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In this paper, we consider Meyer–Yoeurp decompositions for UMD Banach space-valued martingales.
Namely, we prove that X is a UMD Banach space if and only if for any fixed p ∈ (1,∞), any X-valued
Lp-martingale M has a unique decomposition M = Md + Mc such that Md is a purely discontinuous
martingale, Mc is a continuous martingale, Mc

0 = 0 and

E
∥∥Md∞

∥∥p +E
∥∥Mc∞

∥∥p ≤ cp,XE‖M∞‖p.

An analogous assertion is shown for the Yoeurp decomposition of a purely discontinuous martingales into
a sum of a quasi-left continuous martingale and a martingale with accessible jumps.

As an application, we show that X is a UMD Banach space if and only if for any fixed p ∈ (1,∞) and
for all X-valued martingales M and N such that N is weakly differentially subordinated to M , one has the
estimate E‖N∞‖p ≤ Cp,XE‖M∞‖p .

Keywords: accessible jumps; Brownian representation; Burkholder function; canonical decomposition of
martingales; continuous martingales; differential subordination; Meyer–Yoeurp decomposition; purely
discontinuous martingales; quasi-left continuous; stochastic integration; UMD Banach spaces; weak
differential subordination; Yoeurp decomposition

1. Introduction

It is well known from the fundamental paper of Itô [20] on the real-valued case, and several
works [1,2,5,13,32] on the vector-valued case, that for any Banach space X, any centered X-
valued Lévy process has a unique decomposition L = W + Ñ , where W is an X-valued Wiener
process, and Ñ is an X-valued weak integral with respect to a certain compensated Poisson
random measure. Moreover, W and Ñ are independent, and therefore since W is symmetric, for
each 1 < p < ∞ and t ≥ 0,

E‖Ñt‖p ≤ E‖Lt‖p. (1.1)

The natural generalization of this result to general martingales in the real-valued setting was
provided by Meyer in [29] and Yoeurp in [44]. Namely, it was shown that any real-valued mar-
tingale M can be uniquely decomposed into a sum of two martingales Md and Mc such that Md

is purely discontinuous (i.e., the quadratic variation [Md ] has a pure jump version), and Mc is
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continuous with Mc
0 = 0. The reason why they needed such a decomposition is a further decom-

position of a semimartingale, and finding an exponent of a semimartingale (we refer the reader
to [23] and [44] for the details on this approach). In the present article, we extend Meyer–Yoeurp
theorem to the vector-valued setting, and provide extension of (1.1) for a general martingale (see
Section 3.1). Namely, we prove that for any UMD Banach space X and any 1 < p < ∞, an X-
valued Lp-martingale M can be uniquely decomposed into a sum of two martingales Md and Mc

such that Md is purely discontinuous (i.e., 〈Md,x∗〉 is purely discontinuous for each x∗ ∈ X∗),
and Mc is continuous with Mc

0 = 0. Moreover, then for each t ≥ 0,

(
E

∥∥Md
t

∥∥p) 1
p ≤ βp,X

(
E‖Mt‖p

) 1
p ,

(
E

∥∥Mc
t

∥∥p) 1
p ≤ βp,X

(
E‖Mt‖p

) 1
p , (1.2)

where βp,X is the UMDp constant of X (see Section 2.1). Theorem 3.33 shows that such a
decomposition together with Lp-estimates of type (1.2) is possible if and only if X has the UMD
property.

The purely discontinuous part can be further decomposed: in [44] Yoeurp proved that any
real-valued purely discontinuous Md can be uniquely decomposed into a sum of a purely dis-
continuous quasi-left continuous martingale Mq (analogous to the “compensated Poisson part”,
which does not jump at predictable stopping times), and a purely discontinuous martingale with
accessible jumps Ma (analogous to the “discrete part”, which jumps only at certain predictable
stopping times). In Section 3.2, we extend this result to a UMD space-valued setting with appro-
priate estimates. Namely, we prove that for each 1 < p < ∞ the same type of decomposition is
possible and unique for an X-valued purely discontinuous Lp-martingale Md , and then for each
t ≥ 0, (

E
∥∥M

q
t

∥∥p) 1
p ≤ βp,X

(
E

∥∥Md
t

∥∥p) 1
p ,

(
E

∥∥Ma
t

∥∥p) 1
p ≤ βp,X

(
E

∥∥Md
t

∥∥p) 1
p . (1.3)

Again as Theorem 3.33 shows, the (1.3)-type estimates are a possible only in UMD Banach
spaces.

Even though the Meyer–Yoeurp and Yoeurp decompositions can be easily extended from the
real-valued case to a Hilbert space case, the author could not find the corresponding estimates
of type (1.2)–(1.3) in the literature, so we wish to present this special issue here. If H is a
Hilbert space, M :R+ × � → H is a martingale, then there exists a unique decomposition of M

into a continuous part Mc , a purely discontinuous quasi-left continuous part Mq , and a purely
discontinuous part Ma with accessible jumps. Moreover, then for each 1 < p < ∞, and for
i = c, q, a, (

E
∥∥Mi

t

∥∥p) 1
p ≤ (

p∗ − 1
)(
E‖Mt‖p

) 1
p , (1.4)

where p∗ = max{p,
p

p−1 }. Notice that though (1.4) follows from (1.2)–(1.3) since βp,H = p∗ −
1, it can be easily derived from the differential subordination estimates for Hilbert space-valued
martingales obtained by Wang in [38].

Both the Meyer–Yoeurp and Yoeurp decompositions play a significant rôle in stochastic inte-
gration: if M = Mc + Mq + Ma is a decomposition of an H -valued martingale M into continu-
ous, purely discontinuous quasi-left continuous and purely discontinuous with accessible jumps
parts, and if � :R+ × � → L(H,X) is elementary predictable for some UMD Banach space X,
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then the decomposition � ·M = � ·Mc +� ·Mq +� ·Ma of a stochastic integral � ·M is a de-
composition of the martingale � ·M into continuous, purely discontinuous quasi-left continuous
and purely discontinuous with accessible jumps parts, and for any 1 < p < ∞ we have that

E
∥∥(� · M)∞

∥∥p
�p,X E

∥∥(
� · Mc

)
∞

∥∥p +E
∥∥(

� · Mq
)
∞

∥∥p +E
∥∥(

� · Ma
)
∞

∥∥p
.

The corresponding Itô isomorphism for � · Mc for a general UMD Banach space X was derived
by Veraar and the author in [37], while Itô isomorphisms for � ·Mq and � ·Ma have been shown
by Dirksen and the author in [14] for the case X = Lr(S), 1 < r < ∞.

The major underlying techniques involved in the proofs of (1.2) and (1.3) are rather different
from the original methods of Meyer in [29] and Yoeurp in [44]. They include the results on the
differentiability of the Burkholder function of any finite dimensional Banach space, which have
been proven recently in [41] and which allow us to use Itô formula in order to show the desired
inequalities in the same way as it was demonstrated by Wang in [38].

The main application of the Meyer–Yoeurp decomposition are Lp-estimates for weakly dif-
ferentially subordinated martingales. The weak differential subordination property was intro-
duced by the author in [41], and can be described in the following way: an X-valued martingale
N is weakly differentially subordinated to an X-valued martingale M if for each x∗ ∈ X∗ a.s.
|〈N0, x

∗〉| ≤ |〈M0, x
∗〉| and for each t ≥ s ≥ 0[〈

N,x∗〉]
t
− [〈

N,x∗〉]
s
≤ [〈

M,x∗〉]
t
− [〈

M,x∗〉]
s
.

If both M and N are purely discontinuous, and if X is a UMD Banach space, then by [41], for
each 1 < p < ∞ we have that E‖N∞‖p ≤ β

p
p,XE‖M∞‖p . Section 4 is devoted to the general-

ization of this result to continuous and general martingales. There we show that if both M and
N are continuous, then E‖N∞‖p ≤ c

p
p,XE‖M∞‖p , where the least admissible cp,X is within the

interval [βp,X,β2
p,X]. Furthermore, using the Meyer–Yoeurp decomposition and estimates (1.2)

we show that for general X-valued martingales M and N such that N is weakly differentially
subordinated to M the following holds(

E‖N∞‖p
) 1

p ≤ β2
p,X(βp,X + 1)

(
E‖M∞‖p

) 1
p .

The weak differential subordination as a stronger version of the differential subordination is
of interest in Harmonic Analysis. For instance, it was shown in [41] that sharp Lp-estimates
for weakly differentially subordinated purely discontinuous martingales imply sharp estimates
for the norms of a broad class of Fourier multipliers on Lp(Rd ;X). Also there is a strong con-
nection between the weak differential subordination of continuous martingales and the norm of
the Hilbert transform on Lp(R;X) (see [41] and Remark 4.6).

Alternative approaches to Fourier multipliers for functions with values in UMD spaces have
been constructed from the differential subordination for purely discontinuous martingales (see
Bañuelos and Bogdan [4], Bañuelos, Bogdan and Bielaszewski [3], and recent work [41]), and
for continuous martingales (see McConnell [26] and Geiss, Montgomery-Smith and Saksman
[18]). It remains open whether one can combine these two approaches using the general weak
differential subordination theory.
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2. Preliminaries

In the sequel, we will omit proofs of some statements marked with a star (e.g., Lemma∗,
Theorem∗, etc.). Please find the corresponding proofs in the Supplement [43].

We set the scalar field to be R. We will use the Kronecker symbol δij , which is defined in the
following way: δij = 1 if i = j , and δij = 0 if i �= j . For each p ∈ (1,∞) we set p′ ∈ (1,∞) and
p∗ ∈ [2,∞) to be such that 1

p
+ 1

p′ = 1 and p∗ = max{p,p′}. We set R+ := [0,∞).

2.1. UMD Banach spaces

A Banach space X is called a UMD space if for some (equivalently, for all) p ∈ (1,∞) there
exists a constant β > 0 such that for every n ≥ 1, every martingale difference sequence (dj )

n
j=1

in Lp(�;X), and every {−1,1}-valued sequence (εj )
n
j=1 we have

(
E

∥∥∥∥∥
n∑

j=1

εj dj

∥∥∥∥∥
p) 1

p

≤ β

(
E

∥∥∥∥∥
n∑

j=1

dj

∥∥∥∥∥
p) 1

p

.

The least admissible constant β is denoted by βp,X and is called the UMD constant. It is well
known (see [19], Chapter 4) that βp,X ≥ p∗ − 1 and that βp,H = p∗ − 1 for a Hilbert space H .
We refer the reader to [10,19,30,33] for details.

The following proposition is a vector-valued version of [11], Theorem 4.1.

Proposition 2.1. Let X be a Banach space, p ∈ (1,∞). Then X has the UMD property if and
only if there exists C > 0 such that for each n ≥ 1, for every martingale difference sequence
(dj )

n
j=1 in Lp(�;X), and every sequence (εj )

n
j=1 such that εj ∈ {0,1} for each j = 1, . . . , n we

have (
E

∥∥∥∥∥
n∑

j=1

εj dj

∥∥∥∥∥
p) 1

p

≤ C

(
E

∥∥∥∥∥
n∑

j=1

dj

∥∥∥∥∥
p) 1

p

.

If this is the case, then the least admissible C is in the interval [βp,X−1
2 , βp,X].

2.2. Martingales and stopping times in continuous time

Let (�,F,P) be a probability space with a filtration F = (Ft )t≥0 which satisfies the usual con-
ditions. Then F is right-continuous, and the following proposition holds (see [41]).

Proposition 2.2. Let X be a Banach space. Then any martingale M : R+ ×� → X has a càdlàg
version
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Let 1 ≤ p ≤ ∞. A martingale M :R+ ×� → X is called an Lp-martingale if Mt ∈ Lp(�;X)

for each t ≥ 0, there exists an a.s. limit M∞ := limt→∞ Mt , M∞ ∈ Lp(�;X) and Mt → M∞ in
Lp(�;X) as t → ∞. We will denote the space of all X-valued Lp-martingales on � by Mp

X(�).
For brevity, we will use Mp

X instead. Notice that Mp
X is a Banach space with the given norm:

‖M‖Mp
X

:= ‖M∞‖Lp(�;X) (see [21,23] and [19], Chapter 1).

Proposition∗ 2.3. Let X be a Banach space with the Radon–Nikodým property (e.g., reflexive),

1 < p < ∞. Then (Mp
X)∗ =Mp′

X∗ , and ‖M‖(Mp
X)∗ = ‖M‖Mp′

X∗
for each M ∈ Mp′

X∗ .

A random variable τ : � → R+ is called an optional stopping time (or just a stopping time)
if {τ ≤ t} ∈ Ft for each t ≥ 0. With an optional stopping time τ , we associate a σ -field Fτ =
{A ∈ F∞ : A ∩ {τ ≤ t} ∈ Ft , t ∈ R+}. Note that Mτ is strongly Fτ -measurable for any local
martingale M . We refer to [23], Chapter 7, for details.

Due to the existence of a càdlàg version of a martingale M : R+ × � → X, we can define
an X-valued random variables Mτ− and 	Mτ for any stopping time τ in the following way:
Mτ− = limε→0 M(τ−ε)∨0, 	Mτ = Mτ − Mτ−.

2.3. Quadratic variation

Let (�,F,P) be a probability space with a filtration F = (Ft )t≥0 that satisfies the usual condi-
tions, H be a Hilbert space. Let M : R+ × � → H be a local martingale. We define a quadratic
variation of M in the following way:

[M]t := P− lim
mesh→0

N∑
n=1

∥∥M(tn) − M(tn−1)
∥∥2

, (2.1)

where the limit in probability is taken over partitions 0 = t0 < · · · < tN = t . Note that [M] exists
and is nondecreasing a.s. The reader can find more on quadratic variations in [27,28] for the
vector-valued setting, and in [23,28,31] for the real-valued setting.

For any martingales M,N :R+ ×� → H we can define a covariation [M,N ] : R+ ×� → R

as [M,N ] := 1
4 ([M +N ]−[M −N ]). Since M and N have càdlàg versions, [M,N ] has a càdlàg

version as well (see [22] and [27], Theorem I.4.47).

Remark 2.4 ([27]). The process 〈M,N〉 − [M,N ] is a local martingale.

2.4. Continuous martingales

Let X be a Banach space. A martingale M : R+ × � → X is called continuous if M has contin-
uous paths.

Remark 2.5 ([23,28]). If X is a Hilbert space, M,N : R+ ×� → X are continuous martingales,
then [M,N ] has a continuous version.
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Let 1 ≤ p ≤ ∞. We will denote the linear space of all continuous X-valued Lp-martingales
on � which start at zero by Mp,c

X (�). For brevity we will write Mp,c
X instead of Mp,c

X (�) since
� is fixed. Analogously to [23], Lemma 17.4, by applying Doob’s maximal inequality [19],
Theorem 3.2.2, one can show the following proposition.

Proposition 2.6. Let X be a Banach space, p ∈ (1,∞). Then Mp,c
X is a Banach space with the

following norm: ‖M‖Mp,c
X

:= ‖M∞‖Lp(�;X).

2.5. Purely discontinuous martingales

An increasing càdlàg process A : R+ × � → R is called pure jump if a.s. for each t ≥ 0, At =
A0 + ∑t

s=0 	As . A local martingale M : R+ × � → R is called purely discontinuous if [M] is
a pure jump process. The reader can find more on purely discontinuous martingales in [22,23].
We leave the following evident lemma without proof.

Lemma 2.7. Let A : R+ × � →R+ be an increasing adapted càdlàg process such that A0 = 0.
Then there exist unique up to indistinguishability increasing adapted càdlàg processes Ac,Ad :
R+ × � → R+ such that Ac is continuous a.s., Ad is pure jump a.s., Ac

0 = Ad
0 = 0 and A =

Ac + Ad .

Remark 2.8. According to the works [29] by Meyer and [44] by Yoeurp (see also [23], Theo-
rem 26.14), any martingale M :R+ ×� →R can be uniquely decomposed into a sum of a purely
discontinuous local martingale Md and a continuous local martingale Mc such that Mc

0 = 0.
Moreover, [M]c = [Mc] and [M]d = [Md ], where [M]c and [M]d are defined as in Lemma 2.7.

Corollary 2.9. Let M : R+ × � → R be a martingale which is both continuous and purely
discontinuous. Then M = M0 a.s.

Proposition∗ 2.10. A martingale M : R+ × � → R is purely discontinuous if and only if MN

is a martingale for any continuous bounded martingale N : R+ × � → R with N0 = 0.

Note that some authors take this equivalent condition as the definition of a purely discontinu-
ous martingale, see, for example, [22], Definition I.4.11, and [21], Chapter I.

Definition 2.11. Let X be a Banach space, M : R+ × � → X be a local martingale. Then M is
called purely discontinuous if for each x∗ ∈ X∗ the local martingale 〈M,x∗〉 is purely discontin-
uous.

Remark 2.12. Let X be finite dimensional. Then similarly to Remark 2.8 any martingale M :
R+ ×� → X can be uniquely decomposed into a sum of a purely discontinuous local martingale
Md and a continuous local martingale Mc such that Mc

0 = 0.
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Remark 2.13. Analogously to Proposition 2.10, a martingale M : R+ × � → X is purely dis-
continuous if and only if 〈M,x∗〉N is a martingale for any x∗ ∈ X∗ and any continuous bounded
martingale N : R+ × � → R such that N0 = 0.

Let p ∈ [1,∞]. We will denote the linear space of all purely discontinuous X-valued Lp-
martingales on � by Mp,d

X (�). Since � is fixed, we will use Mp,d
X instead. The scalar case of

the next result have been presented in [21], Lemme I.2.12.

Proposition 2.14. Let X be a Banach space, p ∈ (1,∞). Then Mp,d
X is a Banach space with a

norm defined as follows: ‖M‖Mp,d
X

:= ‖M∞‖Lp(�;X).

Proof. Let (Mn)n≥1 be a sequence of purely discontinuous X-valued Lp-martingales such that
(Mn∞)n≥1 is a Cauchy sequence in Lp(�;X). Let ξ ∈ Lp(�;X) be such that limn→∞ Mn∞ = ξ .
Define a martingale M : R+ × � → X as follows: M = (Ms)s≥0 = (E(ξ |Fs))s≥0. Let us show
that M ∈ Mp,d

X . First, notice that ‖M∞‖Lp(�;X) = ‖ξ‖Lp(�;X) < ∞. Further for each x∗ ∈ X∗
by [21], Lemme I.2.12, we have that 〈M,x∗〉 as a limit of real-valued purely discontinuous
martingales (〈Mn,x∗〉)n≥1 in Mp

R
is purely discontinuous. Therefore, M is purely discontinuous

by the definition. �

Lemma 2.15. Let X be a Banach space, M :R+ × � → X be a martingale such that M is both
continuous and purely discontinuous. Then M = M0 a.s.

Proof. Follows analogously Corollary 2.9. �

2.6. Time-change

A nondecreasing, right-continuous family of stopping times τ = (τs)s≥0 is called a random time-
change. If F is right-continuous, then according to [23], Lemma 7.3, the same holds true for the
induced filtration G = (Gs)s≥0 = (Fτs )s≥0 (see more in [23], Chapter 7). Let X be a Banach
space. A martingale M : R+ × � → X is said to be τ -continuous if M is an a.s. constant on
every interval [τs−, τs], s ≥ 0, where we let τ0− = 0.

Theorem∗ 2.16. Let A : R+ × � → R+ be a strictly increasing continuous predictable process
such that A0 = 0 and At → ∞ as t → ∞ a.s. Let τ = (τs)s≥0 be a random time-change defined
as τs := {t : At = s}, s ≥ 0. Then (A ◦ τ)(t) = (τ ◦ A)(t) = t a.s. for each t ≥ 0. Let G =
(Gs)s≥0 = (Fτs )s≥0 be the induced filtration. Then (At )t≥0 is a random time-change with respect
to G and for any F-martingale M : R+ × � → R the following holds

(i) M ◦ τ is a continuous G-martingale if and only if M is continuous, and
(ii) M ◦ τ is a purely discontinuous G-martingale if and only if M is purely discontinuous.
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2.7. Stochastic integration

Let X be a Banach space, H be a Hilbert space. For each h ∈ H , x ∈ X we denote the linear
operator g �→ 〈g,h〉x, g ∈ H , by h⊗x. The process � : R+×� → L(H,X) is called elementary
progressive with respect to the filtration F= (Ft )t≥0 if it is of the form

�(t,ω) =
K∑

k=1

M∑
m=1

1(tk−1,tk]×Bmk
(t,ω)

N∑
n=1

hn ⊗ xkmn, t ≥ 0,ω ∈ �, (2.2)

where 0 ≤ t0 < · · · < tK < ∞, for each k = 1, . . . ,K the sets B1k, . . . ,BMk are in Ftk−1 and the
vectors h1, . . . , hN are orthogonal. Let M : R+ × � → H be a martingale. Then we define the
stochastic integral � · M : R+ × � → X of � with respect to M as follows:

(� · M)t =
K∑

k=1

M∑
m=1

1Bmk

N∑
n=1

〈(
M(tk ∧ t) − M(tk−1 ∧ t)

)
, hn

〉
xkmn, t ≥ 0. (2.3)

We will need the following lemma on stochastic integration (see [41]).

Lemma 2.17. Let d be a natural number, H be a d-dimensional Hilbert space, p ∈ (1,∞),
M,N : R+ × � → H be Lp-martingales, F : H → H be a measurable function such that
‖F(h)‖ ≤ C‖h‖p−1 for each h ∈ H and some C > 0. Define N− : R+ × � → H by (N−)t =
Nt−, t ≥ 0. Then F(N−) · M is a martingale and for each t ≥ 0

E
∣∣(F(N−) · M)

t

∣∣ �p,d C
(
E‖Nt‖p

) p−1
p

(
E‖Mt‖p

) 1
p . (2.4)

2.8. Multidimensional Wiener process

Let d be a natural number. W : R+ ×� → R
d is called a standard d-dimensional Wiener process

if 〈W,h〉 is a standard Wiener process for each h ∈ R
d such that ‖h‖ = 1. The following lemma

is a multidimensional variation of [24], (3.2.19).

Lemma 2.18. Let X = R, d ≥ 1, W be a standard d-dimensional Wiener process, �,� : R+ ×
� → L(Rd,R) be elementary progressive. Then for all t ≥ 0 a.s.

[� · W,� · W ]t =
∫ t

0

〈
�∗(s),�∗(s)

〉
ds.

The reader can find more on stochastic integration with respect to a Wiener process in the
Hilbert space case in [12], in the case of Banach spaces with a martingale type 2 in [7], and
in the UMD case in [35]. Notice that the last mentioned work provides sharp Lp-estimates for
stochastic integrals for the broadest till now known class of spaces.
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2.9. Brownian representation

The following theorem can be found in [24], Theorem 3.4.2 (see also [34,39]).

Theorem 2.19. Let d ≥ 1, M : R+ × � → R
d be a continuous martingale such that [M] is a.s.

absolutely continuous with respect to the Lebesgue measure on R+. Then there exist an enlarged
probability space (�̃, F̃, P̃) with an enlarged filtration F̃ = (F̃t )t≥0, a d-dimensional standard
Wiener process W : R+ × �̃ → R

d which is defined on the filtration F̃, and an F̃-progressively
measurable � :R+ × �̃ → L(Rd) such that M = � · W .

2.10. Lebesgue measure

Let X be a finite dimensional Banach space. Then according to Theorem 2.20 and Propo-
sition 2.21 in [16] there exists a unique translation-invariant measure λX on X such that
λX(BX) = 1 for the unit ball BX of X. We will call λX the Lebesgue measure.

3. UMD Banach spaces and martingale decompositions

Let X be a Banach space, 1 < p < ∞. In this section, we will show that the Meyer–Yoeurp and
Yoeurp decompositions for X-valued Lp-martingales take place if and only if X has the UMD
property.

3.1. Meyer–Yoeurp decomposition in UMD case

This subsection is devoted to the generalization of Meyer–Yoeurp decomposition (see Re-
mark 2.8) to the UMD Banach space case:

Theorem 3.1 (Meyer–Yoeurp decomposition). Let X be a UMD Banach space, p ∈ (1,∞),
M : R+ × � → X be an Lp-martingale. Then there exist unique martingales Md,Mc : R+ ×
� → X such that Md is purely discontinuous, Mc is continuous, Mc

0 = 0 and M = Md + Mc .
Moreover, then for all t ≥ 0(

E
∥∥Md

t

∥∥p) 1
p ≤ βp,X

(
E‖Mt‖p

) 1
p ,

(
E

∥∥Mc
t

∥∥p) 1
p ≤ βp,X

(
E‖Mt‖p

) 1
p . (3.1)

The proof of the theorem consists of several steps. First we introduce the main tool of our
proof – the Burkholder function.

Definition 3.2. Let E be a linear space with a scalar field R.

(i) A function f : E × E → R is called biconcave if for each x, y ∈ E one has that the
mappings e �→ f (x, e) and e �→ f (e, y) are concave.

(ii) A function f : E × E → R is called zigzag-concave if for each x, y ∈ E and ε ∈ R such
that |ε| ≤ 1, the function z �→ f (x + z, y + εz) is concave.
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The following theorem is a small variation of [9] and [19], Theorem 4.5.6, and has been proven
in [41].

Theorem 3.3 (Burkholder). For a Banach space X the following are equivalent

1. X is a UMD Banach space;
2. for each p ∈ (1,∞) there exists a constant β and a zigzag-concave function U : X × X →

R such that

U(x, y) ≥ ‖y‖p − βp‖x‖p, x, y ∈ X. (3.2)

The smallest admissible β for which such U exists is βp,X .

Remark 3.4. Fix a UMD space X and p ∈ (1,∞). A special zigzag-concave function U from
Theorem 3.3 have been obtained in [19], Theorem 4.5.6. We will call this function the Burkholder
function. For the convenience of the reader we leave out the construction of the Burkholder
function. The following properties of the Burkholder function U were demonstrated in [41],
Section 3:

(A) U(αx,αy) = |α|pU(x, y) for all x, y ∈ X, α ∈R.
(B) U(x,αx) ≤ 0 for all x ∈ X, α ∈ [−1,1].
(C) U is continuous.

Remark 3.5. Fix a UMD space X and p ∈ (1,∞). Let the Burkholder function U be as in
Remark 3.4. Then there exists a biconcave function V : X × X → R such that

V (x, y) = U

(
x − y

2
,
x + y

2

)
, x, y ∈ X. (3.3)

In [41], Section 3, the following properties of V have been explored:

(A) For each x, y ∈ X and a, b ∈ R such that |a + b| ≤ |a − b| one has that the function

z �→ V (x + az, y + bz) = U

(
x − y

2
+ (a − b)z

2
,
x + y

2
+ (a + b)z

2

)
is concave.

(B) V is continuous.
(C) Let X be finite dimensional. Then x �→ V (x, y) and y �→ V (x, y) are a.s. Fréchet-

differentiable with respect to the Lebesgue measure λX , and for a.a. (x, y) ∈ X × X for
each u,v ∈ X there exists the directional derivative ∂V (x+tu,y+tv)

∂t
. Moreover,

∂V (x + tu, y + tv)

∂t
= 〈

∂xV (x, y), u
〉 + 〈

∂yV (x, y), v
〉
, (3.4)

where ∂xV and ∂yV are the corresponding Fréchet derivatives with respect to the first and
the second variable.
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(D) Let X be finite dimensional. Then for a.e. (x, y) ∈ X × X, for all z ∈ X and real-valued a

and b such that |a + b| ≤ |a − b|

V (x + az, y + bz) ≤ V (x, y) + ∂V (x + atz, y + btz)

∂t

= V (x, y) + a
〈
∂xV (x, y), z

〉 + b
〈
∂yV (x, y), z

〉
.

(3.5)

(E) Let X be finite dimensional. Then there exists C > 0 which depends only on V such that
for a.e. pair x, y ∈ X, ‖∂xV (x, y)‖,‖∂yV (x, y)‖ ≤ C(‖x‖p−1 + ‖y‖p−1).

Definition 3.6. Let d be a natural number, E be a d-dimensional linear space, (en)
d
n=1 be a basis

of E. Then (e∗
n)

d
n=1 ⊂ E∗ is called the corresponding dual basis of (en)

d
n=1 if 〈en, e

∗
m〉 = δnm for

each m,n = 1, . . . , d .

Note that the corresponding dual basis is uniquely determined. Moreover, if (e∗
n)

d
n=1 is the

corresponding dual basis of (en)
d
n=1, then, the other way around, (en)

d
n=1 is the corresponding

dual basis of (e∗
n)

d
n=1 (here we identify E∗∗ with E in the natural way).

Lemma∗ 3.7. Let d be a natural number, E be a d-dimensional linear space. Let V : E×E → R

and W : E∗ × E∗ →R be two bilinear functions. Then the expression

d∑
n,m=1

V (en, em)W
(
e∗
n, e

∗
m

)
(3.6)

does not depend on the choice of basis (en)
d
n=1 of E (here (e∗

n)
d
n=1 is the corresponding dual

basis of (en)
d
n=1).

The following Itô formula is a version of [23], Theorem 26.7, that does not use the Euclidean
structure of a finite dimensional Banach space. The proof can be found in [41].

Theorem 3.8 (Itô formula). Let d be a natural number, X be a d-dimensional Banach space,
f ∈ C2(X), M : R+ × � → X be a martingale. Let (xn)

d
n=1 be a basis of X, (x∗

n)dn=1 be the
corresponding dual basis. Then for each t ≥ 0

f (Mt) = f (M0) +
∫ t

0

〈
∂xf (Ms−), dMs

〉
+ 1

2

∫ t

0

d∑
n,m=1

fxn,xm(Ms−)d
[〈
M,x∗

n

〉
,
〈
M,x∗

m

〉]c
s

+
∑
s≤t

(
	f (Ms) − 〈

∂xf (Ms−),	Ms

〉)
.

(3.7)
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Proposition 3.9. Let X be a finite dimensional Banach space, p ∈ (1,∞). Let Y = X ⊕ R be

a Banach space such that ‖(x, r)‖Y = (‖x‖p
X + |r|p)

1
p . Then βp,Y = βp,X . Moreover, if M :

R+ × � → X is a martingale on a probability space (�,F,P) with a filtration F = (Ft )t≥0,
then there exists a sequence (Mm)m≥1 of Y -valued martingales on an enlarged probability space
(�,F,P) with an enlarged filtration F = (F t )t≥0 such that

1. Mm
t has absolutely continuous distributions with respect to the Lebesgue measure on Y for

each m ≥ 1 and t ≥ 0;
2. Mm

t → (Mt ,0) pointwise as m → ∞ for each t ≥ 0;
3. if for some t ≥ 0 E‖Mt‖p < ∞, then for each m ≥ 1 one has that E‖Mm

t ‖p < ∞ and
E‖Mm

t − (Mt ,0)‖p → 0 as m → ∞;
4. if M is continuous, then (Mm)m≥1 are continuous as well,
5. if M is purely discontinuous, then (Mm)m≥1 are purely discontinuous as well.

Proof. The proof of (1)–(3) follows from [41], while (4) and (5) follow from the construction of
Mm and Nm given in [41]. �

Remark 3.10. Notice that the construction in [41] also allows us to sum these approximations
for different martingales. Namely, if M and N are two X-valued martingales, then we can con-
struct the corresponding Y -valued martingales (Mm)m≥1 and (Nm)m≥1 as in Proposition 3.9 in
such a way that Mm

t + Nm
t has an absolutely continuous distribution for each t ≥ 0 and m ≥ 1.

Proof of Theorem 3.1. Step 1: finite dimensional case. Let X be finite dimensional. Then Md

and Mc exist due to Remark 2.12. Without loss of generality Ft = F∞, Md
t = Md∞ and Mc

t =
Mc∞. Let d be the dimension of X.

Let ||| · ||| be a Euclidean norm on X. Then (X, ||| · |||) is a Hilbert space, and by Remark 2.5 the
quadratic variation [Mc] exists and has a continuous version. Let us show that without loss of
generality we can suppose that [Mc] is a.s. absolutely continuous with respect to the Lebesgue
measure on R+. Let A : R+ × � → R+ be as follows: At = [Mc]t + t . Then A is strictly in-
creasing continuous, A0 = 0 and A∞ = ∞ a.s. Let the time-change τ = (τs)s≥1 be defined as in
Theorem 2.16. Then by Theorem 2.16, Mc ◦ τ is a continuous martingale, Md ◦ τ is a purely
discontinuous martingale, (Mc ◦ τ)0 = 0, (Md ◦ τ)0 = Md

0 and due to the Kazamaki theorem
[23], Theorem 17.24, [Mc ◦ τ ] = [Mc] ◦ τ . Therefore for all t > s ≥ 0 by Theorem 2.16 and the
fact that τt ≥ τs a.s.[

Mc ◦ τ
]
t
− [

Mc ◦ τ
]
s
= [

Mc
]
τt

− [
Mc

]
τs

≤ [
Mc

]
τt

− [
Mc

]
τs

+ (τt − τs)

= ([
Mc

]
τt

+ τt

) − ([
Mc

]
τs

+ τs

)
= Aτt − Aτs = t − s.

Hence [Mc ◦ τ ] is a.s. absolutely continuous with respect to the Lebesgue measure on R+. More-
over, (Mi ◦ τ)∞ = Mi∞, i ∈ {c, d}, so this time-change argument does not affect (3.1). Hence we
can redefine Mc := Mc ◦ τ , Md := Md ◦ τ , F= (Fs)s≥0 := G = (Fτs )s≥0.

Since [Mc] is a.s. absolutely continuous with respect to the Lebesgue measure on R+ and
thanks to Theorem 2.19, we can extend � and find a d-dimensional Wiener process W :
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R+ ×� →R
d and a stochastically integrable progressively measurable function � :R+ ×� →

L(Rd,X) such that Mc = � · W .
Let U : X × X → R be the Burkholder function that was discussed in Remark 3.4 and Re-

mark 3.5. Let us show that EU(Mt,M
d
t ) ≤ 0.

Due to Proposition 3.9 and Remark 3.10 we can assume that Mc
s , Md

s and Ms = Md
s + Mc

s

have absolutely continuous distributions with respect to the Lebesgue measure λX on X for
each s ≥ 0. Let (xn)

d
n=1 be a basis of X, (x∗

n)dn=1 be the corresponding dual basis of X∗ (see
Definition 3.6). By the Itô formula (3.7),

EU
(
Mt,M

d
t

) = EU
(
M0,M

d
0

) +E

∫ t

0

〈
∂xU

(
Ms−,Md

s−
)
, dMs

〉
+E

∫ t

0

〈
∂yU

(
Ms−,Md

s−
)
, dMd

s

〉 +EI1 +EI2,

(3.8)

where

I1 =
∑

0<s≤t

[
	U

(
Ms,M

d
s

) − 〈
∂xU

(
Ms−,Md

s−
)
,	Ms

〉 − 〈
∂yU

(
Ms−,Md

s−
)
,	Md

s

〉]
,

I2 = 1

2

∫ t

0

d∑
i,j=1

Uxi,xj

(
Ms−,Md

s−
)

d
[〈
M,x∗

i

〉
,
〈
M,x∗

j

〉]c
s

= 1

2

∫ t

0

d∑
i,j=1

Uxi,xj

(
Ms−,Md

s−
)〈
�∗(s)x∗

i ,�∗(s)x∗
j

〉
ds.

(Recall that by (3.3) and Remark 3.5(C), U is Fréchet-differentiable a.s. on X × X, hence ∂xU

and ∂yU are well-defined. Moreover, U is zigzag-concave, so U is concave in the first variable,
and therefore the second-order derivatives Uxi,xj

in the first variable are well-defined and exist
a.s. on X × X by the Alexandrov theorem [15], Theorem 6.4.1.) The last equality holds due to
Theorem 3.8 and the fact that by Lemma 2.18 for all s ≥ 0 a.s.[〈

M,x∗
i

〉
,
〈
M,x∗

j

〉]c
s
= [〈

� · W,x∗
i

〉
,
〈
� · W,x∗

j

〉]
s

= [(
�∗x∗

i

) · W,
(
�∗x∗

j

) · W ]
s

=
∫ s

0

〈
�∗(r)x∗

i ,�∗(r)x∗
j

〉
dr.

Let us first show that I1 ≤ 0 a.s. Indeed, since Md is a purely discontinuous part of M , then by
Definition 2.11 〈Md,x∗〉 is a purely discontinuous part of 〈M,x∗〉, and due to Remark 2.8 a.s.
for each t ≥ 0

	
∣∣〈Md,x∗〉∣∣2

t
= 	

[〈
Md,x∗〉]

t
= 	

[〈
M,x∗〉]

t
= 	

∣∣〈M,x∗〉∣∣2
t
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for each x∗ ∈ X∗. Thus for each s ≥ 0 by (3.4) and (3.5) P-a.s.

	U
(
Ms,M

d
s

) − 〈
∂xU

(
Ms−,Md

s−
)
,	Ms

〉 − 〈
∂yU

(
Ms−,Md

s−
)
,	Md

s

〉
= V

(
Ms− + Md

s− + 2	Ms,M
d
s− − Ms−

) − V
(
Ms− + Md

s−,Md
s− − Ms−

)
− 〈

∂xV
(
Ms− + Md

s−,Md
s− − Ms−

)
,2	Ms

〉
≤ 0,

so I1 ≤ 0 a.s., and EI1 ≤ 0. Now we show that

E

(∫ t

0

〈
∂xU

(
Ms−,Md

s−
)
, dMs

〉 + ∫ t

0

〈
∂yU

(
Ms−,Md

s−
)
, dMd

s

〉) = 0.

Indeed, ∫ t

0

〈
∂xU

(
Ms−,Md

s−
)
, dMs

〉 + ∫ t

0

〈
∂yU

(
Ms−,Md

s−
)
, dMd

s

〉
=

∫ t

0

〈
∂xV

(
Ms− + Md

s−,Md
s− − Ms−

)
, d

(
Ms + Md

s

)〉
+

∫ t

0

〈
∂yV

(
Ms− + Md

s−,Md
s− − Ms−

)
, d

(
Md

s − Ms

)〉
so by Lemma 2.17 and Remark 3.5(E) it is a martingale which starts at zero, hence its expectation
is zero.

Finally, let us show that I2 ≤ 0 a.s. Fix s ∈ [0, t] and ω ∈ �. Then x∗ �→ ‖�∗(s,ω)x∗‖2 defines
a nonnegative definite quadratic form on X∗, and since any nonnegative quadratic form defines
a Euclidean seminorm, there exists a basis (x̃∗

n)dn=1 of X∗ and a {0,1}-valued sequence (an)
d
n=1

such that 〈
�∗(s,ω)x̃∗

n,�∗(s,ω)x̃∗
m

〉 = anδmn, m,n = 1, . . . , d.

Let (x̃n)
d
n=1 be the corresponding dual basis of X as it is defined in Definition 3.6. Then due

to Lemma 3.7 and the linearity of � and directional derivatives of U (we skip s and ω for the
simplicity of the expressions)

d∑
i,j=1

Uxi,xj

(
Ms−,Md

s−
)〈
�∗x∗

i ,�∗x∗
j

〉 = d∑
i,j=1

Ux̃i ,x̃j

(
Ms−,Md

s−
)〈
�∗x̃∗

i ,�∗x̃∗
j

〉

=
d∑

i=1

Ux̃i ,x̃i

(
Ms−,Md

s−
)∥∥�∗x̃∗

i

∥∥2
.



UMD spaces and martingale decompositions 1673

Recall that U is zigzag-concave, so t �→ U(x + t x̃i , y) is concave for each x, y ∈ X, i = 1, . . . , d .
Therefore Ux̃i ,x̃i

(Ms−,Md
s−) ≤ 0 a.s., and a.s.

d∑
i=1

Ux̃i ,x̃i

(
Ms−(ω),Md

s−(ω)
)∥∥�∗(s,ω)x̃∗

i

∥∥2 ≤ 0.

Consequently, I2 ≤ 0 a.s., and by (3.8), Remark 3.4(B) and the fact that Md
0 = M0

EU
(
Mt,M

d
t

) ≤ EU(M0,M0) ≤ 0.

By (3.2), E‖Md
t ‖p − β

p
p,XE‖Mt‖p ≤ EU(Mt,M

d
t ) ≤ 0, so the first part of (3.1) holds.

The second part of (3.1) follows from the same machinery applied for V . Namely, one can
analogously show that

E
∥∥Mc

t

∥∥p − β
p
p,XE‖Mt‖p ≤ EU

(
Mt,M

c
t

) = EV
(
Md + 2Mc,−Md

) ≤ 0

by using a V -version of (3.8), inequality (3.5), and the fact that V is concave in the first variable
a.s. on X × X.

Step 2: general case. Without loss of generality, we set F∞ = Ft . Let Mt = ξ . If ξ is a sim-
ple function, then it takes its values in a finite dimensional subspace X0 of X, and therefore
(Ms)s≥0 = (E(ξ |Fs))s≥0 takes its values in X0 as well, so the theorem and (3.1) follow from
Step 1.

Now let ξ be general. Let (ξn)n≥1 be a sequence of simple Ft -measurable functions in
Lp(�;X) such that ξn → ξ as n → ∞ in Lp(�;X). For each n ≥ 1 define Ft -measurable
ξd
n and ξc

n such that

Md,n = (
Md,n

s

)
s≥0 = (

E
(
ξd
n |Fs

))
s≥0,

Mc,n = (
Mc,n

s

)
s≥0 = (

E
(
ξc
n |Fs

))
s≥0

(3.9)

are the respectively purely discontinuous and continuous parts of martingale Mn =
(E(ξn|Fs))s≥0 as in Remark 2.12. Then due to Step 1 and (3.1), (ξd

n )n≥1 and (ξ c
n)n≥1 are Cauchy

sequences in Lp(�;X). Let ξc := Lp − limn→∞ ξc
n and ξd := Lp − limn→∞ ξd

n . Define the
X-valued Lp-martingales Md and Mc by

Md = (
Md

s

)
s≥0 := (

E
(
ξd |Fs

))
s≥0, Mc = (

Mc
s

)
s≥0 := (

E
(
ξc|Fs

))
s≥0.

Thanks to Proposition 2.14, Md is purely discontinuous, and due to Proposition 2.6 Mc is con-
tinuous and Mc

0 = 0, so M = Md + Mc is the desired decomposition.
The uniqueness of the decomposition follows from Lemma 2.15. For estimates (3.1), we note

that by Step 1, (3.1) applied for Step 1, and [19], Proposition 4.2.17, for each n ≥ 1(
E

∥∥ξd
n

∥∥p) 1
p ≤ βp,X

(
E‖ξn‖p

) 1
p ,

(
E

∥∥ξc
n

∥∥p) 1
p ≤ βp,X

(
E‖ξn‖p

) 1
p ,

and it remains to let n → ∞. �



1674 I.S. Yaroslavtsev

Remark 3.11. Let X be a UMD Banach space, 1 < p < ∞, M : R+ × � → X be continuous
(resp. purely discontinuous) Lp-martingale. Then there exists a sequence (Mn)n≥1 of continuous
(resp. purely discontinuous) X-valued Lp-martingales such that Mn takes its values is a finite
dimensional subspace of X for each n ≥ 1 and Mn∞ → M∞ in Lp(�;X) as n → ∞. Such a
sequence can be provided e.g. by (3.9).

We have proven the Meyer–Yoeurp decomposition in the UMD setting. Next, we prove a
converse result which shows the necessity of the UMD property.

Theorem 3.12. Let X be a finite dimensional Banach space, p ∈ (1,∞), δ ∈ (0, (βp,X −1)∧1).
Then there exist a purely discontinuous martingale Md : R+ ×� → X, a continuous martingale
Mc :R+ × � → X such that E‖Md∞‖p,E‖Mc∞‖p < ∞, Md

0 = Mc
0 = 0, and for M = Md + Mc

and i ∈ {c, d} the following hold

(
E

∥∥Mi∞
∥∥p) 1

p ≥
(

βp,X − 1

2
− δ

)(
E‖M∞‖p

) 1
p . (3.10)

Recall that by [19], Proposition 4.2.17, βp,X ≥ βp,R = p∗ −1 ≥ 1 for any UMD Banach space
X and 1 < p < ∞.

Definition 3.13. A random variable r : � → {−1,1} is called a Rademacher variable if
P(r = 1) = P(r = −1) = 1

2 .

Lemma∗ 3.14. Let ε > 0, p ∈ (1,∞). Then there exists a continuous martingale M : [0,1] ×
� → [−1,1] with a symmetric distribution such that signM1 is a Rademacher random variable
and

‖M1 − signM1‖Lp(�) < ε. (3.11)

We will need a definition of a Paley–Walsh martingale.

Definition 3.15 (Paley–Walsh martingales). Let X be a Banach space. A discrete X-valued
martingale (fn)n≥0 is called a Paley–Walsh martingale if there exist a sequence of independent
Rademacher variables (rn)n≥1, a function φn : {−1,1}n−1 → X for each n ≥ 2 and φ1 ∈ X such
that dfn = rnφn(r1, . . . , rn−1) for each n ≥ 2 and df1 = r1φ1.

Remark 3.16. Let X be a UMD space, 1 < p < ∞, δ > 0. Then using Proposition 2.1 one can
construct a martingale difference sequence (dj )

n
j=1 ∈ Lp(�;X) and a {−1,1}-valued sequence

(εj )
n
j=1 such that

(
E

∥∥∥∥∥
n∑

j=1

εj ± 1

2
dj

∥∥∥∥∥
p) 1

p

≥ βp,X − δ − 1

2

(
E

∥∥∥∥∥
n∑

j=1

dj

∥∥∥∥∥
p) 1

p

.
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Proof of Theorem 3.12. Denote
βp,X−δ−1

2 by γ δ
p,X . By Proposition 2.1, there exists a natural

number N ≥ 1, a discrete X-valued martingale (fn)
N
n=0 such that f0 = 0, and a sequence of

scalars (εn)
N
n=1 such that εn ∈ {0,1} for each n = 1, . . . ,N , such that

(
E

∥∥∥∥∥
N∑

n=1

εndfn

∥∥∥∥∥
p) 1

p

≥ γ δ
p,X

(
E‖fN‖p

) 1
p . (3.12)

According to [19], Theorem 3.6.1, we can assume that (fn)
N
n=0 is a Paley–Walsh martingale.

Let (rn)
N
n=1 be a sequence of Rademacher variables and (φn)

N
n=1 be a sequence of functions as in

Definition 3.15, that is, be such that fn = ∑n
k=2 rkφk(r1, . . . , rk−1)+ r1φ1 for each n = 1, . . . ,N .

Without loss of generality, we assume that(
E‖fN‖p

) 1
p ≥ 2. (3.13)

For each n = 1, . . . ,N define a continuous martingale Mn : [0,1] × � → [−1,1] as in
Lemma 3.14, that is, a martingale Mn with a symmetric distribution such that signMn

1 is a
Rademacher variable and ∥∥Mn

1 − signMn
1

∥∥
Lp(�)

<
δ

KL
, (3.14)

where K = βp,XN max{‖φ1‖,‖φ2‖∞, . . . ,‖φN‖∞}, and L = 2βp,X . Without loss of general-
ity, suppose that (Mn)Nn=1 are independent. For each n = 1, . . . ,N set σn = signMn

1 . Define a
martingale M : [0,N + 1] × � → X in the following way:

Mt =

⎧⎪⎨⎪⎩
0, if 0 ≤ t < 1;
Mn− + Mn

t−nφn(σ1, . . . , σn−1), if t ∈ [n,n + 1) and εn = 0;
Mn− + σnφn(σ1, . . . , σn−1), if t ∈ [n,n + 1) and εn = 1.

Let M = Md + Mc be the decomposition of Theorem 3.1. Then

Mc
N+1 =

N∑
n=1

Mn
1 φn(σ1, . . . , σn−1)1εn=0,

Md
N+1 =

N∑
n=1

σnφn(σ1, . . . , σn−1)1εn=1 =
N∑

n=1

εnσnφn(σ1, . . . , σn−1).

Notice that (σn)
N
n=1 is a sequence of independent Rademacher variables, so by (3.12) and the

discussion thereafter(
E

∥∥∥∥∥
N∑

n=1

εnσnφn(σ1, . . . , σn−1)

∥∥∥∥∥
p) 1

p

≥ γ δ
p,X

(
E

∥∥∥∥∥
N∑

n=1

σnφn(σ1, . . . , σn−1)

∥∥∥∥∥
p) 1

p

. (3.15)



1676 I.S. Yaroslavtsev

Let us first show (3.10) with i = d . Note that by the triangle inequality, (3.13) and (3.14)

(
E‖MN+1‖p

) 1
p ≥ (

E‖fN‖p
) 1

p −
N∑

n=1

(
E

∥∥(
Mn

1 − σn

)
φn(σ1, . . . , σn−1)

∥∥p) 1
p

≥ 2 − δ

KL
· N · max

{‖φ1‖,‖φ2‖∞, . . . ,‖φN‖∞
}

> 1.

(3.16)

Therefore,

(
E

∥∥Md
N+1

∥∥p) 1
p =

(
E

∥∥∥∥∥
N∑

n=1

εnσnφn(σ1, . . . , σn−1)

∥∥∥∥∥
p) 1

p

(i)≥ γ δ
p,X

(
E

∥∥∥∥∥
N∑

n=1

σnφn(σ1, . . . , σn−1)

∥∥∥∥∥
p) 1

p

(ii)≥ γ δ
p,X

(
E

∥∥∥∥∥
N∑

n=1

1εn=1σnφn(σ1, . . . , σn−1)

+
N∑

n=1

1εn=0M
n
1 φn(σ1, . . . , σn−1)

∥∥∥∥∥
p) 1

p

− γ δ
p,X

N∑
n=1

(
E

∥∥(
Mn

1 − σn

)
φn(σ1, . . . , σn−1)

∥∥p) 1
p

(iii)≥ γ δ
p,X

(
E‖MN+1‖p

) 1
p − δ

L

(iv)≥
(

βp,X − 1

2
− δ

)(
E‖MN+1‖p

) 1
p ,

where (i) follows from (3.15), (ii) holds by the triangle inequality, (iii) holds by (3.14), and
(iv) follows from (3.16). By the same reason and Remark 3.16, (3.10) holds for i = c. �

Let p ∈ (1,∞). Recall that Mp
X is a space of all X-valued Lp-martingales, Mp,d

X ,Mp,c
X ⊂

Mp
X are its subspaces of purely discontinuous martingales and continuous martingales that start

at zero respectively (see Sections 2.2, 2.4, and 2.5).

Theorem∗ 3.17. Let X be a Banach space. Then X is UMD if and only if for some (or, equiv-
alently, for all) p ∈ (1,∞), for any probability space (�,F,P) with any filtration F = (Ft )t≥0

that satisfies the usual conditions, Mp
X = Mp,d

X ⊕ Mp,c
X , and there exist projections Ad,Ac ∈

L(Mp
X) such that ran Ad = Mp,d

X , ran Ac = Mp,c
X , and for any M ∈ Mp

X the decomposition
M = AdM +AcM is the Meyer–Yoeurp decomposition from Theorem 3.1. If this is the case, then∥∥Ad

∥∥ ≤ βp,X and
∥∥Ac

∥∥ ≤ βp,X. (3.17)



UMD spaces and martingale decompositions 1677

Moreover, there exist (�,F,P) and F= (Ft )t≥0 such that

∣∣Ad
∣∣, ∣∣Ac

∣∣ ≥ βp,X − 1

2
∨ 1. (3.18)

Corollary 3.18. Let X be a UMD Banach space, p ∈ (1,∞). Let i ∈ {c, d}. Then (Mp,i
X )∗ �

Mp′,i
X∗ , and for each M ∈ Mp′,i

X∗ and N ∈Mp,i
X

〈M,N〉 := E〈M∞,N∞〉, ‖M‖
(Mp,i

X )∗ �p,X ‖M‖Mp′,i
X∗

.

To prove the corollary above we will need the following lemma.

Lemma 3.19. Let X be a UMD Banach space, p ∈ (1,∞), M ∈ Mp,d
X , N ∈ Mp′,c

X∗ . Then
E〈M∞,N∞〉 = 0.

Proof. First, suppose that N∞ takes it values in a finite dimensional subspace Y of X∗. Let d ≥ 1

be the dimension of Y , (yk)
d
k=1 be the basis of Y . Then there exist N1, . . . ,Nd ∈Mp′,c

R
such that

N = ∑d
k=1 Nkyk . Hence,

E〈M∞,N∞〉 = E

〈
M∞,

d∑
k=1

Nk∞yk

〉
=

d∑
k=1

E〈M∞, yk〉Nk∞
(∗)= 0, (3.19)

where (∗) holds due to Proposition 2.10.

Now turn to the general case. By Remark 3.11 for each N ∈ Mp′,c
X∗ there exists a sequence

(Nn)n≥1 of continuous martingales such that each of Nn is in Mp′,c
X∗ and takes its valued in

a finite dimensional subspace of X∗, and Nn∞ → N∞ in Lp′
(�;X∗) as n → ∞. Then due to

(3.19), E〈M∞,N∞〉 = limn→∞ E〈M∞,Nn∞〉 = 0, so the lemma holds. �

Proof of Corollary 3.18. We will show only the case i = d , the case i = c can be shown analo-
gously.

Mp′,d
X∗ ⊂ (Mp,d

X )∗ and ‖M‖
(Mp,d

X )∗ ≤ ‖M‖Mp′,d
X∗

for each M ∈ Mp′,d
X∗ thanks to the Hölder

inequality. Now let us show the inverse. Let f ∈ (Mp,d
X )∗. Since due to Proposition 2.14 Mp,d

X

is a closed subspace of Mp
X , by the Hahn-Banach theorem and Proposition 2.3 there exists

L ∈ Mp′
X∗ such that E〈L∞,N∞〉 = f (N) for any N ∈ Mp,d

X , and ‖L‖Mp′
X∗

= ‖f ‖
(Mp,d

X )∗ . Let

L = Ld + Lc be the Meyer–Yoeurp decomposition of L as in Theorem 3.1. Then by (3.1)∥∥Ld
∥∥
Mp′,d

X∗
�p,X ‖L‖Mp′

X∗
= ‖f ‖

(Mp,d
X )∗

and E〈Ld∞,N∞〉 = E〈L∞,N∞〉, so the theorem holds. �
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3.2. Yoeurp decomposition of purely discontinuous martingales

As Yoeurp shown in [44], one can provide further decomposition of a purely discontinuous mar-
tingale into two parts: a martingale with accessible jumps and a quasi-left continuous martingale.
This subsection is devoted to the generalization of this result to a UMD case.

Definition 3.20. Let τ be a stopping time. Then τ is called a predictable stopping time if there
exists a sequence of stopping times (τn)n≥1 such that τn < τ a.s. on {τ > 0} for each n ≥ 1 and
τn ↗ τ a.s.

Definition 3.21. Let τ be a stopping time. Then τ is called a totally inaccessible stopping time
if P{τ = σ < ∞} = 0 for each predictable stopping time σ .

Definition 3.22. Let A : R+ × � → R be an adapted càdlàg process. A has accessible jumps
if 	Aτ = 0 a.s. for any totally inaccessible stopping time τ . A is called quasi-left continuous if
	Aτ = 0 a.s. for any predictable stopping time τ .

For the further information on the definitions given, we refer the reader to [23].

Remark 3.23. According to [23], Proposition 25.17, one can show that for any pure jump in-
creasing adapted càdlàg process A : R+ × � → R there exist unique increasing adapted càdlàg
processes Aa,Aq :R+ ×� → R such that Aa has accessible jumps, Aq is quasi-left continuous,
A

q

0 = 0 and A = Aa + Aq .

The following decomposition theorem was shown by Yoeurp in [44] (see also [23], Corol-
lary 26.16):

Theorem 3.24. Let M : R+ × � → R be a purely discontinuous martingale. Then there exist
unique purely discontinuous martingales Ma,Mq : R+ ×� →R such that Ma is has accessible
jumps, Mq is quasi-left continuous, M

q

0 = 0 and M = Ma + Mq . Moreover, then [Ma] = [M]a
and [Mq ] = [M]q .

Corollary 3.25. Let M : R+ × � → R be a purely discontinuous martingale which is both with
accessible jumps and quasi-left continuous. Then M = M0 a.s.

Proof. Without loss of generality, we can set M0 = 0. Then M = M + 0 = 0 + M are decom-
positions of M into a sum of a martingale with accessible jumps and a quasi-left continuous
martingale. Since by Theorem 3.24 this decomposition is unique, M = 0 a.s. �

Proposition∗ 3.26. Let 1 < p < ∞, M :R+ ×� → R be a purely discontinuous Lp-martingale.
Let (Mn)n≥1 be a sequence of purely discontinuous martingales such that Mn∞ → M∞ in Lp(�).
Then the following assertions hold

(a) if (Mn)n≥1 have accessible jumps, then M has accessible jumps as well;
(b) if (Mn)n≥1 are quasi-left continuous martingales, then M is quasi-left continuous as well.
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Definition 3.27. Let X be a Banach space. A martingale M :R+ ×� → X has accessible jumps
if 	Mτ = 0 a.s. for any totally inaccessible stopping time τ . A martingale M : R+ × � → X is
called quasi-left continuous if 	Mτ = 0 a.s. for any predictable stopping time τ .

Lemma∗ 3.28. Let X be a reflexive Banach space, M : R+ × � → X be a purely discontinuous
martingale.

(i) M has accessible jumps if and only if for each x∗ ∈ X∗ the martingale 〈M,x∗〉 has ac-
cessible jumps;

(ii) M is quasi-left continuous if and only if for each x∗ ∈ X∗ the martingale 〈M,x∗〉 is quasi-
left continuous.

Definition 3.29. Let X be a Banach space, p ∈ (1,∞). Then we define Mp,q
X ⊂ Mp,d

X as a
linear space of all X-valued purely discontinuous quasi-left continuous Lp-martingales which
start at 0. We define Mp,a

X ⊂ Mp,d
X as a linear space of all X-valued purely discontinuous Lp-

martingales with accessible jumps.

Proposition∗ 3.30. Let X be a Banach space, 1 < p < ∞. Then Mp,q
X and Mp,a

X are closed

subspaces of Mp,d
X .

The following lemma follows from Corollary 3.25.

Lemma∗ 3.31. Let X be a Banach space, M : R+ × � → X be a purely discontinuous martin-
gale. Let M be both with accessible jumps and quasi-left continuous. Then M = M0 a.s. In other
words, Mp,q

X ∩Mp,a
X = 0.

The main theorem of this subsection is the following UMD variant of Theorem 3.24.

Theorem 3.32. Let X be a UMD Banach space, M : R+ × � → X be a purely discontinuous
Lp-martingale. Then there exist unique purely discontinuous martingales Ma,Mq : R+ × � →
X such that Ma has accessible jumps, Mq is quasi-left continuous, M

q

0 = 0 and M = Ma +Mq .
Moreover, if this is the case, then for i ∈ {a, q}(

E
∥∥Mi∞

∥∥p) 1
p ≤ βp,X

(
E‖M∞‖p

) 1
p . (3.20)

Proof. Step 1: finite dimensional case. First, assume that X is finite dimensional. Then Ma and
Mq exist and unique due to coordinate-wise applying of Theorem 3.24. Let M = Ma + Mq ,
N = Ma . Then for any x∗ ∈ X∗, t ≥ 0 by Theorem 3.24 and Lemma 3.28 a.s.[〈

M,x∗〉]
t
= [〈

M,x∗〉]a
t
+ [〈

M,x∗〉]q
t

= [〈
Ma,x∗〉]

t
+ [〈

Mq,x∗〉]
t
,

and [〈
N,x∗〉]

t
= [〈

N,x∗〉]a
t
+ [〈

N,x∗〉]q
t

= [〈
Ma,x∗〉]

t
.
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Therefore, a.s. [〈
N,x∗〉]

t
− [〈

N,x∗〉]
s
≤ [〈

M,x∗〉]
t
− [〈

M,x∗〉]
s
, 0 ≤ s < t.

Moreover M0 = N0. Hence, N is weakly differentially subordinated to M (see Section 4), and
(3.20) for i = a follows from [41]. By the same reason and since M

q

0 = 0, (3.20) holds true for
i = q .

Step 2: general case. Now let X be general. Let ξ = M∞. Without loss of generality, we set
F∞ = Ft . Let (ξn)n≥1 be a sequence of simple Ft -measurable functions in Lp(�;X) such that
ξn → ξ as n → ∞ in Lp(�;X). For each n ≥ 1 define Ft -measurable ξd

n and ξc
n such that

Md,n = (E(ξd
n |Fs))s≥0 and Mc,n = (E(ξ c

n |Fs))s≥0 are respectively, purely discontinuous and
continuous parts of a martingale (E(ξn|Fs))s≥0 as in Remark 2.12. Then thanks to Theorem 3.1,
ξd
n → ξ and ξc

n → 0 in Lp(�;X) as n → ∞ since M is purely discontinuous.
Since for each n ≥ 1 the random variable ξd

n takes its values in a finite dimensional space,
by Theorem 3.24 there exist Ft -measurable ξa, ξq ∈ Lp(�;X) such that purely discontinuous
martingales Ma,n = (E(ξa

n |Fs))s≥0 and Mq,n = (E(ξ
q
n |Fs))s≥0 are respectively with accessible

jumps and quasi-left continuous, E(ξ
q
n |F0) = 0, and the decomposition Md,n = Ma,n + Mq,n is

as in Theorem 3.24. Since (ξd
n )n≥1 is a Cauchy sequence in Lp(�;X), by Step 1 both (ξa

n )n≥1
and (ξ

q
n )n≥1 are Cauchy in Lp(�;X) as well. Let ξa and ξq be their limits. Define martingales

Ma,Mq : R+ × � → X in the following way:

Ma
s := E

(
ξa|Fs

)
, M

q
s := E

(
ξq |Fs

)
, s ≥ 0.

By Proposition 3.30 Ma is a martingale with accessible jumps, Mq is quasi-left continuous,
M

q

0 = 0 a.s., and therefore M = Ma +Mq is the desired decomposition. Moreover, by Step 1 for

each n ≥ 1 and i ∈ {a, q}, (E‖ξ i
n‖p)

1
p ≤ βp,X(E‖ξd

n ‖p)
1
p , and hence the estimate (3.20) follows

by letting n to infinity.
The uniqueness of the decomposition follows from Lemma 3.31. �

The following theorem, as Theorem 3.12, illustrates that the decomposition in Theorem 3.32
takes place only in the UMD space case.

Theorem 3.33. Let X be a finite dimensional Banach space, p ∈ (1,∞), δ ∈ (0,
βp,X−1

2 ). Then
there exist purely discontinuous martingales Ma,Mq : R+ × � → X such that Ma has acces-
sible jumps, Mq is quasi-left continuous, E‖Ma∞‖p , E‖Mq∞‖p < ∞, Ma

0 = M
q

0 = 0, and for
M = Ma + Mq and i ∈ {a, q} the following holds

(
E

∥∥Mi∞
∥∥p) 1

p ≥
(

βp,X − 1

2
− δ

)(
E‖M∞‖p

) 1
p . (3.21)

For the proof, we will need the following lemma.

Lemma 3.34. Let ε ∈ (0, 1
2 ), p ∈ (1,∞). Then there exist martingales M,Ma,Mq : [0,1] ×

� → [−1 − ε,1 + ε] with symmetric distributions such that Ma is a martingale with accessible
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jumps, ‖Ma
1 ‖Lp(�) < ε, Mq is a quasi-left continuous martingale, M

q

0 = 0 a.s., M = Ma + Mq ,
signM1 is a Rademacher random variable and

‖M1 − signM1‖Lp(�) < ε. (3.22)

Proof. Let N+,N− : [0,1] × � →R be independent Poisson processes with the same intensity
λε such that P(N+

1 = 0) = P(N−
1 = 0) < εp

2p (such λε exists since N+
1 and N−

1 have Poisson
distributions, see [25]). Define a stopping time τ in the following way:

τ = inf
{
t : N+

t ≥ 1
} ∧ inf

{
t : N−

t ≥ 1
} ∧ 1.

Let M
q
t := N+

t∧τ − N−
t∧τ , t ∈ [0,1]. Then Mq is quasi-left continuous with a symmetric distri-

bution. Let r be an independent Rademacher variable, Ma
t = ε

2 r for each t ∈ [0,1]. Then Ma

is a martingale with accessible jumps and symmetric distribution, and ‖Ma
1 ‖Lp(�) = ε

2 < ε. Let
M = Ma + Mq . Then a.s.

M1 ∈
{
−1 − ε

2
,−1 + ε

2
,−ε

2
,
ε

2
,1 − ε

2
,1 + ε

2

}
, (3.23)

so P(M1 = 0) = 0, and therefore signM1 is a Rademacher random variable. Let us prove
(3.22). Notice that due to (3.23) if |Mq

1 | = 1, then |M1 − signM1| < ε
2 , and if |Mq

1 | = 0, then
|M1 − signM1| < 1. Therefore,

E|M1 − signM1|p = E|M1 − signM1|p1|Mq
1 |=1 +E|M1 − signM1|p1|Mq

1 |=0

<
εp

2p
+ εp

2p
< εp,

so (3.22) holds. �

Proof of Theorem 3.33. The proof is analogous to the proof of Theorem 3.12, while one has to
use Lemma 3.34 instead of Lemma 3.14. �

Theorem 3.33 yields the following characterization of the UMD property.

Theorem 3.35. Let X be a Banach space. Then X is a UMD Banach space if and only if for
some (equivalently, for all) p ∈ (1,∞) there exists cp,X > 0 such that for any Lp-martingale
M := R+ ×� → X there exist unique martingales Mc,Mq,Ma :R+ ×� → X such that Mc

0 =
M

q

0 = 0, Mc is continuous, Mq is purely discontinuous quasi-left continuous, Ma is purely
discontinuous with accessible jumps, M = Mc + Mq + Ma , and

(
E

∥∥Mc∞
∥∥p) 1

p + (
E

∥∥M
q∞

∥∥p) 1
p + (

E
∥∥Ma∞

∥∥p) 1
p ≤ cp,X

(
E‖M∞‖p

) 1
p . (3.24)

If this is the case, then the least admissible cp,X is in the interval [ 3βp,X−3
2 ∨ 1,3βp,X].
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The decomposition M = Mc + Mq + Ma is called the canonical decomposition of the mar-
tingale M (see [14,23,44]).

Proof. The “if and only if” part follows from Theorem 3.17, Theorem 3.32 and Theorem 3.33.
The estimate cp,X ≤ 3βp,X follows from (3.1) and (3.20). The estimate cp,X ≥ 3βp,X−3

2 ∨ 1
follows from (3.10) and (3.21). �

Corollary 3.36. Let X be a Banach space. Then X is a UMD Banach space if and only if
Mp,d

X = Mp,a
X ⊕ Mp,q

X and Mp
X = Mp,c

X ⊕ Mp,q
X ⊕ Mp,a

X for any filtration that satisfies the
usual conditions.

Proof. The corollary follows from Theorem 3.32, Theorem 3.33 and Theorem 3.35. �

3.3. Stochastic integration

The current subsection is devoted to application of Theorem 3.35 to stochastic integration with
respect to a general martingale.

Proposition∗ 3.37. Let H be a Hilbert space, X be a Banach space, M : R+ × � → H be a
martingale, � : R+ × � → L(H,X) be elementary progressive. Then

(i) if M is continuous, then � · M is continuous;
(ii) if M is purely discontinuous, then � · M is purely discontinuous;

(iii) if M has accessible jumps, then � · M has accessible jumps;
(iv) if M is quasi-left continuous, then � · M is quasi-left continuous.

Proposition 3.38. Let H be a Hilbert space, M :R+ ×� → H be a local martingale. Then there
exist unique martingales Mc,Mq,Ma : R+ × � → H such that Mc is continuous, Mq and Ma

are purely discontinuous, Mq is quasi-left continuous, Ma has accessible jumps, Mc
0 = M

q

0 = 0
a.s., and M = Mc + Mq + Ma .

Proof. Analogously to Theorem 26.14 and Corollary 26.16 in [23]. �

Theorem 3.39. Let H be a Hilbert space, X be a UMD Banach space, p ∈ (1,∞), M : R+ ×
� → H be a local martingale, � : R+ × � → L(H,X) be elementary progressive. Let M =
Mc + Mq + Ma be the canonical decomposition from Proposition 3.38. Then

E
∥∥(� · M)∞

∥∥p
�p,X E

∥∥(
� · Mc

)
∞

∥∥p +E
∥∥(

� · Mq
)
∞

∥∥p +E
∥∥(

� · Ma
)
∞

∥∥p (3.25)

and if (� · M)∞ ∈ Lp(�;X), then � · M = � · Mc + � · Mq + � · Ma is the canonical decom-
position from Theorem 3.35.

Proof. The statement that � · M = � · Mc + � · Mq + � · Ma is the canonical decomposition
follows from Proposition 3.37, Theorem 3.35 and the fact that a.s. (� · M)0 = (� · Mc)0 =
(� · Mq)0 = 0. (3.25) follows then from (3.24) and the triangle inequality. �
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Remark 3.40. Notice that the Itô isomorphism for the term � · Mc from (3.25) was explored in
[37]. It remains open what to do with the other two terms, but positive results in this direction
were obtained in the case of X = Lq(S) in [14].

4. Weak differential subordination and general martingales

This subsection is devoted to the generalization of the main theorem in work [41]. Namely, here
we show the Lp-estimates for general X-valued weakly differentially subordinated martingales.

Definition 4.1. Let X be a Banach space, M,N : R+ × � → X be local martingales. Then N is
weakly differentially subordinated to M if [〈M,x∗〉] − [〈N,x∗〉] is an increasing process a.s. for
each x∗ ∈ X∗.

The following theorem have been proven in [41].

Theorem 4.2. Let X be a Banach space. Then X has the UMD property if and only if for some
(equivalently, for all) p ∈ (1,∞) there exists β > 0 such that for each pair of purely discontin-
uous martingales M,N : R+ × � → X such that N is weakly differentially subordinated to M

one has that (
E‖N∞‖p

) 1
p ≤ β

(
E‖M∞‖p

) 1
p .

If this is the case, then the least admissible β is the UMD constant βp,X .

The main goal of the current section is to prove the following generalization of Theorem 4.2
to the case of arbitrary martingales.

Theorem 4.3. Let X be a UMD Banach space, M,N : R+ × � → X be two martingales such
that N is weakly differentially subordinated to M . Then for each p ∈ (1,∞), t ≥ 0,

(
E‖Nt‖p

) 1
p ≤ β2

p,X(βp,X + 1)
(
E‖Mt‖p

) 1
p . (4.1)

The proof will be done in several steps. First, we show an analogue of Theorem 4.2 for con-
tinuous martingales.

Theorem∗ 4.4. Let X be a Banach space. Then X is a UMD Banach space if and only if for some
(equivalently, for all) p ∈ (1,∞) there exists c > 0 such that for any continuous martingales
M,N : R+ × � → X such that N is weakly differentially subordinated to M , M0 = N0 = 0, one
has that (

E‖N∞‖p
) 1

p ≤ cp,X

(
E‖M∞‖p

) 1
p . (4.2)

If this is the case, then the least admissible cp,X is in the segment [βp,X,β2
p,X].



1684 I.S. Yaroslavtsev

For the proof, we will need the following proposition, which demonstrates that one needs a
slightly weaker assumption rather then in Theorem 4.4 so that the estimate (4.2) holds in a UMD
Banach space.

Proposition 4.5. Let X be a UMD Banach space, 1 < p < ∞, M,N : R+ × � → X be contin-
uous Lp-martingales s.t. M0 = N0 = 0 and for each x∗ ∈ X∗ a.s. for each t ≥ 0[〈

N,x∗〉]
t
≤ [〈

M,x∗〉]
t
. (4.3)

Then for each t ≥ 0 (
E‖Nt‖p

) 1
p ≤ β2

p,X

(
E‖Mt‖p

) 1
p . (4.4)

Proof. Without loss of generality by a stopping time argument, we assume that M and N are
bounded and that M∞ = Mt and N∞ = Nt .

One can also restrict to a finite dimensional case. Indeed, since X is a separable reflexive
space, X∗ is separable as well. Let (Ym)m≥1 be an increasing sequence of finite-dimensional
subspaces of X∗ such that

⋃
m Ym = X∗ and ‖ · ‖Ym = ‖ · ‖X∗|Ym

for each m ≥ 1. Then for
each fixed m ≥ 1 there exists a linear operator Pm : X → Y ∗

m of norm 1 defined as follows:
〈Pmx,y〉 = 〈x, y〉 for each x ∈ X,y ∈ Ym. Therefore PmM and PmN are Y ∗

m-valued martingales.
Moreover, (4.3) holds for PmM and PmN since there exists P ∗

m : Ym → X∗, and for each y ∈ Ym

we have that 〈PmM,y〉 = 〈M,Pmy〉 and 〈PmN,y〉 = 〈N,Pmy〉. Since Ym is a closed subspace
of X∗, [19], Proposition 4.2.17, yields βp′,Ym

≤ βp′,X∗ , consequently again by [19], Proposition
4.2.17, βp,Y ∗

m
≤ βp,X∗∗ = βp,X . So if we prove the finite dimensional version, then

(
E‖PmNt‖p

) 1
p ≤ β2

p,Y ∗
m

(
E‖PmMt‖p

) 1
p ≤ β2

p,X

(
E‖PmMt‖p

) 1
p ,

and (4.4) with cp,X = β2
p,X will follow by letting m → ∞.

Let d be the dimension of X, ||| · ||| be a Euclidean norm on X × X. Let L = (M,N) :
R+ × � → X × X be a continuous martingale. Since (X × X, ||| · |||) is a Hilbert space, L has a
continuous quadratic variation [L] : R+ × � → R+ (see Remark 2.5). Let A : R+ × � → R+
be such that As = [L]s + s for each s ≥ 0. Then A is continuous strictly increasing predictable.
Define a random time-change (τs)s≥0 as in Theorem 2.16. Let G = (Gs)s≥0 = (Fτs )s≥0 be the
induced filtration. Then thanks to the Kazamaki theorem [23], Theorem 17.24, L̃ = L ◦ τ is a
G-martingale, and [L̃] = [L] ◦ τ . Notice that L̃ = (M̃, Ñ) with M̃ = M ◦ τ , Ñ = N ◦ τ , and
since by Kazamaki theorem [23], Theorem 17.24, [M ◦ τ ] = [M] ◦ τ , [N ◦ τ ] = [N ] ◦ τ , and
(M ◦ τ)0 = (N ◦ τ)0 = 0, we have that by (4.3) for each x∗ ∈ X∗ a.s. for each s ≥ 0[〈

Ñ, x∗〉]
s
= [〈

N,x∗〉]
τs

≤ [〈
M,x∗〉]

τs
= [〈

M̃, x∗〉]
s
. (4.5)

Moreover, for all 0 ≤ u < s we have that a.s.

[L̃]s − [L̃]u = ([L] ◦ τ
)
s
− ([L] ◦ τ

)
u

≤ ([L] ◦ τ
)
s
+ τs − ([L] ◦ τ

)
u
− τu

= ([L]τs + τs

) − ([L]τu + τu

) = s − u.
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Therefore [L̃] is a.s. absolutely continuous with respect to the Lebesgue measure on R+. Con-
sequently, due to Theorem 2.19, there exists an enlarged probability space (�̃, F̃, P̃) with an
enlarged filtration G̃ = (G̃s)s≥0, a 2d-dimensional standard Wiener process W , which is de-
fined on G̃, and a stochastically integrable progressively measurable function f : R+ × �̃ →
L(R2d ,X × X) such that L̃ = f · W . Let f M,f N : R+ × � → L(R2d ,X) be such that
f = (f M,f N). Then M̃ = f M · W and Ñ = f N · W . Let (�,F,P) be an independent prob-
ability space with a filtration G and a 2d-dimensional Wiener process W on it. Denote by E

the expectation on (�,F,P). Then because of the decoupling theorem [19], Theorem 4.4.1, for
each s ≥ 0 (

E‖Ñs‖p
) 1

p = (
E

∥∥(
f N · W )

s

∥∥p) 1
p ≤ βp,X

(
EE

∥∥(
f N · W )

s

∥∥p) 1
p ,

1

βp,X

(
EE

∥∥(
f M · W )

s

∥∥p) 1
p ≤ (

E
∥∥(

f M · W )
s

∥∥p) 1
p = (

E‖M̃s‖p
) 1

p .

(4.6)

Due to the multidimensional version of [23], Theorem 17.11, and (4.5) for each x∗ ∈ X∗ we have
that

s �→ [〈
M̃, x∗〉]

s
− [〈

Ñ, x∗〉]
s
=

∫ s

0

(∣∣〈x∗, f M(r)
〉∣∣2 − ∣∣〈x∗, f N(r)

〉∣∣2)dr (4.7)

is nonnegative and absolutely continuous a.s. Since X is separable, we can fix a set �̃0 ⊂ �̃ of
full measure on which the function (4.7) is nonnegative for each s ≥ 0.

Now fix ω ∈ �̃0 and s ≥ 0. Let us prove that

E
∥∥(

f N(ω) · W )
s

∥∥p ≤ E
∥∥(

f M(ω) · W )
s

∥∥p
.

Since f M(ω) and f N(ω) are deterministic on �, and since due to (4.7) for each x∗ ∈ X∗

E
∣∣〈(f N(ω) · W )

s
, x∗〉∣∣2 =

∫ s

0

∣∣〈x∗, f N(r,ω)
〉∣∣2 dr

≤
∫ s

0

∣∣〈x∗, f M(r,ω)
〉∣∣2 dr = E

∣∣〈(f M(ω) · W )
s
, x∗〉∣∣2

,

by [36], Corollary 4.4, we have that E‖(f N(ω) · W)s‖p ≤ E‖(f M(ω) · W)s‖p . Consequently,
due to (4.6) and the fact that P̃(�0) = 1(

E‖Ñs‖p
) 1

p ≤ βp,X

(
EE

∥∥(
f N · W )

s

∥∥p) 1
p ≤ βp,X

(
EE

∥∥(
f M · W )

s

∥∥p) 1
p ≤ β2

p,X

(
E‖M̃s‖p

) 1
p .

Recall that M̃ and Ñ are bounded, so thanks to the dominated convergence theorem one gets
(4.4) with cp,X = β2

p,X by letting s to infinity. �

Proof of Theorem 4.4. The “only if” part & the upper bound of cp,X: The “only if” part and
the estimate cp,X ≤ β2

p,X follows from Proposition 4.5 since (4.3) holds for M and N because N

is weakly differentially subordinated to M .
The “if” part & the lower bound of cp,X: See the supplement [43]. �
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Remark 4.6. Let X be a Banach space. Then according to [6,8,17] the Hilbert transform HX

can be extended to Lp(R;X) for each 1 < p < ∞ if and only if X is a UMD Banach space.
Moreover, if this is the case, then√

βp,X ≤ ‖HX‖L(Lp(R;X)) ≤ β2
p,X.

As it was shown in [41], the upper bound β2
p,X can be also directly derived from the upper bound

for cp,X in Theorem 4.4. The sharp upper bound for ‖HX‖L(Lp(R;X)) remains an open question
(see [19], pp. 496–497), so the sharp upper bound for cp,X is of interest.

Lemma∗ 4.7. Let X be a Banach space, Mc,Nc : R+ × � → X be continuous martingales,
Md,Nd :R+×� → X be purely discontinuous martingales, Mc

0 = Nc
0 = 0. Let M := Mc +Md ,

N := Nc + Nd . Suppose that N is weakly differentially subordinated to M . Then Nc is weakly
differentially subordinated to Mc, and Nd is weakly differentially subordinated to Md .

Proof of Theorem 4.3. By Theorem 3.1 there exist martingales Md,Mc,Nd,Nc :R+×� → X

such that Md and Nd are purely discontinuous, Mc and Nc are continuous, Mc
0 = Nc

0 = 0, and
M = Md + Mc and N = Nd + Nc. By Lemma 4.7, Nd is weakly differentially subordinated to
Md and Nc is weakly differentially subordinated to Mc . Therefore, for each t ≥ 0

(
E‖Nt‖p

) 1
p

(i)≤ (
E

∥∥Nd
t

∥∥p) 1
p + (

E
∥∥Nc

t

∥∥p) 1
p

(ii)≤ β2
p,X

(
E

∥∥Md
t

∥∥p) 1
p + βp,X

(
E

∥∥Mc
t

∥∥p) 1
p

(iii)≤ β2
p,X(βp,X + 1)

(
E‖Mt‖p

) 1
p ,

where (i) holds thanks to the triangle inequality, (ii) follows from Theorem 4.2 and Theorem 4.4,
and (iii) follows from (3.1). �

Remark 4.8. It is worth noticing that in a view of recent results the sharp constant in (3.1)
and (3.20) can be derived and equals the UMD{0,1}

p constant β
{0,1}
p,X . In order to show that this is

the right upper bound one needs to use a {0,1}-Burkholder function instead of the Burkholder
function, while the sharpness follows analogously Theorem 3.12 and 3.33. See [40] for details.

Remark 4.9. In the recent paper, [42] the existence of the canonical decomposition of a general
local martingale together with the corresponding weak L1-estimates were shown. Again exis-
tence of the canonical decomposition of any X-valued martingale is equivalent to X having the
UMD property.
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