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Markov chain Monte Carlo is widely used in a variety of scientific applications to generate approximate
samples from intractable distributions. A thorough understanding of the convergence and mixing properties
of these Markov chains can be obtained by studying the spectrum of the associated Markov operator. While
several methods to bound/estimate the second largest eigenvalue are available in the literature, very few
general techniques for consistent estimation of the entire spectrum have been proposed. Existing methods
for this purpose require the Markov transition density to be available in closed form, which is often not
true in practice, especially in modern statistical applications. In this paper, we propose a novel method to
consistently estimate the entire spectrum of a general class of Markov chains arising from a popular and
widely used statistical approach known as Data Augmentation. The transition densities of these Markov
chains can often only be expressed as intractable integrals. We illustrate the applicability of our method
using real and simulated data.

Keywords: Data Augmentation algorithms; eigenvalues of Markov operators; MCMC convergence; trace
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1. Introduction

Markov chain Monte Carlo (MCMC) techniques have become an indispensable tool in mod-
ern computations. With major applications in high dimensional settings, MCMC methods are
routinely applied in various scientific disciplines. A major application of MCMC is to evaluate
intractable integrals. To elaborate, let (X,B, ν) be an arbitrary measure space and let � be a
probability measure on X, with associated probability density π(·) (with respect to the measure
ν). The quantity of interest is the integral

πg :=
∫

X
g(x)d�(x)

where g is a well-behaved function. In many modern applications, the above integral is highly
intractable. In particular, it is not available in closed form, a (deterministic) numerical integration
is extremely inefficient (often due to the high dimensionality of X), and it can not be estimated
by classical Monte Carlo techniques, as random (IID) generation from π is not feasible. In such
cases, one typically resorts to Markov Chain Monte Carlo (MCMC) methods. Here, a Markov
chain X̃ = (Xn)n≥0 with equilibrium probability distribution � is generated (using any standard
MCMC strategies such as Metropolis Hastings, Gibbs sampler etc.) and then a Monte Carlo
average based on those Markov chain realizations is used to estimate πg.
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If the Markov chain X̃ = (Xn)n≥0 is Harris ergodic (which is the case if the corresponding
Markov transition density is strictly positive everywhere), then the cumulative averages based on
the Markov chain realizations consistently estimate the integral of interest (see Asmussen and
Glynn [3]). The accuracy of the estimate depends on two factors: (a) the convergence behavior
of the Markov chain to its stationary distribution, and (b) the dependence between the successive
realizations of the chain at stationarity. An operator theoretic framework provides a unified way
of analyzing these two related factors. Let us consider the Hilbert space L2(π) of real valued
functions f with finite second moment with respect to π . This is a Hilbert space where the inner
product of f,h ∈ L2(π) is defined as

〈f,h〉 =
∫

X
f (x)h(x)π(x)dν(x) =

∫
X

f (x)h(x) d�(x)

and the corresponding norm is defined by ‖f ‖L2(π) = √〈f,f 〉. Then the Markov transition den-
sity k(·, ·) corresponding to the Markov chain X̃ defines an operator K : L2(π) → L2(π) that
maps f to

(Kf )(x) =
∫

X
k
(
x, x′)f (

x′)dν
(
x′) =

∫
X

k(x, x′)
π(x′)

f
(
x′)d�

(
x′). (1)

We will assume that the Markov chain X̃ is reversible. In terms of the associated operator K ,
this means that K is self-adjoint. The spectrum of the self-adjoint operator K , denoted by λ(K),
is the set of λ for which K −λI is non-invertible (here I denotes the identity operator that leaves
a function unchanged). It is known that if K is positive, i.e., if 〈Kf,f 〉 ≥ 0 for all f ∈ L2(π),
(which is the case when K is the operator corresponding to a Data Augmentation (DA) Markov
chain, see Section 3), then λ(K) ⊆ [0,1] (see, e.g., Retherford [39]).

In this paper, we will focus on situations when the (positive, self-adjoint) operator K is trace
class, i.e., λ(K) is countable and its elements are summable (Conway [11], p. 214). All finite state
space Markov chains trivially correspond to trace class operators. Also, in recent years, an in-
creasingly large class of continuous state space Markov chains from statistical applications have
been shown to correspond to trace class operators (see, e.g., Choi and Román [10], Chakraborty
and Khare [7], Pal, Khare and Hobert [32], Qin and Hobert [34], Hobert et al. [21], Rajaratnam
et al. [38]). Let λ(K) = {λi}∞i=0, where (λi)

∞
i=0 are the decreasingly ordered eigenvalues of K .

Then λ0 = 1 and the difference γ = λ0 − λ1 = 1 − λ1 is called the spectral gap for the compact
Markov operator K . The spectral gap plays a major role in determining the convergence behav-
ior of the Markov chain. In particular, any g ∈ L2(π) can be expressed as g = ∑∞

i=0 ηiφi where
(φi)

∞
i=0 is the sequence of eigenfunctions corresponding to K , and

∥∥Kmg − πg
∥∥

L2(π)
=

( ∞∑
i=1

η2
i λ

2m
i

)1/2

≤ ‖g‖λm
1 = ‖g‖(1 − γ )m (2)

for any positive interger m. Hence, γ determines the asymptotic rate of convergence of X̃ to the
stationary distribution. Furthermore, (1 − γ )m provides maximal absolute correlation between
Xj and Xj+m when j is large (i.e., Xj is sufficiently close to the target), and enables us to com-
pute upper bounds of the asymptotic variance of MCMC estimators based on ergodic averages.
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There is a substantial literature devoted to finding a theoretical bound for the second largest
eigenvalue λ1 = 1 − γ of a Markov operator. For finite state space Markov chains, see Lawler
and Sokal [29], Sinclair and Jerrum [43], Diaconis and Stroock [16], Saloff-Coste [42], Yuen
[46], Diaconis and Saloff-Coste [14,15], François [18] to name just a few. In many statistical
applications, the Markov chains move on large continuous state spaces, and techniques based on
drift and minorization (see Rosenthal [40], Jones and Hobert [24]) have been used to get bounds
on λ1 for some of these Markov chains. However, these bounds can in many cases be way off.
Techniques to estimate the spectral gap based on simulation have been developed in Garren and
Smith [20], Raftery and Lewis [37], and more recently in Qin, Hobert and Khare [35] for trace
class data augmentation Markov chains.

While bounding or estimating the spectral gap is clearly useful, a much more detailed and
accurate picture of the convergence can be obtained by analyzing the entire spectrum of the
Markov operator, as explained below.

(i) If we have two competing Markov chains to sample from the same stationary density,
having knowledge of their respective spectra allows for a detailed and careful comparison
(see Section 4.3 for an illustration).

(ii) For positive integer m, let km(·, ·) denote the m-step transition density of the associated
Markov chain X̃. The chi-square distance to stationarity after m steps, starting at state x

is defined as:

χ2
x (m) :=

∫
X

|km(x, x′) − π(x′)|2
π(x′)

dν
(
x′).

Since K is assumed to be trace class (and hence Hilbert Schmidt), it follows that Diaco-
nis, Khare and Saloff-Coste [13] χ2

x (m) = ∑∞
i=1 λ2m

i φi(x)2. The average or expected
chi-square distance to stationarity after m steps is therefore πχ2(m) := ∫

x
χ2

m d� =∑∞
i=1 λ2m

i (since πφ2
i = 1 for all i). Thus, having knowledge of the entire spectrum en-

ables one to compute these average or expected chi-square distances.
(iii) From (2), it is apparent that if ηi ’s are known, then the knowledge of the entire spectrum

enables us to compute the exact L2 distance to stationarity. While finding the exact ηi ’s
in general will be difficult, specific examples can be found in Diaconis, Khare and Saloff-
Coste [13], Hobert, Roy and Robert [22], Khare and Zhou [27].

The literature for general methods to evaluate/estimate the entire spectrum (all the eigenvalues)
of a Markov operator is, however, rather sparse. Adamczak and Bednorz [1] provide an elegant
and simple way of consistently estimating the spectrum of a general Hilbert–Schmidt integral
operator with symmetric kernel using approximations based on random matrices simulated from
a Markov chain. The approach in Adamczak and Bednorz [1] can in particular be adapted for
estimating the spectra of Markov operators. In fact, as we show in Section 2, in this context,
the regularity condition needed for their method is exactly equivalent to the underlying Markov
operator being trace class.

However, in order for the approach (and the technical consistency results) in Adamczak and
Bednorz [1] to be applicable, the Markov transition density k(·, ·) and the stationary density π(·)
are required to be available in closed form. These assumptions are not satisfied by an overwhelm-
ing majority of Markov chains arising in modern statistical applications. This is particularly true
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for the so-called Data Augmentation (DA) algorithm, which is a widely used technique for con-
structing Markov chains by introducing unobserved/latent random variables. In this context, of-
ten, (a) the transition density can only be expressed as an intractable high-dimensional integral,
and/or (b) the stationary density is only available up to an unknown normalizing constant,1 see
Albert and Chib [2], Hobert, Roy and Robert [22], Roy [41], Polson, Scott and Windle [33], Choi
and Hobert [9], Hobert et al. [21], Qin and Hobert [34], Pal, Khare and Hobert [32] to name just
a few.

The main objective of this paper is to develop a random matrix approximation method to
consistently estimate the spectrum of DA Markov operators for situations where (a) and/or (b)
holds. In particular, we show that if the transition densities in the method of Adamczak and
Bednorz [1] are replaced by appropriate Monte Carlo based approximations, the spectrum of the
resulting random matrix consistently estimates the spectrum of the underlying Markov operator
(Theorem 3.1). More generally, we show that the method and the result can be easily adapted to
situations where the stationary density is known only up to a normalizing constant (Theorem 3.2).

No regularity conditions are needed for our results if the state space X, or the latent variable
space Z is finite. We would like to mention that in many statistical applications with finite state
spaces, the state space can be extremely large, with millions/billions of states. The intractability
of the transition density and the size of the state space often make numerical techniques for
eigenvalue estimation completely infeasible. However, as we show in the context of the example
in Section 4.3, our method can provide reasonable answers in less than 5 minutes using modern
parallel processing machinery. If both the state space X and the latent variable space Z are
infinite, two regularity conditions need to be verified in order to use our results. One of them
requires the Markov operator to be trace class, and the other one is a variance condition; each
require checking that an appropriate integral is finite. An illustration is provided in Section 4.2
for the Gibbs sampler of Polson, Scott and Windle [33].

The remainder of the article is organized as follows. In Section 2, we first review the approach
developed by Adamczak and Bednorz [1], which is applicable when the Markov transition den-
sities have closed form expressions. Then we show that in the context of Markov operators, their
regularity condition for consistency is equivalent to assuming that the operator is trace class.
In Section 3, we introduce our approach for estimating the spectrum of DA Markov operators
with intractable Markov transition densities and establish weak and strong consistency of the
resulting estimates under a mild regularity assumption. In Section 4.1, we consider a toy normal-
normal DA Markov chain Diaconis, Khare and Saloff-Coste [13], where all the eigenvalues are
known, and examine the accuracy of the eigenvalue estimates provided by our algorithm. We
then compare the convergence rates of the estimated spectrum to those of an estimated func-
tional of interest (mean second Hermite polynomial), and also make a comparative analysis of
the performances of our method to the method of Qin, Hobert and Khare [35] in estimating the
second largest eigenvalue. We then move on to real applications. In Section 4.2, we illustrate our
method on the Polya Gamma Markov chain of Polson, Scott and Windle [33]. We verify that
this Markov chain satisfies the regularity condition needed for consistency and work out the first
few eigenvalue estimates for the nodal dataset provided in the boot (Canty and Ripley [6]) R

1One would typically need to evaluate a complicated high-dimensional integral to obtain this constant, which is often
infeasible.
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package. In Section 4.3, we consider a Bayesian analysis of the two component normal mixture
model and examine two competing DA Markov chains proposed in Hobert, Roy and Robert [22]
to sample from the resulting posterior distribution. We illustrate the usefulness and applicabil-
ity of our method by estimating and comparing the first few eigenvalues of the two DA chains
for simulated data. We end with a discussion in Section 5. Proofs of all theorems and lemmas
introduced in this paper are provided in a supplemental document [8].

2. Random matrix approximation method of Adamczak and
Bednorz [1]

The objective of this section is to describe the method of operator spectra estimation via random
matrices, first proposed in Koltchinskii and Giné [28] and then in Adamczak and Bednorz [1]
in the context of Markov operators. We begin this section with a brief description of the general
method, and then discuss how one can potentially use it to estimate spectra of trace class Markov
operators. This discussion is followed by a short lemma that establishes an equivalence between
the regularity condition used in Adamczak and Bednorz [1], and the condition of the Markov
chain being trace class.

Let H : L2(π) → L2(π) be a Hilbert–Schmidt integral operator (an integral operator whose
eigenvalues are square summable) defined through a symmetric (in argmuents) kernel h(·, ·) as:

(Hg)(x) =
∫

X
h
(
x, x′)g(

x′)d�
(
x′), (3)

and interest lies in obtaining λ(H), the spectrum of H . In general, there does not exist any method
of evaluating λ(H) for arbitrary H . However, Koltchinskii and Giné [28] suggest a novel, elegant
and simple approach of estimating λ(H) via random matrices. Let X0, . . . ,Xm−1 denote an IID
sample of size m (≥ 1) from the distribution �. Then the authors show that a (strong) consistent
estimator of λ(H) is given by the set of eigenvalues of the random matrix

Hm = 1

m

(
(1 − δjj ′)h(Xj ,Xj ′)

)
0≤j,j ′≤m−1

for large m, where δjj ′ denotes the Dirac delta function. The strength of the result lies in the fact
that it works for any Hilbert Schmidt operator, irrespective of the dimension and structure of X,
as long as an IID sample from � can be drawn. Unfortunately, IID simulations are not always
feasible, especially in high dimensional settings (otherwise there would be no need for MCMC!),
thus limiting the applicability of the method. Adamczak and Bednorz [1] generalize Koltchinskii
and Giné’s [28] result by allowing X0, . . . ,Xm−1 to be an MCMC sample (i.e., realizations of a
Markov chain with equilibrium distribution �), and prove consistency of the resulting estimates.

Let K denote a positive self-adjoint trace class Markov operator as defined in (1). Of course K

is Hilbert Schmidt (eigenvalues are summable implies they are square summable), and h(x, x′) =
k(x, x′)/π(x′) is symmetric in its argument due to reversibility of the associated Markov chain.
Thus by expressing K in the form (3) λ(K) can potentially be estimated by Adamczak and
Bednorz’s [1] method, which only requires an MCMC sample from �. The resulting method,
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Algorithm 1 Random Matrix Approximation (RMA) method of estimating λ(K) for a Markov
operator K with Markov transition density k(·, ·) and stationary density π(·) available in closed
form

Step 0: Given a starting point X0, draw realizations X1,X2, . . . ,Xm−1 from the Markov chain
X̃ associated with K .

Step 1: Given X0, . . . ,Xm−1, for each pair (j, j ′) with 0 ≤ j , j ′ ≤ m − 1, com-
pute the Markov transition densitys k(Xj ,Xj ′) and the kernels h(Xj ,Xj ′) =
k(Xj ,Xj ′)/π(Xj ′), and construct the matrix

Hm = 1

m

(
(1 − δjj ′)h(Xj ,Xj ′)

)
0≤j,j ′≤m−1 (4)

where δjj ′ = 1(j = j ′) is the Dirac delta function.
Step 2: Calculate the eigenvalues λ̂0 ≥ λ̂1 ≥ · · · ≥ λ̂m−1 of Hm and estimate λ(K) by λ̂(K) =

λ(Hm) := {̂λ0, λ̂1, . . . , λ̂m−1}.

which uses the same random data generated during the original run of the Markov chain in
the recipe proposed in Adamczak and Bednorz [1] to estimate the spectrum, will be called the
Random Matrix Approximation (RMA) method henceforth, and is described in Algorithm 1.

Sacrificing independence and identicalness of the random sample in Adamczak and Bed-
norz’s [1] RMA method, however, comes at a price (as compared to Koltchinskii and Giné’s
[28] method, which uses IID samples). In particular, to ensure strong consistency in Adam-
czak and Bednorz’s [1] method, an additional regularity condition is required to be satisfied
by the Markov operator K , namely, a L2(π) function F : X → R needs to exist for which
|h(x, x ′)| ≤ F(x)F (x′) for all x, x′ ∈ X. Interestingly, as we show in the following lemma
(Lemma 2.1), this condition for K is equivalent to that of K being trace-class in the current
setting. The proof of Lemma 2.1 is provided in Section A of the supplemental document. At
the core of the proof, the following two alternative characterizations of trace class and Hilbert
Schmidt operators (see, e.g., Jörgens [25]) are used. The operator K as defined in (1) is trace
class if and only if ∫

X
k(x, x) dν(x) =

∫
X

k(x, x)

π(x)
d�(x) < ∞ (5)

whereas it is Hilbert Schmidt if and only if∫
X

∫
X

k
(
x, x′)2 π(x)

π(x′)
dν(x) dν

(
x′) =

∫
X

∫
X

[
k(x, x′)
π(x′)

]2

d�(x)d�
(
x′) < ∞. (6)

Lemma 2.1. Consider a reversible Markov operator K as defined in (1). Define h(x, x′) =
k(x, x′)/π(x′) for x, x′ ∈ X. Then the following two conditions are equivalent:

(i) there exists F : X →R such that πF 2 < ∞ and |h(x, x′)| ≤ F(x)F (x′) for all x, x′ ∈ X.
(ii) K is trace class.
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As a consequence of Lemma 2.1, we are now in a position to adapt the consistency result
from Adamczak and Bednorz [1] for the RMA method described in Algorithm 1. Before stating
the result, we introduce required notations from Koltchinskii and Giné [28] and Adamczak and
Bednorz [1]. Recall that for any operator A (finite or infinite) we use the notation λ(A) to denote
its spectrum. Thus, for a finite matrix A, λ(A) will denote the set of its eigenvalues. Since the
Markov operators we consider are trace class (and therefore, Hilbert Schmidt), their spectra can
be identified with the sequences (λm)∞m=0 ∈ �2 of eigenvalues, where �2 is the Hilbert space of
all square summable real sequences. Because our goal is to approximate the (possibly infinite)
spectrum of an integral operator by the finite spectrum of a matrix, we will identify the latter with
an element of �2, by appending an infinite sequence of zeros to it. As in Koltchinskii and Giné
[28], the metric we use for comparing spectra is the δ2 metric, which is defined for x, y ∈ �2 as

δ2(x, y) = inf
ζ∈P

[ ∞∑
m=0

(xm − yζ(m))
2

]1/2

(7)

where P is the set of all permutations of natural numbers. Note that for any two points on �2,
the above metric can be expressed as an �2 distance of the sorted versions of the two points,
as explained below. Following Koltchinskii and Giné [28], for any x = (xm)∞m=0 ∈ �2, we set

x = x+ +x−, where x+ = (max{xm,0})∞m=0 and x− = x −x+. We denote by x
↓
+ (x↑

−) the point in
�2 with the same coordinates of x+ (x−), but arranged in non-increasing (non-decreasing) order,
and set x↑↓ = x

↑
− ⊕ x

↓
+, where u ⊕ v = (u0, . . . , um, . . . , v0, . . . , vm, . . .) ∈ �2 for u = (um)∞m=0

and v = (vm)∞m=0 ∈ �2. Then

δ2(x, y) = ∥∥x↑↓ − y↑↓∥∥
�2

. (8)

From the Hoffman–Wielandt inequality (Hoffman and Wielandt [23], Koltchinskii and Giné [28],
Theorem 2.2), it follows that for normal operators A and B ,

δ2
(
λ(A),λ(B)

) ≤ ‖A − B‖HS, (9)

where ‖A‖HS denotes the Hilbert Schmidt norm of an operator A ∈ L2(π) defined by

‖A‖HS =
( ∞∑

m=0

‖Aϕm‖2

)1/2

,

for any orthonormal basis (ϕm)∞m=0 of L2(π). Note that if A is finite (i.e., a matrix), say A =
(aij ), then ‖A‖HS = ‖A‖F where ‖A‖F denotes the Frobenious norm of A defined as

‖A‖F =
(∑

i

∑
j

a2
ij

)1/2

.

The following theorem, a rephrasing of Theorem 2.1 from Adamczak and Bednorz [1] adapted
to the current setting using Lemma 2.1, establishes (strong) consistency of the spectrum estimator
obtained by RMA method for a positive self-adjoint trace class Markov operator.
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Theorem 2.1. Let X̃ = (Xn)n≥0 be a reversible Markov chain with Markov transition density
k(·, ·), invariant measure �, and suppose the associated Markov operator K as given in (1) is
positive and trace class. Let �m = {X0, . . . ,Xm−1} denote the first m realizations of the Markov
chain, and given �m, construct the matrix Hm as given in (4). Then, for every initial measure ν0
for the chain X̃, with probability one, as m → ∞,

δ2
(
λ(Hm),λ(K)

) → 0.

3. A novel Monte Carlo based random matrix approximation
method for DA Markov chains

As we see in Section 2, the RMA method of Adamczak and Bednorz [1] requires evaluation of the
ratio k(Xj ,Xj ′)/π(Xj ′) for every pair (j, j ′). Unfortunately, as mentioned in the Introduction,
one or both of k(·, ·) and π(·) are often intractable and do not have closed form expressions in
many statistical applications. This is particularly true in the context of the Data Augmentation
(DA) algorithm, where along with the variable of interest X, one introduces a latent variable
Z such that generations from the conditional distributions of X|Z (X given Z) and Z|X are
possible. Then, given a starting point X0, at each iteration m ≥ 1, one first simulates z from
the distribution of Z|X = Xm−1 and then generates Xm, from the distribution of X|Z = z. The
Xm’s generated in this method are retained and used as the required MCMC sample. Hence, the
Markov transition density can be written as

k
(
x, x′) =

∫
Z

fX|Z
(
x′|z)fZ|X(z|x)dζ(z). (10)

Here fZ|X and fX|Z are conditional densities with respect to the measures ξ and ν respectively,
and are simple and easy to sample from in a typical DA algorithm. A DA Markov chain is
necessarily reversible, which means the associated Markov operator is self-adjoint. The operator
is also positive with a positive spectrum, as shown in Liu, Wong and Kong [30].

However, the integral in (10) providing the Markov transition density of a DA Markov chain
often does not have a closed form expression, and cannot be efficiently approximated via deter-
ministic numerical integration (usually due to high dimensionality). Intractability of the integral
precludes applicability of Adamczak and Bednorz’s [1] RMA method of estimating spectrum
(Algorithm 1) in such cases. In this section, we propose a Monte Carlo based random matrix
approximation (MCRMA) algorithm to estimate the spectrum of DA algorithms with intractable
transition densities (Algorithm 2). To contrast with MCRMA, we shall call the RMA method of
Adamczak and Bednorz [1] (Algorithm 1) the exact RMA. Consistency of MCRMA spectrum
estimates is established in Theorem 3.1.

Often, in addition to the intractability of the transition density, the stationary density is also
available only up to an unknown normalizing constant (which is again hard to estimate in many
modern applications as the stationary density is supported on a high-dimensional space). We
adapt our algorithm to this situation (Algorithm 3), and establish consistency of the resulting
estimates as well (Theorem 3.2).
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3.1. Monte Carlo Random Matrix Approximation (MCRMA) method

In this section, we will present a method to estimate the spectrum of a DA Markov operator where
the transition density in (10) is intractable, but the stationary density π is available in closed form.
Given m realizations �m = {X0,X1, . . . ,Xm−1} of the positive trace class reversible Markov
chain X̃ with transition density in the form (10), the key idea is to approximate k(Xj ,Xj ′)
for each pair (j, j ′) using classical Monte Carlo technique, and then construct an analogue of
the RMA estimator that uses the approximate kernels instead of the original. The details of the
method are provided in Algorithm 2.

It is to be noted that for Step 1 in the MCRMA algorithm to be feasible, the density fZ|X
should be easy to sample from. This is typically true for DA algorithms that are used in practice.
In fact, the major motivation for using a DA algorithm is that the conditional densities fX|Z and
fZ|X are easy to sample from, whereas it is hard to directly generate samples from π . For Step 2

Algorithm 2 Monte Carlo Random Matrix Approximation (MCRMA) method of estimating
λ(K) for a positive reversible Markov operator K with associated Markov transition density
k(x, x′) = ∫

Z fX|Z(x′|z)fZ|X(z|x)dζ(z)

Step 0: Given a starting point X0, draw realizations X1,X2, . . . ,Xm−1 from the associated
Markov chain X̃. Call �m = {X0, . . . ,Xm−1}.

Step 1: Given �m, for each j = 0,1, . . . ,m − 2, generate generate N = N(m) IID observa-
tions Z

(j)

1 , . . . ,Z
(j)
N from the density fZ|X(·|Xj).

Step 2: For each pair (j, j ′) with 0 ≤ j < j ′ ≤ m − 1, construct the Monte Carlo estimate

k̂N (Xj ,Xj ′) = 1

N

N∑
l=1

fX|Z
(
Xj ′ |Z(j)

l

)
,

define the estimated kernel

ĥN (Xj ,Xj ′) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
k̂N (Xj ,Xj ′)

π(Xj ′)
if j < j ′

0 if j = j ′

ĥN (Xj ′ ,Xj ) if j > j ′
,

and construct the matrix

Ĥ (N)
m = 1

m

(
(1 − δjj ′ )̂hN (Xj ,Xj ′)

)
0≤j,j ′≤m−1, (11)

where δjj ′ = 1(j = j ′) is the Dirac delta function. Observe that Ĥ
(N)
m is symmetric

by construction, with zero diagonal entries.
Step 3: Calculate the eigenvalues λ̂0 ≥ λ̂1 ≥ · · · ≥ λ̂m−1 of Ĥ

(N)
m and estimate λ(K) by

λ̂(K) = λ(Ĥ
(N)
m ) := {̂λ0, λ̂1, . . . , λ̂m−1}.
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to be feasible, we need fX|Z to be available in closed form. Again, this is true in most statistical
applications, where fX|Z is typically a standard density such as multivariate normal, gamma etc.
Another crucial thing to note, from a computational point of view, is that the rows of the matrix
Ĥ

(N)
m can be constructed in an embarrassingly parallel fashion (since no relationship is assumed

among the elements of Ĥ
(N)
m ), thereby reducing the running time of the algorithm significantly.

Note that the MCRMA algorithm (Algorithm 2) provides a coarser approximation to the spec-
trum of K as compared to the the exact RMA algorithm (Algorithm 1). This is because we use
the additional Monte Carlo based approximation k̂N (for k) in the constructed random matrices.
An obvious and important question is: does an analog of the consistency result for the RMA
algorithm (Theorem 2.1) hold in this more complex setting of the MCRMA algorithm? We state
a consistency result below, and the proof is provided in Section B of the supplemental document.

Theorem 3.1. Let X̃ = (Xn)m≥0 be a positive, reversible Markov chain with transition density
k(·, ·) in the form (10), invariant measure � and associated Markov operator K as given in (1).
Let �m = {X0, . . . ,Xm−1} denote the first m realizations of the Markov chain, and given �m,
construct the matrix Ĥ

(N)
m as given in (11). Then the following hold:

(I) If X is finite, then (strong consistency) for every initial measure ν0 of the chain X̃, as
m → ∞ and N → ∞,

δ2
(
λ
(
Ĥ (N)

m

)
, λ(K)

) → 0 almost surely.

(II) If X is infinite (countable or uncountable), and
(A) K is trace class, and
(B) (variance condition)

sup
m≥1

max
0≤j<j ′≤m−1

∫
X

∫
X

∫
Z

(
fX|Z(xj ′ |z)

π(xj ′)

)2

fZ|X(z|xj )

× qjj ′(xj , xj ′) dζ(z) dν(xj ) dν(xj ′) < ∞,

where qj1j2···jk
denotes the joint density of Xj1, . . . ,Xjk

, 0 ≤ j1 < · · · < jk ≤ m − 1,
1 ≤ k ≤ m,

then
(i) (weak consistency) if 1

N(m)
→ 0 as m → ∞, then δ2(λ(Ĥ

(N)
m ),λ(K))

P−→ 0,

(ii) (strong consistency) if
∑∞

m=0
1

N(m)
< ∞, then δ2(λ(Ĥ

(N)
m ),λ(K)) → 0 almost surely.

Remark 3.1. Let K∗ denote the Markov operator associated with the Z chain (the Markov chain
of the generated latent data), defined for f ∈ L2(π∗) as(

K∗f
)
(z) =

∫
Z

k∗(z, z′)f (
z′)dζ

(
z′) =

∫
X

k∗(z, z′)
π∗(z′)

f
(
z′)d�∗(z′) (12)

where k∗(·, ·) denotes the Markov transition density of the Z chain, π∗ denotes the stationary
density for Z (associated with k∗) and �∗ is the probability measure associated with π∗. Then
Khare and Hobert [26] show that λ(K) = λ(K∗), which implies that instead of estimating λ(K),
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one can equivalently estimate λ(K∗). Note that,

k∗(z, z′) =
∫

X
fZ|X

(
z′|x)

fX|Z(x|z) dν(x)

with fX|Z and fZ|X being the same conditional densities as before. Therefore, an analogous
MCRMA algorithm for estimating λ(K∗) can be similarly formulated. Here, given the realiza-
tions Z0,Z1, . . . ,Zm−1, one first finds the Monte Carlo approximates of k∗(z, z′) (via IID sam-
ples generated from fX|Z(·|z)) at every paired realization (Zj ,Zj ′), then defines a random matrix
with the ratios k∗(z, z′)/π∗(z′) (times an adjustment factor 1/m), similar to the MCRMA with
X observations, and finally evaluates eigenvalues of the resulting random matrix. Consequently,
an analogous consistency theorem will also hold for the resulting algorithm.

Because the Z chain is automatically generated as a by-product of the DA algorithm, from a
practitioner’s point of view, using Z instead of X makes little difference in MCRMA. However,
substantial simplifications on the regularity conditions may be achieved by using Z. This is
particularly true in cases where the latent variable space Z is finite (however large). In such
cases, no regularity condition is required to be satisfied (case (I) in Theorem 3.1) to achieve
strong consistency. See Section 4.3 for examples.

Remark 3.2. The variance condition (B) is more restrictive than the trace class condition (A)
because of the square term {fX|Z(xj ′ |z)/π(xj ′)}2. These types of second moment conditions are
often necessary to guarantee good behavior of eigenvalue estimators; a somewhat similar second
moment condition appears in Qin, Hobert and Khare [35], equation 14 and Theorem 2, to ensure
finite variance of their second largest eigenvalue estimator. Proofs of Theorems 4.1 and 4.2 in
Section C of the supplemental document provide illustrations on how the integrals in conditions
(A) and (B) can be handled.

Remark 3.3. When X is finite, strong consistency is guaranteed as long as m → ∞ and N → ∞
(no relationship between the rate of growth of m and N is necessary). When X is infinite and
the conditions (A) and (B) hold, the conditions (II)(i) and (ii) on in Theorem 3.1 are required to
justify weak and strong consistency, respectively. These conditions on N and m, are however,
not very demanding. For example, when N(m) = O(m) or even, N(m) = O(logm), (II)(i) is
satisfied, and weak convergence holds. On the other hand when N(m) = O(m1+δ), for some
δ > 0, condition (ii) is satisfied, ensuring strong convergence. In practice, as long as both N and
m are sufficiently large, reasonable results can be expected.

3.2. MCRMA with π specified only up to a constant

Note that Step 2 of MCRMA method requires construction of a symmetric matrix whose (j, j ′)th
entry has π(Xj ′) in the denominator. This is clearly not feasible in cases where π is known up
to a constant, that is, π is of the form π(·) = η(·)/c, where c ∈ (0,∞) is an unknown constant,
and the functional form of η(·) is completely known. In this section, we propose a simple strat-
egy that adapts Algorithm 2 for such cases. The basic idea, displayed formally in Algorithm 3,
is to follow the steps of Algorithm 2 but now with η(·) in the denominator of the random ma-
trix instead of π(·), and then simply rescale the eigenvalues so that the largest eigenvalue is 1.
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Algorithm 3 MCRMA estimation of λ(K) for a trace class Markov operator K when π(·) ∝ η(·),
and the functional form for η(·) is known

Step 0: Given a starting point X0, draw realizations X1,X2, . . . ,Xm−1 from the associated
Markov chain X̃. Call �m = {X0, . . . ,Xm−1}.

Step 1: Given �m, for each j = 0,1, . . . ,m − 1, generate generate N = N(m) IID observa-
tions Z

(j)

1 , . . . ,Z
(j)
N from the density f2(·|Xj).

Step 2: For each pair (j, j ′) with 0 ≤ j < j ′ ≤ m, construct the Monte Carlo estimate

k̂N (Xj ,Xj ′) = 1

N

N∑
l=1

f1
(
Xj ′ |Z(j)

l

)
,

define the estimated kernel

ŝN (Xj ,Xj ′) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
k̂N (Xj ,Xj ′)

η(Xj ′)
if j < j ′

0 if j = j ′

ŝN (Xj ′ ,Xj ) if j > j ′
,

and construct the matrix

Ŝ(N)
m = 1

m + 1

(
(1 − δjj ′ )̂sN (Xj ,Xj ′)

)
0≤j,j ′≤m−1 (13)

Step 3: Calculate the eigenvalues κ̂0 ≥ κ̂1 ≥ · · · ≥ κ̂m−1 of Ŝ
(N)
m , and estimate λ(K)

by λ(Ŝ
(N)
m )/λmax(Ŝ

(N)
m ) := {1, κ̂1/̂κ0, . . . , κ̂m−1/̂κ0}, where λmax(Ŝ

(N)
m ) = κ̂0 is the

largest eigenvalue of Ŝ
(N)
m .

Clearly, this nullifies any estimation/evaluation of the normalizing constant. Theorem 3.2 estab-
lishes consistency for the resulting estimator by exploiting the fact that the largest eigenvalue of
any Markov operator is 1. A detailed proof is given in the supplemental document (Section B).

Theorem 3.2. Let X̃ = (Xn)m≥0 be a positive, reversible Markov chain with transition density
k(·, ·) in the form (10), invariant measure � and associated Markov operator K as given in
(1). Further, suppose that π(·) = η(·)/c, where c ∈ (0,∞) is a possibly unknown normalizing
constant, and the functional form for η(·) is known. Let �m = {X0, . . . ,Xm−1} denote the first
m realizations of the chain. Given �m, construct the matrix Ŝ

(N)
m as given in (13). Then

(I) if X is finite, then (strong consistency) for every initial measure ν0 for the chain X̃, as
m → ∞ and N → ∞,

δ2

(
λ(Ŝ

(N)
m )

λmax(Ŝ
(N)
m )

, λ(K)

)
→ 0 almost surely.
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(II) if X is infinite (countable or uncountable), and condition (A) and (B) in Theorem 3.1
hold, then

(i) (weak consistency) if 1
N(m)

→ 0 as m → ∞, then δ2(
λ(Ŝ

(N)
m )

λmax(Ŝ
(N)
m )

, λ(K))
P−→ 0,

(ii) (strong consistency) if
∑∞

m=0
1

N(m)
< ∞, then δ2(

λ(Ŝ
(N)
m )

λmax(Ŝ
(N)
m )

, λ(K)) → 0 almost

surely.

Remark 3.4. The quantity κ̂0 = maxλ(Ŝ
(N)
m ), obtained as a by-product of Algorithm 3, is in fact

a consistent estimator of the normalizing constant 1/c (see the proof of Theorem 3.2 in Section B
of the supplemental document). This estimator is implicitly used during spectrum estimation in
Algorithm 3, and nullifies the need of any separate estimation of the normalizing constant. It is to
be noted that estimation of the constant 1/c is an interesting problem on its own, and appears in
many statistical and machine learning problems; one notable example being marginal likelihood
estimation in Bayesian model selection. Clearly, κ̂0 can be used for estimating 1/c outside the
context of eigenvalue estimation, where the only goal is to estimate the normalizing constant;
consistency of the estimator is however guaranteed only when the assumptions in Theorem 3.2
are met. Comparative assessment of the estimator κ̂0 with other estimators of the normalizing
constant, such as the bridge sampling estimator Bennett [5], Meng and Wong [31], is a topic of
further research.

4. Illustrations

The purpose of this section is to illustrate the applicability and usefulness of the MCRMA algo-
rithm in practical settings. We shall consider two separate examples, one with a finite, and one
with an infinite state space. However, before proceeding to these applications, we will start with
a toy normal-normal DA Markov chain to understand/illustrate the performance of the MCRMA
algorithm in a setting where the entire spectrum is already known. All computations in this sec-
tion are done in R (R Core Team [36]) with some parts written in C++ to speed up computation.
We used the R packages Rcpp Eddelbuettel [17] to call C++ functions inside R, and ggplot2
Wickham [45] and reshape2 Wickham [44] to create the plots.

4.1. Toy example: The normal-normal DA chain

In this section, we consider a toy normal-normal DA Markov chain considered in Diaconis,
Khare and Saloff-Coste [13] and then in Qin, Hobert and Khare [35] with known eigenvalues to
illustrate the performance of the MCRMA method. Here, given a starting point x0, one iterates
between the following two steps:

(i) generate z from N(x/2,1/8),
(ii) generate x from N(z,1/4).

Of course, the stationary density of x is just N(0,1/2), and there is no practical need for this
MCMC algorithm. However, the spectrum of the corresponding Markov operator K has been
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studied thoroughly in Diaconis, Khare and Saloff-Coste [13] and therefore it can be used as a
nice toy example to exhibit the performance of MCRMA. It is easy to see that both the trace
class condition (A) and the variance condition (B) hold for the operator K (since all the full
conditional densities are just normal densities). From Diaconis, Khare and Saloff-Coste [13], it
follows that the eigenvalues of K are given by (λn)

∞
n=0 with λn = 1/2n.

Starting from x = 0, we first generate 10,000 realizations of the above Markov chain, af-
ter discarding a burn-in of size 10,000, and then extract the x chain. Then we run 10 in-
stances of the MCRMA algorithm 3 with m = 1000,2000, . . . ,10,000 (by using the first
1000,2000, . . . ,10,000 iterations of the already generated Markov chain), and N = N(m) =
�m1+10−6�, where for a real number x, �x� denotes the “ceiling” of x, i.e., the smallest inte-
ger bigger than x. Then we look at the largest 11 eigenvalues (including λ0 = 1) obtained from
each instance of MCRMA. Note that the choice of m and N used here ensures strong consis-
tency of the MCRMA estimates; weak consistency only requires N(m) → ∞ as m → ∞ (see
Remark 3.3). To understand the accuracy of MCRMA, the estimated eigenvalues are compared
to the true eigenvalues, by displaying the estimates and truths on the same plot. The resulting
plots are shown in Figure 1. Figure 1(a) displays all 11 eigenvalues obtained from each of the 10
MCRMA instances (shown as 10 curves, one for each MCRMA instance), along with the true
eigenvalues (shown as red dots). The second, third, fourth, fifth and sixth largest estimated eigen-
values, viewed as functions of the MCRMA iteration size m, are shown separately in Figures 1(b)
through 1(f), with the dotted line indicating the corresponding the true eigenvalue. The notice-
able similarity between the truth and the estimates, (especially for the instances with m ≥ 5000,

Figure 1. Eigenvalue estimates for the toy normal-normal DA Markov chain using the MCRMA algorithm.
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Figure 1. (Continued).

where the estimates show satisfactory signs of convergence), illustrates accuracy of the MCRMA
method.

In spectral based diagnostics of MCMC algorithms, interest often lies in comparing the con-
vergence rates of the estimated spectra, and that of the estimated functionals of interest (such
as the posterior mean in Bayesian statistical analysis). Here we consider the estimated (ergodic
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averages) mean of associated second Hermite polynomial for x, H2(x) = 1√
2
(2x2 −1), and com-

pare its convergence to πH2 = 0 with the convergence of MCRMA estimate of the second largest
eigenvalue λ1 to 0.5. In particular, for m = 1000,2000, . . . ,10,000, we compute

(i) π̂H2(m) := m−1 ∑m−1
i=0 H2(xi) using the already generated Markov chain realizations

{xi : i = 0, . . . ,9999}
(ii) λ̂1(m) − 0.5, where λ̂1(m) is the estimated second largest eigenvalue obtained from the

MCRMA instance ran with iteration size m

and plot |π̂H2(m)| and |̂λ1(m)− 0.5|, both as functions of m, in the same diagram. The resulting
plots are shown in Figure 2, which shows that the convergence rates of the estimated spectrum

Figure 2. Convergences of the MCMC estimate of mean second Hermite polynomial and MCRMA es-
timate of second largest eigenvalue, both viewed as functions of iteration size m. The absolute estimated
means |π̂H2(m)| are displayed as red dots, and the absolute differences |̂λ1(m) − 0.5| are shown as blue
dots.
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and the estimated mean of second Hermite polynomial are comparable when m ≥ 5000, and
neither convergence is strictly faster than the other.

We end this example by comparing the MCRMA estimates of λ1 to the estimates obtained
using the power sum estimation technique of Qin, Hobert and Khare [35], which we briefly
describe in the following. For a positive integer r , define the power sum sr := ∑∞

i=0 λr
i of eigen-

values (λi)i≥0 of the associated trace class Markov operator K . Then for any r ≥ 1

lr := sr − 1

sr−1 − 1
≤ λ1 ≤ (sr − 1)1/r =: ur

(with s0 = ∞), and in addition, Qin, Hobert and Khare [35], Proposition 1, show that as 1 ≤
r → ∞, lr ↑ λ1 and ur ↓ λ1. For DA Markov operators, the authors provide an IID Monte Carlo
based estimation technique for sr , which in turn, provides estimates of lr and ur , thus providing
asymptotically consistent interval estimates of λ1. The authors note that r is not required to be
very large in practice (in fact, very large r cause instability in estimation, see Qin, Hobert and
Khare [35], Section 6), and they recommend using r large enough so that the difference between
estimated sr and 1 is small.

The key step in the power-sum estimation method of Qin, Hobert and Khare [35] is the step
of Monte Carlo estimation of sr . To aid comparability with MCRMA, we set the associated
Monte Carlo sample size to be the same N(m) = �m1+10−6�, and run 10 instances of trace sum
estimation method with m = 1000, . . . ,10,000 and r = 4. The estimated (lr , ur) are then plotted
as functions of m together with the MCRMA estimates of λ1, and displayed in Figure 3, which
shows that MCRMA gives slightly better estimates in the current settings.

4.2. Infinite state space application: Polson and Scott DA Gibbs sampler

We consider the Data Augmentation algorithm for Bayesian logistic regression proposed in
Polson, Scott and Windle [33]. Let Y1, Y2, . . . , Yn be independent Bernoulli random variables
with P(Yi = 1|β) = F(uT

i β). Here ui ∈ R
p is a vector of known covariates associated with Yi ,

i = 1, . . . , n, β ∈ R
p is a vector of unknown regression coefficients, and F : R → [0,1] : t �→

et/(1 + et ) is the distribution function of a standard logistic distribution. For yi ∈ {0,1}, the
likelihood function under this model is given by:

P(Y1 = y1, . . . , Yn = yn|β) =
n∏

i=1

[
F

(
uT

i β
)]yi

[
1 − F

(
uT

i β
)]1−yi

The objective is to make inferences on the regression parameter β and we intend to adopt a
Bayesian approach, which requires a prior density for β to be specified. To keep parity with the
literature, in this section we shall slightly abuse our notation by using β (not X) to denote the
parameter of interest, U to denote the non-stochastic design matrix with ith row uT

i , and π(β) to
denote the prior density for β . Note that here our target distribution is not the prior density π(·),
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Figure 3. Comparing MCRMA estimates with power-sum estimates of λ1 = 0.5. The 10 MCRMA esti-

mates with m = 1000, . . . ,10,000 and N(m) = �m1+10−6� are shown as blue dots, the light and dark gray
dots are the power-sum estimates of lr and ur with r = 4 and Monte Carlo sample size N(m), and the
shaded gray region provides power-sum interval estimates of λ1. The true λ1 is shown as a horizontal red
line.

but the posterior density π(·|y) given the data y = (y1, . . . , yn)
T , which is given by

π(β|y) = 1

c(y)
π(β)

(
n∏

i=1

[
F

(
uT

i β
)]yi

[
1 − F

(
uT

i β
)]1−yi

)
(14)

where

c(y) =
∫
Rp

π(β)

(
n∏

i=1

[
F

(
uT

i β
)]yi

[
1 − F

(
uT

i β
)]1−yi

)
dβ (15)
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is the normalizing constant dependent of y only. We shall consider a proper Np(b,B) prior for
β , as in Choi and Hobert [9]. Note that the posterior density π(β|y) is intractable; it does not
have a closed form, and IID sampling is very inefficient even for moderately large p. Polson,
Scott and Windle [33] proposed a data augmentation Gibbs sampling algorithm for approximate
sampling from π(β|y), which only requires random generation from easy to sample univariate
distributions. In the following, we borrow notations from Choi and Hobert [9] where the uni-
form ergodicity of the Markov chain produced by the Polson, Scott and Windle DA algorithm is
proved. Let R+ = (0,∞), and for fixed w = (w1, . . . ,wn)

T ∈R
n+

�(w) = diag(w1, . . . ,wn),

�(w) = (
UT �(w)U + B−1)−1

,

and μ(y) = μ = UT

(
y − 1

2
1n

)
+ B−1b.

Then the Polson, Scott and Windle DA Gibbs sampler (Algorithm 4) for generating MCMC
samples from the posterior distribution π(β|y) is obtained by iteratively sampling independent
wi from (univariate) Polya-Gamma(1, |uT

i β|) distribution, for i = 1, . . . , n, and then sampling β
from Np(�(w)μ,�(w)). Here Polya-Gamma(1, c) denotes the Polya-Gamma distribution with
parameters 1 and c, which is defined as follows. Let (Ek)k≥1 be a sequence of IID standard
Exponential random variables, and let

W = 2

π2

∞∑
l=1

El

(2l − 1)2
(16)

which has density

g̃(w) =
∞∑
l=1

(−1)l
(2l + 1)√

2πw3
e− (2l+1)2

8w ; w ≥ 0. (17)

Then the Polya-Gamma family of densities {g̃c : c ≥ 0} is obtained through an exponential tilting
of the density g̃:

g̃c(x) = cosh(c/2)e− c2x
2 g̃(x),

and a random variable is said to have a Polya-Gamma(1, c) distribution if it has den-
sity g̃c. (Recall that cosh(t) = (et + e−t )/2.) An efficient data generating algorithm from
Polya-Gamma(1, c) is provided in Polson, Scott and Windle [33].

From the Polson, Scott and Windle Gibbs sampler (Algorithm 4), it follows that

1. For i = 1, . . . , n, the (full) conditional posterior distribution of wi given β is independent
Polya-Gamma(1, |uT

i β|), so that the conditional joint density of w = (w1, . . . ,wn)
T given

β , y is given by

π(w|β,y) =
n∏

i=1

{
cosh

( |uT
i β|
2

)
exp

[
−1

2

(
uT

i β
)2

wi

]
g̃(wi)

}
(18)
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Algorithm 4 The Polson, Scott and Windle DA Gibbs Sampler
Given a starting value β0, iterate between the following two steps:

(i) Draw independent w1, . . . ,wn with wi ∼ Polya-Gamma(1, |uT
i β|), i = 1, . . . , n, and de-

fine

�(w) = diag(w1, . . . ,wn),

�(w) = (
UT �(w)U + B−1)−1

,

and μ(y) = μ = UT

(
y − 1

2
1n

)
+ B−1b.

.
(ii) Draw β ∼ Np(�(w)μ,�(w)).

where g̃ is as given in (17).
2. The full conditional distribution of β given w, y is Np(�(w)μ,�(w)) with density

π(β|w,y) = (2π)−p/2
∣∣UT �(w)U + B−1

∣∣1/2

× exp

[
−1

2

(
β − �(w)μ

)T
�(w)−1(β − �(w)μ

)]
. (19)

Note that the transition density of the associated Markov chain � for β is given by

k
(
β,β ′) =

∫
R

n+
π

(
β ′|w,y

)
π(w|β,y) dw

where π(β|w,y) and π(w|β,y) are as given in (19) and (18), respectively. It is clear that this
transition density cannot be evaluated in closed form. Moreover, a closed form expression for
the normalizing constant c(y) in (15) is not available, which means the posterior density π(β|y)

in (14) can only be specified up to a constant factor. Thus, exact RMA cannot be applied in this
example. However, by letting w play the role of the augmented data z, fZ|X(·|·) the conditional
density π(w|β,y) (from which random sampling is easy due to the efficient simulation algo-
rithm from Polya-Gamma(1, c) proposed in Polson, Scott and Windle [33]), and fX|Z(·|·) the
simple multivariate normal density π(β|w,y), we can use the extended MCRMA method (Al-
gorithm 3). Since the state space of β (and w) is infinite, in order to ensure consistency of the
MCRMA estimates, we need (A), and (B) in Theorem 3.1 to hold. The following two theorems
(Theorem 4.1 and Theorem 4.2) show that the Polson, Scott and Windle Markov chain does in-
deed satisfy these two conditions, thus guaranteeing consistency of MCRMA estimates in this
case. Proofs of Theorem 4.1 and Theorem 4.2 are provided in Section C of the supplemental
document.

Theorem 4.1. For any choice of the (proper multivariate normal) prior parameters b and B , the
Markov operator associated with Polson, Scott and Windle Markov chain � is trace class.
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Theorem 4.2. Let the initial distribution ν0 of β be such that exp[ 1
2

∑n
i=1 |uT

i β|] is ν0-integrable
for all i = 1, . . . , n. Then the operator K associated with the Polson, Scott and Windle algorithm
satisfies the variance condition (B).

Remark 4.1. Note that the integrability condition assumed on the initial measure ν0 in The-
orem 4.2 is not very restrictive, and can be easily ensured in practice for a number of fam-
ilies of distribution. For example, if the initial distribution of β is Gaussian, integrability of
exp[ 1

2

∑n
i=1 |uT

i β|] is immediate.

4.2.1. Simulation results

For simulation, we used the the R package BayesLogit Polson, Scott and Windle [33] to ef-
ficiently draw random samples from the Polya Gamma density. We generated a Polson, Scott
and Windle Markov chain on the nodal dataset from the R package boot Canty and Rip-
ley [6], Davison and Hinkley [12]. The dataset consists of 53 observations on 5 binary predic-
tors (aged, stage, grade, xray and acid) and one response which indicates whether cancer has
spread from prostate to surrounding lymph nodes. Taking the maximum likelihood estimate as
the starting value, we first generated 30,000 iterations of the Polson, Scott and Windle chain
for the regression coefficient β (∈ R

6, includes one intercept coefficient). We discarded the
first 20,000 iterations as burn-in, and kept the remaining 10,000 as the MCMC sample. Then
we ran 10 instances of the MCRMA algorithm with the MCMC sample already generated and
with m = 1000,2000, . . . ,10,000 and N(m) = �m1+10−6� (to ensure strong consistency), and
recorded the 30 largest eigenvalues. Then we created plots similar to the toy normal-normal DA
example, except, the true eigenvalues were of course unknown in this case. The resulting plots
are shown in Figure 4.

Figure 4(a) shows all 30 eigenvalues obtained from each of the 20 MCRMA instances, plotted
as 20 curves, one for each MCRMA instance. The second, third, fourth, fifth and sixth largest
estimated eigenvalues, viewed as functions of the MCRMA iteration size m, are shown in Fig-
ures 4(b) through 4(f). As is clear from the plots, the MCRMA spectrum estimates for the Polson,
Scott and Windle chain show adequate signs of convergence when m ≥ 5000, thereby providing
confidence on the accuracy of estimation.

4.3. Finite state space application: Two component normal mixture

In this section, we consider the problem of Bayesian finite mixture modeling with two compo-
nents. Let y = (y1, . . . , yn) be a random sample from the two component equal variance mixture
normal density

f (y|μ,p) = p
1

τ
φ

(
y − μ1

τ

)
+ (1 − p)

1

τ
φ

(
y − μ2

τ

)
(20)

where p ∈ [0,1] is the mixing proportion, μ = (μ1,μ2) ∈ R
2 is the vector of component means

and τ 2 > 0 is the known variance for both components, and φ(·) is the standard normal den-
sity function. The objective is to make inferences on the unknown parameter vector θ = (μ,p)

through the data y, and we adopt a Bayesian approach. The prior density for θ is taken to be of
the form π(θ) = π(p)π(μ1)π(μ2), with π(p) being the Uniform(0,1) density, and π(μj ) being
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Figure 4. Eigenvalue estimates for the Polson, Scott and Windle DA Markov chain using the MCRMA
algorithm.

the N(0, τ 2) density. Then the posterior density for θ is given by

π(θ |y) = π(μ,p|y) = 1

c(y)

n∏
i=1

{
p

1

τ
φ

(
yi − μ1

τ

)
+ (1 − p)

1

τ
φ

(
yi − μ2

τ

)}
π(θ) (21)
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Figure 4. (Continued).

where c(y) is the normalizing constant that makes (21) a proper density. It is clear that π(θ |y)

is intractable, which makes evaluation of posterior mean or IID simulation infeasible. We there-
fore resort to approximate sampling via MCMC. A slightly general version of this problem (with
unknown and different component variances τ 2

1 and τ 2
2 ) is considered in Hobert, Roy and Robert

[22], Section 6.2, and the authors consider two different Gibbs sampling algorithms, namely, the
mixture Data Augmentation algorithm (MDA algorithm, or simply, MDA) and the Frühwirth-
Schnatter algorithm (FS algorithm, or simply, FS), to generate MCMC samples from the poste-
rior.

4.3.1. MDA algorithm

Let us introduce latent component indicators z1, . . . , zn, with zi = j indicating that the ith ob-
servation yi is coming from the j th component N(μj , τ

2) for j = 1,2. Then,

1. the full conditional posterior distribution of the components of θ given z are independent,

with p being Beta(c1 + 1, c2 + 1) and μj being N(
cj

cj +1 ȳj ,
τ 2

cj +1 ) with cj = ∑n
i=1 1{j}(zi)

and ȳj = c−1
j

∑n
i=1 yi1{j}(zi) for j = 1,2. We shall denote the corresponding density of θ

by π(θ |z,y).
2. the full conditional posterior density (mass, with respect to the counting measure ζ ) of z

given θ is given by

π(z|θ ,y) ∝
n∏

i=1

(
p̃i1{1}(zi) + (1 − p̃i)1{2}(zi)

)
(22)
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Algorithm 5 The Mixture DA (MDA) Gibbs Sampler
1 Given a starting value (μ0,p0) for the parameter vector θ = (μ,p), iterate between the

following two steps:
(i) Draw independent z1, . . . , zn with zi having a categorical probability distribution with

categories 1 and 2, and

P(zi = j) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
pφ(

yi−μ1
τ

)

pφ(
yi−μ1

τ
) + (1 − p)φ(

yi−μ2
τ

)
if j = 1

(1 − p)φ(
yi−μ2

τ
)

pφ(
yi−μ1

τ
) + (1 − p)φ(

yi−μ2
τ

)
if j = 2

.

(ii) Compute cj = ∑n
i=1 1{j}(zi) and ȳj = c−1

j

∑n
i=1 yi1{j}(zi). Then independently gen-

erate:
(a) p from Beta(c1 + 1, c2 + 1)
(b) μj from N(

cj

cj +1 ȳj ,
τ 2

cj +1 ) for j = 1,2.

where

p̃i = pφ(
yi−μ1

τ
)

pφ(
yi−μ1

τ
) + (1 − p)φ(

yi−μ2
τ

)
.

The MDA algorithm entails iterative generation of z from π(z|θ ,y), and θ from π(θ |z,y). The
resulting Gibbs sampler is formally displayed in Algorithm 5.

Note that, although the parameter vector θ = (μ,p) in the MDA algorithm lives on the infinite
space X =R

2 ×[0,1], the latent data z = (z1, . . . , zn) lives on the finite state space Z = {1,2}n.
We shall, therefore, study the spectrum of the Markov operator K∗ associated with the latent data
z (see Remark 3.1). The Markov transition density associated with the operator K∗ is given by

k∗(z,z′) =
∫

X
π

(
z′|θ ,y

)
π(θ |z,y)dθ (23)

which is, of course, not available in closed form, because of the denominators of the product
terms in π(z′|θ ,y). However, π(z′|θ ,y) is available in closed form and π(θ |z,y) is easy to
sample from. Thus, the MCRMA method can be applied here, and the estimates are guaranteed
to be strongly consistent (Remark 3.1). Recall that MCRMA requires evaluation of the stationary
density π(z|y) for z. Straight-forward calculations show that

π(z|y) ∝ B(c1 + 1, c2 + 1)

2∏
j=1

[
(1 + cj )

− 1
2 exp

(
c2
j ȳ

2
j

2τ 2(1 + cj )

)]
. (24)

Since the normalizing constant that makes (24) a density is not available in closed form, we shall,
therefore use Algorithm 3.
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4.3.2. FS algorithm

Along with MDA, Hobert, Roy and Robert [22] consider another Gibbs sampling algorithm,
called the Frühwirth-Schnatter (FS) algorithm Frühwirth-Schnatter [19], which is obtained by
inserting an intermediate random label switching step in between the two steps of MDA. The
key idea here is to randomly permute the labels of the latent variable z obtained in the first step
of MDA, before moving on to the second step. That is, after generating z from the conditional
distribution of z|θ , instead of drawing the next state of θ directly from θ |z, here one first ran-
domly permutes the labels of components in the mixture model, and switches the labels of z

according to that random permutation to get z′. The next state of θ is then generated from the
conditional distribution of θ |z′. In the context of two component mixture models, the interme-
diate step z → z′ simply entails performing a Bernoulli experiment with probability of success
0.5. One then takes z′ = z̄ or z′ = z according as whether the Bernoulli experiment results in a
success or a failure, where z̄ denotes z with its 1’s and 2’s flipped.

The computationally inexpensive label switching step in the FS algorithm is introduced to
force movement between the symmetric modes of the posterior density π(θ |y). This makes the
FS algorithm superior to the MDA algorithm in terms of convergence and mixing. The FS algo-
rithm is in fact a member of a wide class of so-called sandwich algorithms, where one inserts
an inexpensive intermediate meat step inside the two bread steps of a DA algorithm to achieve
better convergence and mixing. In fact, when the operator associated with a Markov chain is
trace class, the spectrum of a sandwich chain is guaranteed to be bounded above by that of the
parent DA chain, with at least one strict inequality Khare and Hobert [26]. In the current set-
ting, since the MDA Markov chain is trace class (the latent state space is finite), the FS chain
is therefore guaranteed to be better mixing than the DA chain. To visualize or quantify the im-
provement, however, information on the actual spectra of the two chains is needed. Clearly, the
spectrum of the FS chain, similar to the MDA chain, can neither be evaluated analytically nor can
be estimated in exact RMA method of Adamczak and Bednorz [1], since the associated Markov
transition density is not available in closed form. Instead, we make use of MCRMA estimation,
as described in the following.

The usual sandwich representation (with three steps – two bread steps similar to MDA and
one additional meat step) of the FS algorithm does not furnish a Markov transition density in
the form (10); however, following Hobert, Roy and Robert [22], Section 5.2, one can represent
the algorithm as a DA algorithm with different joint (and hence, different full conditional), but
same marginal posterior distributions as MDA. In particular, the DA representation of the FS
algorithm entails iterative random generation of z from the conditional density π̃(z|θ ,y), and θ

from π̃ (θ |z,y), where

π̃ (θ |z,y) =
∫
Z

π
(
θ |z′,y

)
r
(
z,z′)dζ

(
z′)

and π̃ (z|θ ,y) = π(z|y)

π(θ |y)

∫
Z

π
(
θ |z′)r(z,z′)dζ

(
z′)

and r(z,z′) is the transition density (with respective to the counting measure ζ ) associated with
the intermediate meat step z → z′ in the sandwich representation of FS. Since the intermediate
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meat step is that of random label switchings, we have

r
(
z,z′) = 1

2
1{z}

(
z′) + 1

2
1{z̄}

(
z′),

where z̄ is z with its 1’s and 2’s flipped, and therefore,

π̃(θ |z,y) = 1

2
π(θ |z,y) + 1

2
π(θ |z̄,y) (25)

and

π̃(z|θ ,y) = 1

2
π(z|θ ,y) + 1

2
π(z̄|θ ,y) (26)

with (26) being a consequence of (24). Note that π̃ (θ |z,y) and π̃(z|θ ,y) are just half-half mix-
tures of standard densities, and can be easily sampled. The DA form of the FS algorithm is
formally displayed in Algorithm 6.

Similar to the MDA case, the spectrum of the Markov operator associated with the θ sub-chain
of an FS Markov chain can be studied through that of the Markov operator K̃∗ corresponding to
the z sub-chain. From the DA representation described in the previous paragraph, it follows that

Algorithm 6 The Frühwirth-Schnatter (FS) Gibbs Sampling algorithm (in the DA form)
Given a starting value (μ0,p0) for the parameter vector θ = (μ,p), iterate between the following
two steps:

(i) Draw independent z′
1, . . . , z

′
n with z′

i having a categorical probability distribution with
categories 1 and 2, and

P
(
z′
i = j

) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
pφ(

yi−μ1
τ

)

pφ(
yi−μ1

τ
) + (1 − p)φ(

yi−μ2
τ

)
if j = 1

(1 − p)φ(
yi−μ2

τ
)

pφ(
yi−μ1

τ
) + (1 − p)φ(

yi−μ2
τ

)
if j = 2

,

and call z′ = (z′
1, . . . , z

′
n). Now perform a Bernoulli experiment with probability of suc-

cess 0.5. If the experiment results in a success, define z = z′, or else define z = z̄′, where
z̄′ is z′ with its 1’s and 2’s flipped.

(ii) Perform another Bernoulli experiment with probability of success 0.5. Define z∗ = z if
the experiment results in a success, and z∗ = z̄ otherwise. Compute cj = ∑n

i=1 1{j}(z∗
i )

and ȳj = c−1
j

∑n
i=1 yi1{j}(z∗

i ) for j = 1,2. Then independently generate:
(a) p from Beta(c1 + 1, c2 + 1)
(b) μj from N(

cj

cj +1 ȳj ,
τ 2

cj +1 ) for j = 1,2.
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the Markov transition density associated with K̃∗ can be written as

k̃∗(z,z′) =
∫

X
π̃

(
z′|θ ,y

)
π̃(θ |z,y) dθ . (27)

Owing to the above representation and the facts that π̃ (z|θ ,y) is available in closed form, and
π̃ (θ |z,y) is easy to sample from, one can use the MCRMA method to estimate the spectrum of
K̃∗.

4.3.3. Simulation study

To illustrate the performance of the MCRMA method in estimating the spectra of K∗ and K̃∗ (the
MDA and FS Markov operators respectively), we consider a simulated dataset with sample size
n = 20 from the mixture density (20), with μ1 = 0, μ2 = 0.1, p = 0.5 and fixed τ = 0.1. Then,
with k-means estimates taken as the starting values, we separately generate 10,000 realizations
of MDA and FS Markov chains after discarding first 20,000 realizations as burn-in from each
chain. Then we extract the z sub-chains from the two MCMC samples and use them in the
MCRMA method to estimate their spectra. Note that the latent space Z in both algorithms consist
of 220 = 1,048,576 states, which means, each of the associated Markov operators corresponds
to a 1,048,576 × 1,048,576 matrix of transition probabilities. Hence, in order to find the true
eigenvalues, one needs to compute the eigenvalues of 1,048,576 × 1,048,576 matrices, which is
practically infeasible even though the state space is finite. However, the MCRMA method can
still be applied here to provide estimates, as we discuss in the following.

For each of the two Markov chains, we run 10 separate instances of MCRMA, with number of
Markov chain iterations m = 1000,2000, . . . ,10,000, and Monte Carlo sample size N = 5000, to
estimate the eigenvalues, and then create plots similar to Figure 4. Note that, because the latent
state space Z is finite, strong consitency of the MCRMA estimator is automatically ensured,
and no relationship between the rate of growth of N and m is required. For each of the two
chains, and for each of the 10 MCRMA instances, we record the first 21 estimated eigenvalues
(including the trivial eigenvalue λ0 = 1) and plot them in Figure 5. Figure 5(a) shows all 21
eigenvalues obtained from each of the 10 MCRMA instances and for each Markov chain, plotted
as 20 curves. The second, third, fourth, fifth and sixth largest estimated eigenvalues, viewed
as functions of the MCRMA iteration size m, are shown in Figures 5(b) through 5(f). From
these plots, it appears that the MCRMA estimates for the MDA chain show some instability.
Most of these estimates eventually stabilize, but it is interesting to note that the behavior of FS
spectrum estimates is much more stable than the corresponding MDA spectrum estimates, even
for smaller m’s. This is due to the fact that the FS chain is better mixing than the MDA chain,
which in turn, is a consequence of the theoretically proven fact that the true spectrum of the
MDA chain dominates that of the FS chain (see Section 4.3.2). As clearly displayed by the plots,
the MCRMA estimates also exhibit this dominance, and provides us a visual idea of the gains
achieved in the FS algorithm in terms of convergence and mixing.

Remark 4.2. It should be noted that the performance of MCRMA can be poor when the state
space of the Markov chain is finite, but extremely large, especially if the chain is poorly mixing.
Although the spectrum estimates are guaranteed to converge to the truth for any Markov chain
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Figure 5. Eigenvalue estimates for the MDA and FS Markov chains using the MCRMA algorithm.
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Figure 5. (Continued).

with a finite state space, in practice however, the value of m required for a reasonable approxima-
tion can be too large to handle (recall that we need to find the eigenvalues of an m × m matrix to
obtain the eigenvalue estimates). In our case, we tried running the MCRMA algorithm for MDA
and FS chains with n = 30 (more than a billion states), but the estimates did not show enough
signs of convergence with m ≤ 10,000.

5. Discussion

As stated in the Introduction, while bounding or estimating the spectral gap (or equivalently, the
second largest eigenvalue) has received a lot of attention over the past three decades, very few
methods have been proposed for accurately estimating the entire spectrum of Markov chains aris-
ing in modern applications. Building on the work of Koltchinskii and Giné [28], Adamczak and
Bednorz [1] develop an elegant method to estimate the spectrum of a trace class Markov operator
using random matrix approximations. However, this method requires closed form expressions for
the Markov transition density (and the stationary density), which is often unavailable in practice.
We consider the general class of Markov chains arising from trace class Data Augmentation al-
gorithms, where the transition density can typically only be expressed as an intractable integral.
We develop a Monte Carlo based random matrix approximation method to consistently estimate
the entire spectrum of the corresponding DA Markov operators.

The particular integral form of the DA transition density in (10) was critical in the develop-
ment of our method. This form enables us to provide Monte Carlo based approximations for the
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intractable Markov transition density. We are able to show in Theorem 3.1 that the eigenvalues
of the subsequently constructed random matrix still consistently estimates the desired spectrum.
Methods to approximate general intractable transition densities, which may not necessarily have
the integral form in (10), have been proposed in the literature, see, for example, Athreya and
Atuncar [4]. The next obvious question in this line of research is: if the intractable transition
densities appearing in the random matrix approximation of Adamczak and Bednorz [1] are re-
placed by approximations based on these methods, does that still lead to consistent estimates of
the desired spectrum? This is a challenging question, and will be investigated in future research.
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