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We study a nonparametric likelihood ratio test (NPLRT) for Gaussian mixtures. It is based on the nonpara-
metric maximum likelihood estimator in the context of demixing. The test concerns if a random sample
is from the standard normal distribution. We consider mixing distributions of unbounded support for al-
ternative hypothesis. We prove that the divergence rate of the NPLRT under the null is bounded by logn,
provided that the support range of the mixing distribution increases no faster than (logn/ log 9)1/2. We
prove that the rate of

√
logn is a lower bound for the divergence rate if the support range increases no

slower than the order of
√

logn. Implications of the upper bound for the rate of divergence are discussed.
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1. Introduction

Define the standard normal location-mixture density

fG(x) =
∫

ϕ(x − u)dG(u), (1.1)

where ϕ(x) = exp(−x2/2)/
√

2π is the standard normal density. Let G be the collection of all
distributions in the real line R and take F = {fG : G ∈ G} as the family of all standard normal
location-mixture densities. Let X1, . . . ,Xn be independent and identically distributed observa-
tions with probability density function f . We consider testing the null hypothesis that the sample
is generated from ϕ against the general alternative that the sample is from a mixture density
fG ∈ F other than ϕ. For f1, f2 ∈ F , the log-likelihood ratio is defined as

�n(f1, f2) =
n∑

i=1

log
f1(Xi)

f2(Xi)
.

Let Fn ⊂ F be a sequence of density families. For testing H0 : f = ϕ against H1 : f ∈ Fn \ {ϕ},
the nonparametric likelihood ratio test (NPLRT) statistic is

sup
f ∈Fn

�n(f,ϕ) = �n(f̂n, ϕ), (1.2)
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where f̂n = arg maxf ∈Fn

∏n
i=1 f (Xi) is the nonparametric maximum likelihood estimator

(NPMLE, Robbins [17]; Kiefer and Wolfowitz [13]) of normal mixture density. We are inter-
ested in the case where

Fn = {
fG : G

([−Mn,Mn]
) = 1

}
(1.3)

with Mn > 0, especially Mn → ∞.
The MLE in (1.2) is nonparametric in the sense that Fn is a family of “infinite Gaussian mix-

ture”, instead of the well-known finite mixtures. It is widely thought that the analysis of the
NPMLE is challenging (e.g., DasGupta [4], Chapter 33). What are the asymptotic properties of
the NPLRT? First of all, f̂n is consistent (Ghosal and van der Vaart [7]; Zhang [19]). Due to loss
of identifiability, the asymptotic distribution of the NPLRT is not the usual χ2 distribution. Harti-
gan [9] discovered that under the null, the NPLRT diverges to infinity in probability as Mn → ∞.
Jiang and Zhang [12] proved that when Fn = F , the rate of divergence is bounded by (logn)2.
Gu, Koenker and Volgushev [8] provided interesting numerical results for the asymptotic behav-
iors of the test under different settings. Liu and Shao [15] considered asymptotics of likelihood
ratio tests under loss of identifiability. Azaïs, Gassiat and Mercadier [2] considered the asymp-
totic null distribution of the NPLRT with mixing distributions of bounded support. See Section 4
for some asymptotic properties of the parametric LRT (PLRT).

The notation to be used is listed first for easy reference. We will use the abbreviation
Pf = Ef (X) for an integrable function f . Its empirical counterpart is denoted by Pnf =∑n

i=1 f (Xi)/n. In this paper, the expectation P is taken with respect to the standard normal den-
sity ϕ. For f ∈ Lp(P), define the Lp(P) norm as ‖f ‖p = {P(f p)}1/p = {∫ |f (x)|pϕ(x) dx}1/p .
The Hellinger distance between two densities f and g is defined as d2(f, g) = (1/2)

∫
(
√

f −√
g)2 dx. Given a collection F of L1(P) functions, the F -indexed empirical process νn is given

by {νnf = √
n(Pn − P)f,f ∈ F }. Throughout the paper, x ∧ y = min(x, y), x+ = max(x,0)

and an 	 bn means 0 < an/bn + bn/an = O(1).
The following theorem summarizes some results based on Ghosal and van der Vaart [7], Jiang

and Zhang [11] and Jiang and Zhang [12].

Theorem 1. There exists {fGj
,1 ≤ j ≤ Nn} ⊂ Fn and εn 	 n−1/2 logn such that logNn ≤ nε2

n,
max1≤j≤Nn d(fGj

,ϕ) ≤ εn and

sup
f ∈Fn

�n(f,ϕ) = (1 + ηn) sup
1≤j≤Nn

�n(fGj
,ϕ) ≤ nε2

n

with large probability, where |ηn| 	 1/n.

Theorem 1 says that the NPLRT is nearly achieved by a finite collection of Gaussian mixtures
{fGj

,1 ≤ j ≤ Nn} of manageable size. This collection can be regarded as approximate NPMLEs
such that d(fGj

,ϕ) ≤ εn for all 1 ≤ j ≤ Nn. In this paper, as mentioned in (1.3), we allow the
support range of mixing distribution goes to infinity. We prove that the order of the NPLRT in
(1.2) is bounded by logn in probability, provided that the support range of the mixing distribution
goes to infinity no faster than (logn/ log 9)1/2. This gives an upper bound. The discretization in
Theorem 1 is an element for the analysis of upper bound. We prove that the rate of

√
logn is a
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lower bound for the divergence rate if the support range increases no slower than the order of√
logn.
The rest of this paper is organized as follows. The Hermite polynomial expansion of Gaussian

mixtures is introduced in Section 2. In Section 3, we study the upper bound for the rate of
divergence of the NPLRT. The lower bound is given in Section 4. The implications of the rate of
divergence, some simulations and other mixtures are discussed in Section 5. Proofs are given in
Section 6.

2. The Hermite polynomial expansion

As in Azaïs, Gassiat and Mercadier [2], our analysis is based on the expansion of Gaussian
mixtures by Hermite polynomials. The Hermite polynomials are defined as

Hk(x) = (−1)kex2/2 dk

dxk
e−x2/2 (2.1)

with H0(x) = 1, H1(x) = x, H2(x) = x2 − 1, etc. It is well known that
∫

Hj(x)Hk(x)ϕ(x) dx =
k!I {j = k}. The Gaussian mixtures have the expansion

fG(x) = ϕ(x)

∞∑
k=0

μk(G)

k! Hk(x), (2.2)

where μk(G) = ∫
uk dG(u) is the kth moment of G. Let

hG(x) = fG(x)/ϕ(x) − 1

‖fG/ϕ − 1‖2
(2.3)

be the generalized score function (Liu and Shao [15]). Note that the likelihood ratio fG/ϕ is
square integrable. It follows from the expansion above that for fG �= ϕ,

hG(x) =
∞∑

k=1

ck(G)
Hk(x)√

k! , (2.4)

where ck(G) = {μk(G)/
√

k!}/{∑∞
j=1 μ2

j (G)/j !}1/2.
Define two envelope functions

F1,n(x) =
{

m∑
k=1

H 2
k (x)

k!

}1/2

and F2,n(x) =
∞∑

k=m+1

√
C0/Mne

−(k−M2
n)2/(4k) |Hk(x)|√

k! , (2.5)

where C0 is a suitable constant. The expansion in (2.4) and Lemma 1 below imply that for all
integers m ≥ M2

n ,

sup
G([−Mn,Mn])=1

hG(x) ≤ F1,n(x) + F2,n(x). (2.6)
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Lemma 1. Let ck(G) be the coefficients as in (2.4). There exists a positive constant C0 such that
for all G([−Mn,Mn]) = 1,

c2
k(G) ≤

(
C0

Mn

)
e−(k−M2

n)2/(2k), ∀k ≥ M2
n. (2.7)

Proof of (2.6). For all G([−Mn,Mn]) = 1, (2.4) and (2.7) lead to

hG(x) =
m∑

k=1

ck(G)
Hk(x)√

k! +
∞∑

k=m+1

ck(G)
Hk(x)√

k!

≤
{

m∑
k=1

H 2
k (x)/k!

}1/2

+
∞∑

k=m+1

√
C0/Mne

−(k−M2
n)2/(4k) |Hk(x)|√

k!
= F1,n(x) + F2,n(x).

This completes the proof of (2.6). �

Lemma 2. Let F1,n(x) and F2,n(x) be the envelope functions defined as in (2.5). Then,

(i) For all positive integers m, ‖F1,n‖2 = m1/2 and

‖F1,n‖4
4 ≤ 9m+1/8. (2.8)

(ii) There exists a constant C1 such that for all integers m satisfying (m − M2
n)/

√
m ≥ 2tn,

‖F2,n‖2 ≤
√

C0

Mn

∞∑
k=m+1

e−(k−M2
n)2/(4k) ≤ C1M

1/2
n e−t2

n . (2.9)

The upper bound of the fourth moment of the Hermite polynomials in (2.8) will be applied
in Lemma 3. Specifically, it is used to prove the uniform square integrability of hG when fG is
in a neighborhood of ϕ in Fn. This provides sufficient conditions for the equivalence between
the Hellinger distance d(f,ϕ) and the Pearson type L2 distance ‖f/ϕ − 1‖2. The detail of the
proofs of (2.8) is in Section 6. There, it is shown that

∫
H 4

k (x)ϕ(x) dx = (k!)2
k∑

l=0

(
k

l

)2(2l

l

)
≤ (k!)2

k∑
l=0

(
k

l

)2

22l = (k!)29k.

Since
(2l

l

) 	 22l/
√

l by Stirling’s formula, the base 9 in (2.8) is tight.
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3. Upper bound for the rate of divergence

Let {fGj
,1 ≤ j ≤ Nn} be the collection of Gaussian mixtures as in Theorem 1. Define ψ(x) =

2(x − log(1 + x)). We have ψ(x) ≥ 0 and

2�n(fGj
,ϕ) = 2nPn(fGj

/ϕ − 1) − nPnψ(fGj
/ϕ − 1). (3.1)

Suppose that we have the following condition,

Pnψ(fGj
/ϕ − 1) ≥ (

1 + oP(1)
)‖fGj

/ϕ − 1‖2
2, ∀1 ≤ j ≤ Nn. (3.2)

Let hj = (fGj
/ϕ − 1)/‖fGj

/ϕ − 1‖2. Then, when (3.2) holds,

2 max
1≤j≤Nn

�n(fGj
,ϕ)

≤ max
1≤j≤Nn

{
2nPn(fGj

/ϕ − 1) − (
1 + oP(1)

)
n‖fGj

/ϕ − 1‖2
2

}
= max

1≤j≤Nn

{
2
√

n‖fGj
/ϕ − 1‖2νn(hj ) − (

1 + oP(1)
)
n‖fGj

/ϕ − 1‖2
2

}
(3.3)

with large probability. The supremum of �n(f,ϕ) can be bounded by maximizing the quadratic
form of

√
n‖fGj

/ϕ − 1‖2 in (3.3), which can be written as

2 max
1≤j≤Nn

�n(fGj
,ϕ) ≤ (

1 + oP(1)
){

max
1≤j≤Nn

νn(hj )
}2

+. (3.4)

This approach was taken in Liu and Shao [15].

Theorem 2. Let Fn be as in (1.3). Suppose (3.2) holds. Then,

sup
f ∈Fn

�n(f,ϕ) = OP

(
M2

n

)
. (3.5)

Proof of Theorem 2. By (3.4), it suffices to bound {maxj≤Nn νn(hj )}2+. As in (2.4), we write
hj as hj = ∑∞

k=1 ck(Gj )Hk/
√

k!. It follows from (2.7) and (2.9) that for integers m satisfying
(m − M2

n)/
√

m ≥ 2tn, we have

P max
1≤j≤Nn

∣∣∣∣∣νn

( ∞∑
k=m+1

ck(Gj )Hk/
√

k!
)∣∣∣∣∣

≤
∞∑

k=m+1

√
C0/Mne

−(k−M2
n)2/(4k)

P
∣∣νn(Hk/

√
k!)∣∣

≤ C1M
1/2
n e−t2

n .
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In the last inequality we used the fact that P|νn(Hk/
√

k!)|2 = 1. Taking m such that tn =√
logMn, by the Markov inequality we have max1≤j≤Nn νn(

∑∞
k=m+1 ck(Gj )Hk/

√
k!) = oP(1).

Since (a + b)2 ≤ 2(a2 + b2), by Theorem 1 and (3.4),

2 sup
f ∈Fn

�n(f,ϕ) ≤ 2
(
1 + o(1)

)
max

1≤j≤Nn

�n(fGj
,ϕ)

≤ 2
(
1 + oP(1)

){
max

1≤j≤Nn

m∑
k=1

ck(Gj )νn(Hk/
√

k!)
}2

+
+ oP(1). (3.6)

Note that

P

{
max

1≤j≤Nn

m∑
k=1

ck(Gj )νn(Hk/
√

k!)
}2

+
≤ P

m∑
k=1

{
νn(Hk/

√
k!)}2 = m.

Hence by the Markov inequality{
max

1≤j≤Nn

m∑
k=1

ck(Gj )νn(Hk/
√

k!)
}2

+
= OP(m).

This, (3.6) and (m − M2
n)/

√
m ≥ 2tn = 2

√
logMn imply (3.5). �

Remark 1. The crucial elements that lead to Theorem 2 are the bounds for the coefficients
ck(G) in the Hermite polynomial expansion (2.4). They are established in Lemmas 1 and 2. The
consequence is that for the expansion of max1≤j≤Nn νn(hj ), the remainder beyond the mth term
is negligible. Because the order of m is as large as M2

n , the upper bound of the rate of divergence
is M2

n .

Theorem 3. Let Fn be as in (1.3). If Mn ≤ √
a0 logn with a0 < 1/ log 9, then (3.2) holds. Con-

sequently,

sup
f ∈Fn

�n(f,ϕ) = OP

(
M2

n ∧ (logn)
)
. (3.7)

It is known that the NPLRT with mixing distributions of unbounded support diverges to in-
finity in probability (Hartigan [9]). Jiang and Zhang [12] proved that the rate of divergence is of
equal or smaller order than (logn)2. Theorem 3 improves upon the rate to logn, provided that
the support range of mixing distribution goes to infinity no faster than (logn/ log 9)1/2. Clearly
the divergence rate is slow. Numerical results of the slow divergence of the critical values are
demonstrated in Gu, Koenker and Volgushev [8].

To prove Theorem 3, we need the following lemma which provides sufficient conditions for
the equivalence between the Hellinger distance d(f,ϕ) and the Pearson type L2 distance ‖f/ϕ−
1‖2.
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Lemma 3. Let εn and Cn be sequences of positive constants satisfying εnCn → 0. Suppose that

sup
f ∈Fn,d(f,ϕ)≤εn

∥∥∥∥( |f/ϕ − 1|
‖f/ϕ − 1‖2

− Cn

)
+

∥∥∥∥
2
→ 0. (3.8)

Then,

sup
f ∈Fn,d(f,ϕ)≤εn

∣∣∣∣1 − 2
√

2d(f,ϕ)

‖f/ϕ − 1‖2

∣∣∣∣ → 0. (3.9)

In particular, condition (3.8) holds when Fn = {fG : G([−Mn,Mn]) = 1} with Mn ≤ √
a0 logn

for any a0 < 1/ log 9.

For each f , there exists constants Cn such that ‖(|f/ϕ − 1|/‖f/ϕ − 1‖2 − Cn)+‖2 → 0.
When (3.8) holds, |f/ϕ − 1|/‖f/ϕ − 1‖2 is said to be uniformly square integrable over Fn ∩
{f : d(f,ϕ) ≤ εn}. Our proof of (3.8) essentially requires the condition that

∫
H 4

m(x)ϕ(x) dx �
n(m!)2 for m = M2

n(1 + o(1)) (see proof of Lemma 3). This condition holds iff Mn <√
logn/ log 9.

Proof of Theorem 3. Let

ψ−(x) =
{

2x − 2 log(1 + x) x > 0,

x2 x ≤ 0.
(3.10)

Let {fGj
,1 ≤ j ≤ Nn} be the collection of Gaussian mixtures as in Theorem 1. As ψ−(x) ≤

ψ(x) = 2(x − log(1 + x)), it suffices to prove that

inf
1≤j≤Nn

Pn

ψ−(fGj
/ϕ − 1)

‖fGj
/ϕ − 1‖2

2

≥ 1 + oP(1). (3.11)

We have 0 ≤ ψ−(x) ≤ x2 for all x. For σ > 0 and x > 0,

ψ−(σx) = 2
∫ σx

0

(
1 − 1

1 + t

)
dt = 2σ 2

∫ x

0

t

1 + σ t
dt ≥ 2σ 2

1 + σx

∫ x

0
t dt = (σx)2

1 + σx
.

This implies that for all x ∈R,

max
τ>0

x(x ∧ τ)

1 + στ
= x2

1 + σx+
≤ ψ−(σx)

σ 2
≤ x2. (3.12)

Then, (3.12) yields

0 ≤ hj (hj ∧ Cn)

1 + ‖fGj
/ϕ − 1‖2Cn

≤ ψ−(‖fGj
/ϕ − 1‖2hj )

‖fGj
/ϕ − 1‖2

2

= ψ−(fGj
/ϕ − 1)

‖fGj
/ϕ − 1‖2

2

≤ h2
j . (3.13)

Since M2
n ≤ a0 logn with a0 < 1/ log 9, it follows from Lemma 3 that 2d(fGj

,ϕ)/‖fGj
/ϕ −

1‖2 = 1 + o(1) uniformly. By Theorem 1, we assume without loss of generality that ‖fGj
/ϕ −
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1‖2 ≤ εn. Let Cn = 1/(εn logn), so that ‖fGj
/ϕ − 1‖2Cn ≤ εnCn → 0. Then, due to (3.13) and

Ph2
j = 1, (3.11) follows from

max
1≤j≤Nn

∣∣(Pn − P)
(
h2

j ∧ C2
n

)∣∣ = oP(1), (3.14)

and

P

{
max

1≤j≤Nn

Pn

(
h2

j − C2
n

)
+
}

= o(1). (3.15)

Since var(h2
j ∧C2

n) ≤ P(h2
j ∧C2

n)2 ≤ C2
nPh2

j = C2
n , the Bernstein’s inequality (van der Vaart and

Wellner [18], page 102) yields

P

{
max

1≤j≤Nn

∣∣(Pn − P)
(
h2

j ∧ C2
n

)∣∣ > t
}

≤ 2Nn exp

{
− nt2/2

C2
n + C2

nt/3

}
.

Since logNn ≤ nε2
n by Theorem 1 and n/C2

n = nε2
n(logn)2 � nε2

n, (3.14) holds. For (3.15), (2.6)
and (2.8) give that

P max
1≤j≤Nn

Pn

(
h2

j − C2
n

)
+ ≤ P max

1≤j≤Nn

Pn

(
2|hj | − Cn

)2
+

≤ 4P
{
(F1,n − Cn/2)+ + F2,n

}2

≤ 8P(F1,n − Cn/2)2+ + 8PF 2
2,n

≤ (
32/C2

n

)
PF 4

1,n + 8PF 2
2,n

≤ O(1)32m/C2
n + o(1).

In the last inequality we used (2.9) when (m−M2
n)/

√
m ≥ 2tn = 2

√
logMn. The right-hand side

above is o(1) by (6.9) in the proof of Lemma 3. Hence, (3.15) also holds. This completes the
proof of Theorem 3. �

4. Lower bound for the rate of divergence

To derive a lower bound, we may consider a subfamily F ′
n ⊂ Fn. Since supf ∈Fn

�n(f,ϕ) ≥
supf ∈F ′

n
�n(f,ϕ), any lower bound for supf ∈F ′

n
�n(f,ϕ) is a lower bound for supf ∈Fn

�n(f,ϕ).
Probably, the family of two-component Gaussian mixture is the most natural and simplest choice.
Let

H = {
(1 − p)ϕ(x) + pϕ(x − μ) : p ∈ [0,1],μ ∈R

}
. (4.1)

The parametric LRT (PLRT) statistic supf ∈H �n(f,ϕ) has been investigated in literature. Harti-
gan [9] discovered the PLRT statistic diverges to infinity in probability, and further conjectured
that the rate of divergence is log logn. Using a result in Bickel and Chernoff [3], Liu and Shao



3408 W. Jiang and C.-H. Zhang

[16] confirmed Hartigan’s conjecture, and further proved the asymptotic null distribution. Al-
though the class of mixtures with mixing distributions of unbounded support is considerably
larger than the class of two-component mixtures, the support range of the mixing distribution in
Theorem 3 increases no faster than (logn/ log 9)1/2. Hence, the rate of log logn cannot serve as
a lower bound for the rate of divergence directly. The next theorem shows that the

√
logn rate is

a lower bound if the support range increases no slower than the order of
√

logn.

Theorem 4. Let Fn be as in (1.3). For Mn = √
c0 logn with c0 > 0,

P

{
sup

f ∈Fn

�n(f,ϕ) � (logn)1/2
}

→ 0. (4.2)

Proof of Theorem 4. Let 0 = u0 < u1 ≤ · · · ≤ um = √
c0 logn for c0 > 0. Let G̃ be the mixing

distribution putting mass πj at uj for j = 1, . . . ,m, and the rest of the mass π0 at 0. Similar

to Bickel and Chernoff [3] and Liu and Shao [16], let πj = n−1/2wje
−u2

j /2 with random wj ,
j = 1, . . . ,m. For a single observation Xi , the likelihood ratio for N(uj ,1) against N(0,1) is

e
uj Xi−u2

j /2. The log-likelihood ratio for all data points can be written as

n∑
i=1

log
fG̃(Xi)

ϕ(Xi)
=

n∑
i=1

log

(
m∑

j=0

πje
uj Xi−u2

j /2

)

=
n∑

i=1

log

(
1 +

m∑
j=1

πj

(
e
uj Xi−u2

j /2 − 1
))

=
n∑

i=1

log

(
1 +

m∑
j=1

wjn
−1/2(euj Xi−u2

j /2 − 1
)
e
−u2

j /2

)
.

Let Zi,j = n−1/2(e
uj Xi−u2

j /2 − 1)e
−u2

j /2. Consider the case where |∑m
j=1 wjZi,j | ≤ 1/2. Let

f (x) = log(1 + x) − x + x2. Since f (0) = 0, f ′(x) ≤ 0 for −1/2 ≤ x ≤ 0 and f ′(x) > 0 for
0 < x ≤ 1/2, log(1 + x) − x ≥ −x2 for |x| ≤ 1/2. Thus,

n∑
i=1

log
fG̃(Xi)

ϕ(Xi)
≥

n∑
i=1

{
m∑

j=1

wjZi,j −
(

m∑
j=1

wjZi,j

)2}

=
m∑

j=1

wjSj −
m∑

j=1

m∑
k=1

wjwkUj,k, (4.3)

where

Sj =
n∑

i=1

Zi,j =
n∑

i=1

n−1/2(euj Xi−u2
j /2 − 1

)
e
−u2

j /2
,
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and

Uj,k =
n∑

i=1

Zi,jZi,k = 1

n

n∑
i=1

(
e
uj Xi−u2

j /2 − 1
)(

eukXi−u2
k/2 − 1

)
e
−u2

j /2−u2
k/2

.

Let wj = τ {sgn(Sj ) + 1}/2 with τ > 0. We have

m∑
j=1

wjSj −
m∑

j=1

m∑
k=1

wjwkUj,k ≥ τ

m∑
j=1

max(Sj ,0) − τ 2
m∑

j=1

m∑
k=1

|Uj,k|.

Since EetXi = et2/2, we have E|Uj,k| ≤ (e
(uj +uk)

2/2−u2
j /2−u2

k/2 +3)e
−u2

j /2−u2
k/2 ≤ 4e−(uj −uk)

2/2.
Let uj = j . Then,

E

m∑
j=1

m∑
k=1

|Uj,k| ≤ 4
m∑

j=1

m∑
k=1

e−(j−k)2/2 ≤ C1m.

Because E(e
uj Xi−u2

j /2 −1)e
−u2

j /2 = 0 and E{(euj Xi−u2
j /2 −1)e

−u2
j /2}2 = 1−e

−u2
j , Sj → N(0,1)

as j → ∞. Then, there exists a small constant τ such that

E

{
τ

m∑
j=1

max(Sj ,0) − τ 2
m∑

j=1

m∑
k=1

|Uj,k|
}

≥ τC2mE
(
N(0,1)

)
+ − τ 2C1m ≥ C3m.

Because the order of m is
√

logn, we find that

n∑
i=1

log
fG̃(Xi)

ϕ(Xi)
�

√
logn

with large probability.
It remains to verify that |∑m

j=1 wjZi,j | ≤ 1/2 with large probability. It suffices to consider
max |Xi | ≤ √

2 logn as it holds with large probability. We have,∣∣∣∣∣
m∑

j=1

wjZi,j

∣∣∣∣∣ =
∣∣∣∣∣

m∑
j=1

wjn
−1/2(euj Xi−u2

j /2 − 1
)
e
−u2

j /2

∣∣∣∣∣
≤ 2τn−1/2

m∑
j=1

e
uj

√
2 logn−u2

j

= 2τ

m∑
j=1

e−(uj −√
2 logn/2)2 ≤ C4τ.

The last inequality holds because for uj = j the summands decrease faster than geometric rate
from center. Taking a constant τ ≤ C4/2 gives that |∑m

j=1 wjZi,j | ≤ 1/2. This completes the
proof of Theorem 4. �
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In the proof, we set uj = j , so the number of support points is of order
√

logn. It is known
that the NPMLE is a mixture of at most n components (Lindsay [14]). However, putting denser
equal-spaced support points in support range does not improve the lower bound in our analysis.

Remark 2. It is unclear whether the exact rate of divergence of the NPLRT is
√

logn or logn, or
a rate between them. Our analyses for the upper and lower bounds are very different. The proof
of the upper bound is based on the expansion of the standardized likelihood ratio in the Hermite
polynomial basis in (2.4), which leads to the use of the fourth moment condition on the envelope
function F1,n as we remarked below the statement of Lemma 3. This seems to be cruder than the
lower bound analysis. However, we are unable to use the more natural expansion in the lower
bound calculation to derive an upper bound as the magnitude of wj is hard to control. In any
case, little is known about the NPMLE, in spite of Lindsay [14], Genovese and Wasserman [6],
Ghosal and van der Vaart [7], Zhang [19] and other studies in the literature.

5. Discussion

5.1. Implications of the upper bound

The divergence rate of the NPLRT was proved to be bounded by (logn)2 in Jiang and Zhang [12]
by a large deviation inequality:

PH0

{
n∑

i=1

log
f̂n(Xi)

ϕ(Xi)
≥ nε2

n

}
→ 0. (5.1)

This has an implication of the two-component testing problem:

H0 : f (x) = ϕ(x) against H
(n)
1 : f (x) = (1 − pn)ϕ(x) + pnϕ(x − μn). (5.2)

The alternative says only a small fraction of normal means is nonzero, and they have the same
value. In the sparse case, namely, 1/2 < β < 1, let pn = n−β and μn = √

2r logn be calibration.
Let ρ∗(β) = β − 1/2 if 1/2 < β ≤ 3/4, and ρ∗(β) = (1 − √

1 − β)2 otherwise. The detection
limit of (5.2) is given by ρ∗(β) (Ingster [10]; Donoho and Jin [5]). The NPLRT separates the null
and the alternative asymptotically in the “detectable region”, that is, r > ρ∗(β) (Jiang and Zhang
[12]).

The PLRT for contiguous alternative hypothesis was studied in Azaïs, Gassiat and Mercadier
[1]. This is the dense case of (5.2), where 0 < β ≤ 1/2 under pn = n−β . In the dense case,
μn is calibrated by μn = n−r . The detectable region is r < ρ∗(β) where ρ∗(β) = 1/2 − β .
When n1/2pnμn → γ ∈ R and μn → μ0 ∈ R, the asymptotic power of the PLRT is equal to
the asymptotic level (Azaïs, Gassiat and Mercadier [1]). This implies that in the case where
r = (1 + o(1))ρ∗(β), the PLRT cannot distinguish the null from the alternative asymptotically.
We provide a result which says the NPLRT is consistent in the interior of the detectable region.
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Theorem 5. Consider the testing problem (5.2) where 0 < β ≤ 1/2 under pn = n−β . Let μn =
n−r . Let q(n,α) be the critical value such that PH0{�n(f̂n, ϕ) > q(n,α)} = α. The rejection
region is �n(f̂n, ϕ) > q(n,α). Then

P
H

(n)
1

{
NPLRT in (1.2) rejects H0

} → 1, n → ∞

if and only if r < ρ∗(β) where ρ∗(β) = 1/2 − β .

If we let α → 0, then the sum of Type I and Type II errors tends to zero. So the NPLRT
separates the null and the alternative asymptotically in the detectable region.

5.2. Simulations

We provide some simulation results to compare the NPLRT and the PLRT. Because the log log n

rate of divergence is very slow, the asymptotic distribution is not directly applicable in computing
the critical values of the PLRT under the null. In our simulations, both the critical values of the
PLRT and the NPLRT under the null are simulated.

We first considered (5.2). We set (n,pn) = (1000,0.005). The corresponding sparse parameter
under pn = n−β is β = 0.767. We let the amplitude parameter μn range from 1.5 to 4 with an
increment of 0.25. We set the significance level α = 0.05. Table 1 displays the powers of the
NPLRT and the PLRT based on 1000 replications. The PLRT is slightly better than the NPLRT.
This is not surprising since the PLRT is the benchmark for (5.2).

We next considered testing H0 against the Gaussian hierarchical model. Under the alternative,
the non-standard normal observations are from N(μi,1) where μi ∼ N(0, τ 2). We set (n,pn) =
(1000,0.005) and (1000,0.01). We let τ range from 1 to 4.5 with an increment of 0.5. The results
are reported in Table 2. In this simulation, the NPLRT yields much stronger performance.

5.3. Other mixtures

The methods to derive the upper bound is applicable to multivariate Gaussian location mixtures.
For independent bivariate normal distribution with unit variances, the Gaussian mixtures have
the expansion

fG(x, y) = ϕ(x, y)

∞∑
j=0

∞∑
k=0

μj,k(G)

j !k! Hj(x)Hk(y), (5.3)

Table 1. Powers for (5.2) at level α = 0.05. (n,pn) = (1000,0.005)

μn

Method 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4

NPLRT 0.097 0.126 0.171 0.237 0.334 0.481 0.623 0.771 0.884 0.952 0.982
PLRT 0.096 0.127 0.189 0.279 0.398 0.535 0.681 0.817 0.919 0.968 0.990
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Table 2. The nonnull means are sampled from N(0, τ2). n = 1000, α = 0.05

τ

pn Method 1 1.5 2 2.5 3 3.5 4 4.5

0.005 NPLRT 0.060 0.150 0.309 0.482 0.649 0.758 0.855 0.894
PLRT 0.057 0.115 0.206 0.328 0.438 0.557 0.631 0.702

0.01 NPLRT 0.102 0.237 0.512 0.737 0.873 0.947 0.983 0.994
PLRT 0.080 0.173 0.363 0.539 0.686 0.778 0.860 0.898

where ϕ(x, y) = exp(−x2/2 − y2/2)/(2π) and μj,k(G) = ∫
ujvk dG(u, v) is the (j, k)th mo-

ment of G. The generalized score function hG(x, y) ≡ (fG(x, y)/ϕ(x, y) − 1)/‖fG/ϕ − 1‖2 is
expanded by

hG(x, y) =
∑

(j,k)�=(0,0)

cj,k(G)
Hj (x)√

j !
Hk(y)√

k! , (5.4)

where cj,k(G) = {μj,k(G)/
√

j !k!}/{∑(j,k)�=(0,0) μ
2
j,k(G)/(j !k!)}1/2. Let

F1,n(x, y) =
{

m1∑
j=1

m2∑
k=1

1

j !
1

k!H
2
j (x)H 2

k (y)

}1/2

. (5.5)

By analysis parallel to Lemmas 1 and 2, it can be shown that the cutoffs are m1 ≈ M2
n and

m2 ≈ M2
n . Similar analysis can be carried out in general fixed dimension.

The methods is potentially applicable to Poisson mixtures pG(x) = ∫
zxe−z/x!dG(z). We test

H0 : z = z0. The generalized score function can be expanded by the Charlier polynomials (Azaïs,
Gassiat and Mercadier [2]),

qG(x) = pG(x)/p0(x) − 1

‖pG/p0 − 1‖2
=

∞∑
k=1

bk(G)Ck(x), (5.6)

where bk(G) = {mk(G)/(k!zk
0)}/{

∑∞
j=1 m2

j (G)/(j !zj

0)}1/2, mk(G) = EG(z − z0)
k and

Ck(x) = zk
0

dk

dzk

(
z

z0

)x

e−z+z0

∣∣∣∣
z=z0

.

6. Proofs

Proof of Theorem 1. First of all, supf ∈Fn
�n(f,ϕ) ≤ nε2

n follows directly from Theorem 1 of
Jiang and Zhang [12].
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Let Fn = {fG : G([−Mn,Mn]) = 1}. Since ϕ ∈ Fn, we have �n(f̂n, ϕ) ≥ 0 ≥ −nε2
n. By the

proof of Theorem 1 of Zhang [19], the nonparametric MLE over Fn converges: P {d(f̂n, ϕ) ≥
εn} → 0, where εn 	 (logn)/

√
n. For any semi-distance d0, let Ball(h0, η, d0) ≡ {h : d0(h,h0) <

η} be the ball of radius η around h0. We consider the η-cover of Fn ∩ {f : d(f,ϕ) ≤ εn} for
η = 1/n3. It follows from Lemma 2 of Zhang [19] that there exists {fGj

,1 ≤ j ≤ Nn} ⊂ Fn ∩
{f : d(f,ϕ) ≤ εn} with logNn ≤ nε2

n such that for Mn 	 √
logn,

Fn ∩ {
f : d(f,ϕ) ≤ εn

} ⊂
Nn⋃
j=1

Ball
(
fGj

,1/n3,‖ · ‖∞,Mn

)
,

where ‖h‖∞,M = sup|x|≤M |h(x)| is the supreme norm in bounded intervals.

Proposition 2 of Jiang and Zhang [11] asserts that for all i = 1, . . . , n, f̂n(Xi) ≥ 1/(
√

2πen).
Then, for fGj

such that ‖f̂n − fGj
‖∞,Mn ≤ 1/n3, we have∣∣∣ sup

f ∈Fn

�n(f,ϕ) − �n(fGj
,ϕ)

∣∣∣
=

∣∣∣∣∣
n∑

i=1

(
logfGj

(Xi) − logϕ(Xi)
) −

n∑
i=1

(
log f̂n(Xi) − logϕ(Xi)

)∣∣∣∣∣
≤

∣∣∣∣∣
n∑

i=1

log

(
1 + ‖fGj

− f̂n‖∞,Mn

f̂n(Xi)

)∣∣∣∣∣
≤ √

2πe/n.

This and supf ∈Fn
�n(f,ϕ) ≥ χ2

1 imply that supf ∈Fn
�n(f,ϕ) = (1 + ηn) sup1≤j≤Nn

�n(fGj
,ϕ)

with large probability, where |ηn| 	 1/n. �

Proof of Lemma 1. We use C0 to denote a universal constant which may take different values
from one appearance to another.

Let m0 be an integer satisfying 2(m0 − 1) < M2
n ≤ 2m0. For j ≤ m0, μ2

2m0
(G) ≤

(M2
n)2m0−2jμ2

2j (G). So

∞∑
j=1

μ2
j (G)

j ! ≥
m0∑
j=1

μ2
2j (G)

(2j)! ≥ μ2
2m0

(G)

(2m0)!
m0∑
j=1

(2m0)!
(2j)!(M2

n)2m0−2j
. (6.1)

By Stirling’s formula,

m0∑
j=1

(2m0)!
(2j)!(M2

n)2m0−2j
= (2m0)!

M
4m0
n

m0∑
j=1

(M2
n)2j

(2j)!

≥
√

2πM2
n

M
4m0
n

(
M2

n

e

)2m0(
C0e

M2
n
) ≥ Mn

C0
. (6.2)
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Since μ2
k(G) ≤ (2m0)

k−2m0μ2
2m0

(G) for k ≥ 2m0, it follows from (6.1) and (6.2) that

c2
k(G) ≤ μ2

k(G)/k!
(Mn/C0)μ

2
2m0

(G)/(2m0)!
≤

(
C0

Mn

)
(2m0)

k−2m0(2m0)!/k!.

Since (2m0)
k−2m0(2m0)!/k! = ∏k−2m0

j=1 (1 − j/(2m0 + j)) ≤ e−(k−2m0)
2/(2k), (2.7) follows. �

Proof of Lemma 2. (i) First of all, ‖F1,n‖2
2 = m follows directly from

∫
Hj(x)Hk(x)ϕ(x) dx =

k!I {j = k}. We include a proof since it leads to the proof of (2.8). Due to

Hk(x) = (−1)kex2/2 dk

dtk
e−t2/2

∣∣∣∣
t=x

= ex2/2 dk

duk
e−(x−u)2/2

∣∣∣∣
u=0

= dk

duk
exu−u2/2

∣∣∣∣
u=0

,

the second moment of the Hermite polynomials can be computed via∫
Hj(x)Hk(x)ϕ(x) dx = ∂j

∂uj

∂k

∂vk

∫
exu−u2/2+xv−v2/2ϕ(x)dx

∣∣∣∣
u=v=0

= ∂j

∂uj

∂k

∂vk
euv

∣∣∣∣
u=v=0

= k!I {j = k}.
This gives the orthogonality. Similarly, the fourth moment of the Hermite polynomials can be
computed via∫ 4∏

j=1

Hkj
(x)ϕ(x) dx

=
(

4∏
j=1

∂kj

∂u
kj

j

)∫
exp

{ ∑
1≤j≤4

(
xuj − u2

j /2
)}

ϕ(x)dx

∣∣∣∣∣
u1=u2=u3=u4=0

=
(

4∏
j=1

∂kj

∂u
kj

j

)
exp{u1u2 + u1u3 + u1u4 + u2u3 + u2u4 + u3u4}

∣∣∣∣∣
u1=u2=u3=u4=0

. (6.3)

Let m = (k1 + k2 + k3 + k4)/2. Assume that m is an integer as the right-hand side above is zero
otherwise. Let k1 ≥ k2 ≥ k3 ≥ k4. We have k4 + k3 ≤ m and∫ 4∏

j=1

Hkj
(x)ϕ(x) dx
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= 1

m!

(
4∏

j=1

∂kj

∂u
kj

j

)( ∑
1≤j1<j2≤4

uj1uj2

)m
∣∣∣∣∣
u1=u2=u3=u4=0

= k4!
m!

(
m

k4

)(
3∏

j=1

∂kj

∂u
kj

j

)( ∑
1≤j≤3

uj

)k4
( ∑

1≤j1<j2≤3

uj1uj2

)m−k4
∣∣∣∣∣
u1=u2=u3=0

=
k4∑

l=0

k3!
(m − k4)!

(
k4

l

)(
m − k4

k3 − l

)(
2∏

j=1

∂kj

∂u
kj

j

)
(u1 + u2)

k4−l+(k3−l)(u1u2)
m−k4−(k3−l)

∣∣∣∣∣
u1=u2=0

=
k4∑

l=0

k3!
(m − k4)!

(
k4

l

)(
m − k4

k3 − l

)(
k4 + k3 − 2l

k2 − (m − k4 − k3 + l)

)
k2!k1!

=
k4∑

l=0

k1!k2!k3!k4!(k4 + k3 − 2l)!
l!(k4 − l)!(k3 − l)!(m − k3 − k4 + l)!(m − k2 − l)!(m − k1 − l)! . (6.4)

The above quantity is counted as zero when m < k1 + l. In particular, for k4 = k3 = k2 = k1,

∫
H 4

k (x)ϕ(x) dx = (k!)2
k∑

l=0

(
k

l

)2(2k − 2l

k − l

)

= (k!)2
k∑

l=0

(
k

k − l

)2(2k − 2l

k − l

)

= (k!)2
k∑

l=0

(
k

l

)2(2l

l

)

≤ (k!)2
k∑

l=0

(
k

l

)2

22l ≤ (k!)2

{
k∑

l=0

(
k

l

)
2l

}2

= (k!)29k. (6.5)

It follows that

‖F1,n‖4
4 =

∫ {
m∑

k=1

(
Hk(x)√

k!
)2

}2

ϕ(x)dx

=
∫ m∑

k=1

(
Hk(x)√

k!
)4

ϕ(x)dx =
m∑

k=1

∥∥∥∥ Hk√
k!

∥∥∥∥4

4
≤

m∑
k=1

9k ≤ 9m+1/8.

Since
(2l

l

) 	 22l/
√

l, the base 9 in (6.5) is tight.
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(ii) Let y = (x − M2
n)/

√
x. For x > m, we have

dx = 2dy

x−1/2 + M2
nx−3/2

= (2y + 2M2
n/x1/2) dy

1 + M2
n/x

≤
(

2y + 2M2
n/x1/2

1 + M2
n/x

)
dy ≤ (2y + Mn)dy. (6.6)

When x ≥ m, y = (x − M2
n)/

√
x ≥ (m − M2

n)/
√

m ≥ 2tn. By the triangle inequality and (6.6),

‖F2,n‖2 ≤
√

C0

Mn

∞∑
k=m+1

e−(k−M2
n)2/(4k)

≤ √
C0/Mn

∫ ∞

m

e−(x−M2
n)2/(4x) dx

≤ √
C0/Mn

∫ ∞

2tn

e−y2/4(2y + Mn)dy

≤ √
C0/Mn

(
4e−t2

n + Mne
−t2

n

∫ ∞

0
e−y2/4 dy

)
= C1M

1/2
n e−t2

n .

This completes the proof of (2.9). �

Proof of Lemma 3. Since

‖√f/ϕ − 1‖2
2 =

∫
(
√

f/ϕ − 1)2ϕ dx =
∫

(
√

f − √
ϕ)2 dx = 2d2(f,ϕ), (6.7)

we have

sup
f ∈Fn,d(f,ϕ)≤εn

∣∣∣∣1 − 2
√

2d(f,ϕ)

‖f/ϕ − 1‖2

∣∣∣∣ ≤ sup
f ∈Fn,d(f,ϕ)≤εn

∥∥∥∥ f/ϕ − 1

‖f/ϕ − 1‖2
− 2(

√
f/ϕ − 1)

‖f/ϕ − 1‖2

∥∥∥∥
2

(6.8)

by the triangle inequality. Let h = (f/ϕ−1)/‖f/ϕ−1‖2. Then, (3.8), (6.7) and εnCn → 0 imply
that

sup
f ∈Fn,d(f,ϕ)≤εn

∥∥∥∥ f/ϕ − 1

‖f/ϕ − 1‖2
− 2(

√
f/ϕ − 1)

‖f/ϕ − 1‖2

∥∥∥∥
2

= sup
f ∈Fn,d(f,ϕ)≤εn

∥∥∥∥√
f/ϕ − 1√
f/ϕ + 1

h

∥∥∥∥
2

= sup
f ∈Fn,d(f,ϕ)≤εn

∥∥∥∥√
f/ϕ − 1√
f/ϕ + 1

(|h| − Cn + Cn

)∥∥∥∥
2

≤ sup
f ∈Fn,d(f,ϕ)≤εn

{∥∥(|h| − Cn

)
+
∥∥

2 + √
2εnCn

} → 0.
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It remains to verify (3.8) for the specific Mn. For bounded Mn, (3.8) follows from the fact
that F1,n + F2,n for some fixed m is an L2 envelope function. Assume Mn → ∞. Let Cn =
1/(εn logn). Since (F1,n − Cn)+ ≤ F 2

1,n/Cn, by Lemma 2, when (m − M2
n)/

√
m ≥ 2tn =

2
√

logMn,

sup
f ∈Fn,d(f,ϕ)≤εn

∥∥∥∥( |f/ϕ − 1|
‖f/ϕ − 1‖2

− Cn

)
+

∥∥∥∥
2

≤ ∥∥(F1,n − Cn)+
∥∥

2 + ‖F2,n‖2

≤ ‖F1,n‖2
4/Cn + o(1)

≤ O(1)3m/Cn + o(1).

Thus, when M2
n ≤ a0 logn with a0 < 1/ log 9,

log
(
32m/C2

n

) = log
(
(logn)2ε2

n9m
)

≤ log
(
(logn)49m/n

) + O(1)

≤ (logn)
((

1 + o(1)
)
a0 log 9 − 1

) + O(log logn)

→ −∞. (6.9)

This completes the proof of Lemma 3. �

Proof of Theorem 5. Let G(n) = (1 − pn)δ0 + pnδμn where δμ is the probability distribution
giving its entire mass to μ. Using Theorem 2 of Jiang and Zhang [12], it remains to prove that
nd2(ϕ,fG(n) )/(logn)2 → ∞ if and only if r < 1/2 − β . Note that fG(n)(x) = (1 − pn)ϕ(x) +
pnϕ(x − μn). We divide the Hellinger distance into two parts:

2d2(ϕ,fG(n) ) =
∫ (√

ϕ(x) − √
(1 − pn)ϕ(x) + pnϕ(x − μn)

)2
dx

=
∫ (

1 −
√

1 − n−β + n−β exp
(
xμn − μ2

n/2
))2

ϕ(x)dx

=
∫ β

μn
logn+ μn

2

−∞
+

∫ +∞
β

μn
logn+ μn

2

�= I1 + I2. (6.10)

We first calculate I1. When x < (β/μn) logn + μn/2, the Taylor series gives that√
1 − n−β + n−β exp

(
xμn − μ2

n/2
) = 1 − 1

2

(
1 + o(1)

)
n−β

{
1 − exp

(
xμn − μ2

n

2

)}
.

Then,

I1 = (
1 + o(1)

)∫ β
μn

logn+ μn
2

−∞
1

4
n−2β

{
1 − exp

(
xμn − μ2

n

2

)}2

ϕ(x)dx
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= (
1 + o(1)

)1

4
n−2β

∫ β
μn

logn+ μn
2

−∞

{
1 − 2 exp

(
xμn − μ2

n

2

)
+ exp

(
2xμn − μ2

n

)}
ϕ(x)dx

�= (
1 + o(1)

)
(I3 + I4 + I5). (6.11)

Here

I3 = 1

4
n−2β�

(
β

μn

logn + μn

2

)
.

The cross term is

I4 ≡ −1

2
n−2β

∫ β
μn

logn+ μn
2

−∞
exp

(
xμn − μ2

n

2

)
ϕ(x)dx

= −1

2
n−2β�

(
β

μn

logn − μn

2

)
.

Some calculations show that

I5 ≡ 1

4
n−2β

∫ β
μn

logn+ μn
2

−∞
exp

(
2xμn − μ2

n

)
ϕ(x)dx

= 1

4
n−2β exp

(
n−2r

)
�

(
β

μn

logn − 3

2
μn

)
.

Putting I3, I4 and I5 together, we obtain

I3 + I4 + I5

= 1

4
n−2β

{
�

(
β

μn

logn + μn

2

)
− 2�

(
β

μn

logn − μn

2

)
+ exp

(
n−2r

)
�

(
β

μn

logn − 3

2
μn

)}
= 1

4

(
1 + o(1)

)
n−2β

(
exp

(
n−2r

) − 1
)

= 1

4

(
1 + o(1)

)
n−2r−2β.

This and (6.11) give that

I1 � (logn)2/n iff r <
1

2
− β. (6.12)

The analysis I2 is easier. When x ≥ (β/μn) logn + μn/2, the main term in the square root is
n−β exp(xμn − μ2

n/2). So

I2 ≡
∫ +∞

β
μn

logn+ μn
2

(
1 −

√
1 − n−β + n−β exp

(
xμn − μ2

n/2
))2

ϕ(x)dx
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= O(1)n−β

∫ +∞
β

μn
logn+ μn

2

exp

(
xμn − μ2

n

2

)
ϕ(x)dx

= O(1)n−β�
(
n−r/2 − βnr logn

)
� (logn)2/n. (6.13)

The last step is due to �(−x) = (1 + o(1))ϕ(x)/x.
Combining 2d2(ϕ,fG(n) ) = I1 + I2, (6.12) and (6.13), we have that d2(ϕ,fG(n) ) � (logn)2/n

if and only if r < 1/2 − β . �
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