Theorem 2.14.9 in van der Vaart and Wellner [25] we have for kn = �nβ� with β ∈
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(0,1/2 − d)

P

{
sup

f ∈Fkn

|Gnf | > bnn
1/2ε

kn

}
≤ P

{
sup

f ∈Fkn

|Gnf | > bnn
1/2ε

nβ

}
≤ c′′εV nV (1−2d−2β)/2 exp

(−2c2ε2n1−2d−2β
)
,

where c′′ is another positive constant, thus the right-hand side of the last inequality is
the general term of a converging series since 1 − 2d − 2β > 0. It remains to prove that∑

n≥1 P {max1≤i≤n Ni(s) > kn} < ∞. We have∑
n≥1

P
{

max
1≤i≤n

Ni(s) > kn

}
≤

∑
n≥1

(
1 − (

P
{
N(s) ≤ kn

})n)
≤

∑
n≥1

nP
{
N(s) > kn

} ≤
∑
n≥1

nP {X�nβ� ≤ s}

≤
∑
k≥1

(k + 1)�1/β� Card
{
n ∈N;⌊nβ

⌋ = k
}
P {Xk ≤ s}

≤ 2�1/β� ∑
k≥1

k�1/β� Card
{
n ∈N;⌊nβ

⌋ = k
}
P {Xk ≤ s}

≤ 22�1/β�−1

β

∑
k≥1

k2�1/β�−1P {Xk ≤ s} < +∞ (by Assumption D1),

since Card{n ∈ N; �nβ� = k} ≤ (2�1/β�−1/β)k�1/β�−1. Indeed for k ≥ 1 we have �nβ� = k ⇔
k ≤ nβ < k + 1 ⇔ k1/β ≤ n < (k + 1)1/β . Put w(k) = k1/β . Then by the mean value the-
orem and since β ∈ (0,1) we have w(k + 1) − w(k) ≤ w′(k + 1) = (1/β)(k + 1)1/β−1 ≤
(2�1/β�−1/β)k�1/β�−1 and Card{n ∈N; �nβ� = k} ≤ w(k + 1) − w(k).

The second convergence result concerning Ȳ θ
n holds by using the same arguments. �

We now give preliminary results to show our consistency results.

Proposition 2.1. Under Assumptions A–C we have

b−1
n sup

(θ,t)∈	×[0,M]

∣∣�θ
n(s, t) − �θ(s, t)

∣∣ → 0.

with probability one.

Proof. We have by using the integration by parts formula∣∣∣∣b−1
n

∫ t

0

{
N̄θ

n (s, du)

Ȳ θ
n (s, u)

− νθ (s, du)

yθ (s, u)

}∣∣∣∣
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≤
∣∣∣∣b−1

n

∫ t

0

yθ (s, u) − Ȳ θ
n (s, u)

yθ (s, u)Ȳ θ
n (s, u)

N̄θ
n (s, du)

∣∣∣∣ + b−1
n

yθ (s, t)

∣∣N̄θ
n (s, t) − νθ (s, t)

∣∣
+ b−1

n

∣∣∣∣∫ t

0

(
N̄θ

n (s, u) − νθ (s, u)
)
d

(
1

yθ (s, u)

)∣∣∣∣
≤ b−1

n sup
(θ,t)∈	×[0,M]

∣∣Ȳ θ
n (s, t) − yθ (s, t)

∣∣ ×
∫ M

0

∣∣∣∣ N̄θ
n (s, du)

Ȳ θ
n (s, u)yθ (s, u)

∣∣∣∣
+ b−1

n sup
(θ,t)∈	×[0,M]

∣∣N̄θ
n (s, t) − νθ (s, t)

∣∣ ×
{

1

α
+

∫ M

0

∣∣∣∣d(
1

yθ (s, u)

)∣∣∣∣}.

Due to Assumption C it remains to show that supθ∈	

∫ M

0 | N̄θ
n (s,du)

Ȳ θ
n (s,u)yθ (s,u)

| = Oa.s.(1), since by

B2(i) we have supθ∈	

∫ M

0 | 1
yθ (s,du)

| < ∞.
Let 0 = t0 < t1 < · · · < tk = M be a partition of [0,M] we have

k∑
i=1

∣∣∣∣ N̄θ
n (s, ti )

Ȳ θ
n (s, ti)yθ (s, ti )

− N̄θ
n (s, ti−1)

Ȳ θ
n (s, ti−1)yθ (s, ti−1)

∣∣∣∣
≤

k∑
i=1

∣∣∣∣ N̄θ
n (s, ti)Ȳ

θ
n (s, ti−1)y

θ (s, ti−1) − N̄θ
n (s, ti−1)Ȳ

θ
n (s, ti)y

θ (s, ti)

Ȳ θ
n (s, ti)yθ (s, ti)Ȳ θ

n (s, ti−1)yθ (s, ti−1)

∣∣∣∣
�

k∑
i=1

{∣∣N̄θ
n (s, ti) − N̄θ

n (s, ti−1)
∣∣Ȳ θ

n (s, ti−1)y
θ (s, ti−1)

+ ∣∣Ȳ θ
n (s, ti ) − Ȳ θ

n (s, ti−1)
∣∣N̄θ

n (s, ti−1)y
θ (s, ti−1)

+∣∣yθ (s, ti) − yθ (s, ti−1)
∣∣N̄θ

n (s, ti−1)Ȳ
θ
n (s, ti)

}
� N̄θ

n (s,M)
{
1 + TVȲ θ

n (s,·)[0,M] + TVyθ (s,·)[0,M]}
using Assumption C and Assumption B2(i) to delete the denominator, and where � means less
or equal up to a multiplicative constant. Since the functions t �→ eθ

j (t) are assumed to be nonde-

creasing, we have gθ,t = g+
θ,t − g−

θ,t where

g+
θ,t (z) = 1 +

∑
j≥2

1{eθ
j−1(xj−1)<t;xj−1<s∧τ }, (2.6)

and

g−
θ,t (z) =

∑
j≥1

1{eθ
j−1(xj ∧s∧τ)<t;xj−1<s∧τ }. (2.7)
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For all θ ∈ 	, t �→ Png
+
θ,t and t �→ Png

−
θ,t are two nonnegative, nondecreasing functions. In

addition, both functions are bounded by N̄θ
n (s,M) which converges almost surely (from As-

sumption C) to νθ (s,M) = ∫ M

0 yθ (s, t)λθ (s, t) dt ≤ MAÃ (by Assumption B2). Thus, for n

sufficiently large, we have supθ∈	 TVȲ θ
n (s,·)[0,M] ≤ 4MAÃ. This finishes the proof. �

Proposition 2.2. Under Assumptions A–C we have:

(i) For all closed intervals [a, b] ⊂ (0,M), and as n tends to infinity

sup
(θ,t)∈	×[a,b]

∣∣λθ
n(s, t)/λ

θ (s, t) − 1
∣∣ → 0, a.s.

(ii) There exists (α′,A′) ∈ (0,1] × [1,∞) such that for almost all ω we have for all n

sufficiently large (with sufficiently large depending on ω) and all (θ, t) ∈ 	 × [0,M], α′ ≤
λθ

n(s, t)/λ
θ (s, t) ≤ A′.

Proof. First, we note that for all (θ, t) ∈ 	 × [0,M]

λθ
n(s, t) − λθ (s, t) = 1

bn

∫
R

κ

(
t − u

bn

)(
�θ

n(s, du) − �θ(s, du)
)

(2.8)

+ 1

bn

∫
R

κ

(
t − u

bn

)
�θ(s, du) − λθ (s, t). (2.9)

Write Aθ
n(s, t) for the right-hand side of (2.8) and Bθ

n(s, t) for the term in (2.9). By the integration
by parts formula, the right continuity of t �→ �θ

n(s, t), and Assumption A2 on the kernel function
κ we have

∣∣Aθ
n(s, t)

∣∣ ≤ 1

bn

∫
R

∣∣�θ
n(s, u) − �θ(s,u)

∣∣∣∣dκ
(
(t − u)/bn

)∣∣
≤ C

bn

sup
(θ,t)∈	×[0,M]

∣∣�θ
n(s, t) − �θ(s, t)

∣∣,
which tends to 0 with probability one by Proposition 2.1. For the remaining term, we have

∣∣Bθ
n(s, t)

∣∣ ≤
∣∣∣∣∫

R

κ(u)
(
λθ (s, t − bnu) − λθ (s, t)

)
du

∣∣∣∣
≤ sup

|u|≤bn

∣∣λθ (s, t + u) − λθ (s, t)
∣∣ (by Assumption A2).

By Assumption B2(ii), (θ, t) �→ λθ (s, t) is uniformly continuous on 	 × [a, b], then
sup(θ,t)∈	×[a,b] |Bθ

n(s, t)| → 0 tends to 0. From B2(ii), we have that λθ (s, t) ≥ α̃ which finishes
the proof of (i).
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Using Assumptions B2(ii) and A2, we have for n sufficiently large

α̃/2 ≤ λθ
n(s, t) = Aθ

n(s, t) + 1

bn

∫
R

κ

(
t − u

bn

)
�θ(s, du) ≤ 2Ã

with probability one. Consequently, we can take α′ = α̃/(2Ã) and A′ = 2Ã/α̃. �

Proposition 2.3. Under Assumptions A–C we have:

(i) As n tends to infinity

sup
θ∈	

∣∣
n,s(θ) − 
s(θ)
∣∣ → 0, a.s. (2.10)

(ii) θ �→ 
s(θ) is continuous on 	 and 
s(θ) < 
s(θ0) for all θ ∈ 	\{θ0}.

Proof. Let us prove (i). First, note that for x ∈ [−1/2,1/2] we have | log(1+x)−x| ≤ |x| (apply
the mean value theorem to x �→ log(1 + x) − x). We have


n,s(θ) − 
s(θ) =
∫ M

0
log

(
λθ

n(s, t)

λθ (s, t)

)
N̄θ

n (s, dt) (2.11)

+
∫ M

0
log

(
λθ (s, t)

)[
N̄θ

n (s, dt) − νθ (s, dt)
]
. (2.12)

Write An,s(θ) for the right-hand side of (2.11) and Bn,s(θ) for the term in (2.12). We have for all
ε > 0∣∣An,s(θ)

∣∣
≤

∫ M−ε

ε

∣∣∣∣log

(
1 + λθ

n(s, t) − λθ (s, t)

λθ (s, t)

)
− λθ

n(s, t) − λθ (s, t)

λθ (s, t)

∣∣∣∣N̄θ
n (s, dt)

+
∫ M−ε

ε

∣∣∣∣λθ
n(s, t) − λθ (s, t)

λθ (s, t)

∣∣∣∣N̄θ
n (s, dt) + (

log
(
A′) − log

(
α′))∫

[0,ε]∪[M−ε,M]
N̄θ

n (s, dt)

≤ 2 sup
(θ,t)∈	×[ε,M−ε]

∣∣∣∣λθ
n(s, t) − λθ (s, t)

λθ (s, t)

∣∣∣∣N̄θ
n (s,M) + ∣∣An,s(θ)

∣∣1{sup(θ,t)∈	×[ε,M−ε] | λθ
n(s,t)

λθ (s,t)
−1|≥1/2}

+ (
log

(
A′) − log

(
α′))

×
(

2ε sup
(θ,t)∈	×[0,M]

∣∣∣∣dνθ

dt
(s, t)

∣∣∣∣ + 4 sup
(θ,t)∈	×[0,M]

∣∣N̄θ
n (s, t) − νθ (s, t)

∣∣),

where the number 4 in the last equation comes from the upper bound of∑
t∈{0,ε,M−ε,M} |N̄θ

n (s, t)− νθ (s, t)|. Notice that 0 ≤ dνθ

dt
(s, t) = yθ (s, t)×λθ (s, t) ≤ AÃ. Thus,

supθ∈	 |An,s(θ)| → 0 a.s. from Proposition 2.2 and Assumption C. In addition by the integration
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by parts formula, we can write

∣∣Bn,s(θ)
∣∣

≤ ∣∣log
(
λθ (s,M)

)(
N̄θ

n (s,M) − νθ (s,M)
)∣∣

+
∫ M

0

∣∣N̄θ
n (s, t) − νθ (s, t)

∣∣∣∣∣∣λθ (s, dt)

λθ (s, t)

∣∣∣∣
≤ sup

(θ,t)∈	×[0,M]

∣∣N̄θ
n (s, t) − νθ (s, t)

∣∣
×

{∣∣log(α̃)
∣∣ + ∣∣log(Ã)

∣∣ + 1

α̃
× sup

θ∈	

∫ M

0

∣∣λθ (s, dt)
∣∣}.

We conclude that supθ∈	 |Bn,s(θ)| → 0 a.s. by Assumption C and Assumptions B2(ii). This
finishes the proof of (i).

Let us prove (ii). First, note that 
s(θ) = ∫ M

0 log(λθ (s, t))λθ (s, t)yθ (s, t) dt , thus the
continuity follows from the dominated convergence theorem. In fact, we have that t �→
log(λθ (s, t))λθ (s, t)yθ (s, t) is continuous on (0,M) for any fixed θ ∈ 	, continuous on 	 for
any fixed t ∈ (0,M) and its absolute value is bounded by (log(A′) − log(α′))ÃA. Peña [18]
defined the random function A(s, t; θ0) = ∫ t

0 Y θ0(s, u)�0(du) and showed (Proposition 1) that
νθ0(s, t) = ENθ0(s, t) = EA(s, t; θ0) for t ∈ [0,M]. Thus, for all t ∈ [0,M], we have

�θ0(s, t) =
∫ t

0

EA(s, du; θ0)

yθ0(s, u)
=

∫ t

0

yθ0(s, u)�0(du)

yθ0(s, u)
= �0(t) (2.13)

since by Assumption B2(i) t �→ yθ0(s, t) is bounded away from zero on [0,M]. In addition we
have

E

∫ M

0
Y θ (s, u)�θ (s, du)

= E

∫ M

0
Y θ (s, u)

ENθ(s, du)

EY θ (s, u)

=
∫ M

0
ENθ(s, du) = E

∫ M

0
N̄θ (s, du) = EN(s) (from Assumption B1),

which means that the right-hand side in the first equality does not depend on θ . As a consequence,
we have θ̃ = arg maxθ∈	 
s(θ) = arg maxθ∈	 
̃s(θ), where


̃s (θ) = E

[∫ M

0

{
log

(
λθ (s, u)

)
Nθ(s, du) − Y θ (s, u)�θ (s, du)

}]
.
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It is easy to check that the likelihood function Ls(θ,λ) of one observation (N(t), Y (t))0≤t≤s is
defined by

Ls(θ,λ) =
∏

u∈[0,s]

[
Y(u)λ

(
εθ (u)

)]N(�u) × exp

(
−

∫ s

0
Y(u)λ

(
εθ (u)

)
du

)

= exp

(∫ M

0
logλ(u)Nθ (s, du) − Y θ (s, u)�(du)

)
.

Now we define


̃s(θ, λ) = E

[∫ M

0

{
log

(
λ(u)

)
Nθ(s, du) − Y θ (s, u)�(du)

}]
=

∫ M

0

{
log

(
λ(u)

)
νθ (s, du) − yθ (s, u)�(du)

} = E
[
logLs(θ,λ)

]
.

Then 
̃s (θ) = 
̃s (θ, λθ (s, ·)). Let us note λ̃(·) = λθ̃ (s, ·) and (θ̃, λ) the maximum argument of

̃s (θ, λ) for (θ, λ) ∈ 	 × A∗, where A∗ is the set of hazard rate functions on [0,M] bounded
away from zero. Note that 
̃s (θ̃, λ) ≥ 
̃s (θ̃ ) = 
̃s(θ̃ , λ̃). In addition, for all λ ∈ A∗ and θ ∈ 	 we
have


̃s

(
θ,λθ (s, ·)) − 
̃s(θ, λ) =

∫ M

0
yθ (s, t)λ(t)ϕ

(
λθ (s, t)

λ(t)

)
dt,

where ϕ(x) = x logx −x +1 is nonnegative on (0,+∞), thus 
̃s (θ) = 
̃s (θ, λθ (s, ·)) ≥ 
̃s (θ, λ).
Then, because θ̃ is a maximizer of 
̃s we have 
̃s(θ̃ ) ≥ 
̃s (θ̃, λ). It follows that 
̃s(θ̃ ) = 
̃s (θ̃, λ) ≥

̃s (θ0, λ0), or equivalently E[logLs(θ̃ , λ̃)] ≥ E[logLs(θ0, λ0)], which by the Kullback–Leibler
inequality yields that ∫ M

0
logλθ̃ (s, u)Nθ̃ (s, du) − Y θ̃ (s, u)�θ̃ (s, du)

=
∫ M

0
logλ0(u)Nθ0(s, du) − Y θ0(s, u)�0(du) (2.14)

with probability one, thus Assumption B3 finishes the proof. �

Theorem 2.1. Under Assumptions A–C we have for �n(·) = �
θn
n (s, ·)

θn → θ0 and sup
t∈[0,s]

∣∣�n(t) − �0(t)
∣∣ → 0,

with probability one. In addition, for any closed set [a, b] included in (0,M), and for λn(·) =
λ

θn
n (s, ·) we also have

sup
t∈[a,b]

∣∣λn(t) − λ0(t)
∣∣ → 0,

with probability one.
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Proof. Because 
s is continuous at θ0 for a ε > 0 there exists an η > 0 such that{‖θn − θ0‖ > ε
} ⊂ {


s(θn) < 
s(θ0) − η
}

⊂ {

s(θn) − 
n,s(θn) + 
n,s(θn) < 
s(θ0) − η

}
⊂

{
− sup

θ∈	

∣∣
n,s(θ) − 
s(θ)
∣∣ + 
n,s(θ0) < 
s(θ0) − η

}
⊂

{
η < 2 sup

θ∈	

∣∣
n,s(θ) − 
s(θ)
∣∣}

thus θn → θ0 with probability one from (2.10) in Proposition 2.3. In addition, we have from
(2.13)

sup
t∈[0,M]

∣∣�n(t) − �0(t)
∣∣

≤ sup
(θ,t)∈	×[0,M]

∣∣�θ
n(s, t) − �θ(s, t)

∣∣ + sup
t∈[0,M]

∣∣�θn(s, t) − �θ0(s, t)
∣∣.

We obtained the desired result by Proposition 2.1 and since (θ, t) �→ �θ(s, t) is continuous (and
then uniformly continuous) on 	 × [0,M]. This last point is a consequence of the dominated
convergence theorem and Assumption B2(ii). A similar proof can be performed for λn. �

3. Application to ARAm models

In Examples 2.1 and 2.2, we have seen two particular ARA models, and as mentioned in the In-
troduction the general class of Arithmetic Reduction of Age (ARA) models has been introduced
by Doyen and Gaudoin [7]; a description of how interventions after an event affect the virtual age
in these models as well as their relation to Kijima [12] can also be found in Doyen and Gaudoin
[7]. What is important here is that for ARAm models with m ∈ N ≡ N ∪ {+∞} (we will use for
m = ∞ the conventions −m = −∞ as well as −m + a = −m and m + a = m with a ∈ R) we
have for j ≥ 0

eθ
j (t) = t − θ

(j−1)∧(m−1)∑
i=0

(1 − θ)ixj−i , (3.1)

where θ ∈ [0,1] and we use, as in Example 2.2, the convention
∑b

i=a · = 0 for a > b. After some
algebra this can be rewritten as

eθ
j (t) = t − xj +

(j−2)∧(m−2)∑
i=0

(1 − θ)i+1(xj−i − xj−i−1) + (1 − θ)j∧mx1∨(j−m+1)

= t − xj + eθ
j (xj ). (3.2)
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Thus, for any j ≥ 1 and t ∈ (xj , xj+1] we have that eθ
j is nonnegative and the function θ �→ eθ

j (t)

is nonincreasing, it means the greater θ is, the less aged the system is. As a consequence the
parameter θ ∈ [0,1] represents the efficiency of interventions. Indeed notice that for θ = 0 we
have e0(xj+) = e0

j (xj ) = xj which corresponds to the well known “as bad as old” situation
in reliability applications, where after an event occurrence the system is only restored to its
condition just prior to failure. On the other hand, we have for θ = 1 that e1(xj+) = e1

j (xj ) = 0
which corresponds to the “as good as new” situation, for which after an event occurrence the
system is renewed. The corresponding random processes are respectively a non homogeneous
Poisson process and a renewal process.

Below are assumptions concerning the properties of the baseline hazard rate function and the
distribution of the random censoring time.

Assumptions E.

E1. The baseline hazard rate λ0 is non constant, continuous, and uniformly bounded away
from zero on [0, s] with lower bound different from 0, and it belongs to BV[0, s].

E2. The censoring time T is a positive random variable, independent of X, with pdf fT
bounded on [0, s], survival function ST such that ST (s) > 0, and for all c ∈ [0, s] and ε > 0,
P(T ∈ [c − ε, c + ε] ∩ [0, s]) > 0.

Proposition 3.1. Suppose that Assumptions E are satisfied and that the effective age function
follows an ARAm model for m ∈N. Then Assumptions B and D are satisfied.

The consequence of Proposition 3.1 is that Theorem 2.1 holds for ARAm models (m ∈ N)
under very few Assumptions (A and E). Note that if fT is uniformly bounded away from zero on
[0, s+δ], δ > 0, then ST (s) > 0 and for all c ∈ [0, s] and ε > 0, P(T ∈ [c−ε, c+ε]∩[0, s]) > 0.

The next subsection is devoted to the verification of B1–B3 and D1 and D2. As indicated above
for ARAm models it seems beneficial to first show that D1 and D2 hold, because they are useful
to check B2 and B3. Hence, below we start with B1 and then go to D1, D2 and from there to B2
and B3. Note that because Assumption B3 depends on the censoring scheme we will discuss the
verification of this assumption under various censoring schemes in the last subsection.

3.1. Proof of Proposition 3.1

Verification of B1

By construction of ARAm models eθ
0 is the identity function. From (3.2), we have that eθ

j (t) ≥ 0

for t ∈ (xj , xj+1]. Moreover, for any j ≥ 0 we have from (3.1) that eθ
j (s) ≤ s thus we can set

M = s, and t �→ eθ
j (t) is nondecreasing, continuous and differentiable with derivative equal to

1. In addition, by (3.2) the functions θ �→ eθ
j (t) are nonincreasing, then we have eθ

j (t) ≥ e1
j (t) =

t − xj ≥ 0 for t ∈ (xj , xj+1].
Verification of D1

Please see [4], Section 7.
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Verification of D2

The aim of this section is to prove that the classes of functions F and G are P -Donsker with
polynomial bracketing numbers if the functions eθ

j are specified as in (3.1). Since these functions

fulfill condition B1 we know from the proof of Proposition 2.1 that we have gθ,t = g+
θ,t − g−

θ,t .

Define G+ and G− to be the sets generated by the functions g+
θ,t (see (2.6)) and g−

θ,t (see (2.7)),

respectively. In turn g−
θ,t can be rewritten as g−

θ,t = fθ,t− +h+
θ,t +h−

θ,t where fθ,t− = limu↑t fθ,u,
with H+ and H− the sets of functions mapping from Z to R defined by

h+
θ,t (z) = 1{eθ (s)<t;τ>s} =

∑
j≥2

1{eθ
j−1(s)<t;xj−1<s≤xj ;τ>s},

and

h−
θ,t (z) = 1{eθ (τ )<t;τ≤s} =

∑
j≥1

1{eθ
j−1(τ )<t;xj−1<τ≤xj ;τ≤s},

respectively. Notice that for h+
θ,t the indicator function corresponding to eθ

0 is always equal to
zero since s ≥ t . The next lemma whose proof can be found in [4], Section 10, gives a general
expression for eθ

j−1(xj ), e
θ
j (xj ), e

θ
j (s), and eθ

j−1(τ ) that allows to show the Donsker property of
F , G+, H+ and H− at once.

Lemma 3.1. For any θ ∈ [0,1] and j ≥ 1 let vj (w) be either (i) eθ
j−1(xj ), (ii) eθ

j (xj ), (iii) eθ
j (s)

or (iv) eθ
j−1(τ ). Then vθ

j (w) can be written in the generic form

vθ
j (w) = sd + (−1)dφ(θ)

(
uj + ṽθ

j−1(xj−1)
)
, (3.3)

where d ∈ {0,1}, φ(θ) > 0 except for (ii) when θ = 1 and (iii) when θ = 0, and xj−1 =
(x1, . . . , xj−1). In addition, the map θ → sd + (−1)dφ(θ)(uj + ṽθ

j−1(xj−1)) is monotone and

there exists a constant c such that for all pairs (θ, θ̃ ) ∈ 	2 we have∣∣ṽθ
j−1(xj−1) − ṽθ̃

j−1(xj−1)
∣∣ ≤ c(j − 1)xj−1|θ − θ̃ |,

and ∣∣ṽθ
j−1(xj−1)

∣∣ ≤ c(j − 1)xj−1.

Furthermore, for (i), (ii), and (iii) we have uj ∈ [0, s] if xj ≤ s and the same holds for (iv) if
τ ≤ s.

On the other hand, if υθ
j (W) denotes either (i) εθ

j−1(Xj ), (ii) εθ
j (Xj ), (iii) εθ

j (s) or (iv)

εθ
j−1(T ) for any θ ∈ [0,1] and j ≥ 1, then υθ

j (W) still satisfies (3.3) where W , Uj and Xj−1

are the stochastic counterparts of the quantities w, uj and xj−1. And in all four cases, the con-
ditional pdf fUj |Xj−1 is almost surely bounded from above by a constant c0 on [0, s].
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Showing the Donsker property of G can be further simplified because we have gθ,t = g+
θ,t −

fθ,t − h+
θ,t − h−

θ,t so that it follows from Lemma 3.2 below that G is P -Donsker with polynomial
ε-bracketing number if this holds for the classes of functions G+, F , H+ and H−.

Lemma 3.2. If � and �̃ are P -Donsker classes of functions with ε-bracketing numbers of
polynomial order, then it is also true for both �+ = � + �̃ and �− = � − �̃ .

Proof. The result follows from the inequality

N[]
(
ε,�±,L2(P )

) ≤ N[]
(
ε/2,�,L2(P )

) × N[]
(
ε/2, �̃,L2(P )

)
and the fact that � and �̃ have polynomial bracketing numbers. �

The next lemma whose proof can also be found in [4], Section 10, gives sufficient conditions
for a class of functions of the type of F , G+, H+ and H− to be Donsker with polynomial
bracketing numbers.

Lemma 3.3. A class of functions � = {z ∈ Z �→ ψθ,ξ (z) ∈ R; (θ, ξ) ∈ 	 × [0,+∞)} is P -
Donsker with ε-bracketing numbers of polynomial order if:

a. for all z ∈ Z , the function ψθ,ξ (z) is non decreasing (or nonincreasing) in θ for any fixed
ξ ∈ [0,+∞) and also non decreasing (or nonincreasing) in ξ for any fixed θ ∈ 	,

b. ∀ε ∈ (0,1], ∃Mε ≤ c̃/ε such that ∀(θ, θ̃) ∈ 	2 we have

∀(ξ, ξ̃ ) ∈ [0,Mε]2, P (ψθ,ξ − ψθ̃,ξ̃ )
2 ≤ c

∥∥(θ − θ̃ , ξ − ξ̃ )
∥∥

2,

∀(ξ, ξ̃ ) ∈ [Mε,∞)2, P (ψθ,ξ − ψθ̃,ξ̃ )
2 ≤ ε

for some universal constants (c, c̃) ∈ (0,∞)2.

For any function �θ : t ∈ [0,M] �→ �θ(t) ∈ � ⊂ [0,∞) for θ ∈ 	, the class of functions
�̃ = {z ∈ Z �→ ψ̃θ,t (z) = ψθ,�θ (t)(z); (θ, t) ∈ 	 × [0,M]} is also P -Donsker with ε-bracketing
numbers of polynomial order.

Now by combining the previous lemma with the generic form of the effective age functions
found in Lemma 3.1 we arrive at the following proposition.

Proposition 3.2. F , G+, H− and H+ are P -Donsker classes of functions with ε-bracketing
numbers of polynomial order.

Proof. The proof is based on Lemma 3.3. Using the notations of this lemma let us consider
that ψ̃θ,t (z) is one of the functions fθ,t (z), g+

θ,t (z), h−
θ,t (z), or h+

θ,t (z) where by Lemma 3.1

�θ(t) = (−1)d(t − sd)/φ(θ) is well defined if φ(θ) �= 0. In Lemma 3.1, there are only two
cases (in part (ii) for θ = 1 and in part (iii) for θ = 0) where φ(θ) = 0 which correspond to
g+

1,t (z) = 1+∑
j≥2 1{xj−1<s∧τ } and h+

0,t (z) = 0, respectively, since s ≥ t ∈ [0,M]. In both cases,
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the resulting function does not depend on t so that the Donsker property is not affected as we just
have to add one function. For (t1, t2) ∈ [0, s]2 and θ1, θ2 ∈ {θ ∈ 	;φ(θ) �= 0}, we set ξ1 = �θ1(t1)

and ξ2 = �θ2(t2). For z ∈Z we have∣∣ψ̃θ2,t2(z) − ψ̃θ1,t1(z)
∣∣

≤
∑
j≥1

|1{uj �ξ2−ṽ
θ2
j−1(xj−1)} − 1{uj �ξ1−ṽ

θ1
j−1(xj−1)}|1{uj ∈[0,s];xj−1≤s}

≤
∑
j≥1

1{ξ1∧ξ2−ṽ
θ1
j−1(xj−1)∨ṽ

θ2
j−1(xj−1)≤uj ≤ξ1∨ξ2−ṽ

θ1
j−1(xj−1)∧ṽ

θ2
j−1(xj−1);uj ∈[0,s];xj−1≤s},

where � represents either ≤ or <. In addition, notice that for any (aj )j≥1 ∈ [0,1]N we have
(
∑

j≥1 aj )
2 ≤ 2

∑∞
j=1 jaj . Let c0 be the upper bound of the conditional pdf of Uj on [0, s] (for

all j ≥ 1) given in Lemma 3.1. With the notation ψ̃θ,t (z) ≡ ψθ,ξ (z), we have

P(ψθ2,ξ2 − ψθ1,ξ1)
2

≤ 2c0

∞∑
j=1

j

∫
Rj−1

(|ξ2 − ξ1| +
∣∣ṽθ2

j−1(xj−1) − ṽ
θ1
j−1(xj−1)

∣∣)1{xj−1≤s}FXj−1(dxj−1)

≤ 2c0

(
|ξ2 − ξ1|

∞∑
j=1

jP (Xj−1 ≤ s) + |θ2 − θ1|cs
∞∑

j=1

j (j − 1)P (Xj−1 ≤ s)

)

≤ c′
0

∥∥(θ2 − θ1, ξ2 − ξ1)
∥∥

2,

where the second to last inequality follows from Lemma 3.1 and the last from Assumption D1
and the norm equivalence.

In addition, Lemma 3.1 implies Uj + ṽθ
j−1(Xj−1) ≤ s(1 + cj). Consequently, for (ξ1, ξ2) in

[s(1 + ck),+∞)2 and k ∈N, we have

P(ψθ2,ξ2 − ψθ1,ξ1)
2

≤ P

(∑
j>k

|1{Uj �ξ2−ṽ
θ2
j−1(Xj−1)} − 1{Uj �ξ1−ṽ

θ1
j−1(Xj−1)}|1{Uj ∈[0,s];Xj−1≤s}

)2

≤ 2
∑
j>k

(j − 1)P (Xj−1 ≤ s) ≡ ε̃k+1.

By Assumption D1 (ε̃k)k≥1 is the remaining term of a convergent series with positive terms, thus
it tends to 0 as k tends to infinity and for ε ∈ (0,1], there exists kε ∈N such that ε̃kε+1 < ε ≤ ε̃kε .
To complete the proof using Lemma 3.3, fixing Mε = s(1+ c(kε +1)) we have to show that εMε

is bounded. Indeed

εMε ≤ εs
(
1 + c(kε + 1)

) ≤ ε̃kε s
(
1 + c(kε + 1)

)
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≤ 2s
(
1 + c(kε + 1)

) ∑
j>kε

(j − 1)P (Xj−1 ≤ s)

≤ 4s(1 + c)
∑
j≥1

j2P(Xj ≤ s) < +∞,

where the last inequality is again a consequence of Assumption D1. �

Verification of B2

To prove that Assumption B2 holds, which is done in [4], Section 8, we can follow the steps
we used to show that Assumption D2 holds once we have a closed form expression for λθ (s, t)

which is needed for B2(ii). To do so, recall that for t ∈ [0, s] and θ ∈ 	, we have λθ (s, t) =
∂νθ (s,t)

∂t
× (yθ (s, t))−1 with

νθ (s, t) = P(X1 ≤ s ∧ T ∧ t) +
∑
j≥2

P
(
εθ
j−1(Xj ) ≤ t;Xj ≤ s ∧ T

)
.

Notice that Gθ
1 (s, t) = f0(t)ST (t) corresponds to the derivative of t �→ P(X1 ≤ s ∧ T ∧ t). For

j ≥ 2, let Gθ
j (s, t) denote the derivative of t �→ P(εθ

j−1(Xj ) ≤ t;Xj ≤ s ∧ T ). For j ≥ 1 with
Uj+1 = Xj+1 − Xj and Zj = (T ,Xj ) we have

Gθ
j+1(s, t) = E

[
d

dt
P

{
Uj+1 ≤ (

t − εθ
j (Xj )

) ∧ (s ∧ T − Xj)|Zj

}
1{Xj ≤s∧T }

]
= E

[
fUj+1|Xj

(
t − εθ

j (Xj )
)
1{0<t−εθ

j (Xj )≤s∧T −Xj ;Xj ≤s∧T }
]

= E

[
f0(t + ε

θ0
j (Xj ) − εθ

j (Xj ))

S0(ε
θ0
j (Xj ))

1{εθ
j (Xj )<t≤εθ

j (s∧T );Xj ≤s∧T }
]
, (3.4)

where the last equality follows from (10.1) in [4].

Verification of B3

The aim is to verify that ARAm models are identifiable if equation (2.5) holds with probability
one. That equation can be rewritten as∑

j≥1

logλθ
(
s, eθ

j−1(xj )
)
1{xj ≤s∧τ }

−
∑
j≥1

[
�θ

(
s, eθ

j−1(xj ∧ s ∧ τ)
) − �θ

(
s, eθ

j−1(xj−1)
)]

1{xj−1≤s∧τ }

=
∑
j≥1

logλ0
(
e
θ0
j−1(xj )

)
1{xj ≤s∧τ }
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−
∑
j≥1

[
�0

(
e
θ0
j−1(xj ∧ s ∧ τ)

) − �0
(
e
θ0
j−1(xj−1)

)]
1{xj−1≤s∧τ }, (3.5)

and identifiability of the model corresponds to the fact that θ = θ0 and λθ (s, t) = λ0(t) for all
t ∈ [0, s]. For every c ∈ (0, s) and every ε > 0, let Bc(ε) be the interval {y ∈ [0, s]; |y − c| ≤ ε}.
Identifiability in the random right censoring case will follow from the next Lemma. It is based
on the fact that for ARAm models with m ∈ N, the effective age functions restricted to the first
and second inter arrival times do not depend on m and are defined by eθ

0(t) = t for all t ∈ [0, x1],
and eθ

1(t) = t − θx1 for all t ∈ (x1, x2].

Lemma 3.4. Let equation (3.5) hold with probability one. Suppose that for all (c, c1, ε) ∈ (0, s)3

satisfying c1 < c and Bc1(ε) ∩ Bc(ε) =∅, we have

(a) P({Z ∈Z;T < s ≤ X1,T ∈ Bc(ε)}) > 0,
(b) P({Z ∈Z; s < X2,X1 ∈ Bc1(ε),T ∈ Bc(ε)}) > 0,

then the model parameters are identifiable.

Proof. Let us prove that t �→ λθ (s, t) is continuous on [0, s] for any θ ∈ 	. From the proof of
Assumption B2, we can directly deduce the continuity for θ ∈ (0,1). Moreover, since the right-
hand side of Inequality (8.1) in [4] with θ = θ̃ and φ(θ) = 0 vanishes, the continuity also holds
for θ ∈ {0,1}.

Second, for 0 ≤ T < s ≤ X1, we obtain �θ(s,T ) = �0(T ) for all T ∈ [0, s] by (3.5). As-
sume that �θ(s, t) �= �0(t) for some t ∈ (0, s). Then by continuity of the functions �θ(s, ·)
(Assumption B2(ii)) and �0(·) (Assumption E1) there exists an interval Bt(ε) around t such that
�θ(s,u) �= �0(u), ∀u ∈ Bt(ε). But then under Assumption (a), we see that (3.5) cannot hold with
probability one. Hence, we must have �θ(s, t) = �0(t) for all t ∈ [0, s]. Since t �→ λθ (s, t) is
continuous on [0, s] and because by Assumption E1 λ0 is continuous, we have λθ (s, t) = λ0(t).

Finally, λ0 is assumed to be nonconstant over [0, s], then there exist z ∈ (0, s] and d > 0 such
that |λ0(z) − λ0(0)| > d . Only the case where λ0(z) > λ0(0) is considered, as the proof works
similarly in the opposite case. In addition, λ0(·) is continuous, then there exists two non empty,
disjoint intervals B0(ε) and Bz(ε), around respectively, 0 and z, such that λ0(x) ≥ λ0(y) + d/2,
∀x ∈ Bz(ε), ∀y ∈ B0(ε). Let us denote c1 = 2ε/3, ε̃ = ε/3. Now on for s < X2, T ∈ Bz(ε̃),
X1 ∈ Bc1(ε̃), equation (3.5) reduces to

0 = ∣∣�0(T − θX1) − �0
(
(1 − θ)X1

) − �0(T − θ0X1) + �0
(
(1 − θ0)X1

)∣∣
=

∣∣∣∣∫ T −θX1

T −θ0X1

λ0(u) du −
∫ (1−θ)X1

(1−θ0)X1

λ0(u) du

∣∣∣∣
=

∣∣∣∣∫ (θ0−θ)X1

0
λ0(T + u − θ0X1) − λ0

(
u + (1 − θ0)X1

)
du

∣∣∣∣
≥ |θ0 − θ |X1 d/2 ≥ |θ0 − θ |εd/6.

The inequality holds since (T + u − θ0X1) ∈ Bz(ε) and (u + (1 − θ0)X1) ∈ B0(ε). Then, under
Assumption (b), the last inequality necessarily implies θ = θ0. �
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Finally, let us show that for m ∈ N conditions (a) and (b) of Lemma 3.4 hold under the as-
sumptions of Proposition 3.1. First for (c, ε) ∈ (0, s)2 we have

P
(
T ∈ Bc(ε);X1 > s

) = P
(
T ∈ Bc(ε)

) × S0(s) > 0,

by independence of T and X, Assumption E2, and assumptions on the distribution T in E2. Thus
(a) holds.

In addition (b) holds since for (c, c1, ε) ∈ (0, s)3 such that c1 < c and Bc1(ε) ∩ Bc(ε) = ∅ we
have

P
(
X1 ∈ Bc1(ε);T ∈ Bc(ε);X2 > s

)
= P

(
X1 ∈ Bc1(ε);X2 − X1 > s − X1

) × P
(
T ∈ Bc(ε)

)
=

∫ c1+ε

(c1−ε)∨0
f0(x1)

∫ +∞

s−x1

f0(v + (1 − θ0)x1)

S0((1 − θ0)x1)
dv dx1 × P

(
T ∈ Bc(ε)

)
=

∫ c1+ε

(c1−ε)∨0

f0(x1)S0(s − θ0x1)

S0((1 − θ0)x1)
dx1 × P

(
T ∈ Bc(ε)

)
≥ S0(s) ×

∫ c1+ε

(c1−ε)∨0
λ0(x1) dx1 × P

(
T ∈ Bc(ε)

)
≥ S0(s) × ε × inf

t∈[0,s]λ0(t) × P
(
T ∈ Bc(ε)

)
> 0.

3.2. Alternative censoring schemes

We also prove that Assumptions B1–B3 and D1 and D2 are satisfied under alternative censoring
schemes [4], Section 9:

• Type-II censoring: T = Xk for some fixed k ≥ 2. Since by construction of the estimation
method the period of study ends at some fixed s, this censoring scheme, and the following
one, can be viewed as hybrid censoring.

• Random Type-II censoring: T = XN for a positive integer random variable N , independent
of X and such that P(N ≥ 2) > 0.

• Non random Type-I censoring: we can assume, without loss of generality, that s = T . In
this case, we need the additional assumption that λ0 is monotone.

4. Numerical illustration

The objective of this section is to illustrate the consistency results for ARAm models. We shall
focus on the estimation of θ0 whose semiparametric estimation is the main contribution of the
paper. In our simulations, the baseline hazard rate function corresponds to a shifted Weibull
distribution defined by λ0(t) = 0.1 × (t + 0.5)2 which satisfies Assumption E1. All simulation
results are based on N = 1000 simulated samples. We consider two different censoring schemes:
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Figure 1. Empirical bias (left plot) and standard deviation (right plot) based on N = 1000 estimates of
θ0 varying in [0,1] for an ARA1 model (red) and an ARA∞ model (blue) with sample size n = 50 (dot-
ted lines), n = 100 (dashed dotted lines), n = 200 (dashed lines), n = 400 (long dashed lines) for Type-I
censoring with τ = s = 5 and bandwidth b = 0.3.

Type-I censoring for which Ti = τ for all 1 ≤ i ≤ n where τ is a constant, and Type-II censoring
for which Ti = Xi,k for all 1 ≤ i ≤ n where k is an integer independent of i.

Consistency results are illustrated for both ARA1 and ARA∞ models, for four sample sizes
n ∈ {50,100,200,400} and the two censoring schemes are Type-I with s = τ = 5 and Type-II
with k = 4. The information contained in both censoring schemes is of the same order since the
expected number of events per trajectory is E[N5] ≈ 6.2 for θ = 0, and E[N5] ≈ 3.4 for θ = 1
(ARA1 and ARA∞ models are equivalent in both cases).

Figures 1 and 2 show the bias and the standard deviation of θn for θ0 varying in [0,1], for
several sample sizes, ARA1 and ARA∞ models and Type-I and Type-II censoring. All the sim-

Figure 2. Empirical bias (left plot) and standard deviation (right plot) based on N = 1000 estimates of
θ0 varying in [0,1] for an ARA1 model (red) and an ARA∞ model (blue) with sample size n = 50 (dot-
ted lines), n = 100 (dashed dotted lines), n = 200 (dashed lines), n = 50 (long dashed lines) for Type-II
censoring with k = 4 (s sufficiently large) and bandwidth b = 0.3.
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Figure 3. For the bandwidth b varying in [0.1,1] calculation of the empirical bias (left plot) and standard
deviation (right plot) of N = 1000 estimates of θ0 = 0.5 for an ARA1 model (red) and an ARA∞ model
(blue) with sample size n = 50 (dotted lines), n = 100 (dashed dotted lines), n = 200 (dashed lines), n = 50
(long dashed lines) for Type-I censoring with τ = s = 5.

ulation results are obtained for the same bandwidth fixed to 0.3. We observe that going from
n = 100 to n = 400 reduces approximatively the standard deviation by a half whatever the model
and the censoring scheme. It means that the usual root-of-n convergence rate probably holds for
θn. We also observe that whatever the model the bias decreases as n increases. Fitting θ for the
ARA1 model seems to be more difficult than it is for an ARA∞ model, especially in a neighbor-
hood of θ0 = 0. Note that both the bias and the standard deviation vary with θ0. For instance, the
bias is considerably higher for θ close to the left-hand and right-end point of the parameter space
	 = [0,1]. However, one has to keep in mind that the bandwidth b is fixed to 0.3 whatever the
sample size and the value of θ0. Additional simulation results are available in Supplement B.1
for b ∈ [0.1,1].

Now by fixing the value of θ0 to 0.5 and letting b vary in [0.1,1], we see in Figure 3 (resp.
Figure 4) that for both censoring schemes the bias is non increasing (resp. non decreasing) and
the standard deviation is non monotonic (resp. nonincreasing). For instance, the bias decreases
as b increases for Type-I censoring while the opposite is true for Type-II censoring. Note also
that small biases do not necessarily occur jointly with small standard deviations. However, we
can see in Supplement B.2 and Supplement B.3 (where we have the same graphs for θ0 ∈ [0,1])
that the results in Figures 3 and 4 are rather specific to θ0 = 0.5. Globally these simulations show
that the choice of the bandwidth has to be adapted to the unknown value of θ0 and that it would
ideally be depend on both the censoring scheme and on the underlying model.

The last simulation result is given in Figure 5 where the influence of s on the estimator of θ0 =
0.5 is studied under Type-II censoring. Additional simulation results are available in Supplement
B.4. We can again see that it is more difficult to fit an ARA1 model than an ARA∞ model. If s

is too small the quality of estimation gets poorer. Indeed in this case the information regarding
θ , that is present in the Xi,j s only for j ≥ 2, may be very poor. In fact, whatever the value of θ0

(see Supplement B.4) the larger s, the smaller the bias and the standard deviations. It means, as
expected, that we should not consider s to be a tuning parameter, the larger it is, the better.
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Figure 4. For the bandwidth b varying in [0.1,1] calculation of the empirical bias (left plot) and standard
deviation (right plot) of N = 1000 estimates of θ0 = 0.5 for an ARA1 model (red) and an ARA∞ model
(blue) with sample size n = 50 (dotted lines), n = 100 (dashed dotted lines), n = 200 (dashed lines), n = 50
(long dashed lines) for Type-II censoring with k = 4 (s sufficiently large).

5. Application to reliability data

In this section, we consider a real data set recently analyzed by Guerra de Toledo et al. [10] in
the context of evaluating the maintenance policy for diesel engines of off-road mining trucks.
The data are displayed in Supplement A.2. When an engine fails, it goes through corrective
maintenance, which restores it to use conditions. During the repair the component that caused
the failure is fixed. Moreover, the main components are reviewed and replaced if they are about to
fail. Hence, just after the repair, the system is better than it was just before the failure, but worse
than a brand-new one. In addition, some preventive maintenance actions are also implemented,
they consist of a full overhaul of the engine, restoring it to the brand-new condition (“as good as

Figure 5. For s varying in [1,14] calculation of the empirical bias (left plot) and standard deviation (right
plot) of N = 1000 estimates of θ0 = 0.5 for an ARA1 model (red) and an ARA∞ model (blue) with sample
size n = 50 (dotted lines), n = 100 (dashed dotted lines), n = 200 (dashed lines), n = 50 (long dashed lines)
for Type-II censoring with k = 4 and bandwidth b = 0.5.
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Figure 6. On the left-hand side are the profile likelihood functions for b = 1000 (red), b = 2000 (green)
and b = 3000 (blue), the vertical lines correspond to the locations of the maxima whereas the black dashed
vertical line corresponds to the parametric estimate in [10]. On the right-hand side are the corresponding es-
timates of the baseline hazard rate function, the black dashed curve corresponds to the parametric estimator
in [10].

new”). Thus, after a preventive maintenance the system is considered as a new one. The analyzed
data set consists of 193 sequences of event times. For each sequence, the terminal event is either
a censoring time (51) due to a preventive maintenance, or the first (88), the second (43), the third
(10) or the fourth (1) failure time. Guerra de Toledo et al. [10] fitted a parametric ARA1 model
with a power-law baseline hazard rate function. Here we fit the same model semiparametrically,
that is without a parametric assumption on the baseline hazard rate function. The estimation
results are summarized in Figure 6. First, we remark that for a bandwidth b ∈ {2000;3000} the
parametric and semiparametric estimation results are rather close. However, we can see that for
b = 3000 the profile likelihood function has two peaks. Moreover, the function values at the two
peaks are almost equal. This indicates that our estimate for θ may dependent in an unsatisfactory
way on the bandwidth. To analyze this further, we plotted in Figure 7 the function b �→ θn(b).
In this figure, the estimates of θ based on the smoothed profile likelihood function (2.4) are
displayed by stars.

The displayed circles correspond to the estimates of θ if we use in the profile likelihood func-
tion a double kernel based estimate for λ, that is,

λθ
n(s, t) = b−1

n

∫
R

κ((t − u)/bn)N̄
θ
n (s, du)∫

R
K((t − u)/b′

n)Ȳ
θ
n (s, du)

for an additional bandwidth b′
n and K the cumulative distribution function associated to κ . In

Figure 7, we used b′
n = bn. Overall the results are rather close, however the estimate of θ based

on the double kernel is less sensitive to the choice of the bandwidth. This can be seen from the
fact that the estimate of θ jumps to 0.8 when the bandwidth exceeds 3500. Overall, this shows
the need for research on robust data-driven methods to calibrate the bandwidth.
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Figure 7. Maximizers of the smoothed profile likelihood function based on (2.4) (stars) or on (5) (circles).

6. Concluding remarks and perspectives

Virtual age models are powerful tools to describe recurrent events especially if one want to mea-
sure the evolution of successive inter-arrival time distributions. In this paper, we develop a con-
sistent semiparametric estimation method that allows to overcome the deficiency of the standard
profile likelihood to produce consistent estimators for a large class of virtual age models namely
the ARA models. The application of empirical processes methods turns out to be a efficient way
to study the asymptotic behavior of our estimators. This point deserves to be emphasized since it
probably allows the study of large classes of estimation methods whenever it is possible to build
estimators depending on the empirical measure based on i.i.d. random elements on sequence
spaces. Additionally there are two main perspectives to this work which are complementary. The
first one is theoretical, it concerns the study of the central limit behavior of estimators and the
way to derive confidence intervals and bands for the unknown parameters of the model. A major
difficulty in doing so is to find results analogously to Lemma 3.1 and Lemma 3.3 for the func-
tion classes involved in the derivative of 
n,s w.r.t. θ . Without such results a unified treatment
of ARAm models with m ∈ N and different censoring schemes seems not possible. The other
one is both computational and theoretical since the simulation study has made clear that even if
consistency can be illustrated numerically, the finite sample behavior of the estimators depends
on the choice of the bandwidth b (and even two bandwidths if t �→ λθ

n(s, t) is estimated by (5)),
for which a data-driven selection criterion should be provided.
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Supplementary Material

Supplement A.1: Additional proofs (DOI: 10.3150/19-BEJ1140SUPPA; .pdf). This supple-
ment material gives the proof of Lemmas 3.1 and 3.3, details the proof of Assumptions B2 and
D1, and also demonstrates that Assumptions B1–B3 and D1–D2 are satisfied under alternative
censoring schemes.

Supplement A.2: Data set (DOI: 10.3150/19-BEJ1140SUPPB; .pdf). This supplement material
displays the data set considered in Section 5.

Supplement B.1: Numercial illustration (DOI: 10.3150/19-BEJ1140SUPPC; .zip). File “VS-
theta_CensI.mp4” represents the empirical bias, standard deviation and Mean Square Error
(MSE) of N = 1000 estimates of θ0 versus the true parameter value, for an ARA1 model (red)
and an ARA∞ model (blue) with sample size n = 50 (dotted lines), n = 100 (dashed dotted
lines), n = 200 (dashed lines), n = 400 (long dashed lines) for Type-I censoring with τ = s = 5
and bandwidth b varying in [0.1,1].
Supplement B.2: Numercial illustration (DOI: 10.3150/19-BEJ1140SUPPD; .zip). File “VS-
theta_CensII.mp4” is similar to Supplement B.1, but for Type-II censoring with k = 4 (s suffi-
ciently large).

Supplement B.3: Numercial illustration (DOI: 10.3150/19-BEJ1140SUPPE; .zip). File “VSb_
CensI.mp4” is similar to Supplement B.1, but plots are versus bandwidth b, for Type-I censoring
with τ = s = 5 and a true parameter value θ0 varying in [0,1].
Supplement B.4: Numercial illustration (DOI: 10.3150/19-BEJ1140SUPPF; .zip). File “VSb_
CensII.mp4” is similar to Supplement B.3, but for Type-II censoring with k = 4 (s sufficiently
large).

Supplement B.5: Numercial illustration (DOI: 10.3150/19-BEJ1140SUPPG; .zip). File
“VSs_CensII.mp4” is similar to Supplement B.1, but plots are versus s, for Type-II censoring
with k = 4 (s sufficiently large) and a true parameter value θ0 varying in [0,1] and b = 0.5.
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