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In this paper, we investigate the question of estimating the Gram operator by a robust estimator from an i.i.d.
sample in a separable Hilbert space and we present uniform bounds that hold under weak moment assump-
tions. The approach consists in first obtaining non-asymptotic dimension-free bounds in finite-dimensional
spaces using some PAC-Bayesian inequalities related to Gaussian perturbations of the parameter and then
in generalizing the results in a separable Hilbert space. We show both from a theoretical point of view
and with the help of some simulations that such a robust estimator improves the behavior of the classical
empirical one in the case of heavy tail data distributions.

Keywords: dimension-free bounds; Gram operator; PAC-Bayesian learning; robust estimation

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3864
2. The finite-dimensional setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3867
3. The infinite-dimensional setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3875
4. Empirical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3880
5. The classical empirical estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3884
6. Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3887

6.1. Symmetric random matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3887
6.2. Covariance matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3891

7. Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3894
7.1. Proof of Proposition 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3894
7.2. Proof of Proposition 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3902
7.3. Proof of Proposition 3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3908
7.4. A technical result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3909
7.5. Proof of Proposition 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3912
7.6. Proof of Proposition 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3917
7.7. Proof of Proposition 6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3917
7.8. Proof of Lemma 6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3920
7.9. Proof of Lemma 6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3921

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3922
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3922

1. Introduction

Many algorithms, such as spectral clustering, kernel principal component analysis or more gen-
erally kernel-based methods, are based on estimating eigenvalues and eigenvectors of integral
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operators defined by a kernel function, from a given random sample. To set the context from a
statistical point of view, let μ ∈ M1+(X ) be an unknown probability distribution on a compact
space X and let k be a kernel on X . The goal is to estimate the integral operator

Lkf (x) =
∫

k(x, z)f (z)dμ(z)

from an i.i.d. random sample drawn according to μ.
A first study on the relationship between the spectral properties of a kernel matrix and the

corresponding integral operator can be found in [4] for the case of a symmetric square integrable
kernel k. They prove that the ordered spectrum of the kernel matrix Kij = 1

n
k(Xi,Xj ) converges

to the ordered spectrum of the kernel integral operator Lk . Connections between this empirical
matrix and its continuous counterpart have been subject of much research, for example in the
framework of kernel-PCA (see [9,10,14]) and spectral clustering (see [13]). In [7], the authors
study the connection between the spectral properties of the empirical kernel matrix Kij and
those of the corresponding integral operator Lk by introducing two extension operators on the
(same) reproducing kernel Hilbert space defined by k, that have the same spectrum (and related
eigenfunctions) as K and Lk respectively. In such a way they overcome the difficulty of dealing
with objects (K and Lk) operating in different spaces.

The integral operator Lk is related to the Gram operator

Gv =
∫ 〈

v,φ(z)
〉
Kφ(z)dμ(z), v ∈ K,

where K denotes the reproducing kernel Hilbert space defined by the kernel k and φ the corre-
sponding feature map.

The main objective of this paper is to estimate Gram operators on (infinite-dimensional)
Hilbert spaces. Some bounds on the deviation of the empirical Gram operator from the true
Gram operator in separable Hilbert spaces can be found in [5] in the case of Gaussian random
vectors.

Let us introduce some notation. We denote by H a separable Hilbert space and by P ∈M1+(H)

a (possibly unknown) probability distribution on H. Remark that with the above notation P =
μ ◦ φ−1. Our goal is to estimate the Gram operator G :H → H defined as

Gv =
∫

〈v, z〉Hz dP(z)

from an i.i.d. sample drawn according to P. Our approach consists in first considering the finite-
dimensional setting where X is a random vector in R

d and then in generalizing the results to
the infinite-dimensional case of separable Hilbert spaces. To be able to go from finite to infinite
dimension, we will establish dimension-free inequalities. To be more precise, we consider the
related problem of estimating the quadratic form

N(θ) = 〈Gθ, θ〉H, θ ∈ H
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which rewrites explicitly as

N(θ) =
∫

〈θ, z〉2
H dP(z).

In the finite-dimensional setting, we construct an estimator of the quadratic form N(θ) and
we provide non-asymptotic dimension-free bounds for the approximation error that hold un-
der weak moment assumptions. Note that similar techniques have also been used in [2] in the
finite-dimensional setting. However, the results presented here are not comparable to those in [2]
as the complexity terms appearing in the bounds are not the same. As a result, in [2] the bounds
on the approximation error depend explicitly on the dimension of the ambient space, and grow
to +∞ with it. Observe that in the finite-dimensional case the quadratic form N(θ) can be seen
as the quadratic form associated with the Gram matrix

G =
∫

xx� dP(x).

Observe also that the study of the Gram matrix is of interest in the case of a non-centered criterion
and that it coincides, in the case of centered data (i.e., E[X] = 0), with the study of the covariance
matrix

� = E
[(

X −E[X])(X −E[X])�].
Many theoretical results have been published on the estimation of covariance matrices, for ex-
ample, [8,11,12]. These results follow from the study of random matrix theory and use as an
estimator of G the matrix obtained by replacing the unknown probability distribution P with the
sample distribution 1

n

∑n
i=1 δXi

. In [8], the non-commutative Khintchine inequality is used to
obtain bounds on the sample covariance matrix of a bounded random vector. Non-asymptotic
results are obtained in [12] as a consequence of the analysis of random matrices with indepen-
dent rows, while in [11] the author uses an extension of the Bernstein inequality to matrices.
However, such an empirical estimator becomes less efficient when the data have a long tail dis-
tribution. In [6], the author presents a different estimator based on the geometrical median which
is more robust than the classical empirical one. Another way to construct a robust estimator is
to use rank-based coefficients (as the Kendall’s tau) but this requires strong hypotheses on the
distribution.

We first present a way to construct a robust estimator of the Gram matrix G in finite dimension
and then we extend the results to the infinite-dimensional case. Note that the bounds we propose
are not formulated in terms of matrix norm, and provide instead bounds for |θ�(Ĝ − G)θ | de-
pending on the direction θ , whereas a bound on the operator norm, for example, would provide
a single bound for supθ∈S1

|θ�(Ĝ − G)θ |.
The paper is organized as follows. Section 2 deals with the finite-dimensional case. We provide

a new robust estimator of the Gram matrix G and we use a PAC-Bayesian approach to obtain non-
asymptotic dimension-independent bounds of its approximation error. In Section 3, we extend the
results to the infinite-dimensional case, taking advantage of the fact that they are independent of
the dimension of the ambient space. In Section 4, we propose some empirical results to show
the performance of our estimator. In Section 5, we compare from a theoretical point of view
the behavior of our robust estimator to the one of the classical empirical estimator. Finally in
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Section 6, we extend the results to estimate the expectation of a symmetric random matrix and
we consider the problem of estimating the covariance matrix in the case when the expectation is
unknown.

2. The finite-dimensional setting

Let P ∈ M1+(Rd) be an unknown probability distribution on R
d and let X ∈ R

d be a random
vector of law P. We denote by E the expectation with respect to P. Our goal is to estimate the
quadratic form

N(θ) = E
[〈θ,X〉2], θ ∈R

d

(that computes the energy in the direction θ ) from an i.i.d. sample X1, . . . ,Xn ∈ R
d drawn ac-

cording to P. Observe that N(θ) can be seen as the quadratic form associated to the Gram matrix

G = E
[
XX�].

Indeed to recover the Gram matrix G from the above quadratic form it is sufficient to use the
polarization identity

Gij = e�
i Gej

= 1

4

[
(ei + ej )

�G(ei + ej ) − (ei − ej )
�G(ei − ej )

]
= 1

4

[
N(ei + ej ) − N(ei − ej )

]
,

where {ei}di=1 is the canonical basis of Rd .
A classical empirical estimator of the quadratic form N(θ) is

N̄(θ) = 1

n

n∑
i=1

〈θ,Xi〉2

obtained by replacing the unknown probability distribution P with the sample distribution. How-
ever, as shown in [1], if the distribution of 〈θ,X〉2 has a heavy tail for some values of θ , the qual-
ity of the approximation provided by the classical empirical estimator can be improved, using
some M-estimator with a suitable smooth influence function and a scale parameter depending on
the sample size. Thus in order to construct a robust estimator for N , we consider, for any θ ∈R

d

and any λ > 0,

rλ(θ) = 1

n

n∑
i=1

ψ
(〈θ,Xi〉2 − λ

)
, (2.1)
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where the function ψ :R → R, defined as

ψ(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
log(2) if t ≥ 1,

− log

(
1 − t + t2

2

)
if 0 ≤ t ≤ 1,

−ψ(−t) if t ≤ 0,

(2.2)

is symmetric non-decreasing, bounded, and satisfies

− log

(
1 − t + t2

2

)
≤ ψ(t) ≤ log

(
1 + t + t2

2

)
, t ∈R.

Introduce

α̂λ(θ) = sup
{
α ∈ R+ | rλ(αθ) ≤ 0

}
. (2.3)

In order to simplify notation, in the following we omit the dependence on λ and we write α̂

instead of α̂λ.
Observe that, since the function α �→ rλ(αθ) is continuous, rλ(̂α(θ)θ) = 0 as soon as α̂(θ) <

+∞. Moreover, since the function ψ is close to the identity in a neighborhood of the origin,

0 = rλ
(̂
α(θ)θ

)� α̂(θ)2N̄(θ) − λ

and therefore it is natural to consider as an estimator of N(θ) a quantity related to λ/α̂(θ)2, for
a suitable value of λ. We consider the family of (robust) estimators

Ñλ(θ) = λ

α̂(θ)2
(2.4)

and we observe that, since α̂(θ) is homogeneous of degree −1 in θ ,

Ñλ(θ) = ‖θ‖2Ñλ

(
θ/‖θ‖).

In the following, we will use a PAC-Bayesian approach linked to Gaussian perturbations of the
parameter θ to first construct a confidence region for N(θ) and then define and study a robust
estimator by choosing a suitable value λ̂ for the parameter λ.

Given θ ∈ R
d , we consider the family of Gaussian perturbations πθ ∼ N (θ,β−1I) of mean θ

and covariance matrix β−1I where β > 0 is a free parameter.
Let � ⊂ (R+ \ {0})2 be a finite set of possible values of the couple of parameters (λ,β) and

|�| its cardinality. Let us introduce

s4 = E
[‖X‖4]1/4 and κ = sup

θ∈Rd

E[〈θ,X〉2]>0

E[〈θ,X〉4]
E[〈θ,X〉2]2

(2.5)
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assuming that these two quantities are finite. 1 We will prove later on that

s2
4 ≤ κ1/2

E
(‖X‖2)= κ1/2 Tr(G).

Note that in the case where the probability distribution P is Gaussian, κ = 3.
For any (λ,β) ∈ � and ε > 0, we put

ξ = κλ

2
,

μ = λ(κ − 1) + (2 + c)κ1/2s2
4

β
,

γ = λ

2
(κ − 1) + (2 + c)κ1/2s2

4

β
+ (2 + 3c)s4

4

2β2λ
+ log(|�|/ε)

nλ
,

δ = β

2nλ
,

(2.6)

where

c = 15

8 log(2)(
√

2 − 1)
exp

(
1 + 2

√
2

2

)
≤ 44.3. (2.7)

Proposition 2.1. With probability at least 1 − 2ε, for any θ ∈ R
d , any (λ,β) ∈ �,

�θ,−
(

λ

α̂(θ)2

)
≤ N(θ) ≤ �−1

θ,+
(

λ

α̂(θ)2

)
,

where �θ,− and �θ,+ are non-decreasing functions defined as

�θ,−(t) = t

(
1 − γ + δλ‖θ‖2/t

1 + μ − γ − δλ‖θ‖2/t

)
1
[
ξ − μ + 2γ + 2δλ‖θ‖2/t < 1

]
,

�θ,+(t) = t

(
1 + γ + δλ‖θ‖2/t

1 − μ − γ − 2δλ‖θ‖2/t

)−1

1
[
ξ + μ + γ + 2δλ‖θ‖2/t < 1

]
,

and where �−1
θ,+(u) = sup{t ∈ R+ : �θ,+(t) ≤ u}.

For the proof, we refer to Section 7.1.
Observe that since those functions depend on θ only through ‖θ‖, if θ is such that ‖θ‖ = 1 it

is natural to omit the dependence of θ and write �− and �+. In the following we will omit the
dependence of θ of the functions defined in Proposition 2.1, so that we write �− and �+ instead
of �θ,− and �θ,+.

1As it will be explained later, it is sufficient to know upper bounds for these quantities since the following results still
hold true replacing s4 and κ by upper bounds.
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Proposition 2.2. Let σ ∈R+ be any energy level. We consider the set

� =
{
(λ,β, t) ∈ � ×R+ | ξ + μ + γ + 2

δλ

max{t, σ } < 1

}
and the bound

Bλ,β(t) =
⎧⎨⎩

γ + λδ/max{t, σ }
1 − μ − γ − 2λδ/max{t, σ } , (λ,β, t) ∈ �,

+∞ otherwise.
(2.8)

With probability at least 1 − 2ε, for any θ ∈R
d , any (λ,β) ∈ �,∣∣∣∣ max{N(θ), σ‖θ‖2}

max{Ñλ(θ), σ‖θ‖2} − 1

∣∣∣∣≤ Bλ,β

[‖θ‖−2Ñλ(θ)
]
.

Proof. We observe that, for any z, t, σ ∈R+, if �+(z) ≤ t then

�+
(
max{z, σ })≤ max{t, σ }

since it is clear from the definition of �+ that �+(σ ) ≤ σ . Similarly if �−(z) ≤ t , then

�−
(
max{z, σ })≤ max{t, σ }.

Thus, according to the definition of Bλ,β in equation (2.8), we get

�+
(
max{z, σ })= max{z, σ }(1 + Bλ,β(z)

)−1
, (2.9)

�−
(
max{z, σ })≥ max{z, σ }(1 − Bλ,β(z)

)
. (2.10)

Therefore

�−1+
(
max{z, σ })= sup

{
t : �+(t) ≤ max{z, σ }}

= sup
{
t ≥ z : �+(t) ≤ max{z, σ }}

= sup
{
t ≥ z : (1 + Bλ,β(t)

)−1 max{z, σ }}
≤ sup

{
t ≥ z : (1 + Bλ,β(z)

)−1
t ≤ max{z, σ }}

= max{z, σ }(1 + Bλ,β(z)
)
,

where we have have used the fact that Bλ,β is non-decreasing. In view of these inequalities, the
present proposition is a consequence of the previous one. �

From now on we fix the finite set � of all possible values of the couple (λ,β) as

� = {
(λj ,βj ) | 0 ≤ j < K

}
, (2.11)
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where K = 1 + �a−1 log( n

72(2+c)κ1/2 )�, with a > 0 and c defined in equation (2.7), and

λj =
√

2

n(κ − 1)

(
(2 + 3c)

4(2 + c)κ1/2 exp(−ja)
+ log(K/ε)

)
,

βj =
√

2(2 + c)κ1/2s4
4n exp

[−(j − 1/2)a
]
.

We put

(̂λ, β̂) = arg min
(λ,β)∈�

Bλ,β

[‖θ‖−2Ñλ(θ)
]

and we define our robust estimator as

N̂(θ) = Ñλ̂(θ). (2.12)

Proposition 2.3. Let us fix a threshold σ ≤ s2
4 and set the value of the parameter a used to define

� to 1/2. Introduce

ζ∗(t) =
√

2.032(κ − 1)

(
0.73 Tr(G)

t
+ log(K) + log

(
ε−1

))+
√

98.5κ Tr(G)

t
, t ∈ R+,

where Tr(G) = E[‖X‖2] denotes the trace of the Gram matrix, and

B∗(t) =
⎧⎨⎩

n−1/2ζ∗(max{t, σ })
1 − 4n−1/2ζ∗(max{t, σ }) ,

[
6 + (κ − 1)−1]ζ∗

(
max{t, σ })≤ √

n,

+∞ otherwise.

With probability at least 1 − 2ε, for any θ ∈R
d ,∣∣∣∣max{N(θ), σ‖θ‖2}

max{N̂(θ), σ‖θ‖2} − 1

∣∣∣∣≤ B∗
[‖θ‖−2N(θ)

]
.

For the proof, we refer to Section 7.2. Remark that equation (7.20) of the proof provides a
bound for any choice of the parameter a > 0 and that we report here only the numerical value of
the bound when a = 1/2 for the sake of simplicity.

Assuming any reasonable bound on the sample size we can bound the logarithmic factor
log log(n) hidden in log(K) with a relatively small constant. In particular, if we choose n ≤ 1020,
we get log(K) ≤ 4.35.

In order to provide a more friendly version of the above bound, we introduce here the O
notation, where A = O(B) means that there exists a numerical constant τ such that A ≤ τB .
Thus, the result stated in Proposition 2.3 becomes, with probability at least 1 − 2ε, for any
θ ∈R

d ,∣∣∣∣max{N(θ), σ‖θ‖2}
max{N̂(θ), σ‖θ‖2} − 1

∣∣∣∣≤O
(√

κ

n

(
Tr(G)

max{‖θ‖−2N(θ), σ } + log
(
log(n)/ε

)))
.
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Observe that the bound B∗, unlike the bound provided in [2], does not depend explicitly on the
dimension d of the ambient space. More specifically, the dimension has been replaced by the
effective dimension coming from the entropy term of the PAC-Bayesian bound

Tr(G)/max
{‖θ‖−2N(θ), σ

}
.

To get an intuition of why this entropy term replaces the dimension, it is sufficient to consider the
case where the energy N is uniformly distributed, so that N(θ) = N∗ ≥ σ for any θ ∈ R

d with
‖θ‖ = 1. In this case indeed

Tr(G)

max{‖θ‖−2N(θ), σ } =
∑d

i=1 N(vi)

N∗
= d,

where vi denotes an orthonormal basis of eigenvectors of G. In summary, when the Gram matrix
G to be estimated is proportional to the identity matrix, then our bound coincides (up to some
moderate increase in the constants) with the bound proved in [2], but when the eigenvalues of G

are decreasing, then our bound balances the complexity in a different way and is looser when θ is
in the span of eigenvectors with low eigenvalues, but tighter when θ is in the span of eigenvectors
with high eigenvalues.

Let us also remark that the variance Var(〈θ,X〉2) of 〈θ,X〉2 is related to κ by the relation

κ = 1 + sup

{
Var(〈θ,X〉2)

E(〈θ,X〉2)2
: θ ∈ R

d,E
(〈θ,X〉2)> 0

}
.

Moreover, we do not need to know the exact values of κ and Tr(G) = E(‖X‖2) to compute the
estimator and evaluate the bound, it is sufficient to know upper bounds instead. Indeed, if we
use those upper bounds to define our estimator, the above result is still true with κ and Tr(G)

replaced by their upper bounds.
We also observe that in order to have a meaningful (finite) bound we can choose the threshold

σ such that

8ζ∗(σ ) ≤ √
n (2.13)

so that B∗(t) < +∞ for any t ∈R+, assuming that κ ≥ 3/2. More precisely, using the inequality
(
√

a + √
b)2 ≤ 2(a + b), we see that equation (2.13) holds when

σ = 100κ Tr(G)

n/128 − 4.35 − log(ε−1)
.

With this choice the threshold σ decays to zero at speed 1/n as the sample size grows to infinity.
Remark that the estimator N̂ is not necessarily a quadratic form. We conclude this section

by introducing and studying a quadratic estimator of N , that is an estimator of the form θ�Qθ ,
where Q is an estimate of the Gram matrix G.

We observe that Proposition 2.1 provides a confidence region for N(θ). Define

B−(θ) = max
(λ,β)∈�

�−
(
Ñλ(θ)

)
and B+(θ) = min

(λ,β)∈�
�−1+

(
Ñλ(θ)

)
,
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where we recall that Ñλ(θ) = λ

α̂(θ)2 and � is defined in equation (2.11). According to Proposi-

tion 2.1, with probability at least 1 − 2ε, for any θ ∈ R
d ,

B−(θ) ≤ N(θ) ≤ B+(θ). (2.14)

From a theoretical point of view we can consider as an estimator of N any quadratic form be-
longing to the confidence interval [B−(θ),B+(θ)] for any θ . Such a quadratic form exists with
probability at least 1 − 2ε according to equation (2.14). However, from an algorithmic point of
view, we would like to impose these constraints only for a finite number of directions θ . In partic-
ular, in the following we are going to study the properties of a symmetric matrix Q that satisfies
Tr(Q2) ≤ Tr(G2) and

B−(θ) ≤ θ�Qθ ≤ B+(θ), θ ∈ �δ,

where �δ is any finite δ-net of the unit sphere Sd = {θ ∈R
d ,‖θ‖ = 1}, meaning that

sup
θ∈Sd

min
ξ∈�δ

‖θ − ξ‖ ≤ δ.

The matrix Q can be computed using a convex optimization algorithm as described in Sec-
tion 1.2.4 of [3].

Note that a more straightforward choice would have been to set

Qi,j = 1

4

[
N̂(ei + ej ) − N̂(ei − ej )

]
, (2.15)

where {ei}di=1 denotes the canonical basis of Rd . Unfortunately this simple choice is not adequate
to control the approximation error independently of the dimension d in all directions. To get a
dimension-free bound we need an estimator that behaves well in a far larger set of directions �δ

than the d2 directions ei ± ej .

From now on let σ ∈]0, s2
4 ] be a threshold such that 8ζ∗(σ ) ≤ √

n. The next proposition pro-
vides the analogous for the quadratic form θ�Qθ of the dimension-free bound presented in
Proposition 2.3 for N̂(θ).

Proposition 2.4. With the same notation as in Proposition 2.3, with probability at least 1 − 2ε,
for any θ ∈ Sd , ∣∣max

{
θ�Qθ,σ

}− max
{
N(θ), σ

}∣∣
≤ 2 max

{
N(θ), σ

}
B∗
(
N(θ)

)+ 5δ

√
Tr
(
G2

)
,∣∣max

{
θ�Qθ,σ

}− max
{
N(θ), σ

}∣∣
≤ 2 max

{
θ�Qθ,σ

}
B∗
(
min

{
θ�Qθ, s2

4

})+ 5δ

√
Tr
(
G2

)
.



3874 I. Giulini

Remark that the parameter δ of the net �δ governs the computation cost of Q. Thus, we can
in theory (that is if we have an arbitrarily fast computer at our disposal), take δ as close to zero
as we want.

Proof. Since for any θ ∈ Sd there is ξ ∈ �δ such that ‖θ − ξ‖ ≤ δ, we have∣∣θ�Qθ − ξ�Qξ
∣∣= (θ + ξ)�Q(θ − ξ)

≤ ‖θ + ξ‖‖Q‖∞‖θ − ξ‖ ≤ 2δ

√
Tr
(
Q2

)≤ 2δ

√
Tr
(
G2

)
.

(2.16)

Let us put η = 2δ
√

Tr(G2). We observe that, with probability at least 1 − 2ε,

�− ◦ �+
(
θ�Qθ − η

)≤ N(θ) + η,

�− ◦ �+
(
N(θ) − η

)≤ θ�Qθ + η,
(2.17)

where �+ and �− are defined in Proposition 2.1 and depend on θ only through ‖θ‖. Indeed, in
the event of probability at least 1 − 2ε described in equation (2.14),

θ�Qθ ≤ �−1+
(
Ñλ(ξ)

)+ η ≤ �−1+ ◦ �−1−
(
N(ξ)

)+ η ≤ �−1+ ◦ �−1−
(
N(θ) + η

)+ η,

since equation (2.16) also holds for N , and in the same way we get

θ�Qθ ≥ �−
(
Ñλ(ξ)

)− η ≥ �− ◦ �+
(
N(ξ)

)− η ≥ �− ◦ �+
(
N(θ) − η

)− η

which proves equation (2.17). We conclude the proof using Corollary 7.1 on page 3912 in Sec-
tion 7.4 �

Note that the estimated matrix Q of the previous proposition is not necessarily positive semi-
definite. We can remedy that shortcoming by considering instead its positive part Q+ (obtained
by taking the positive part of its eigenvalues in the framework of functional calculus on symmet-
ric matrices).

Based on the fact that θ�Qθ ≥ B−(θ) ≥ 0 on �δ and on equation (2.16), stating that for any
θ ∈ Sd , ∣∣θ�Qθ − ξ�Qξ

∣∣≤ 2δ

√
Tr
(
G2

)
,

where ξ ∈ �δ is such that ‖θ − ξ‖ ≤ δ, we can see that we do not loose much when replacing Q

by Q+.

Proposition 2.5. With probability at least 1 − 2ε, for any θ ∈ Sd ,∣∣max
{
θ�Q+θ, σ

}− max
{
N(θ), σ

}∣∣
≤ 2 max

{
N(θ), σ

}
B∗
(
N(θ)

)+ 7δ

√
Tr
(
G2

)
,∣∣max

{
θ�Q+θ, σ

}− max
{
N(θ), σ

}∣∣
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≤ 2 max
{
θ�Q+θ, σ

}
B∗
(
min

{
θ�Q+θ, s2

4

})+ 7δ

√
Tr
(
G2

)
,

where B∗ is defined in Proposition 2.3.

Proof. Let us put as before η = 2δ
√

Tr(G2). For any θ ∈ Sd , there is ξ ∈ �δ such that ‖θ − ξ‖ ≤
δ, so that, according to equation (2.16),

θ�Qθ ≥ ξ�Qξ − η ≥ −η.

Then we deduce that

‖Q−‖∞ = sup
θ∈Sd

θ�Q−θ = − inf
θ∈Sd

θ�Qθ ≤ η.

Therefore, for any θ ∈ Sd ,∣∣max
{
θ�Qθ,σ

}− max
{
θ�Q+θ, σ

}∣∣≤ ∣∣θ�Qθ − θ�Q+θ
∣∣= θ�Q−θ ≤ η.

Combining the above equation with Proposition 2.4 we conclude the proof. �

Since for any a, b ∈R+, a − b − σ ≤ max{a,σ } − max{b,σ }, we obtain as a consequence:

Corollary 2.1. With probability at least 1 − 2ε, for any θ ∈ Sd ,∣∣θ�Q+θ − N(θ)
∣∣≤ 2 max

{
N(θ), σ

}
B∗
(
N(θ)

)+ 7δ

√
Tr
(
G2

)+ σ,∣∣θ�Q+θ − N(θ)
∣∣≤ 2 max

{
θ�Q+θ, σ

}
B∗
(
min

{
θ�Q+θ, s2

4

})+ 7δ

√
Tr
(
G2

)+ σ.

To conclude, we mention that it is possible to get similar dimension-free bounds under light
tail hypotheses for the classical empirical estimator

Ḡ = 1

n

n∑
i=1

XiX
�
i .

For more details, we refer to Section 5.

3. The infinite-dimensional setting

In this section, we extend the results obtained in the previous section to the infinite-dimensional
setting.

Let H be a separable Hilbert space and let P ∈ M1+(H) be an unknown probability distribution
on H. We consider the Gram operator G :H → H defined by

Gθ =
∫

〈θ, v〉Hv dP(v)
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and we assume Tr(G) = E(‖X‖2
H) < +∞, where X ∈ H denotes a random vector with law P.

In analogy to the previous section we denote by N the quadratic form associated with the Gram
operator G so that

N(θ) = 〈Gθ, θ〉H =
∫

〈θ, v〉2
H dP(v), θ ∈H.

We consider (Hk)k an increasing sequence of subspaces of H of finite dimensions such that⋃
k Hk = H. For instance, if {ei, i ∈ N

∗} is an orthonormal basis of H, we can take Hk =
span{e1, . . . , ek}. To give a more concrete example, in the case when H = L

2([0,1]), we can
take for ei the Fourier basis. In this example, the orthogonal projector �k on Hk is given by

�kv =
k∑

i=1

〈v, ei〉Hei, v ∈ H.

We denote by Nk the quadratic form in Hk associated with the probability distribution of �kX,
so that

Nk(θ) = E
(〈θ,�kX〉2)= N(θ), θ ∈Hk.

Remark that for any θ ∈ H,

Nk(�kθ) = N(�kθ).

In the following we consider an i.i.d. sample of size n in H drawn according to P. According to
Proposition 2.1, the event

Ak =
{
∀θ ∈Hk,∀(λ,β) ∈ �,�θ,−

(
λ

α̂(θ)2

)
≤ N(θ) ≤ �−1

θ,+
(

λ

α̂(θ)2

)}
is such that P⊗n(Ak) ≥ 1 − 2ε. Since Ak+1 ⊂Ak , by the continuity of measure,

P⊗n

(⋂
k∈N

Ak

)
≥ 1 − 2ε.

This means that with probability at least 1 − 2ε, for any θ ∈⋃k Hk and any (λ,β) ∈ �,

�θ,−
(

λ

α̂(θ)2

)
≤ N(θ) ≤ �−1

θ,+
(

λ

α̂(θ)2

)
.

Consequently, since N(θ) = limk→+∞ N(�k(θ)), for any θ ∈ H, the following result holds.

Proposition 3.1. With probability at least 1 − 2ε, for any θ ∈H,

B−(θ) ≤ N(θ) ≤ B+(θ),



Robust dimension-free Gram operator estimates 3877

where

B−(θ) = lim sup
k→+∞

max
(λ,β)∈�

��kθ,−
(

λ

α̂(�kθ)2

)
,

B+(θ) = lim inf
k→+∞ min

(λ,β)∈�
�−1

�kθ,+
(

λ

α̂(�kθ)2

)
.

If we do not want to go to the limit, we can use the explicit bound∣∣N(θ) − N
(
�k(θ)

)∣∣= ∣∣〈θ + �k(θ),G
(
θ − �k(θ)

)〉
H
∣∣

≤ 2‖θ‖H‖G‖∞
∥∥θ − �k(θ)

∥∥
H

≤ 2‖θ‖H Tr(G)
∥∥θ − �k(θ)

∥∥
H

= 2‖θ‖HE
(‖X‖2

H
)∥∥θ − �k(θ)

∥∥
H.

This bound depends on ‖θ − �kθ‖H. We will see in the following another bound that goes
uniformly to zero for any θ ∈ SH when k tends to infinity. In the same way, proceeding as
already done in the previous section we state the analogous of Proposition 2.3.

Let

κ ≥ sup
θ∈H

E(〈θ,X〉2
H)>0

E(〈θ,X〉4
H)

E(〈θ,X〉2
H)2

and s4 ≥ E
(‖X‖4

H
)1/4

be known constants and put

K = 1 +
⌈

2 log

(
n

72(2 + c)κ1/2

)⌉
,

where

c = 15

8 log(2)(
√

2 − 1)
exp

(
1 + 2

√
2

2

)
as in equation (2.7). Define

ζ∗(t) =
√

2.032(κ − 1)

(
0.73 Tr(G)

t
+ log(K) + log

(
ε−1

))+
√

98.5κ Tr(G)

t

and consider, according to equation (2.12), the estimators

N̂k(θ) = Ñλ̂(θ), θ ∈ Hk.

For any θ ∈ H, define N̂H(θ) by choosing any limit point of N̂k(�kθ), such as for example,
lim infk→∞ N̂k(�kθ).
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Proposition 3.2. Define the bound

B∗(t) = n−1/2ζ∗(max{t, σ })
1 − 4n−1/2ζ∗(max{t, σ }) ,

where σ ∈]0, s2
4 ] is some energy level such that[

6 + (κ − 1)−1]ζ∗(σ ) ≤ √
n.

With probability at least 1 − 2ε, for any θ ∈H,∣∣∣∣ max{N(θ), σ‖θ‖2
H}

max{N̂H(θ), σ‖θ‖2
H} − 1

∣∣∣∣≤ B∗
[‖θ‖−2

H N(θ)
]
.

Proof. This is a consequence of the fact that limk→+∞ N(�k(θ)) = N(θ) and of the continuity
of B∗. �

As already discussed at the end of Proposition 2.3, any reasonable bound on the sample size
n allows bounding the logarithmic factor log(K) by a relatively small constant. In particular,
assuming that n ≤ 1020, we get log(K) ≤ 4.35.

In the following we construct an estimator of the Gram operator G. Let X1, . . . ,Xn ∈ H be an
i.i.d. sample drawn according to P. Define V = span{X1, . . . ,Xn} and

Vk = span{�kX1, . . . ,�kXn} = �k(V ).

Let �δ be a δ-net of SH ∩ Vk (where SH denotes the unit sphere in H) and remark that �δ is
finite because dim(Vk) ≤ n < +∞. We compute a linear operator Ĝk : Vk → Vk with minimal
Hilbert Schmidt norm – so that Tr(Ĝ2

k ) ≤ Tr(G2) – satisfying

max
(λ,β)∈�

�−
(
Ñλ(θ)

)≤ 〈Ĝkθ, θ〉H ≤ min
(λ,β)∈�

�−1+
(
Ñλ(θ)

)
, θ ∈ �δ.

Observe that Ĝk plays the same role as the symmetric matrix Q in the finite-dimensional setting.
We consider as an estimator of G the operator

Q= Ĝk ◦ �Vk
, (3.1)

where �Vk
is the orthogonal projector on Vk . Let us decompose Q in its positive and negative

parts and write Q =Q+ −Q−.

Proposition 3.3. For any threshold σ ∈ R+ such that σ ≤ s2
4 and 8ζ∗(σ ) ≤ √

n, with probability
at least 1 − 2ε, for any θ ∈ SH and for any k,∣∣max

{〈θ,Q+θ〉H, σ
}− max

{〈�kθ,G�kθ〉H, σ
}∣∣

≤ 2 max
{〈�kθ,G�kθ〉H, σ

}
B∗
(〈�kθ,G�kθ〉H

)+ 7δ

√
Tr
(
G2
)
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{〈θ,Q+θ〉H, σ

}− max
{〈�kθ,G�kθ〉H, σ

}∣∣
≤ 2 max

{〈θ,Q+θ〉H, σ
}
B∗
(
min

{〈θ,Q+θ〉H, s2
4

})+ 7δ

√
Tr
(
G2
)
.

For the proof, we refer to Section 7.3.
Let us consider {pi}+∞

i=1 an orthonormal basis of eigenvectors of G such that the corresponding
sequence of eigenvalues {λi, i = 1, . . . ,+∞} is non-increasing.

Proposition 3.4. Consider some threshold σ ∈ R+ such that σ ≤ s2
4 and 8ζ∗(σ ) ≤ √

n. With
probability at least 1 − 2ε, for any θ ∈ SH and for any k,∣∣max

{〈θ,Q+θ〉H, σ
}− max

{〈θ,Gθ〉H, σ
}∣∣

≤ 2 max
{〈θ,Gθ〉H, σ

}
B∗
(〈θ,Gθ〉H

)+ 7δ

√
Tr
(
G2
)+ 3νk,∣∣max

{〈θ,Q+θ〉H, σ
}− max

{〈θ,Gθ〉H, σ
}∣∣

≤ 2 max
{〈θ,Q+θ〉H, σ

}
B∗
(
min

{〈θ,Q+θ〉H, s2
4

})+ 7δ

√
Tr
(
G2
)+ 2νk,

where

νk = inf
m=1,...,+∞

(
m−1∑
i=1

λi‖pi − �kpi‖H + λm/2

)

≤ inf
m=1,...,+∞

(
m−1∑
i=1

λi‖pi − �kpi‖H + Tr(G)/(2m)

)
−→

k→+∞ 0.

Proof. It is enough to observe that∣∣max
{〈θ,Q+θ〉H, σ

}− max
{〈θ,Gθ〉H, σ

}∣∣
≤ ∣∣max

{〈θ,Q+θ〉H, σ
}− max

{〈�kθ,G�kθ〉H, σ
}∣∣+ ∣∣〈θ,Gθ〉H − 〈�kθ,G�kθ〉H

∣∣
and, for any θ ∈ SH, we have

∣∣〈θ,Gθ〉H − 〈�kθ,G�kθ〉H
∣∣= ∣∣∣∣∣

+∞∑
i=1

(〈�kθ,pi〉2
H − 〈θ,pi〉2

H
)
λi

∣∣∣∣∣
=
∣∣∣∣∣
+∞∑
i=1

(〈θ,�kpi〉2
H − 〈θ,pi〉2

H
)
λi

∣∣∣∣∣
=
∣∣∣∣∣
m−1∑
i=1

〈θ,�kpi + pi〉H〈θ,pi − �kpi〉Hλi

∣∣∣∣∣
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+
∣∣∣∣∣
+∞∑
i=m

(〈θ,�kpi〉2
H − 〈θ,pi〉2

H
)
λi

∣∣∣∣∣
≤

m−1∑
i=1

2λi‖pi − �kpi‖H

+ max

{+∞∑
i=m

λi〈�kθ,pi〉2
H,

+∞∑
i=m

λi〈θ,pi〉2
H

}

≤ inf
m=1,...,+∞

(
m−1∑
i=1

2λi‖pi − �kpi‖H + λm

)
.

Indeed,
∑+∞

i=m〈�kθ,pi〉2
H ≤ ‖�kθ‖2

H ≤ ‖θ‖2 ≤ 1, so that

+∞∑
i=m

λi〈�kθ,pi〉2
H ≤

(
sup
i≥m

λi

)(+∞∑
i=m

〈�kθ,pi〉2
H

)
≤ λm,

and in the same way
∑+∞

i=m λi〈θ,pi〉2
H ≤ λm. �

Remark that we can use this result to bound |〈θ, (G −Q+)θ〉H|, using the inequality∣∣〈θ, (G −Q+)θ
〉
H
∣∣≤ ∣∣max

{〈θ,Q+θ〉H, σ
}− max

{〈θ,Gθ〉H, σ
}∣∣+ σ.

4. Empirical results

We present some empirical results that show the performance of our robust estimator. We use
here a simplified construction that does not follow exactly the definition of the estimator Q, but
exhibits the same kind of behaviour. We have simplified the construction in two ways. First, we
do less intensive computations by using more directions than in equation (2.15) on page 3873 but
less than specified in the δ-net �δ required by the theory. More precisely, we estimate repeatedly
using equation (2.15) on page 3873 in an eigen-basis of the previous iterate of the estimation.
Second, we do not use the theoretical value of λ, that is necessarily pessimistic for the sake of
mathematical correctness. We use instead the optimal constant for estimating E(〈θ,X〉2) in a
single direction, as given in [1].

Let X1, . . . ,Xn ∈ R
d be a sample drawn according to the probability distribution P and let

λ > 0. Let p ∈R
n and define S(p,λ) as the solution of

n∑
i=1

ψ
[
λ
(
S(p,λ)−1p2

i − 1
)]= 0.

In practice we compute S(p,λ) using the Newton algorithm. We observe that, when pi = 〈θ,Xi〉
and λ is suitably chosen, S(p,λ) is an approximation of the estimator N̂(θ) of the quadratic form
N(θ) and more precisely, in this case, S(p,λ) is exactly Ñλ(θ) defined in equation (2.4).
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Define S(p) as the solution obtained when the parameter λ is set to

λ = m

√
1

v

[
2

n
log

(
ε−1

)(
1 − 2

n
log

(
ε−1

))]
,

where m = 1
n

∑n
i=1 p2

i , v = 1
n−1

∑n
i=1(p

2
i − m)2 and ε = 0.1.

Let λ̄1 ≥ · · · ≥ λ̄d ≥ 0 be the eigenvalues of the empirical Gram matrix Ḡ, that will be our
starting point, and let u1, . . . , ud be a corresponding orthonormal basis of eigenvectors. We de-
compose the empirical Gram matrix as

Ḡ = UDU�,

where U is the orthogonal matrix whose columns are the eigenvectors of Ḡ and D is the diagonal
matrix D = diag(λ̄1, . . . , λ̄d). Based on the polarization formula,

u�
i Guj = 1

4

[
N(ui + uj ) − N(ui − uj )

]
, i, j = 1, . . . , d,

we revise iteratively our estimation of G by estimating N(ui + σuj ), with σ ∈ {+1,−1}, by

S
(〈ui + σuj ,X�〉,1 ≤ � ≤ n

)
.

More precisely, for any n × d matrix W , we define C(W) as the d × d matrix with entries

C(W)i,j = 1

4

[
S
(
(W�,i + W�,j ) | 1 ≤ � ≤ n

)− S
(
(W�,i − W�,j ) | 1 ≤ � ≤ n

)]
.

Let Y be the matrix whose �th row is the vector X�, so that

(YU)�,k = 〈uk,X�〉, 1 ≤ � ≤ n,1 ≤ k ≤ d.

We update the Gram matrix estimate to

Q0 = UC(YU)U�.

Then we iterate the update scheme, decomposing Q0 as

Q0 = O0D0O
�
0 ,

where O0O
�
0 = O�

0 O0 = I and D0 is a diagonal matrix and computing

Q1 = O0C(YO0)O
�
0 .

The inductive update step is more generally the following. Assuming we have constructed Qk ,
we decompose it as

Qk = OkDkO
�
k ,
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where OkO
�
k = O�

k Ok = I and Dk is a diagonal matrix and we define the new updated estimator
of G as

Qk+1 = OkC(YOk)O
�
k .

We stop this iterative estimation scheme when ‖Qk − Qk−1‖F falls under a given threshold. In
the following numerical experiment we more simply performed four updates. We take as our
robust estimator of G the last update Qk .

We now present an example of the performance of this estimator, for some i.i.d. sample of size
n = 100 in R

10 drawn according to the Gaussian mixture distribution

P = (1 − α)N (0,M1) + αN (0,16I),

where α = 0.05 and

M1 =

⎡⎢⎢⎢⎢⎢⎣
2 1 01 1

0
0.01

0. . .0
0.01

⎤⎥⎥⎥⎥⎥⎦ .

The Gram matrix of P is equal to

G = (1 − α)M1 + 16αI =

⎡⎢⎢⎢⎢⎢⎣
2.7 0.95 00.95 1.75

0
0.8095

0. . .0
0.8095

⎤⎥⎥⎥⎥⎥⎦ .

This example illustrates a favorable situation where the performance of the robust estimator
is particularly striking when compared to the empirical Gram matrix. As it can be seen on the
expression of the sample distribution as well as on the configuration plots below, this is a situation
of intermittent high variance: the sample is a mixture of a rare high variance signal and a frequent
low variance more structured signal.

We tested the algorithm on 500 different samples, of size n = 100 each, drawn according to
the Gaussian mixture distribution defined above. Random sample configurations are presented in
Figure 1.

Figure 2 shows that the robust estimator Q significantly improves the error in terms of square
of the Frobenius norm when compared to the empirical estimator Ḡ. The red solid line represents
the empirical quantile function of the errors of the robust estimator, whereas the blue dotted line
represents the quantiles of ‖Ḡ − G‖2

F .
This quantile function is obtained by sorting the 500 empirical errors in increasing order.
We also represented in Figure 2 the boxplots of the distributions of ‖Ḡ−G‖2

F and ‖Q−G‖2
F

on 500 statistical experiments. (The boxplots show the first, second and third quartiles, with
whiskers extending to the most extreme data point within 1.5 of interquartile range. Further
away extreme data points are printed individually).
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Figure 1. Two data samples projected onto the two first coordinates (above) and the second and third
coordinates (below). Blue circles are drawn from the most frequent distribution and red triangles from the
less frequent one.

The mean of the square distances ‖Q − G‖2
F on 500 trials is 5.6 ± 0.4, where the indicated

mean estimator and confidence interval is the non-asymptotic confidence interval given by Propo-
sition 2.4 of [1] at confidence level 0.99. In the case of the empirical estimator, the mean is
15.5 ± 2. The empirical standard deviations accross 500 trials of ‖Q − G‖2

F and ‖Ḡ − G‖2
F

respectively, are close to 2 and 10. So we see that in this case the robust estimator reliably de-
creases the expected error by a factor larger than 2 and also produces errors with a much smaller
standard deviation from sample to sample.
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Figure 2. The solid red line represents the empirical quantile function of the square distances ‖Q − G‖2
F

in 500 statistical experiments, the dotted blue line represents the empirical quantile function of the square
distances ‖Ḡ − G‖2

F
. The corresponding boxplots are also displayed on the right figure.

In Section 5, we show from a theoretical point of view that the two estimators Q and Ḡ behave
in a similar way in light tail situations (meaning that in this case their predictions are the same).

5. The classical empirical estimator

The main goal of Section 2 is to estimate the Gram matrix G = E(XX�), where X ∈ R
d is

a random vector of unknown law P ∈ M1+(Rd), from an i.i.d. sample X1, . . . ,Xn ∈ R
d drawn

according to P. We have constructed a robust estimator of the Gram matrix and in Section 4 we
have shown empirically its performance in the case of a Gaussian mixture distribution. In this
section, we show from a theoretical point of view that the classical empirical estimator

Ḡ = 1

n

n∑
i=1

XiX
�
i

behaves similarly to our robust estimator in light tail situations, while it may perform worse
otherwise.

As already done in Section 2, we consider the quadratic form

N(θ) = θ�Gθ = E
(〈θ,X〉2)

and we denote by

N̄(θ) = θ�Ḡθ = 1

n

n∑
i=1

〈θ,Xi〉2
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the quadratic form associated to the empirical Gram matrix Ḡ. According to the notation intro-
duced in Section 2, let a > 0 and let

K = 1 +
⌈
a−1 log

(
n

72(2 + c)κ1/2

)⌉
,

where κ = sup θ∈Rd

E(〈θ,X〉2)>0

E(〈θ,X〉4)

E(〈θ,X〉2)2 and c = 15
8 log(2)(

√
2−1)

exp( 1+2
√

2
2 ). Let us put

R = max
i=1,...,n

‖Xi‖ (5.1)

and let us introduce

τ∗(t) = λ∗(t)2 exp(a/2)R4

3 max{t, σ }2
, t ∈ R+,

where λ∗ is defined in equation (7.16) as

λ∗(t) =
√

2

n(κ − 1)

(
(2 + 3c)E(‖X‖4)1/2

4(2 + c)κ1/2 max{t, σ } + log(K/ε)

)
.

At the end of the section, we mention some assumptions under which it is possible to give a
non-random bound for R.

The following proposition, compared with the result obtained for the robust estimator N̂(θ),
presented in Proposition 2.3, shows that the different behavior of the two estimators N̂ and N̄

can appear only for heavy tail data distributions.

Proposition 5.1. Consider any threshold σ ∈ R+ such that σ ≤ E(‖X‖4)1/2. With probability at
least 1 − 2ε, for any θ ∈ Sd ,∣∣∣∣max{N̄(θ), σ }

max{N(θ), σ } − 1

∣∣∣∣≤ B∗
(
N(θ)

)+ τ∗(N(θ))

[1 − τ∗(N(θ))]+[1 − B∗(N(θ))]+ ,

where B∗ is defined in Proposition 2.3.

For the proof we refer to Section 7.5.
Observe that, also in this case, the bound does not depend explicitly on the dimension d of the

ambient space and thus the result can be extended to any infinite-dimensional Hilbert space.
We continue this section by stating assumptions under which it is possible to give a non-

random bound for R, defined in equation (5.1).
Assume that, for some exponent p ≥ 1 and some positive constants α and η,

E

[
exp

(
α

2

( ‖X‖2/p

Tr(G)1/p
− 1 − η2/p

))]
≤ 1.
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In this case, with probability at least 1 − ε,

R ≤ Tr(G)1/2(1 + η2/p + 2α−1 log(n/ε)
)p/2

, (5.2)

where we recall that Tr(G) = E[‖X‖2].
To give a point of comparison, in the centered Gaussian case where X ∼N (0,G) is a Gaussian

vector, we have, for any α ∈]0, λ−1
1 Tr(G)[,

E

[
exp

[
α

2

(
‖X‖2

Tr(G)
+ 1

α

d∑
i=1

log

(
1 − αλi

Tr(G)

))]]
= 1,

where λ1 ≥ · · · ≥ λd are the eigenvalues of G. Therefore, with probability at least 1 − ε,

R ≤ Tr(G)1/2

(
− 1

α

d∑
i=1

log

(
1 − αλi

Tr(G)

)
+ 2 log(n/ε)

α

)1/2

.

We can then consider the optimal value of α in the right-hand side of the previous equation, to
establish that with probability at least 1 − ε,

R ≤ inf
α∈]0,Tr(G)/λ1[

Tr(G)1/2

(
− 1

α

d∑
i=1

log

(
1 − αλi

Tr(G)

)
+ 2 log(n/ε)

α

)1/2

≤ inf
α∈]0,Tr(G)/λ1[

Tr(G)1/2

(
d∑

i=1

λi

Tr(G) − αλi

+ 2 log(n/ε)

α

)1/2

≤ inf
α∈]0,Tr(G)/λ1[

(
Tr(G)2

Tr(G) − αλ1
+ 2 Tr(G) log(n/ε)

α

)1/2

≤ inf
α∈]0,Tr(G)/λ1[

(
Tr(G) + αλ1 Tr(G)

Tr(G) − αλ1

+ 2 log(n/ε)λ1(Tr(G) − αλ1)

αλ1
+ 2λ1 log(n/ε)

)1/2

= (
Tr(G) + 2

√
2 log(n/ε)λ1 Tr(G) + 2λ1 log(n/ε)

)1/2 =√
Tr(G) +√

2λ1 log(n/ε).

In order to replace hypothesis (5.2) by some polynomial assumptions it is convenient to replace
R with

R̃ =
(

1

n

n∑
i=1

‖Xi‖6

)1/6

.
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Indeed, by the Bienaymé Chebyshev inequality, we get that, with probability at least 1 − ε,

R̃ ≤
(
E
[‖X‖6]+

(
E[‖X‖12]

nε

)1/2)1/6

≤ (
1 + (nε)−1/2)1/6

E
[‖X‖12]1/12

and hence, with probability at least 1 − n−1,

R̃ ≤ 21/6
E
[‖X‖12]1/12

.

We can prove an analogue of Proposition 5.1, where R̃ plays the role of R.

Proposition 5.2. Let 0 < σ ≤ E(‖X‖4)1/2 and let us put

ζ∗(t) = λ∗(t)2 exp(a/2)R̃6

3 max{t, σ }3
, t ∈R+.

With probability at least 1 − 2ε, for any θ ∈ Sd ,∣∣∣∣max{N̄(θ), σ }
max{N(θ), σ } − 1

∣∣∣∣
≤ B∗

(
N(θ)

)+ ζ∗(N(θ))

[1 − B∗(N(θ))]+

≤ O
(√

κ

n

(
Tr(G)

max{N(θ), σ } + log
(
log(n)/ε

)))

+O
(

E(‖X‖12)1/2

nκ(1 + (nε)−1/2)(max{N(θ), σ })3

(
Tr(G)

max{N(θ), σ } + log
(
log(n)/ε

)))
.

For the proof we refer to Section 7.6.

6. Generalization

In this section, we come back to the finite-dimensional framework and we consider the problem
of estimating the expectation of a symmetric random matrix. We will use these results to estimate
the covariance matrix in the case of unknown expectation.

6.1. Symmetric random matrix

Let A ∈ Md(R) be a symmetric random matrix of size d . As already observed for the Gram
matrix, the expectation of A can be recovered via the polarization identity from the quadratic
form

NA(θ) = θ�
E(A)θ, θ ∈R

d,
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where the expectation is taken with respect to the unknown probability distribution of A on the
space of symmetric matrices of size d . Observe that, if we decompose A in its positive and
negative parts

A = A+ − A−,

where A+ and A− are defined by keeping respectively the positive and negative parts of the
eigenvalues of A, in the framework of functional calculus on symmetric matrices, the quadratic
form NA rewrites as

NA(θ) = E
[
θ�A+θ

]−E
[
θ�A−θ

]= NA+(θ) − NA−(θ).

Thus in the following, we will consider the case of a symmetric positive semi-definite random
matrix of size d .

From now on, let A ∈ Md(R) be a symmetric positive semi-definite random matrix of size d

and let P be a probability distribution on the space of symmetric positive semi-definite random
matrices of size d . Our goal is to estimate

N(θ) = E
[
θ�Aθ

]
, θ ∈R

d,

from an i.i.d. sample A1, . . . ,An ∈ Md(R) of symmetric positive semi-definite matrices drawn
according to P. We observe that the quadratic form N(θ) rewrites as

N(θ) = E
[∥∥A1/2θ

∥∥2]
,

where A1/2 denotes the square root of A.
The construction of the (robust) estimator N̂(θ) follows the one already done in the case of

the Gram matrix with the necessary adjustments. For any λ > 0 and for any θ ∈ R
d , we consider

the empirical criterion

rλ(θ) = 1

n

n∑
i=1

ψ
(∥∥A1/2

i θ
∥∥2 − λ

)
,

where the influence function ψ is defined as in equation (2.2), and we perturb the parameter θ

with the Gaussian perturbation πθ ∼ N (θ,β−1I) of mean θ and covariance matrix β−1I, where
β > 0 is a free real parameter. We consider the family of estimators

Ñ(θ) = λ

α̂(θ)2
,

where α̂(θ) = sup{α ∈R+ | rλ(αθ) ≤ 0}. Let us put

s4 = E
[‖A‖2∞

]1/4 and κ = sup
θ∈Rd

E[‖A1/2θ‖2]>0

E[‖A1/2θ‖4]
E[‖A1/2θ‖2]2

, (6.1)
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where ‖A‖∞ is the operator norm, that is in this context of symmetric positive semi-definite
matrices equal to the largest eigenvalue of A. The finite set � ⊂ (R+ \ {0})2 of possible values
of the couple of parameters (λ,β) is defined as

� = {
(λj ,βj ) | 0 ≤ j < K

}
,

where

K = 1 +
⌈
a−1 log

(
n

72(2 + c)κ1/2

)⌉
, (6.2)

for some real positive parameter a to be chosen later on, and

λj =
√

2

(κ − 1)n

(
(2 + 3c)E(Tr(A2))

4(2 + c)κ1/2E(‖A‖2∞)
exp(ja) + log(K/ε)

)
,

βj =
√

2(2 + c)κ1/2E
(‖A‖2∞

)
exp

[−(j − 1/2)a
]
.

Note that in the case of the Gram matrix, the picture is simplified by the fact that ‖XX�‖2∞ =
Tr[(XX�)2], whereas here we have to take into account the fact that the operator norm and the
Frobenius norm of A are different when the rank of A is larger than one.

We recall that c is defined in equation (2.7) as

c = 15

8 log(2)(
√

2 − 1)
exp(

1 + 2
√

2

2
).

According to equation (2.8), let

Bλ,β(t) =
⎧⎨⎩

γ + λδ/max{t, σ }
1 − μ − γ − 2λδ/max{t, σ } , (λ,β, t) ∈ �,

+∞, otherwise,

and put (̂λ, β̂) = arg min(λ,β)∈� Bλ,β [‖θ‖−2Ñλ(θ)]. Define the estimator N̂ as

N̂(θ) = Ñλ̂(θ). (6.3)

Proposition 6.1. Let σ ∈]0, s2
4 ] be some energy level. With probability at least 1 − 2ε, for any

θ ∈R
d , ∣∣∣∣max{N(θ), σ‖θ‖2}

max{N̂(θ), σ‖θ‖2} − 1

∣∣∣∣≤ B∗
[‖θ‖−2N(θ)

]
,

where B∗ is defined as

B∗(t) =
⎧⎨⎩

n−1/2ζ∗(max{t, σ })
1 − 4n−1/2ζ∗(max{t, σ }) ,

[
6 + (κ − 1)−1]ζ∗

(
max{t, σ })≤ √

n,

+∞, otherwise,
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and

ζ∗(t) =
√

2.032(κ − 1)

(
0.73E[Tr(A2)]

κ1/2E[‖A‖2∞]1/2t
+ log(K) + log

(
ε−1

))

+
√

98.5κ1/2E[‖A‖2∞]1/2

t
.

As already discuss at the end of Proposition 2.3, if a = 1/2 and n ≤ 1020, we can bound the
logarithmic factor log(K) with the (small) constant 4.35.

For the proof, we refer to Section 7.7.
Remark that to obtain the above result, we have used the fact that

E
[‖Aθ‖2]≤ E

[‖A‖2∞
]1/2

κ1/2N(θ).

However, if we use any upper bound of the form

E
[‖Aθ‖2]≤ f

(
E[A])N(θ)

Proposition 6.1 holds replacing E[‖A‖2∞]1/2κ1/2 with f (E[A]) in the definition of ζ∗. Similarly,
we can replace E[Tr(A2)] by an upper bound.

We observe in particular that

E[‖A‖2∞]1/2

κ1/2
≤ E[Tr(A2)]

κ1/2E[‖A‖2∞]1/2
≤ E

[
Tr(A)

]= Tr
[
E(A)

]
.

Indeed, to see the first inequality it is sufficient to observe that ‖A‖2∞ ≤ Tr(A2). Moreover, we
have that

E
[
Tr
(
A2)]≤ E

[‖A‖∞ Tr(A)
]≤ E

[‖A‖2∞
]1/2

E
[
Tr(A)2]1/2

,

and, denoting by {ei}di=1 an orthonormal basis of Rd ,

E
[
Tr(A)2]=

∑
1≤i≤d,

1≤j≤d

E
[∥∥A1/2ei

∥∥2∥∥A1/2ej

∥∥2]

≤
∑

1≤i≤d,

1≤j≤d

E
[∥∥A1/2ei

∥∥4]1/2
E
[∥∥A1/2ej

∥∥4]1/2

≤ κ
∑

1≤i≤d,

1≤j≤d

E
[∥∥A1/2ei

∥∥2]
E
[∥∥A1/2ej

∥∥2]= κE
[
Tr(A)

]2
.
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This implies that we can bound ζ∗ in Proposition 6.1 by

ζ∗(t) =
√

2.032(κ − 1)

(
0.73E[Tr(A)]

t
+ log(K) + log

(
ε−1

))+
√

98.5κE[Tr(A)]
t

. (6.4)

We conclude this section observing that, since the entropy terms are dominated by E[Tr(A)],
the result can be generalized to the case where A is a random symmetric positive semi-
definite operator in a infinite-dimensional Hilbert space with the only additional assumption that
E[Tr(A)] < +∞.

6.2. Covariance matrix

Let X ∈ R
d be a random vector distributed according to the unknown probability measure P ∈

M1+(Rd). The covariance matrix of X is defined as

� = E
[(

X −E[X])(X −E[X])�]
and our goal is to estimate, uniformly in θ , the quadratic form

N(θ) = θ��θ = E
[〈
θ,X −E[X]〉2], θ ∈ R

d,

from an i.i.d. sample X1, . . . ,Xn ∈ R
d drawn according to P. We cannot use the results we have

proved for the Gram matrix, since the quadratic form N depends on the unknown quantity E[X].
However we can find a workaround, using the results of the previous section about symmetric
random matrices. Indeed, we do not need to estimate E[X] in order to estimate N but it is
sufficient to observe that the quadratic form N can be written as

N(θ) = 1

2
E
[〈
θ,X − X′〉2],

where X′ is an independent copy of X. More generally, given q ∈ N, we may consider q inde-
pendent copies X(1), . . . ,X(q) of X and the random matrix

A = 1

q(q − 1)

∑
1≤j<k≤q

(
X(j) − X(k)

)(
X(j) − X(k)

)�
so that

N(θ) = 1

q(q − 1)
E

[ ∑
1≤j<k≤q

〈
θ,X(j) − X(k)

〉2]= E
[
θ�Aθ

]
.

We will discuss later how to choose q . In the following we use a robust block estimate which
consists in dividing the sample X1, . . . ,Xn in blocks of size q and then in considering the original
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sample as a “new” sample of �n/q� symmetric matrices A1, . . . ,A�n/q� (of independent copies
of A) defined as

Ai = 1

q(q − 1)

∑
(i−1)q<j<k≤iq

(Xi − Xj)(Xi − Xj)
�

that thus correspond to the empirical covariance estimates on each block. We can use the results
of the previous section to define a robust estimator of N(θ).

Let us introduce

κ ′ = sup
θ∈Rd ,

E(‖A1/2θ‖2)>0

E[‖A1/2θ‖4]
E[‖A1/2θ‖2]2

,

and

κ = sup
θ∈Rd

E[〈θ,X−E(X)〉2]>0

E[〈θ,X −E(X)〉4]
E[〈θ,X −E(X)〉2]2

.

Lemma 6.1. The two kurtosis coefficients introduced above are related by the relation

κ ′ ≤ 1 + τq(κ)/q,

where τq(κ) = κ − 1 + 2
q−1 .

For the proof we refer to Section 7.8.
Let N̂(θ) be the estimator defined in equation (6.3) and remark that

E
(
Tr(A)

)= Tr
(
E(A)

)= Tr(�) = E
(∥∥X −E(X)

∥∥2)
.

Proposition 6.2. For any energy level σ ∈]0,Tr(�)], with probability at least 1 − 2ε, for any
θ ∈ R

d , ∣∣∣∣max{N(θ), σ‖θ‖2}
max{N̂(θ), σ‖θ‖2} − 1

∣∣∣∣≤ B∗
(‖θ‖−2N(θ)

)
,

where

B∗(t) =

⎧⎪⎨⎪⎩
(q�n/q�)1/2ζq(max{t, σ })

1 − 4(q�n/q�)1/2ζq(max{t, σ }) , if
(
6 + q/τq(κ)

)
ζq

(
max{t, σ })≤ (

q�n/q�)1/2
,

+∞, otherwise

and

ζq(t) =
√

2.032τq(κ)

(
0.73 Tr(�)

t
+ log(K) + log

(
ε−1

))+
√

98.5(q + τq(κ))Tr(�)

t
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with

K = 1 +
⌈

1

2
log

( �n/q�
72(2 + c)(1 + τq(κ)/q)1/2

)⌉
.

Proof. The result follows from Proposition 6.1, using the definition of ζ∗ given in equation (6.4)
on page 3891, where we replace κ by κ ′ and n by �n/q�. We conclude the proof according to
Lemma 6.1. �

Here, we have used the upper bound for the entropy factor defined in terms of E[Tr(A)] =
Tr(�), as mentioned in the remarks following Proposition 6.1. We can improve somehow the
constants by evaluating more carefully E[‖Aθ‖2] and E[Tr(A2)] as shown in the next lemma
proved in Section 7.9.

Lemma 6.2. It holds true that

E
[‖Aθ‖2]≤

(
1 − q − 2

q(q − 1)

)
‖�‖∞N(θ) + 1

q

(
κ + 1

q − 1

)
Tr(�)N(θ) (6.5)

and

E
[
Tr
(
A2)]≤

(
1 − q − 2

q(q − 1)

)
Tr
(
�2)+ 1

q

(
κ + 1

q − 1

)
Tr(�)2. (6.6)

Using these tighter bounds, we can improve ζq to

ζq(t) =
[

2.032τq(κ)

(0.73[(1 − q−2
q(q−1)

)Tr(�2) + 1
q
(κ + 1

q−1 )Tr(�)2]
[(1 − q−2

q(q−1)
)‖�‖∞ + 1

q
(κ + 1

q−1 )Tr(�)]t

+ log(K) + log
(
ε−1))]1/2

+
√

98.5[q(1 − q−2
q(q−1)

)‖�‖∞ + (κ + 1
q−1 )Tr(�)]

t
.

Therefore, in the case when

q‖�‖∞ ≤ Tr(�),

we have

E
[‖Aθ‖2]≤ 1

q

(
κ + 1 + 2

q(q − 1)

)
Tr(�)N(θ)

and hence, recalling that Tr(�2) ≤ Tr(�)2, we can take

ζq(t) =
√

2.032τq(κ)

(
0.73 Tr(�)

t
+ log(K) + log

(
ε−1

))+
√

98.5(κ + 1 + 2
q(q−1)

)Tr(�)

t
.
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If we compare the above result with the bound obtained in Proposition 2.3 on page 3871 for
the Gram matrix estimator, we see that the first appearance of κ in the definition of ζq has been
replaced with

τq(κ) + 1 = κ + 2

q − 1
,

and that the second appearance of κ has been replaced with

κ + 1 + 2

q(q − 1)
.

Thus, when ‖�‖∞ ≤ Tr(�)/2, and this is not a very strong hypothesis, we can take at least
q = 2, and obtain an improved bound for the estimation of �. This bound is not much larger
than for the estimation of the centered Gram matrix, that we could have performed if we had
known E(X), since the difference is just a matter of replacing κ with κ + 2.

7. Proofs

In this section, we give the proofs of the results presented in the previous sections. More precisely,
Section 7.1 deals with Proposition 2.1 (on page 3869), Section 7.2 with Proposition 2.3 (on page
3871) and Section 7.3 with Proposition 3.3 (on page 3878), some preliminary lemmas being
postponed to Section 7.4.

7.1. Proof of Proposition 2.1

The proof of Proposition 2.1 requires a sequence of preliminary results.
Our approach relies on perturbing the parameter θ with the Gaussian perturbation πθ ∼

N (θ,β−1I), where β > 0 is a free parameter.

Lemma 7.1. We have ∫ 〈
θ ′, x

〉2 dπθ

(
θ ′)= 〈θ, x〉2 + ‖x‖2

β
.

Proof. Let W ∈ R
d be a random variable drawn according to πθ ∼ N (θ,β−1I). It follows that

〈W,x〉 is a one-dimensional Gaussian random variable with mean 〈θ, x〉 and variance

x�(β−1I
)
x = ‖x‖2

β
.

Consequently ∫ 〈
θ ′, x

〉2 dπθ

(
θ ′)= E

[〈W,x〉]2 + Var
[〈W,x〉]= 〈θ, x〉2 + ‖x‖2

β
. �
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Accordingly, we get

rλ(θ) = 1

n

n∑
i=1

ψ

[∫ (〈
θ ′, x

〉2 − ‖x‖2

β
− λ

)
dπθ

(
θ ′)].

In order to pull the expectation with respect to πθ out of the influence function ψ , with a minimal
loss of accuracy, we introduce the function

χ(z) =

⎧⎪⎨⎪⎩
ψ(z), z ≤ z1,

ψ(z1) + p1(z − z1) − (z − z1)
2/8, z1 ≤ z ≤ z1 + 4p1,

ψ(z1) + 2p2
1, z ≥ z1 + 4p1,

(7.1)

where z1 ∈ [0,1] is such that ψ ′′(z1) = −1/4 and p1 is defined by the condition p1 = ψ ′(z1).
Using the explicit expression of the first and second derivative of ψ , we get

z1 = 1 −
√

4
√

2 − 5,

p1 = ψ ′(z1) =
√

4
√

2 − 5

2(
√

2 − 1)

and

supχ = ψ(z1) + 2p2
1 = − log

[
2(

√
2 − 1)

]+ 1 + 2
√

2

2
.

Lemma 7.2. For any z ∈ R,

ψ(z) ≤ χ(z) ≤ log
(
1 + z + z2/2

)
. (7.2)

Proof. We first prove that ψ(z) ≤ χ(z). The inequality is trivial for z ≤ z1, since χ(z) = ψ(z).
For z ∈ [z1, z1 + 4p1], performing a Taylor expansion at z1, we obtain that

ψ(z) = ψ(z1) + p1(z − z1) − 1

8
(z − z1)

2 +
∫ z

z1

ψ ′′′(u)

2
(z − u)2 du

≤ ψ(z1) + p1(z − z1) − 1

8
(z − z1)

2 = χ(z),

since ψ ′′′(u) ≤ 0 for u ∈ [0,1[. Finally we observe that, for any z ≥ z1 + 4p1,

χ(z) = ψ(z1) + 2p2
1 > log(2) ≥ ψ(z).

Let us now show that χ(z) ≤ log(1 + z + z2/2). For z ≤ z1, we have already seen that the
inequality is satisfied since χ(z) = ψ(z). Moreover, we observe that the function

f (z) = log
(
1 + z + z2/2

)
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is such that f (z1) ≥ χ(z1) and also f ′(z1) ≥ χ ′(z1). Performing a Taylor expansion at z1, we
get

f (z) = f (z1) + f ′(z1)(z − z1) +
∫ z

z1

f ′′(u)(z − u)2 du

≥ χ(z1) + χ ′(z1)(z − z1) + inff ′′ (z − z1)
2

2
.

Since for any t ∈ [z1, z1 + 4p1],

inff ′′ = f ′′(
√

3 − 1) = −1/4 = χ ′′(t),

we deduce that

f (z) ≥ χ(z1) + p1(z − z1) − 1

8
(z − z1)

2 = χ(z).

In particular, f (z1 + 4p1) ≥ χ(z1 + 4p1). Recalling that f is an increasing function while χ is
constant on the interval [z1 + 4p1,+∞[, we conclude the proof. �

Next, lemma allows us to pull the expectation with respect to πθ out of the function χ .

Lemma 7.3. Let � be a measurable space. For any ρ ∈ M1+(�) and any h ∈ L1
ρ(�),

χ

(∫
hdρ

)
≤
∫

χ(h)dρ + 1

8
Var(hdρ), (7.3)

where by definition

Var(hdρ) =
∫ (

h(θ) −
∫

hdρ

)2

dρ(θ) ∈R∪ {+∞}.

Moreover,

ψ

(∫
hdρ

)
≤
∫

χ(h)dρ + min

{
log(4),

1

8
Var(hdρ)

}
.

Proof. To prove equation (7.3) we observe that performing a Taylor expansion of the function χ

at z = ∫
hdρ

χ
[
h(θ)

]≥ χ(z) + (
h(θ) − z

)
χ ′(z) + infχ ′′ (h(θ) − z)2

2
,

so that, recalling that infχ ′′ = −1/4, we get∫
χ
[
h(θ)

]
dρ(θ) ≥ χ

(∫
hdρ

)
− 1

8

∫ (
h(θ) −

∫
h(θ)dρ

)2

dρ(θ)
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= χ

(∫
hdρ

)
− 1

8
Var(hdρ).

Combining equation (7.3) with the fact that ψ(z) ≤ χ(z), for any z ∈R, we obtain that

ψ

(∫
hdρ

)
≤
∫

χ(h)dρ + 1

8
Var(hdρ).

We conclude the proof by remarking that

ψ

(∫
hdρ

)
−
∫

χ(h)dρ ≤ supψ − infχ ≤ log(4). �

Applying this result to our problem, we obtain

ψ
(〈θ, x〉2 − λ

)≤
∫

χ

(〈
θ ′, x

〉2 − ‖x‖2

β
− λ

)
dπθ

(
θ ′)

+ min

{
log(4),

1

8
Var

[〈
θ ′, x

〉2 dπθ

(
θ ′)]},

where, putting m = 〈θ, x〉, σ = ‖x‖√
β

and denoting by W ∼N (0, σ 2) a centered Gaussian random
variable,

Var
[〈
θ ′, x

〉2
dπθ

(
θ ′)]= Var

[
(m + W)2]

= 4m2σ 2 + 2σ 4 = 4〈θ, x〉2‖x‖2

β
+ 2‖x‖4

β2
.

(7.4)

Let us remark that, for any a, b, c ∈R+ and W ∼N (0, σ 2),

min
{
a, bm2 + c

}≤ min
{
a, b(m + W)2 + c

}+ min
{
a, b(m − W)2 + c

}
, (7.5)

since bm2 + c ≤ max{b(m + W)2 + c, b(m − W)2 + c}. Therefore, taking the expectation with
respect to W of this inequality and remarking that W and −W have the same probability distri-
bution we get

min
{
a, bm2 + c

}≤ 2E
[
min

{
a, b(m + W)2 + c

}]
.

Thus in our context we put a = log(4), b = ‖x‖2/(2β) and c = ‖x‖4/(4β2) and we obtain

ψ
(〈θ, x〉2 − λ

)≤
∫

χ

(〈
θ ′, x

〉2 − ‖x‖2

β
− λ

)
dπθ

(
θ ′)

+
∫

min

{
4 log(2),

〈θ ′, x〉2‖x‖2

β
+ ‖x‖4

2β2

}
dπθ

(
θ ′).
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Lemma 7.4. For any positive constants b, y and any z ∈ R,

χ(z) + min{b, y} ≤ log

(
1 + z + z2

2
+ y exp(supχ)

(exp(b) − 1)

b

)
.

Proof. For any positive real constants a, b, y,

log(a) + min{b, y} = log
(
a exp

(
min{b, y}))

≤ log

(
a + a min{b, y} (exp(b) − 1)

b

)
,

since the function x �→ exp(x)−1
x

is non-decreasing for x ≥ 0. It follows that

log(a) + min{b, y} ≤ log
[
a + ya

(
exp(b) − 1

)
/b
]
.

Applying this inequality to a = exp[χ(z)] and reminding that χ(z) ≤ log(1 + z + z2/2), we
conclude the proof. �

As a consequence, choosing b = 4 log(2), z = 〈θ ′, x〉2 −‖x‖2/β−λ and y = 〈θ ′, x〉2‖x‖2/β+
‖x‖4/2β2, we get

ψ
(〈θ, x〉2 − λ

)≤
∫

log

[
1 + 〈

θ ′x
〉2 − ‖x‖2

β
− λ + 1

2

(〈
θ ′, x

〉2 − ‖x‖2

β
− λ

)2

+ c‖x‖2

β

(〈
θ ′, x

〉2 + ‖x‖2

2β

)]
dπθ

(
θ ′),

where

c = 15

8 log(2)(
√

2 − 1)
exp

(
1 + 2

√
2

2

)
≤ 44.3.

We observe that the above inequality allows to compare ψ(〈θ, x〉2 − λ) with the expectation
with respect to the Gaussian perturbation πθ . In terms of the empirical criterion rλ, we have
proved that

rλ(θ) ≤ 1

n

n∑
i=1

∫
log

[
1 + 〈

θ ′,Xi

〉2 − ‖Xi‖2

β
− λ + 1

2

(〈
θ ′,Xi

〉2 − ‖Xi‖2

β
− λ

)2

+ c‖Xi‖2

β

(〈
θ ′,Xi

〉2 + ‖Xi‖2

2β

)]
dπθ

(
θ ′).

We are now ready to use the following general purpose PAC-Bayesian inequality.



Robust dimension-free Gram operator estimates 3899

Proposition 7.1. Let ν ∈ M1+(Rd) be a prior probability distribution on R
d and let f : Rd ×

R
d → [a,+∞] be a measurable function where a ∈ R. With probability at least 1 − ε, for any

posterior distribution ρ ∈ M1+(Rd),∫
1

n

n∑
i=1

f
(
Xi, θ

′)dρ
(
θ ′)

≤
∫

log
{
E
[
exp

(
f
(
X,θ ′))]}dρ

(
θ ′)+ K(ρ, ν) + log(ε−1)

n
,

where

K(ρ, ν) =
⎧⎨⎩
∫

log

(
dρ

dν

)
dρ, if ρ � ν,

+∞, otherwise,

is the Kullback divergence of ρ with respect to ν. By convention, a non-measurable event is said
to happen with probability at least 1 − ε when it includes a measurable event of probability
non-smaller than 1 − ε.

For the proof, we refer to page 1164 of [1].
In our context, we consider as prior distribution ν = π0 and we restrict the result to posterior

distributions ρ belonging to the family of Gaussian perturbations{
πθ ∼N

(
θ,β−1I

) | θ ∈R
d
}

so that the Kullback divergence is given by

K(πθ ,π0) = β‖θ‖2

2
.

We observe that since the result holds for any choice of the posterior, it allows us to obtain
uniform results in θ . More precisely, we apply the above PAC-Bayesian inequality to

f
(
Xi, θ

′)= log

[
1 + t

(
Xi, θ

′)+ 1

2
t
(
Xi, θ

′)2 + c‖Xi‖2

β

(〈
θ ′,Xi

〉+ ‖Xi‖2

2β

)]
,

where

t
(
x, θ ′)= 〈

θ ′, x
〉2 − ‖x‖2

β
− λ.

Using the fact that log(1 + t) ≤ t , we get that, with probability at least 1 − ε, for any θ ∈ R
d ,

rλ(θ) ≤
∫

E

[
t
(
X,θ ′)+ 1

2
t
(
X,θ ′)2 + c‖X‖2

β

(〈
θ ′,X

〉2 + ‖X‖2

2β

)]
dπθ

(
θ ′)

+ β‖θ‖2

2n
+ log(ε−1)

n



3900 I. Giulini

= E

[
〈θ,X〉2 − λ + 1

2

((〈θ,X〉2 − λ
)2 + 4〈θ,X〉2‖X‖2

β
+ 2‖X‖4

β2

)
+ c‖X‖2

β

(
〈θ,X〉2 + 3‖X‖2

2β

)]
+ β‖θ‖2

2n
+ log(ε−1)

n
.

To obtain the last line, we have used Lemma 7.1 on page 3894 and equation (7.4) on page 3897.
Let us recall the definition of s4 and κ introduced in equation (2.5). We have defined

s4 = E
[‖X‖4]1/4 and κ = sup

θ∈Rd

E[〈θ,X〉2]>0

E[〈θ,X〉4]
E[〈θ,X〉2]2

.

Using the Cauchy–Schwarz inequality and

E
[〈θ,X〉4]≤ κN(θ)2 we deduce that E

[〈θ,X〉2‖X‖2]≤ κ1/2s2
4N(θ),

and we get that, with probability at least 1 − ε, for any θ ∈ R
d ,

rλ(θ) ≤ κ

2

[
N(θ) − λ

]2 +
[

1 + (κ − 1)λ + (2 + c)κ1/2s2
4

β

][
N(θ) − λ

]
+ (κ − 1)λ2

2
+ (2 + c)κ1/2s2

4λ

β
+ (2 + 3c)s4

4

2β2
+ β‖θ‖2

2n
+ log(ε−1)

n
.

(7.6)

According to the (compact) notation introduced in equation (2.6) on page 3869, the above
inequality rewrites as

rλ(θ)

λ
≤ ξ

(
N(θ)

λ
− 1

)2

+ (1 + μ)

(
N(θ)

λ
− 1

)
+ γ + δ‖θ‖2. (7.7)

Similarly, observing that

−rλ(θ) = 1

n

n∑
i=1

ψ
(
λ − 〈θ,Xi〉2),

we obtain a lower bound for the empirical criterion rλ. Namely, with probability at least 1 − ε,
for any θ ∈R

d , any (λ,β) ∈ �,

rλ(θ)

λ
≥ −ξ

(
N(θ)

λ
− 1

)2

+ (1 − μ)

(
N(θ)

λ
− 1

)
− γ − δ‖θ‖2. (7.8)

We now combine the two bounds above to get the confidence region for N(θ) defined in Propo-
sition 2.1 on page 3869. Assume that both equation (7.7) and equation (7.8) hold for any θ ∈ R

d ,
an event that happens with probability at least 1 − 2ε.
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Let us introduce

τ(θ) = λδ‖θ‖2

N(θ)

and

pθ(z) = −ξz2 + [
1 − μ − τ(θ)

]
z − γ − τ(θ), z ∈ R.

We observe that τ(αθ) = τ(θ), and consequently pαθ (z) = pθ(z) for any α ∈ R+. We consider
the case when pθ(1) > 0, meaning that

ξ + μ + γ + 2τ(θ) < 1. (7.9)

In this case, the second degree polynomial pθ has two distinct real roots, z−1 and z+1, where

zσ = 1 − μ − τ(θ) + σ
√[1 − μ − τ(θ)]2 − 4ξ [γ + τ(θ)]

2ξ
, σ ∈ {1,−1}.

Since equation (7.9) can also be written as −ξ > −[1 − μ − γ − 2τ(θ)], we get

pθ

(
γ + τ(θ)

1 − μ − γ − 2τ(θ)

)
>

−[γ + τ(θ)]2

1 − μ − γ − 2τ(θ)
+ [

1 − μ − τ(θ)
] γ + τ(θ)

1 − μ − γ − 2τ(θ)
− γ − τ(θ) = 0,

which implies

z−1 <
γ + τ(θ)

1 − μ − γ − 2τ(θ)
< z+1.

Therefore, since according to equation (7.8), for any α ∈ [0, α̂(θ)],

pθ

(
α2N(θ)

λ
− 1

)
≤ rλ(αθ)

λ
≤ 0,

it is true that [
−1,

α̂(θ)2N(θ)

λ
− 1

]
∩ ]z−1, z+1[= ∅.

Observing that z−1 ≥ 0 > −1, it follows that α̂(θ)2N(θ)/λ − 1 ≤ z−1. This proves that, for any
θ ∈R

d satisfying equation (7.9),

N(θ) ≤ λ

α̂(θ)2
(1 + z−1) ≤ λ

α̂(θ)2

(
1 + γ + τ(θ)

1 − μ − γ − 2τ(θ)

)
,

which rewrites as

�θ,+
[
N(θ)

]≤ λ

α̂(θ)2
.
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Moreover, this inequality is trivially true when condition (7.9) is not satisfied, because its left-
hand side is equal to zero and its right-hand side is non-negative.

Proving the second part of the proposition requires a new argument and not a mere update of
signs in the proof of the first part. Although it may seem at first sight that we are just aiming at a
reverse inequality, the situation is more subtle than that.

Let us first remark that in the case when

ξ − μ + γ + δα̂(θ)2‖θ‖2 < 1, (7.10)

is not satisfied, the bound

�θ,−
(

λ

α̂(θ)2

)
≤ N(θ) (7.11)

is trivially satisfied because the left-hand size is equal to zero. In the case when equation (7.10) is
true, it is also true that α̂(θ) < +∞, so that rλ [̂α(θ)θ] = 0, and therefore, according to equation
(7.7),

0 ≤ qα̂(θ)θ

(
α̂(θ)2N(θ)

λ
− 1

)
,

where qθ (z) = ξz2 + (1 + μ)z + γ + δ‖θ‖2.
Since condition (7.10) can also be written as qα̂(θ)θ (−1) < 0, it implies that the second order

polynomial qα̂(θ)θ has two roots and that α̂(θ)2N(θ)
λ

− 1 is on the right of its largest root, which
is larger than −1. On the other hand, we observe that, under condition (7.10), putting τ̂ (θ) =
δα̂(θ)2‖θ‖2, we get

qα̂(θ)θ

(
− γ + τ̂ (θ)

1 + μ − γ − τ̂ (θ)

)
<

(γ + τ̂ (θ))2

1 + μ − γ − τ̂ (θ)
− (1 + μ)[γ + τ̂ (θ)]

1 + μ − γ + τ̂ (θ)
+ γ + τ̂ (θ) = 0.

Therefore, when condition (7.10) is satisfied,

α̂(θ)2N(θ)

λ
− 1 ≥ − γ + τ̂ (θ)

1 + μ − γ − τ̂ (θ)
,

which rewrites as equation (7.11).

7.2. Proof of Proposition 2.3

We first observe that, according to Proposition 2.2 on page 3870, with probability at least 1 − 2ε,∣∣∣∣max{N(θ), σ‖θ‖2}
max{N̂(θ), σ‖θ‖2} − 1

∣∣∣∣≤ Bλ̂,β̂

[‖θ‖−2N̂(θ)
]= inf

(λ,β)∈�
Bλ,β

[‖θ‖−2Ñλ(θ)
]

since, by definition, (̂λ, β̂) are the values which minimize Bλ,β [‖θ‖−2Ñλ(θ)]. According to
equation (2.9) on page 3870, since �+(‖θ‖−2N(θ)) ≤ ‖θ‖−2Ñ(θ) and Bλ,β is a decreasing
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function, we get∣∣∣∣max{N(θ), σ‖θ‖2}
max{N̂(θ), σ‖θ‖2} − 1

∣∣∣∣≤ inf
(λ,β)∈�

Bλ,β

( ‖θ‖−2N(θ)

1 + Bλ,β [‖θ‖−2N(θ)]
)

.

With the same notation as in Proposition 2.2, we introduce the subset �′ of � defined as

�′ = {
(λ,β, t) ∈ � ×R+ | ξ + μ + γ + 4δλ/max{t, σ } < 1,

μ + γ + 2δλ/max{t, σ } ≤ 1/2,

and 2γ + δλ/max{t, σ } ≤ 1/2
}

and the function

B̃λ,β(t) =
⎧⎨⎩

γ + λδ/max{t, σ }
1 − μ − 2γ − 4λδ/max{t, σ } , (λ,β, t) ∈ �′,

+∞, otherwise.
(7.12)

Lemma 7.5. For any (λ,β) ∈ � and any t ∈R+,

Bλ,β

(
t

1 + Bλ,β(t)

)
≤ B̃λ,β(t),

Bλ,β(t)

1 − Bλ,β(t)
≤ B̃λ,β(t).

Proof. We first observe that when (λ,β, t) /∈ �′ then B̃λ,β(t) = +∞ and hence the two inequali-
ties are trivial. We now assume (λ,β, t) ∈ �′ and we put τ = λδ/max{t, σ }. We prove the second
inequality first. Since �′ ⊂ �, we have

Bλ,β(t)

1 − Bλ,β(t)
= γ + τ

1 − μ − 2γ − 3τ
≤ B̃λ,β(t).

In order to prove the first inequality, we first check that (λ,β, t
1+Bλ,β (t)

) ∈ �. We start observ-
ing that, since

max
{
t/
[
1 + Bλ,β(t)

]
, σ
}≥ max{t, σ }/[1 + Bλ,β(t)

]
,

then

ξ + μ + γ + 2δλ/max

{
t

1 + Bλ,β(t)
, σ

}
≤ ξ + μ + γ + 2

[
1 + Bλ,β(t)

] δλ

max{t, σ }
= ξ + μ + γ + 2τ + 2τBλ,β(t).
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Moreover, as (λ,β, t) ∈ �′, we get

Bλ,β(t) = γ + τ

1 − μ − γ − 2τ
≤ 1,

so that

ξ + μ + γ + 2δλ/max
{
t/
[
1 + Bλ,β(t)

]
, σ
}≤ ξ + μ + γ + 4τ < 1,

which proves that, indeed, (λ,β, t
1+Bλ,β(t)

) ∈ �. Therefore

Bλ,β

(
t

1 + Bλ,β(t)

)
≤ γ + τ(1 + Bλ,β(t))

1 − μ − γ − 2τ [1 + τBλ,β(t)]

= (γ + τ)(1 + τ/(1 − μ − γ − 2τ))

1 − μ − γ − 2τ − 2τBλ,β(t)
,

where in the last line we have used the definition of Bλ,β . Observing that

1 − μ − γ − 2τ − 2τBλ,β(t) = (1 − μ − γ − 2τ)2 − 2τ(γ + τ)

1 − μ − γ − 2τ
,

we obtain

Bλ,β

(
t

1 + Bλ,β(t)

)
≤ (γ + τ)(1 − μ − γ − τ)

(1 − μ − γ − 2τ)2 − 2τ(γ + τ)

= (γ + τ)(1 − μ − γ − τ)

(1 − μ − γ − τ)2 + τ 2 − 2τ(1 − μ − γ − τ) − 2τ 2 − 2γ τ

= γ + τ

1 − μ − γ − τ − 2τ − (τ 2 + 2γ τ)/(1 − μ − γ − τ)
.

Considering that (
τ 2 + 2γ τ

)
/(1 − μ − γ − τ) ≤ τ,

since when (λ,β, t) ∈ �′, it is true that 1 −μ−γ − τ ≥ 1/2 and 2γ + τ ≤ 1/2, we conclude that

Bλ,β

(
t

1 + Bλ,β(t)

)
≤ γ + τ

1 − μ − γ − 4τ
= B̃λ,β(t). �

Applying the above lemma to our problem we get that, with probability at least 1 − 2ε, for any
θ ∈ R

d , ∣∣∣∣max{N(θ), σ‖θ‖2}
max{N̂(θ), σ‖θ‖2} − 1

∣∣∣∣≤ inf
(λ,β)∈�

B̃λ,β

[‖θ‖−2N(θ)
]
. (7.13)
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Let us recall the definition of the finite set � given in (2.11) on page 3870. Let a > 0 and

K = 1 +
⌈
a−1 log

(
n

72(2 + c)κ1/2

)⌉
.

We define

� = {
(λj ,βj ) | 0 ≤ j < K

}
,

where

λj =
√

2

n(κ − 1)

(
(2 + 3c)

4(2 + c)κ1/2 exp(−ja)
+ log(K/ε)

)
and

βj =
√

2(2 + c)κ1/2s4
4n exp

[−(j − 1/2)a
]
.

We introduce the explicit bound

ζ(t) =
√

2(κ − 1)

(
(2 + 3c)s2

4

4(2 + c)κ1/2t
+ log(K/ε)

)
cosh(a/4) +

√
2(2 + c)κ1/2s2

4

t
cosh(a/2)

and

B∗(t) =
⎧⎨⎩

n−1/2ζ(max{t, σ })
1 − 4n−1/2ζ(max{t, σ }) ,

[
6 + (κ − 1)−1]ζ (max{t, σ })≤ √

n,

+∞, otherwise.

Lemma 7.6. For any t ∈ R+, we have

inf
(λ,β)∈�

B̃λ,β(t) ≤ B∗
(
min

{
t, s2

4

})
. (7.14)

Proof. We recall that the function B̃λ,β is non-increasing so that

B̃λ,β(t) ≤ B̃λ,β

(
min

{
t, s2

4

})
.

Moreover, since

max
{
min

{
t, s2

4

}
, σ
}= min

{
max{t, σ }, s2

4

}
,

it is sufficient to prove the result for max{t, σ } ∈ [0, s2
4 ].

As equation (7.14) is trivial when B∗(t) = +∞, we may assume that B∗(t) < +∞, so that
6ζ(max{t, σ }) ≤ √

n. In particular, by considering only the second term in the definition of ζ ,
we obtain that √

2(2 + c)κ1/2s2
4

max{t, σ } ≤
√

2(2 + c)κ1/2s2
4

max{t, σ } cosh(a/2) ≤
√

n

6
,
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which implies

max{t, σ }
s2

4

≥ 72(2 + c)κ1/2

n
≥ exp

(−a(K − 1)
)
.

Therefore, since

log

(
max{t, σ }

s2
4

)
∈ [−a(K − 1),0

]
,

there exists ĵ ∈ {0, . . . ,K − 1} for which∣∣∣∣log

(
max{t, σ }

s2
4

)
+ ĵ a

∣∣∣∣≤ a/2. (7.15)

We recall that by equation (2.6) on page 3869,

γ + δλ/max{t, σ } = λ

2
(κ − 1) + (2 + c)κ1/2s2

4

β
+ (2 + 3c)s4

4

2β2λ
+ log(K/ε)

nλ
+ β

2nmax{t, σ }
and we observe that (λ∗, β∗) defined as

λ∗ =
√

2

n(κ − 1)

(
(2 + 3c)s2

4

4(2 + c)k1/2 max{t, σ } + log(K/ε)

)
, (7.16)

β∗ =
√

2(2 + c)k1/2s2
4 max{t, σ }n (7.17)

are the desired values that optimize γ + δλ/max{t, σ }. We also remark that, by equation (7.15),

βĵ exp(−a/2) ≤ β∗ ≤ βĵ , (7.18)

λĵ exp(−a/4) ≤ λ∗ ≤ λĵ exp(a/4). (7.19)

Thus, evaluating γ + δλ/max{t, σ } in (λĵ , βĵ ) ∈ �, we obtain that

γĵ + δĵ λĵ /max{t, σ }

= λ∗(κ − 1)

2

λĵ

λ∗

+ (2 + c)κ1/2s2
4

β∗
β∗
βĵ

+ (2 + 3c)s4
4

2β2
ĵ λ∗

λ∗
λĵ

+ log(K/ε)

nλ∗
λ∗
λĵ

+ β∗
2nmax{t, σ }

βĵ

β∗

≤ λ∗(κ − 1)

2

λĵ

λ∗
+ 1

nλ∗

[
(2 + 3c)s2

4

4(2 + c)k1/2 max{t, σ } + log(K/ε)

]
λ∗
λĵ

+
√

(2 + c)κ1/2s2
4

2nmax{t, σ }
(

β∗
βĵ

+ βĵ

β∗

)
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≤
√

2(κ − 1)

n

[
(2 + 3c)s2

4

4(2 + c)k1/2 max{t, σ } + log(K/ε)

]
cosh

[
log

(
λĵ

λ∗

)]

+
√

2(2 + c)κ1/2s2
4

nmax{t, σ } cosh

[
log

(
βĵ

β∗

)]
.

By equation (7.18), we get

γĵ + δĵ λĵ /max{t, σ }

≤
√

2(κ − 1)

n

[
(2 + 3c)s2

4

4(2 + c)k1/2 max{t, σ } + log(K/ε)

]
cosh

(
a

4

)

+
√

2(2 + c)κ1/2s2
4

nmax{t, σ } cosh

(
a

2

)
.

We also observe that

μĵ + γĵ + 4δĵ λĵ /max{t, σ } ≤ 4
[
γĵ + δĵ λĵ /max{t, σ }]≤ 4n−1/2ζ(t),

since by definition μĵ ≤ 2γĵ . In the same way, observing that

ξĵ = κλĵ

2
≤ γĵ

(
1 + 1

κ − 1

)
we obtain

ξĵ + μĵ + γĵ + 4δĵ λĵ /max{t, σ } <
[
4 + (κ − 1)−1]γĵ + 4δĵ λĵ /max{t, σ }

≤ [
6 + (κ − 1)−1]n−1/2ζ

(
max{t, σ })

and similarly,

2
[
μĵ + γĵ + 2δĵ λĵ /max{t, σ }]≤ 6n−1/2ζ

(
max{t, σ }),

2
[
2γĵ + δĵ λĵ /max{t, σ }]≤ 4n−1/2ζ

(
max{t, σ }).

This implies that, whenever B∗(t) < +∞, then (λĵ , βĵ , t) ∈ �′. We have then proved that

inf
(λ,β)∈�

B̃λ,β(t) ≤ B̃λĵ ,βĵ (t) ≤ n−1/2ζ(max{t, σ })
1 − 4n−1/2ζ(max{t, σ }) = B∗(t). �

Applying the above lemma to equation (7.13) on page 3904 and observing that, for any θ ∈R
d ,

‖θ‖−2N(θ) ≤ E
[‖X‖2]≤ s2

4 ,
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we obtain that, with probability at least 1 − 2ε, for any θ ∈R
d ,∣∣∣∣max{N(θ), σ‖θ‖2}

max{N̂(θ), σ‖θ‖2} − 1

∣∣∣∣≤ B∗
[‖θ‖−2N(θ)

]
.

Since by the Cauchy–Schwarz inequality

s2
4 ≤ √

κ Tr(G)

we get

ζ(t) ≤
√

2(κ − 1)

(
(2 + 3c)Tr(G)

4(2 + c)t
+ log(K/ε)

)
cosh(a/4)

+
√

2(2 + c)κ Tr(G)

t
cosh(a/2).

(7.20)

Choosing a = 1/2 and computing explicitly numerical constants concludes the proof.

7.3. Proof of Proposition 3.3

We observe that it is sufficient to prove that with probability at least 1 − 2ε

�− ◦ �+
(〈θ,Qθ〉H − η

)≤ N(�kθ) + η,

�− ◦ �+
(
N(�kθ) − η

)≤ 〈θ,Qθ〉H + η,
(7.21)

where η = 2δ
√

Tr(G2) and N(�kθ) = 〈�kθ,G�kθ〉H. Indeed, if equation (7.21) is satisfied,
according to the postponed Corollary 7.1 on page 3912,∣∣max

{〈θ,Qθ〉H, σ
}− max

{
N(�kθ), σ

}∣∣
≤ 2 max

{
N(�kθ), σ

}
B∗
(
N(�kθ)

)+ 5η/2,∣∣max
{〈θ,Qθ〉H, σ

}− max
{
N(�kθ), σ

}∣∣
≤ 2 max

{〈θ,Qθ〉H, σ
}
B∗
(
min

{〈θ,Qθ〉H, s2
4

})+ 5η/2,

which is the analogous, in the infinite-dimensional setting, of Proposition 2.4 on page 3873.
Thus, following the proof of Proposition 2.5 we obtain the desired bounds.

Let us now prove equation (7.21). Observe that, for any θ ∈ SH,

〈θ,Qθ〉H = 〈�Vk
θ,Q�Vk

θ〉H ≤ ‖�Vk
θ‖2

H
(〈ξ,Qξ 〉H + η

)
,

where ξ ∈ �δ is the closest point in �δ to ‖�Vk
θ‖−1

H �Vk
θ . Since ξ ∈ Hk , with probability at

least 1 − ε, for any (λ,β) ∈ �,

〈ξ,Qξ 〉H ≤ �−1+
(
Ñλ(ξ)

)= �−1+
[
Ñλ

(
ξ + ‖�Vk

θ‖−1
H (�k − �Vk

)θ
)]

.
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Let us now remark that for any a ∈ [0,1], we have �+(at) ≤ a�+(t), so that a�−1+ (t) ≤
�−1+ (at). Therefore

〈θ,Qθ〉H ≤ ‖�Vk
θ‖2

H�−1+
{
Ñλ

[‖�Vk
θ‖−1

H
(‖�Vk

θ‖Hξ + (�k − �Vk
)θ
)]}+ η

≤ ‖�Vk
θ‖2

H�−1+ ◦ �−1−
{
N
[‖�Vk

θ‖−1
H
(‖�Vk

θ‖Hξ + (�k − �Vk
)θ
)]}+ η

≤ �−1+ ◦ �−1−
{
N
[‖�Vk

θ‖Hξ + (�k − �Vk
)θ)

]}+ η

≤ �−1+ ◦ �−1−
(
N(�kθ) + η

)+ η.

Indeed, ∥∥(‖�Vk
θ‖Hξ + (�k − �Vk

)θ
)− �kθ

∥∥≤ δ,

and this is a difference of two vectors belonging to the unit ball. In the same way

〈θ,Qθ〉H ≥ ‖�Vk
θ‖2

H
(〈ξ,Qξ 〉H − η

)
≥ ‖�Vk

θ‖2
H�−

{
Ñλ

[‖�Vk
θ‖−1

H
(‖�Vk

θ‖Hξ + (�k − �Vk
)θ
)]}− η

≥ ‖�Vk
θ‖2

H�− ◦ �+
{
N
[‖�kθ‖−1

H
(‖�Vk

θ‖Hξ + (�k − �Vk
)θ
)]}− η

≥ �− ◦ �+
(
N(�kθ) − η

)− η

which proves equation (7.21).

7.4. A technical result

In all this section, we use the same notation as in Section 2. Let σ ∈]0, s2
4 ] be such that 8ζ∗(σ ) ≤√

n where ζ∗ is defined in Proposition 2.3 on page 3871.

Lemma 7.7. The function

t �→ F(t) = max{t, σ }B∗
(
min

{
t, s2

4

})
,

where B∗ is defined in Proposition 2.3, is non-decreasing for any t ∈ R+.

Proof. If σ ≥ s2
4 , then B∗(min{t, s2

4}) = B∗(σ ), so that F(t) = max{t, σ }B∗(σ ) is obviously
non-decreasing. Otherwise, σ ≤ s2

4 , so that

ζ
(
max

{
min

{
t, s2

4

}
, σ
})= ζ

(
min

{
max{t, σ }, s2

4

})
.

Therefore, the function F is of the form

F(t) = c
ug(u)

(1 − g(u))
,
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where u = max{t, σ },
g(u) =√

a1/u + a2 +√
a3/u,

g(σ ) ≤ 1/2, and the constants c, a1, a2, and a3 are positive. Let h(u) = √
a1/u + √

a3/u and
observe that

g′(u) = − 1

2u

(
a1/u

(a1/u + a2)1/2
+√

a3/u

)
≥ − 1

2u
(
√

a1/u +√
a3/u) = h′(u)

and that g(u) ≥ h(u). Therefore h(u) ≤ g(u) ≤ 1/2, for any u ≥ σ , and

∂

∂u
log

(
ug(u)

1 − g(u)

)
= 1

u
+ g′(u)

g(u)(1 − g(u))

≥ 1

u
+ h′(u)

h(u)(1 − h(u))

= 1

u
− 1

2u(1 − h(u))
≥ 0,

showing that F is non-decreasing. �

Lemma 7.8. For any (a, b) ∈ R
2 such that, for any (λ,β) ∈ �,

�− ◦ �+(a − η) ≤ b + η, and �− ◦ �+(b − η) ≤ a + η,

and any threshold σ ∈ R+ such that 8ζ(σ ) ≤ √
n and σ ≤ s2

4 , we have∣∣max{a,σ } − max{b,σ }∣∣≤ 2 max{a + η,σ }B∗
(
min

{
a + η, s2

4

})+ 2η, (7.22)∣∣max{a,σ } − max{b,σ }∣∣≤ 2 max{b + η,σ }B∗
(
min

{
b + η, s2

4

})+ 2η. (7.23)

Proof. By symmetry of a and b, equation (7.23) is a consequence of equation (7.22).
Step 1. We will prove that

max{b − η,σ } ≤ max{a + η,σ }(1 + 2B̃λ,β(a + η)
)
, (7.24)

where B̃λ,β is defined in equation (7.12) on page 3903.
Case 1. Assume that

max
{
�+(b − η), σ

}≤ max{a + η,σ },
and remark that, since �+ is non-decreasing and �+(σ ) ≤ σ ,

max
{
�+(b − η), σ

}≥ max
{
�+(b − η),�+(σ )

}
= �+

(
max

{
(b − η), σ

})= max{b − η,σ }
1 + Bλ,β(b − η)

,
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according to equation (2.9) on page 3870, where Bλ,β is defined in equation (2.8). Therefore in
this case,

max{b − η,σ } ≤ max{a + η,σ }(1 + Bλ,β(b − η)
)
, (7.25)

but when max{b − η,σ } > max{a + η,σ },
Bλ,β(b − η) ≤ Bλ,β(a + η)

because Bλ,β(t) is a non-increasing function of max{t, σ }, thus equation (7.25) implies that

max{b − η,σ } ≤ max{a + η,σ }(1 + Bλ,β(a + η)
)
.

Since Bλ,β ≤ B̃λ,β , equation (7.24) holds true.
Case 2. Assume now that we are not in Case 1, implying that

max{b − η,σ } ≥ max
{
�+(b − η), σ

}
> max{a + η,σ }.

In this case

max{a + η,σ } ≥ max
{
�− ◦ �+(b − η), σ

}
≥ max

{
�− ◦ �+(b − η),�−(σ )

}
≥ �−

(
max

{
�+(b − η), σ

})
≥ max

{
�+(b − η), σ

}[
1 − Bλ,β

(
max

{
�+(b − η), σ

})]
according to equation (2.10) on page 3870. Moreover, continuing the above chain of inequalities,

max{a + η,σ } ≥ max
{
�+(b − η),�+(σ )

}[
1 − Bλ,β

(
max{a + η,σ })]

= �+
(
max{b − η,σ })[1 − Bλ,β(a + η)

]
≥ max{b − η,σ } 1 − Bλ,β(a + η)

1 + Bλ,β(max{b − η,σ })

≥ max{b − η,σ }1 − Bλ,β(a + η)

1 + Bλ,β(a + η)
.

Therefore,

max{b − η,σ } ≤ max{a + η,σ }1 + Bλ,β(a + η)

1 − Bλ,β(a + η)

= max{a + η,σ }
(

1 + 2Bλ,β(a + η)

1 − Bλ,β(a + η)

)
≤ max{a + η,σ }(1 + 2B̃λ,β(a + η)

)
according to Lemma 7.5 on page 3903. This concludes the proof of Step 1.
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Step 2. Taking the infimum in (λ,β) ∈ � in equation (7.24), according to equation (7.14) on
page 3905, we obtain that

max{b − η,σ } ≤ max{a + η,σ }(1 + 2B∗
(
min

{
a + η, s2

4

}))
.

We can then use the fact that t �→ max{t, σ }B∗(min{t, s2
4 }) is non-decreasing (proved in

Lemma 7.7 on page 3909) to deduce that

max{b − η,σ } ≤ max{a + η,σ } + 2 max{b + η,σ }B∗
(
min

{
b + σ, s2

4

})
,

since there is nothing to prove when already max{b + η,σ } ≤ max{a + η,σ }. Remark that
max{a + η,σ } ≤ max{a + η,σ + η} ≤ max{a,σ }+ η and that in the same way max{b − η,σ } ≥
max{b,σ } − η. This proves that

max{b,σ } − max{a,σ } ≤ 2 max{a + η,σ }B∗
(
min

{
a + η, s2

4

})+ 2η

and

max{b,σ } − max{a,σ } ≤ 2 max{b + η,σ }B∗
(
min

{
b + η, s2

4

})+ 2η.

By symmetry, we can then exchange a and b to prove the same bounds for max{a,σ } −
max{b,σ }, and therefore also for the absolute value of this quantity, which ends the proof of
the lemma. �

As a consequence the following result holds.

Corollary 7.1. For any (a, b) ∈ R
2 such that, for any (λ,β) ∈ �,

�− ◦ �+(a − η) ≤ b + η, and �− ◦ �+(b − η) ≤ a + η,

and any threshold σ ∈ R+ such that 8ζ(σ ) ≤ √
n and σ ≤ s2

4 , we have∣∣max{a,σ } − max{b,σ }∣∣≤ 2 max{a,σ }B∗
(
min

{
a, s2

4

})+ 5η/2,∣∣max{a,σ } − max{b,σ }∣∣≤ 2 max{b,σ }B∗
(
min

{
b, s2

4

})+ 5η/2.

Proof. This is a consequence of the previous lemma, of the fact that B∗(min{t, s2
4}) ≤ 1/4, and

of the fact that max{a + η,σ } ≤ max{a,σ } + η. �

7.5. Proof of Proposition 5.1

Let � ⊂ (R+ \ {0})2 be the finite set defined in equation (2.11) on page 3870. We use as a tool
the family of estimators

Ñλ(θ) = λ

α̂(θ)2
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introduced in equation (2.4), where α̂(θ) is defined in equation (2.3). Let us put

τλ(t) = λ2R4

3 max{t, σ }2
, t ∈R+.

We divide the proof into 4 steps.
Step 1. The first step consists in linking the empirical estimator N̄ with Ñλ.
We claim that, with probability at least 1 − ε, for any θ ∈ Sd , any (λ,β) ∈ �, such that

�+(N(θ)) > 0,

N̄(θ)

max{Ñλ(θ), σ } ≤ [
1 − τλ

(
Ñλ(θ)

)]−1
+ ,

with the convention that 1
0 = +∞. Moreover, with probability at least 1 − ε, for any θ ∈ Sd , any

(λ,β) ∈ �, such that �+(N(θ)) > 0,

N̄(θ)

Ñλ(θ)
≥ 1 − λ2

3
.

We first observe that, according to the definition of α̂(θ), for any threshold σ ∈R+,

1

n

n∑
i=1

ψ
[
λ
(
max

{
Ñλ(θ), σ

}−1〈θ,Xi〉2 − 1
)]≤ r

(
λ1/2Ñλ(θ)−1/2θ

)= rλ
(̂
α(θ)θ

)≤ 0,

where we have used the fact that the function ψ , introduce in equation (2.2), is non-decreasing.
Moreover

rλ
(̂
α(θ)θ

)= 0

as soon as α̂(θ) < +∞ and this holds true, according to Proposition 2.1, with probability at least
1 − ε, for any θ ∈ Sd and any (λ,β) ∈ � such that �+(N(θ)) > 0. Indeed, by Proposition 2.1,
with probability at least 1 − ε, for any θ ∈ Sd , any (λ,β) ∈ �,

Ñλ(θ) ≥ �+
(
N(θ)

)
.

Defining g(z) = z − ψ(z), we get

N̄(θ)

max{Ñλ(θ), σ } − 1 = 1

nλ

n∑
i=1

λ
(〈θ,Xi〉2 max

{
Ñλ(θ), σ

}−1 − 1
)

≤ 1

nλ

n∑
i=1

g
[
λ
(〈θ,Xi〉2 max

{
Ñλ(θ), σ

}−1 − 1
)]

.

(7.26)

In the same way, with probability at least 1 − ε, for any θ ∈ Sd , any (λ,β) ∈ � such that
�+(N(θ)) > 0, we obtain

1 − N̄(θ)

Ñλ(θ)
≤ 1

nλ

n∑
i=1

g
[
λ
(
1 − 〈θ,Xi〉2Ñλ(θ)−1)]. (7.27)
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We remark that the derivative of g is

g′(z) = 1 − ψ ′(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 if z /∈ [−1,1],
z2

2

1 + z + z2

2

if z ∈ [−1,0],
z2

2

1 − z + z2

2

if z ∈ [0,1],

showing that 0 ≤ g′(z) ≤ z2, and therefore that g is a non-decreasing function satisfying

g(z) ≤ 1

3
z3+. (7.28)

Applying equation (7.28) to equation (7.26) we obtain

N̄(θ)

max{Ñλ(θ), σ } − 1 ≤ λ2

3n

n∑
i=1

(〈θ,Xi〉2 max
{
Ñλ(θ), σ

}−1 − 1
)3
+

≤ λ2

3nmax{Ñλ(θ), σ }3

n∑
i=1

〈θ,Xi〉6,

where we have used the fact that (z2 − 1)+ ≤ z2. Since, by the Cauchy–Schwarz inequality,
〈θ,Xi〉2 ≤ ‖θ‖2R2 = R2, we get

N̄(θ)

max{Ñλ(θ), σ } − 1 ≤ λ2

3nmax{Ñλ(θ), σ }3
R4

n∑
i=1

〈θ,Xi〉2

= λ2

3
× R4

max{Ñλ(θ), σ }2
× N̄(θ)

max{Ñλ(θ), σ } ,

which proves the first inequality. Similarly, since g in non-decreasing, we obtain that, with prob-
ability at least 1 − ε, for any θ ∈ Sd , any (λ,β) ∈ � such that �+(N(θ)) > 0,

1 − N̄(θ)

Ñλ(θ)
≤ 1

nλ

n∑
i=1

g(λ) ≤ λ2

3
,

where the last inequality follows from equation (7.28).
Step 2. This is an intermediate step. We claim that, with probability at least 1 − 2ε, for any

θ ∈ Sd , any (λ,β) ∈ �, any σ > 0,

max
{
N̄(θ), σ

}≤ �−1−
(
max

{
N(θ), σ

})[
1 − τλ

(
N(θ)

)]−1
+ ,

max
{
N̄(θ), σ

}≤ �−1−
(
max

{
N(θ), σ

})[
1 − τλ

(
N̄(θ)

[
1 − τλ(σ )

]
+
)]−1

+ ,
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N̄(θ) ≥
(

1 − λ2

3

)
+
�+

(
N(θ)

)
,

where �+ and �− are defined in Proposition 2.1.
We consider the threshold

σ ′ = �−1−
(
max

{
N(θ), σ

})≥ max
{
N(θ), σ

}
,

where we have used the fact that, by definition, �−(t)−1 ≥ t , for any t ∈ R+. We assume that
we are in the intersection of the two events of Proposition 2.1, which holds true with probability
at least 1 − 2ε, so that

σ ′ ≥ max
{
N(θ), σ, Ñλ(θ)

}
. (7.29)

According to Step 1, choosing as a threshold max{σ,σ ′}, we get

N̄(θ)

max{Ñλ(θ), σ, σ ′} ≤ [
1 − τλ

(
max

{
Ñλ(θ), σ ′})]−1

+

(where τλ is still defined with respect to σ ), so that, according to equation (7.29),

N̄(θ) ≤ σ ′[1 − τλ

(
σ ′)]−1

+ . (7.30)

As a consequence, recalling the definition of σ ′, we have

N̄(θ) ≤ �−1−
(
max

{
N(θ), σ

})[
1 − τλ

(
N(θ)

)]−1
+ .

Thus, observing that

σ ≤ �−1− (σ ) ≤ �−1−
(
max

{
N(θ), σ

})[
1 − τλ

(
N(θ)

)]−1
+ ,

we obtain the first inequality. To prove the second inequality, we use equation (7.30) once to see
that

σ ′ ≥ N̄(θ)
[
1 − τλ

(
σ ′)]

+ ≥ N̄(θ)
[
1 − τλ(σ )

]
+,

and we use it again to get

N̄(θ) ≤ �−1−
(
max

{
N(θ), σ

})[
1 − τλ

(
σ ′)]−1

+

≤ �−1−
(
max

{
N(θ), σ

})[
1 − τλ

(
N̄(θ)

[
1 − τλ(σ )

]
+
)]−1

+ .

To complete the proof of the second inequality, it is enough to remark that

σ ≤ �−1− (σ ) ≤ �−1−
(
max

{
N(θ), σ

})[
1 − τλ

(
N̄(θ)

[
1 − τλ(σ )

]
+
)]−1

+ .
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To prove the last inequality, it is sufficient to remark that Ñλ(θ) ≥ �+(N(θ)) by Proposition 2.1
and hence, when �+(N(θ)) > 0,

N̄(θ) ≥
(

1 − λ2

3

)
+
�+

(
N(θ)

)
.

On the other hand, when �+(N(θ)) = 0, this inequality is also obviously satisfied.
Step 3. We now prove that, with probability at least 1 − 2ε, for any θ ∈ Sd , any (λ,β) ∈ �,

any σ > 0,

max{N̄(θ), σ }
max{N(θ), σ } − 1 ≤ B̃λ,β

(
N(θ)

)+ τλ(N(θ))

[1 − τλ(N(θ))]+[1 − Bλ,β(N(θ))]+ ,

1 − max{N̄(θ), σ }
max{N(θ), σ } ≤ Bλ,β

(
N(θ)

)+ λ2

3
,

where Bλ,β is defined in equation (2.8) on page 3870 and B̃λ,β in equation (7.12) on page 3903.
We observe that, according to Step 2,

max
{
N̄(θ), σ

}≤ �−1−
(
max

{
N(θ), σ

})[
1 − τλ

(
N(θ)

)]−1
+

≤ max{N(θ), σ }
[1 − τλ(N(θ))]+[1 − Bλ,β(N(θ))]+ ,

which implies

max{N̄(θ), σ }
max{N(θ), σ } − 1 ≤ Bλ,β(N(θ))

[1 − Bλ,β(N(θ))]+ + τλ(N(θ))

[1 − τλ(N(θ))]+[1 − Bλ,β(N(θ))]+ .

Applying Lemma 7.5 on page 3903, we obtain the first inequality.
To prove the second inequality we observe that, using again Step 2,

max
{
N̄(θ), σ

}≥
(

1 − λ2

3

)
+
�+

(
max

{
N(θ), σ

})
=
(

1 − λ2

3

)
+

max
{
N(θ), σ

}[
1 + Bλ,β

(
N(θ)

)]−1
,

where we have used the fact that �+(max{z, σ }) = max{z, σ }(1 +Bλ,β(z))−1 as shown in equa-
tion (2.9) on page 3870. Thus, we conclude that

1 − max{N̄(θ), σ }
max{N(θ), σ } ≤ Bλ,β(N(θ)) + λ2/3

1 + Bλ,β(N(θ))
≤ Bλ,β

(
N(θ)

)+ λ2

3
.

Step 4. From Step 3, we deduce that∣∣∣∣max{N̄(θ), σ }
max{N(θ), σ } − 1

∣∣∣∣≤ B̃λ,β

(
N(θ)

)+ τλ(N(θ))

[1 − τλ(N(θ))]+[1 − Bλ,β(N(θ))]+ .
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To conclude the proof it is sufficient to apply Step 3 to (λĵ , βĵ ) ∈ � defined in equation (2.11)
on page 3870. Indeed, by equation (7.14) on page 3905, for any t ∈R+,

Bλĵ ,βĵ (t) ≤ B∗(t)

and, by equation (7.19) on page 3906, we have λĵ ≤ λ∗(θ) exp(a/4).

7.6. Proof of Proposition 5.2

We observe that another way to take advantage of equation (7.26) on page 3913 is to write

N̄(θ)

max{Ñλ(θ), σ } − 1 ≤ λ2‖θ‖6

3 max{Ñλ(θ), σ }3

1

n

n∑
i=1

‖Xi‖6.

Thus, putting

ζλ(t) = λ2R̃6

3 max{t, σ }3
, t ∈ R+,

we get that, for any θ ∈ Sd ,

N̄(θ)

max{Ñλ(θ), σ } ≤ 1 + ζλ

(
Ñλ(θ)

)
.

The same reasoning used to prove Step 2 of Proposition 5.1 on page 3885 shows that, with
probability at least 1 − ε, for any θ ∈ Sd , any (λ,β) ∈ �, any σ > 0,

max
{
N̄(θ), σ

}≤ �−1−
(
max

{
N(θ), σ

})[
1 + ζλ

(
N(θ)

)]
.

As a consequence, with probability at least 1 − 2ε, for any θ ∈ Sd , any (λ,β) ∈ �,∣∣∣∣max{N̄(θ), σ }
max{N(θ), σ } − 1

∣∣∣∣≤ B̃λ,β

(
N(θ)

)+ ζλ(N(θ))

[1 − Bλ,β(N(θ))]+ .

7.7. Proof of Proposition 6.1

To prove Proposition 6.1, we use many results already proved in the case of the Gram matrix
(with the necessary adjustments).

We first observe that, denoting by W ∈ R
d a gaussian random vector with mean A1/2θ and

covariance matrix β−1A, we have

E
[∥∥A1/2θ ′∥∥2 dπθ

(
θ ′)]=

d∑
i=1

E
(〈W,ei〉2)

= ∥∥A1/2θ
∥∥2 + Tr(A)

β
,
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where {ei}di=1 is the canonical basis of R
d (and 〈W,ei〉 is a one-dimensional Gaussian ran-

dom variable with mean 〈A1/2θ, ei〉 and variance β−1e�
i Aei ). Therefore the empirical criterion

rewrites as

rλ(θ) = 1

n

n∑
i=1

ψ

[∫ (∥∥A1/2
i θ ′∥∥2 − Tr(Ai)

β
− λ

)
dπθ

(
θ ′)].

We now use Lemma 7.3 on page 3896 to pull the expectation outside the influence function ψ .
We decompose A into A = UDU�, where UU� = I and D = diag(λ1, . . . , λd) and we observe
that U�θ ′ has the same distribution as U�θ + W , where W ∼N (0, β−1I) so that

Var
[∥∥A1/2θ ′∥∥2 dπθ

(
θ ′)]= Var

(
d∑

i=1

((
U�θ

)
i
+ Wi

)2
λi

)

=
d∑

i=1

λ2
i Var

[((
U�θ

)
i
+ Wi

)2]

=
d∑

i=1

(
2

β2
+ 4

β

(
U�θ

))2

i

λ2
i

= 2

β2
Tr
(
A2)+ 4

β
‖Aθ‖2.

As a consequence we get

rλ(θ) ≤ 1

n

n∑
i=1

[∫
χ

(∥∥A1/2
i θ ′∥∥2 − Tr(Ai)

β
− λ

)
dπθ

(
θ ′)

+ min

{
log(4),

1

2β
‖Aiθ‖2 + Tr(A2

i )

4β2

}]
,

where the function χ is defined in equation (7.1) on page 3895. We then apply equation (7.5) on
page 3897 with m = ‖Aθ‖, a = log(4), b = 1/(2β) and c = Tr(A2)/(4β2) to obtain

rλ(θ) ≤ 1

n

n∑
i=1

[∫
χ

(∥∥A1/2θ ′∥∥2 − Tr(A)

β
− λ

)
dπθ

(
θ ′)

+
∫

min

{
4 log(2),

1

β

∥∥Aθ ′∥∥2 + Tr(A2)

2β2

}
dπθ

(
θ ′)]

and we conclude, by Lemma 7.4 on page 3898, that

rλ(θ) ≤ 1

n

n∑
i=1

∫
log

[
1 + ∥∥A1/2

i θ ′∥∥2 − Tr(Ai)

β
− λ + 1

2

(∥∥A1/2
i θ ′∥∥2 − Tr(Ai)

β
− λ

)2
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+ c

β

(∥∥Aiθ
′∥∥2 + Tr(A2

i )

2β

)]
dπθ

(
θ ′),

where

c = 15

8 log(2)(
√

2 − 1)
exp

(
1 + 2

√
2

2

)
.

We then apply the PAC-Bayesian inequality (7.1) to

f
(
Ai, θ

′)= log

[
1 + t

(
Ai, θ

′)+ 1

2
t
(
Ai, θ

′)2 + c

β

(∥∥Aiθ
′∥∥2 + Tr(A2

i )

2β

)]
,

where

t
(
A,θ ′)= ∥∥A1/2θ ′∥∥2 − Tr(A)

β
− λ

and we choose as posterior distributions the family of Gaussian perturbations πθ . We obtain that,
with probability at least 1 − ε, for any θ ∈R

d ,

rλ(θ) ≤
∫

E

[
t
(
A,θ ′)+ 1

2
t
(
A,θ ′)2 + c

β

(∥∥Aθ ′∥∥2 + Tr(A2)

2β

)]
dπθ

(
θ ′)

+ β‖θ‖2

2n
+ log(ε−1)

n

= E

[∥∥A1/2θ
∥∥2 − λ + 1

2

(∥∥A1/2θ
∥∥2 − λ

)2 + (c + 2)‖Aθ‖2

β
+ (2 + 3c)Tr(A2)

2β2

]
+ β‖θ‖2

2n
+ log(ε−1)

n
.

Using the Cauchy–Schwarz inequality, we remark that

E
[‖Aθ‖2]≤ E

[‖A‖∞
∥∥A1/2θ

∥∥2]
≤ E

[‖A‖2∞
]1/2

E
[∥∥A1/2θ

∥∥4]1/2

≤ E
[‖A‖2∞

]1/2
κ1/2N(θ),

where κ is defined in equation (6.1) on page 3888. Thus

rλ(θ) ≤ κ

2

[
N(θ) − λ

]2 +
[

1 + (κ − 1)λ + (2 + c)κ1/2
E[‖A‖2∞]1/2

β

][
N(θ) − λ

]
+ (κ − 1)λ2

2
+ (2 + c)κ1/2

E[‖A‖2∞]1/2λ

β

+ (2 + 3c)E[Tr(A2)]
2β2

+ β‖θ‖2

2n
+ log(ε−1)

n
.
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This is the analogous of equation (7.6) on page 3900. The end of the proof is similar to the case
of the Gram matrix.

7.8. Proof of Lemma 6.1

Replacing X with X −E[X] we may assume during the proof that E[X] = 0. It is true that

E
[∥∥A1/2θ

∥∥4]= E

[(
1

q(q − 1)

∑
1≤j<k≤q

〈
θ,X(j) − X(k)

〉2)2]

= 1

q2(q − 1)2

∑
1≤j<k≤q

1≤s<t≤q

E
[〈
θ,X(j) − X(k)

〉2〈
θ,X(s) − X(t)

〉2]
.

Recalling the definition of the covariance, we have

E
[∥∥A1/2θ

∥∥4]= 1

q2(q − 1)2

{ ∑
1≤j<k≤q

1≤s<t≤q

E
[〈
θ,X(j) − X(k)

〉2]
E
[〈
θ,X(s) − X(t)

〉2]

+
∑

1≤j<k≤q

E
[〈
θ,X(j) − X(k)

〉4]−E
[〈
θ,X(j) − X(k)

〉2]2

+
∑

1≤j<k≤q
1≤s<t≤q

|{j,k}∩{s,t}|=1

(
E
[〈
θ,X(j) − X(k)

〉2〈
θ,X(s) − X(t)

〉2]

−E
[〈
θ,X(j) − X(k)

〉2]
E
[〈
θ,X(s) − X(t)

〉2])}
= 1

4
E
[〈
θ,X(2) − X(1)

〉2]2

+ 1

2q(q − 1)
E
[〈
θ,X(2) − X(1)

〉4]−E
[〈
θ,X(2) − X(1)

〉2]2

+ q − 2

q(q − 1)

(
E
[〈
θ,X(1) − X(2)

〉2〈
θ,X(1) − X(3)

〉2]
−E

[〈
θ,X(1) − X(2)

〉2]2)
.

Define Wj = 〈θ,X(j)〉 and observe that

E
[
(W1 − W2)

2]2 = 4N(θ)2,

E
[
(W1 − W2)

4]= E
[
W 4

1

]+ 6E
[
W 2

1

]
E
[
W 2

2

]+E
[
W 4

2

]
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= 2E
[
W 4

1

]+ 6E
[
W 2

1

]2 ≤ (2κ + 6)N(θ)2,

E
[
(W1 − W2)

2(W1 − W3)
2]= E

[
W 4

1

]+ 3E
[
W 2

2

]2 ≤ (κ + 3)N(θ)2.

Therefore

E
[∥∥A1/2θ

∥∥4]≤
(

1 + (q − 2)(κ − 1)

q(q − 1)
+ (κ + 1)

q(q − 1)

)
N(θ)2 =

(
1 + τq(κ)

q

)
N(θ)2,

and hence κ ′ ≤ 1 + τq(κ)/q , since E[‖A1/2θ‖2] = N(θ).

7.9. Proof of Lemma 6.2

Replacing X with X −E[X] we may assume that E[X] = 0. Recall that

E
[‖X‖4]≤ κE

[‖X‖2]2 = κ Tr(�)2

and E[〈X(1),X(2)〉2] = Tr(�2). We observe that

E
[‖Aθ‖2]= E

[
1

q2(q − 1)2

∑
1≤j<k≤q

1≤s<t≤q

〈
θ,X(j) − X(k)

〉〈
X(j) − X(k),X(s) − X(t)

〉〈
X(s) − X(t), θ

〉]

and

E
[〈
θ,X(1) − X(2)

〉〈
X(1) − X(2),X(3) − X(4)

〉〈
X(3) − X(4), θ

〉]
= 4E

[〈
θ,X(1)

〉〈
X(1),X(2)

〉〈
X(2), θ

〉]
= 4‖�θ‖2 ≤ 4‖�‖∞N(θ),

E
[〈
θ,X(1) − X(2)

〉〈
X(1) − X(2),X(1) − X(3)

〉〈
X(1) − X(3), θ

〉]
= E

[〈
θ,X(1)

〉2∥∥X(1)
∥∥2]+ 3E

[〈
θ,X(1)

〉〈
X(1),X(2)

〉〈
X(2), θ

〉]
≤ κ Tr(�)N(θ) + 3‖�‖∞N(θ),

E
[〈
θ,X(1) − X(2)

〉〈
X(1) − X(2),X(1) − X(2)

〉〈
X(1) − X(2), θ

〉]
= 2E

[〈
θ,X(1)

〉2∥∥X(1)
∥∥2]+ 2E

[〈
θ,X(1)

〉2]
E
[∥∥X(1)

∥∥2]
+ 4E

[〈
θ,X(1)

〉〈
X(1),X(2)

〉〈
X(2), θ

〉]
≤ 2(κ + 1)Tr(�)N(θ) + 4‖�‖∞N(θ),

which proves the first inequality. In the same way,

E
[
Tr
(
A2)]= E

[
1

q2(q − 1)2

∑
1≤j<k≤q
1≤s<t≤q

〈
X(j) − X(k),X(s) − X(t)

〉2]
,
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and

E
[〈
X(1) − X(2),X(3) − X(4)

〉2]= 4E
[〈
X(1),X(2)

〉2]
= 4 Tr

(
�2),

E
[〈
X(1) − X(2),X(1) − X(3)

〉2]= E
[∥∥X(1)

∥∥4]+ 3E
[〈
X(1),X(2)

〉2]
≤ κ Tr(�)2 + 3 Tr

(
�2),

E
[〈
X(1) − X(2),X(1) − X(2)

〉2]= 2E
[∥∥X(1)

∥∥4]+ 2E
[∥∥X(1)

∥∥2]2 + 4E
[〈
X(1),X(2)

〉2]
≤ 2(κ + 1)Tr(�)2 + 4 Tr

(
�2),

which concludes the proof.
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