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We study the weak approximation error of a skew diffusion with bounded measurable drift and Holder
diffusion coefficient by an Euler-type scheme, which consists of iteratively simulating skew Brownian mo-
tions with constant drift. We first establish two sided Gaussian bounds for the density of this approximation
scheme. Then, a bound for the difference between the densities of the skew diffusion and its Euler approxi-
mation is obtained. Notably, the weak approximation error is shown to be of order h"/2 where h is the time
step of the scheme, 1 being the Holder exponent of the diffusion coefficient.
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1. Introduction

1.1. Statement of the problem

We consider the unique weak solution of the following R-valued stochastic differential equation
(SDE) (X;);>0 with dynamics

t t
X, =x +/ b(Xy)ds +[ o(Xs)dWs + Qa — l)L?(X), (1.1
0 0

where W = (W;);>0 is a one dimensional Brownian motion defined on a filtered probability space
(82, F, (Ft)r=0, P) satisfying the usual assumptions and LO(X) is the symmetric local time of X
at the origin.

When b = 0 and o = 1, the solution to (1.1) is called the skew Brownian motion. Harrison and
Shepp [7] proved that if |2 — 1] < 1 then there is a unique strong solution and if [2¢ — 1| > 1,
there is no solution. The case o = 1 corresponds to reflecting Brownian motion.

Here we will assume that « € (0, 1), b is measurable, bounded, ¢ is uniformly elliptic,
bounded and a = o2 is n-Holder continuous for some 7 € (0, 1]. The previous assumptions
guarantee the existence of a unique weak solution to (1.1). Moreover, for any (¢, x) € ]R*Jr x R,
X, admits a density y — p(0, ¢, x, y), which is continuous on R* and satisfies a Gaussian upper-
bound. We refer to [11] for more details, see also [17]. We also refer the interested reader to the
recent survey [18] and the references therein for various applications of such equation.

As far as numerical approximation is concerned several discretization schemes of (1.1) have
been proposed. For instance, Lejay and Martinez [19] recently introduced a numerical scheme
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based on the simulation of a skew Brownian motion. Martinez and Talay [21] proposed a trans-
formed Euler discretization scheme of an equation similar to (1.1) to approximate the solution of
a linear parabolic diffraction problem and provide a weak convergence rate. Another approxima-
tion scheme based on random walk has also been studied by Etoré [4]. In [5], Etoré and Martinez
developed a simulation scheme for skew diffusions with constant diffusion coefficient.

To approximate equation (1.1) on the time interval [0, T], T > 0, we introduce the Euler
scheme (XIN )tefo,7] associated to the time step # = T/N, N € N* and time grid t; = ih, i €
[0, N, defined by X(])V =xandforall f; <t <t4)

XV =X +b(X))t —t)+ o (X)) Wy — W) + Qe — DLY_, (XY (6, X)), (1.2)

Let us note that the above scheme does not correspond to a standard Euler—Maruyama ap-
proximation scheme since we do not discretize the part corresponding to the local time in (1.1).
However, its computation only requires to be able to simulate exactly the skew Brownian motion
with a constant drift at time ¢ — #;. This process is known to be exactly simulatable and we refer
to [5] for the exact expression of its density.

Two kind of quantities are of interest when studying the weak approximation error of (1.1).
The first one concerns the quantity 511/\} =Ex[f(X7)] —Ex[f(X y )], where f is a test function
that lies in a suitable class. The second one writes 512/\) = (p — pn)(O,t,x,y), where y >
p@,¢t,x,y) (resp. y — pn(0,1,x,y)) denotes the density of the unique solution X; of (1.1)
taken at time ¢ and starting from x at time O (resp. of X ,N given by the scheme (1.2) at time ¢
and starting from x at time 0) when it exists. The problem of interest is to give a bound or an
expansion of these two quantities in terms of the discretization step 4.

Let us note that the two quantities 5,1/\, and 512/\, are of a different nature and require different
techniques and methodology depending on the considered class of test functions. Indeed, in
the case of SDE driven by a Brownian motion (« = 1/2 that is, without local time), provided
the test function f, and the coefficients b and o are smooth and f is of polynomial growth,
Talay and Tubaro [26] derived an error expansion at order 1 for 8)1/\}. The weak approximation
error for Lévy driven SDEs has been studied in Jacod et al. [8] under appropriate smoothness
of coefficients and the test function f. In the case of SDEs driven by a Brownian motion, the
same result may be extended to bounded Borel functions under a non-degeneracy assumption of
Hormander type on the diffusion, see Bally and Talay [1] or to the case of the density [2]. In the
uniformly elliptic setting, Konakov and Mammen [13], in the Brownian case, and Konakov and
Menozzi [14], for stable driven SDEs, successfully derived an expansion for 512/\) in powers of &
by using a continuity approach known as the parametrix method as developed in McKean and
Singer [22] and Friedmann [6]. Roughly speaking, it consists in expanding the transition density
of the initial equation around a process with frozen coefficients for which explicit expression of
the density and its derivatives are available. This approach seems to be quite robust and useful
since it can be applied in various contexts such that discrete Markov chains [12]. However, little
attention has so far been given to the case of SDEs with non-smooth coefficients.

In the classical case of uniformly elliptic diffusion processes, we mention the work of Mikule-
vicius and Platen [24] who established an error bound for the weak approximation error 511,\, of
order h"/? provided f € C2+”([0, T1 x R?) and the coefficients b and o are n-Holder continuous
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in space and n/2-Holder continuous in time. We also refer the reader to [23] and [25] for some
recent extensions of this result to the case of Lévy driven SDEs.
More recently, Konakov and Menozzi [15] also derived an upper bound for E)Z/V of order

h2=CV(®  where ¥ (h) is a slowly varying factor that goes to zero as # — 0 under the assump-
tion that the coefficients b and o are Holder continuous. Their strategy consists in introducing
perturbed dynamics of the considered SDE and its scheme by suitably mollifying the coefficients
of both dynamics and to quantify the distance between the densities and their respective pertur-
bations. Let us mention that another perturbative approach has been considered in Kohatsu-Higa
et al. [10] for the weak approximation error 5)1/\} with non-smooth coefficients. In order to estab-
lish an error bound between the transition densities of (1.1) and (1.2), we rely on the parametrix
methodology. Our approach allows to establish that this difference is of order 4"/, without any
additional varying factor (and time singularity) as in Theorem 1 in [15], that is to extend to
the case of skew diffusions the result in [24] and to handle the densities itself (note again that
o = 1/2 corresponds to the case of one dimensional time-homogeneous Brownian SDEs). One
of the main advantages of the parametrix approach is the removal of the drift in the analysis of
the approximation error. In particular, we remove the Holder regularity assumption of the drift
coefficient b by allowing it to be only bounded measurable.

The paper is organized as follows, we first give our standing assumptions and notations in Sec-
tion 1.2. We state our main results in Section 2. Section 3 is dedicated to the proofs of Aronson’s
estimates and the weak approximation error on the densities. The main tool for both results is
a discrete parametrix representation of McKean—Singer type for the density of the scheme, see
[22] and [12], [13]. In Section 3.3, we prove some key technical lemmas that are used in our
proofs.

1.2. Assumptions and notations

We here specify some assumptions on the coefficients b and o.

(HR) The drift b is bounded measurable and a = o2 is n-Holder continuous, for some 7 € (0, 1].
That is, there exists a positive constant L such that

sup|b(x)| + sup M <L.

xeR (x,y)eR2 x£y lx — y|?

(HE) The diffusion coefficient is uniformly elliptic that is there exists A > 1 such that for every
xeR? A< a(x) < A. Since o is continuous, without loss of generality, we may assume
that o is positive.

In the following, we will denote by C a generic positive constant that may depend on b, o
and 7. We reserve the notation c for constants depending on A, 1, b and o but not on 7. Impor-
tantly, the constants C, ¢ are uniform with respect to the discretization time step 4. Moreover,
the value of both C, ¢ may eventually change from line to line. The notation g¢ stands for the
Gaussian kernel, namely gc(y — x) := (1/@2xC)/? exp(—(y — x)%/(2C)). We finally define
the Mittag-Leffler function Ey g(2) = )_,.02"/T(an + ), z€R, a, > 0.
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2. Main results

Before stating our results, let us first justify that under assumptions (HR) and (HE), the random
variable X {jv , J € [1, N], given by the discretization scheme (1.2) admits a positive density. For
x €R,0<j <i <N and any bounded Borel function f, one has

E[f (X)X =]

2.1
=/, . PN, L1, X, Yje1) X oo X pn(ti—1, i, Yie1, i) f (i) dyjs1 -+ - dyi,
Ri=/=IxR
where py(fx, tx+1, Yk, Yet1) stands for the density of the random variable XV = y, +

Tk+1
b(yh+0 (k) (Wi, — Wy) + Qo — DL (XN (1, yk)), which satisfies p (., tir1, Yeo Yet1) =
q(h, i, Yk+1)/0 (yk), where g (h, yi, Yk+1) stands for the density at time /# and terminal point
Vk4+1 of the skew Brownian motion starting from yi/o (yx) at time 0 with constant drift part
b(yr)/o (yr). Again, we refer to [5] for the exact expression of g. From equation (2.1), we clearly
see that under assumptions (HR) and (HE), the discretization scheme (1.2) admits a positive tran-
sition density, that we will denote py(f;,tj,x,y), forany 0 <t <t; <T, (x,y) e RxR*. In
particular, a Gaussian upper-bound has been established in [11] for the transition density of the
skew diffusion (1.1) under (HR) and (HE). Our first result is to prove similar Aronson’s estimate,
that is a Gaussian upper estimate but also a lower bound hold for the discretization scheme (1.2).

Theorem 2.1. Under (HR) and (HE), there exist two constants C := C(T,b,0),c := c(),
n) > 1 such that for every 0 < j <i <N,

Y(x,y) € R x R, C*Igc—u,,.ftj)(y —x) < pN(j,1i, X, Y) < Cge(tj—1))(y — X).

We rely on a parametrix expansion of the density py (¢}, #;, x, y) to prove Theorem 2.1. Such
bounds were obtained in [20] for the discretization schemes of uniformly elliptic diffusions and
of some degenerate Kolmogorov processes which in turn allowed to derive concentration bounds
for the statistical error in the Monte Carlo simulation method. The proof of Theorem 2.1 is
postponed to Section 3.

Our second result concerns the weak approximation error 5,%\, =(p—pn)(O,1, x,y). Notably,
we provide an error bound for the difference between the densities of the skew diffusion (1.1)
and its approximation scheme (1.2). Its proof is also postponed to Section 3.

Theorem 2.2 (Error bound on the difference between the densities). Assume that (HR) and
(HE) hold. Then, there exists a constant ¢ := c(A,n) > 1 such that, for all 0 <t; <t; < N, one
has

Vix,y) e xRx R, [(p—pn)(tj. ti,x, )| < C(T. b, 0)h"*ge—i;) (v — x),

where T +— C(T, b, o) is a non-decreasing positive function.
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Remark 2.1. Observe that the weak rate 4/? is coherent with previous results obtained in the lit-
erature for the weak approximation error 511/\} of (not necessarily time homogeneous) SDE driven
by a Brownian motion with Holder coefficients, see, for example, [24]. In [15], the weak approxi-
mation error 6’12/\, of the density is proved to be of order h%’c‘/’(h), Y (h) =logs Y logz(h’l)
when the coefficients b and o are n-Holder continuous in space and 7/2-Holder continuous in
time. Moreover, in their results, the singularity in time is given by C(f; — ¢ j)_(l_”/ 21/2 whereas
this quantity does not appear in our result so it is tighter in this sense. For « = 1/2, which
corresponds to the case of (time homogeneous) diffusion process (since the local time part van-
ishes), compared to [15], our result notably removes the slowly varying factor (k) and shows
that the drift plays no role in the approximation of the density since we only require b to be a
bounded measurable function. This phenomenon is not surprising since one of the advantages of
the parametrix approach is the removal of the drift part in the analysis. Eventually, it should be
possible to extend our strategy of proof to the case of multi-dimensional Brownian diffusion.

3. Proofs of Theorems 2.1 and 2.2

As already mentioned, the proof of Theorem 2.1 relies on a parametrix expansion of py (¢}, 1,
x,y). As a warm-up, we briefly present to the reader the different steps to derive the parametrix
expansion for (1.1) as developed in [11]. We refrain from discussing about the existence of the
transition density for equation (1.1) but only present how to derive the expansion in an infinite
series and the Gaussian upper-bound from it.

For o € (0, 1), we denote by D(«) the set of bounded continuous functions f : R — R with
bounded continuous derivatives f’ and f” on R* such that f/(0+) and f'(0—) exists and satis-
fies af’(0+) = (1 — a) f/(0—). Then, using the symmetric Ito—Tanaka formula and the occupa-
tion time formula, one proves that the infinitesimal generator £ of the Markov semigroup (P;);>0
generated by (1.1) is given by

Vf € D(a),Vx € R¥, Lf(x):b(x)f’(x)+%f”(x).
Moreover, for any f € D(«), one also obtains
V(t,x) e Ry x R¥, d;’tf (x) = P,Lf(x). (3.1)

We now define the frozen process that will be our main building block to construct the
parametrix expansion for the transition density of (1.1). For z € R, we consider the unique strong
solution X? to the SDE

X =x+0@W, + (Q2a— DL)(X?). (3.2)

Notice that compared to (1.1), we froze the diffusion coefficient to z and removed the drift
since it will not play any significant role, as it will be clear later on. Its infinitesimal generator £*
writes

a(@) ,,

Vf e D(a),Vx e R¥, Ezf(x)sz (x).
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Under (HE), the transition density function of (X});ej0,77 exists and we denote it by y >
p*(0, ¢, x,y). More precisely, one has to consider the two following cases:

Case 1: For x > 0, one has
P01, %, ) = {8ax) (y — X) + 2ot = D)ga(y (v + %) J1y=0)
+2(1 — ) ga(z)e (y — )1y <0y
Case 2: For x < 0, one has
p0,1,x, ) = {8a) (y — X) + (1 = 20) ga(2y: (v + X) J 1y <0
+208a(z) (¥ — )10}

Now, let ¢ > 0. Noting that x — p” (0, &, x, y) € D(«), from (3.1), for all (x, y) € R x R*, we
write

Pip* (0.6, )(x) = P p7(0,, -, y)(x)

t
=/ dsdg(Ps Py p” (0,6, -, y))(x)
0
t
- / ds(PsLP}  p* (0,6, y)(x) — P.LY P p* (0,6, -, ) (%)) (3.3)
0

t

:/ dsPy(L— L) p? (0,6 +1 — 5, y)(x)
0

=p®HO,t+¢,x,y),

where we used the Chapman-Kolmogorov equation P pY(0,¢,-, y)(x) = p*(0,e +t —
s,x,), introduced the notations f ® g(s,t,x,y) = [ du [p dzf(s,u,x,2)g(u,t,z,y) for
the time space convolution and H(s,t,x,y) = (L — LY)pY(s,t, x, y). From now on, we set
p(s,t,x,y) = pY(s,t,x,y). In particular, the kernel H writes

(a(x) —a(y))

5 Bgﬁ(s, t,x,y).

H(s,t,x,y) =b(x)0,p(s,t,x,y) +
Moreover, under assumptions (HR) and (HE), separating the four cases: x,y >0, x > 0>y,

y>0>x and x, y < 0, after some cumbersome but simple computations that we do not detail
here (see Lemma 4.5 in [11] for more details), one gets

C
Y(x,y) € R x R¥, |H(S,I,X,y)| =< Wgc(t—s)(y—x) (3.4)
—s 2

with C(T,b,0,n) :=C(X, n)(|b|OOTFTn 4+ 1) and some constants C(A, 1), ¢ :=c(X, n) > 1. This
last inequality is the keystone of the parametrix expansion as it shows that the kernel has a
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smoothing effect. Now, from the continuity of ¢t — p” (0, ¢, x, ¥), by dominated convergence, we
may pass to the limit as € goes to zero in both sides of (3.3). We notably obtain

V(x,y) € R x R*, p0,t,x,y)— p@,t,x,y)
= /()I/Rp(o, 5,%,2)(L—=L)p(s,t,2,y)dzds (3.5)
=pQRHQO,¢tx,y).
Using (3.4) and (3.5) together with an induction argument, one obtains the following bound

Vr >0, |ﬁ®H(’)(s,t,x,y)|

r .
@i—1Dn n
5c’+1(t—s)’"/2]_!3<1+ 5 5 )8et—n (=)
I=

(3.6)

with HO = and HO =H® H" Y, r>1and B(m,n) = fo‘ dv(l —v)" 1"~ 1 is the Beta
function. In particular, we may iterate the representation formula (3.5), in order to obtain

Vi, y) eRxR*,  pO.1,x,y)=Y pRH,1,x,y). 3.7

r>0

Since the series converge absolutely and uniformly for (x, y) € R x R*, we deduce that x
p(0, ¢, x, y) is continuous on R and satisfies the following Gaussian upper bound:

Y(t,x,y) € (0, T] x R x R¥,
(3.8)

B2y _n
p©0,2,x,9) < Epp 1 (C(TT7 |blos + T'72))ger (y — x)

with C(%, n), c(A, n) > 1. Once again, for more details, we refer the reader to Section 5 in [11]
and notably to Corollary 5.5 for the extension to the case of bounded measurable drift b.

3.1. Parametrix expansion for the density of the approximation scheme
(1.2)

In the spirit of [12] and [20], we will take advantage of the discrete counterpart of the parametrix
technique to obtain two-sided Gaussian bounds for the density of the discretization scheme (1.2).
We first need to introduce a discretization scheme with frozen coefficients and the discrete coun-
terpart of the time—space convolution kernel. This will then allow us to establish the representa-
tion for the density of the discretization scheme which is similar to (3.7). In order to do this, we
first prove that the kernel shares a smoothing property similar to (3.4). Finally, as in the previous
section, the upper bound will directly follow from the parametrix expansion.

To derive the global lower-bound, we proceed in two steps. By a scaling argument, without
loss of generality, we may assume that 7 < 1. First, the lower bound is obtained on the diagonal
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ly —x|2/(t; — tj) < K, K > 0, for short time (#; —t;) < T < Tp, for some Ty to be specified later
on. To obtain the off-diagonal bound, we proceed using a chaining argument as usually done in
this context, see Chapter VII in Bass [3], Kusuoka and Stroock [16] and Lemaire and Menozzi
[20] in the case of discretization schemes. We briefly recall these steps for sake of completeness.

We begin our program by introducing the discrete frozen scheme which is the discrete “ana-
logue” of (3.2). For fixed x, x’ € R, 0 < j < j' < N, we define the frozen scheme ()?{?’)ie[[j,jr]]
by

XV=x, XY=X+o()W,—W,)+Qa—DL)  (XV(1.X])). 3.9)

tj

forse[t,tiri]landi=j,...,j — 1.
tinx .. ..
From now on, py(tj,tj,x,-) and p 1(,/ (@, tjyr,x,-) denote the transition densities between
times ¢; and ¢+ of the discretization schemes (1.2) and (3.9). For sake of simplicity, we will use

. ~ 1 «/,X/
the notation py (¢;,tj, x,x") = py = (tj, tjr, x,x').
We also introduce the discrete counterpart of the infinitesimal generators considered so far.
For a smooth function g : R — R, afixed x’ € R* and j =0, ..., j/ — 1, we define

ELg(X p)IX] =x1—g(x)

Ef\j/g(x) = Y and
‘ 3 B (3.10)
v Elg(X )IXf) =x] = g(x)
Ltjg(x) = h
for 0 < j < j’ < N, the discrete kernel
Hy (17,10, x) = (£ = L) (1 +htjr, -, X)) () 3.11)

and finally the discrete time—space convolution type operator ® y as follows

-1

(g®n )t 1y, x,x") = Zthg(tj,ri,x,z)f(ti,tj/,z,x/)dz
i=j

with the convention that Zl];jl --.=0if j > j’. From (3.11), it is easily seen that
_ J./,x/ ~
HN(tj,tj/,x,x/)zh l/(pN—pA’, )(tj,tj_H,x,z)p(tj+1,tj/,z,x’)dz.
R

Analogously to [12], we define the convolution as follows: g ®y HI(\? ) — g and for r > 1,

g N H/E;) =(g QN H,(\,r_l)) ®n Hpy. The following parametrix expansion of py follows from
the same arguments to those employed in Lemma 3.6, [12]. The proof is omitted.
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Proposition 3.1. For0 < j < j' < N, one has

./

J=i
V(x,x’)eRxR*, pN(tj,tjr,x,x’): Z(ﬁ N H](Vr))(tj,tjr,x,x’), (3.12)
r=0

where we use the convention ﬁ(tjr,tjr, L x) = ﬁ(tj/, tir, - x") = 8, (-) in the computation of
D ®n HIE;)-

Next result is the keystone for the proof of Theorem 2.1 as it provides the smoothing property
of the discrete convolution kernel.

Lemma 3.1. Under (HR) and (HE), there exists a constant ¢ :== c(,,n) > 1 such that for all
0<j<j <N,forallrel0,j — j], one has

V(x,x/) € R x R¥,

|5 ®n HY (1), 5, %, x')|

(3.13)
, 2T (i —Dn 7 :
<Clap =)™ EB<1+ > 75)&(:]-/—0)()6 - %),
where T +— C := C(T, b, 0) is a non-decreasing positive function.
Proof. We first prove that for all 0 < j < j' < N, one has
V(x,x/) e R x R*, |HN(tj,tj/,x,x/)| §C(tj/—tj)_l"’ggc(,j,_,j)(x’—x) (3.14)

for a positive constant c(A, n) > 1 and non-decreasing positive function 7 +— C(T, b, o). For
j'=j + 1, by time-homogeneity, we remark that

V(x,x") e R x R,
Hy(tj,tj, x,x") =h"Ypy — P)(tj,tjt1,x,x") =h"Ypy — (0, h,x,x).
Let s € (0, 1] fixed. We will prove a more general result, namely

V(x,x",z) e R x R x R¥,
, 1 (3.15)
|(pnv — P )(0,5,%,2)| < C(Ibloos? + |x —x'|") ges (z — x).

Then, the result will follow from (3.15) by setting s = &, z = x’ and by using the space-
time inequality: VA > 0,Vp > 0,3C > 0 s.t. Vx > 0, x” exp(—Ax) < C. Indeed, from (3.15)
with s = &, z = x’ and the space—time inequality, one gets |(py — p* )(0, h, x,x")| = |(py —
PO, h,x,x")] < C(1bloch? + |x — x| gen (&' —x) < C(bloch? +h?)gen(x’ —x) 50 that (3.14)
follows for j/ = j + 1. We now prove (3.15). Using the exact expression of the density of the
skew Brownian motion, we separate the computations in the following eight cases:
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e For z > 0 and x, x + b(x)s > 0, one has

(px = P")(0.5.x.2) = gago)s (2 — X — B(X)$) — ga()s (2 — X)
+ (o — 1)(ga(x)s(z +x+ b(x)s) — 8a(x)s(@ +x))
e Forz>0and x >0, x + b(x)s <0, one has
(pv — P)(0,5,%,2) = gag)s (2 — x — b(x)s) — gaxys(z — X)
+ Qo — 1)(ga(x)s (Z —X = b(x)s) — 8a(xs (2 +x))
eForz>0and x <0, x + b(x)s <0, one has
(pN - pX/)(Os 5,X,2) = za{ga(x)x(z - X — b(x)s) - ga(x’)s(Z - x)}
e Forz>0and x <0, x + b(x)s > 0, one has
(pN - pX/)(Ov 8$,%,2) = 8a(x)s (Z —X = b(x)s) — 8ax)s (2 —x)
+ 20 = 1)(Zaos (2 = X = b(0)5) = aes @ — X))
e For z <0 and x, x + b(x)s > 0, one has
(Pv = P¥)(0,5,x,2) =2(1 = ) {gao)s (z = x = b()s) = ga(rs (2 = 1)}
e Forz <0and x >0, x + b(x)s <0, one has
(pv — P)(0,5,%,2) = gag)s (z — X — b(X)s) — ga(xys (2 — X)
+ (1 = 20) (ga(s (z +x +b(x)s) = ga(eys (2 — x)).

eForz <0Oand x <0, x +b(x)s <0, one has

(P = P¥) (0,5, %, 2) = ga(rys (2 — X — b(x)$) — ga(w)s (2 — X)
+ (1 = 200) (8a(x)s (z 4+ x + b(x)s) — ga(xys (2 + X)).
eForz <0and x <0, x + b(x)s > 0, one has
(pN - Px/)((l §,X,2) = ga(x)s(z —X = b(x)s) - ga(x/)s(z —X)
+ (1 - 2“)(ga(x)s (Z —X = b(x)s) — 8a(x)s (2 +x))

We treat the case z > 0, x > 0, x + b(x)s < 0. The estimates for the other cases are similarly
obtained and details are omitted. First, from (HR) and (HE), one easily gets

[8aes (2 — % = b@)5) = gages @ = 0] < C(Ibloos? + |x —x'|")ges (' — x)
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for some positive constant c(A,n) > 1 and a non decreasing positive function 7 — C :
C(T,b,0).

Moreover, observe that 0 < x < |b|xS, the signs of x and z being the same, g.s(z + x) <
gcs (z — x), so that using similar arguments, one gets

|8a(r)s (2 — x — b(x)s) — gax)s (2 + X))
< [gays (2 4+ x — (2x +b(x)s5)) — a(xys (2 +x — (2x + b(x)s))]
+ |8aqns (z +x — (2x + b(x)s)) — gaqxys (2 + X)|
< C(Ibloos? + |x — x'|") ges (2 + %)
< C(Ibloos? + |x — x'|") ges (z — ).

From the above computations, one gets (3.15) and estimate (3.14) clearly follows. Note also
that from the previous computations, it also follows that

V(s,x,2) €(0,h] x R x R, PN(0,5,x,2) < Cges(z — x), (3.16)
with C(T, b, o), c(A,n) > 1 independent of N.
For j' > j + 1, we remark that z > ptjy1, tj/,z,x/) € D(a) so that from the symmetric
Itd—Tanaka formula, for all (x, x’) € R x R*, one has
HN(tj,tj/,x,x’)
_ ~ N,ti,x ~ SN tix
=h I{E[p(tj"‘la tj/’ th+lj ’ 'x/)] - E[p(tj-Hs tj/’ le+i/ ’ 'x/)]}
1 h N,tj,x
=h" / [b(x)E[axﬁ(th, ., Xy X))
0
1 )
+ 50(X)E[83ﬁ([1+1 , tj/, X;V,l],xy X/)]i| ds

— ! /Oh %a(x/)E[aﬁﬁ(tH],t,, XU 5] ds (3.17)
= b(x)ax p(tjs1, 1, %, %)
+ %(a(x) —a(x'))azp(tjr1.ty x, X ) +h T Ry (2,10, x, ) (3.18)
with

eRN(tj,tj/,x,x/)

N,tj,x

h
:=b(x)/0 {E[0:p(tjs1. 1), Xs 77 x")] = 05 p(tj1. 10, x, x) } ds (3.19)
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N,tj,)(
\y

1 h
+ Ea(x)/o {E[agﬁ(l‘j_i_l,tj’,x‘ ,x’)] — 8§ﬁ(tj+1,tj/,x,x/)}ds

1 h Nt
— Ea(x/)/o {]E[afﬁ(tjﬂ,tj/,Xiv‘t*”x,x/)] — 8§ﬁ(tj+1,tj/,x,x/)}ds.

In order to prove (3.14), we look at the first term appearing in the right-hand side of (3.17).
Distinguishing the four cases x,x’ > 0; x > 0,x’ <0; x <0,x’ > 0and x <0, x’ < 0 and using
(HE), (HR) simple but cumbersome computations show that for s € (0, %]

[B[0p(tj41, 17 X3, x)]| = /RPN(U’ tj+s5.x, 2|05 (1, 1y 2. x) [ dz

_1
<C(tj —1tj41) 2gc(zj/—zj+1+s)(xl—x)
_1
<C(j —tj) ch(zj,—zj)(x/—x),

where we used (3.16) and the inequality ¢;; — ¢; > 2h for the last inequality. Hence it follows

h .
'h—I/O bOOE[3s p(tj1. 170 Xo 7 x) [ ds| < Clbloo 1y — 1172 gt 1) (v — x).

For the two remaining terms appearing in the right-hand side of (3.17), we use the decompo-
sition

h
h_lfo (%a(x)E[afﬁ(tm,tj/, X3 U )] - %a(X’)E[afﬁ(th»fju ffﬁv’”’xax')]) ds
1 h 1 , 2~ N,tjx /
—h /0 5 (@) —a())E[0: p(tj1. )0, X7, x') ] ds

h
+h7]/0 %a(x/)(E[agﬁ(tj"l‘l?tj’,X‘ﬁv’tj’x’x/)]

2~ ~N,ti,x
B[t 10ty K )] ds
and observe that using computations similar to the first term and (HR), one gets

. v
(@) —a()E[B2 B (101,170, X577 2)] | < C%gw/—w(f —x)

14
< C([j/ — IJ) 1+2gc(,j,_,j)(x/ — x).
For the last term, from (3.15) and the semigroup property, we obtain
- N.tj, ~ SN, tj,
B[ 5 (1 1. X X)) = B[ 5 (140,150, X577 )|

< / |pn (0,5, x,2) — px/(O,s,x,z)||8z2[3(tj+1,tj/,z,x/)’dz
R



On the weak approximation of a skew diffusion by an Euler-type scheme 1665

< C(1bloos? + [x = 2|") tjr = 1j41) " ety 1749 (8 = x)
=C@y - fj)_“r%gc(zﬂ_z,-)(x’ —x),

where we again used 7;y —t; > 2h and T +— C(T, b, o) is a non-decreasing positive function.
Consequently, from the previous computations, we derive the following bound

| H (1,13, x')| < O b, 0) 1y = 1) geqr e (= %)

which in turn allows to conclude on the validity of (3.14) forall 0 < j < j/ < N. Now one clearly
gets

j =1

(P @N Hy)(tj 1%, x')| < Zh/|p(t],t,,x | |Hy (.t 2. x") | dz

j-1

= C(T» b, U){Z h(tj’ - ti)_l+% }gC(lj/Ij)(x/ - )C)

i=j

n
=< C(T9 b» U)(lj/ - lj)n/2B<1s E)gc(lj/—tj)(x/ - -x)v

where we used the Gaussian upper-bound | p*(7j, #;, x, z)| < Cge(;;—1;)(z — x) and the semigroup
property for the last but one inequality. Finally, estimate (3.13) follows by induction. (I

3.2. Proof of Theorem 2.1

The Gaussian upper bound in Theorem 2.1 directly follows from Proposition 3.1 and the follow-
ing bound

r+1
1 F 1
ey =y [[o(1+ S5 3) < Dieramy -6 s

r>0 r>0

< Eyp1(C(T,b,0)T"?) < 0.

It now remains to prove the Gaussian lower-bound. As already mentioned in the beginning of
Section 1.2, w.l.o.g. we assume that 7 < 1. The proof of the lower bound does not depend on
the structure of the equation but only relies on the parametrix expansion obtained in Lemma 3.1
with the underlying Gaussian controls (3.13). Hence, we closely follow the arguments in [20]
and omit some part of the proof. It is decomposed into two steps that we explain here for sake
of completeness. From Proposition 3.1, we first obtain the lower-bound in short time 7 in the
diagonal regime that is on compact sets of the underlying Gaussian time—space metric. The “off-
diagonal” bound is then obtained by a chaining argument, see [3], [16] and [20]. Finally, to derive
the lower bound for an arbitrary fixed time 7, one may use the semigroup property.
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From Proposition 3.1, one has
pw(tj,tjyrx,x") = pn (1. 1y, x, x') + pa(tj. 0, x, x7),
with py (7, 150, x,x") := Y/ (p@n HY)(1}, 1jr, x, x') which satisfies

[P (1.t 6. x')| = Cltjr = 1) geqey -1 (" = %)

for some positive constants C := C(T, b, 0, 1), c(r,n) > 1.
e Step 1: Diagonal regime in short time.
From the above decomposition, one has

pN(tj, lj/, X, .X/) > Cilgc—l(tj,ftj)(x/ — x) — C([j/ — tj)n/zgc(tj/_tj)(x/ — _x), (320)

where we used py(t;,1/, x,x") > C’lgcfl(tj/_tj)(x’ — x) by (HE). Let R > 1/2. For x, x’ s.t.
Ix' —x|>/(tj; —t;) <2R and tj —t; < T < (cexp(—cR)/(2C*))*/", we get

C—]
pw(tj 1y, x,x') = NEZIOED)
> 7C71€1/2 exp(—cR)
22ty — 1)) (3.21)
C*l

>
T2ty —t))

> Cilgc_l (’;’*fﬁ(x/ — x)

2o €2
c’'“exp(—cR) 61/2(t]/ tj)

for some constant ¢ > 1 and up to a modification of the constant C. Hence, there exist two con-
stants ¢, C > 1 s.t. for |x’ —x|2/(tjr —1;) <2Ronehas py(t,tj,x,x') > C’lgc_l(t/_,_t/,)(x’ -
x). S

We now extend this first result to arbitrary times 0 < s <t < T not necessarily corresponding
to discretization times of the scheme. For 0 <s <t < T that do not belong to the time grid
and (x,y,x’) € R? x R*, we define the kernel pyN (s, 1, x,x’) s.t. for all bounded measurable f,
E[f(XtN)|XgN(S) =y, XN =x]= IS f(x/)p/yv(s, t,x,x")dx’. More precisely, we prove

x'—x> R
— < —,
(t—s) —12
C71

y /
pN(s,t,x,x)Z4m.

AC>1,V0<s<t<T,VyeR,
(3.22)
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If s or ¢ belong to the time grid of the scheme, the following lines of reasoning may be easily
adapted. From the semigroup property, assuming that ¢ (t) — (¢n (s) + k) > h, one has

pfv(s,r,x,x’)z/ Py (5,8 () + R, x, x1) pn (d (s) + b, di (1), X1, X2)
By (s.t,x,x7) (3.23)

x pn(on (D), 1, x2,x") dx1 dxa,

"N o lx—x? . —xf?
where BRO(S,t,x,x) = {X] e R*: W < R()} X {)Cz eR: m < R()} for some

Ro > 0. Now, for (x1, x2) € B, (s, ¢, x, x"), we remark that

lx2 — xi|? - 20y — X2+ 4)x" — x| +4)x —x1)?
(PN (1) — (PN (s) + D)) — (PN (1) — (PN (s) + D))
<6Ry+ R,

where we used ¢n (1) — (PN (s) +h) =h = ¢n(s) +h —s,1 —¢n(t) and 1/(Pn (1) — (PN (s) +
h)) <3/(t —s). Now we set Ry = R/6 so that we have |x2 — x1|2/(¢n (1) — (pn(s) + h)) < 2R.
Consequently, combining (3.21) with (3.23), one gets

pi,(s,t,x,x’)

> o () +h—5) (o) o (s) — 1) (— o) 1B11I By

2 ’ 2
with B) = {x; € R*: @N"g;ij,iﬂ) <Ry}, By={xreR: % < Ro} and | - | stands for the

Lebesgue measure on R. Finally, since |By| > po/(@n(s) + 1 —5), |Ba| > p/(t — n (1)) for
some p > 0and ¢y (1) —pn(s) —h < (t —s), we deduce (3.22) if ¢y (t) — (PN (s) +h) > h. The
case ¢y (t) — (¢n(s) + h) < h is more easily obtained and details are omitted.

e Step 2: Chaining and off-diagonal regime in short time.

It remains to deal with the off-diagonal regime that is the case when0 < j < j' < N, (x,x) €

4 2 ’ 2
R x R*, % >2R>1.Weset M :=[K |f_,__’;l 1, for some K > 1 to be specified later on,
J J J

§:=(tjy — tj)/M and introduce a new space-time grid yy = x + %(x’ —Xx), s, =tj+kd, ke
[0, M]. Note that yo = x, yy = x’, so =1t and sy = tj». We also define for k € [1, M — 1],
Bi={x €R:|x — y| < p}, p=Ix' — x|/M so that |yx — ye_1| = [’ — x|/M, k € [1, M].
Consequently, we deduce

Vx € By, |x —x11 <20, V(xXk, Xk+1) € B X Bit1, Xk — xp11 <3p,k=2,...,M =2
(3.24)
VYxu € By, |x" —xm| < 2p.

We now choose K large enough s.t.

3p  3x' —x| - R (3.25)
V& M@y —tj) V12 '
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which according to (3.22) yields fork=2,..., M —2

Vxi € Bi,  pw(so,si,x,x1)>C 62
V(xk, Xk+1,Y) € Br X Br+1 X R, PN (ks Sk 1, Xy Xg1) = C 18712,
V(xm-1,y) € Bu xR, P (sm—t,sm, xp—1,x’) = C71s712,

Before going further we have to distinguish two cases: 6 < & and § > h. We will treat the
first one. The case 6 > h can be treated with similar arguments. We refer to [3] or [20] for more
details. We introduce I :={£ € [0, M — 1] : s¢ € [tk, tix1)}, di = 81k, i € [1,dk], I,i € I with
e < SIkl <...< slkdk < tg+1. Now we write

pN(fj,tj/,x,_x/) [{ﬂ ﬂlelkXNeB} j 1]|X —X] (3.26)

with

XN
N sp—p) (

L N
Py = E[l{mielj/_l xNeB)PNn su—t1, 7, Xy, X )1 Fy djuz]

1
j'-2

xp
_ -1 N
=E 1{Xﬁ"1 €B,1 /1/,1 Py (sl!, 52 ’stl ,xz)
I [:2 ! j

171 -1 j'—1

G
i
X 1_[ pN (s[;/_17s1"_j’_117xi7xi+l)
i=2 ’ /
xV 4
-1 ,
X Py (Sldj’—l’tj”xd_//_w 1—[ dx; .7-} d, 2
j-

so that, noting that 3¢ > 0 s.t. Vi € [1, M — 1], |B;| = ¢p from (3.24), (3.25) and (3.22), on
{Xﬁvd EBd;z} one gets

/
Ij/ 2 -2

xN

—1g—1/2\d;jr_ dy_—1 N, X g N
Pj’—l,jZ(C 1) /)J Hep)ti'-1 /B p /z(s]d/2,s117,Xde,2,x1)dx1
1 1

j’-2
/—]

> (C_IS_I/Z)djLI-H (C,O)dj/_l ]
Plugging this estimate in (3.26), we finally obtain

X7 =x]

. / —1g-1/2\djr_+1 djr_y .
pn(tj tj,x,x') = (C71671/%) (cp)™ E[l{ﬂ,’c;fﬂierk XNeB;}
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so that, by induction, up to a modification of C, ¢ > 0, we get

)M+1

pN(tj,tj/,x,x/)2(C71571/2 (cp)M

> C_l(tj’ _ tj)_l/2 exp(M IOg(C_lc(IO/\/S)))

_ _ Ix —x|?
>C 'ty —t)"Vex <—c—
Y AN

=C! 81t -1) (x —x)

for % > 2R. This last bound concludes the proof of Theorem 2.1.
J

3.3. Proof of Theorem 2.2

o Strategy of proof.

In order to prove an error bound for the difference between the transition densities of (1.1) and
(1.2), our strategy is the following. The main point is to compare the two series (3.7) and (3.12)
which differs on account of the discrete nature of time—space convolution operator ® y and the
discrete smoothing kernel Hy . In order to do this, we introduce for0 < j < j' <N,

Vi, x')eRxR*,  pY(tj.tyx.x')=> poy H ().t x,x). (3.27)

r>0

Arguments similar to those of Lemma 3.1 show that the series (3.27) converge absolutely and
uniformly on R x R* and that p;iv satisfies the following Gaussian upper-bound:

V(x,x/) e R x R*, p%(tj, tj/,x,x/) < En/z,l(C(|b|ooT% +T%))gc(,j,_tj)(x/—x). (3.28)

Indeed, from (3.4) and the semigroup property, one gets |p @y H(t;,tjr,x,x")| < C(|b|oo X
TlfT’7 + Dty — tj)"/2B(1, %)gc(,j,_,j)(x/ — x) which in turn by induction yields for all r > 1

V(x,x’) € R x R¥,

|pon H (1,17, x,x)]

r .

(i—Dn n

§C’(tj/—tj)”7/2]_[8<1+ T3 8etty—1p (x' —x)
i=1

(3.29)

with C :=C (), r;)(|b|ooT% + 1) and (3.28) follows. We omit technical details.
The idea is now to decompose the global error as follows:

(P — PN 1, x,9) = (p— p%) @), ti, %, ) + (P — pn) (@), i, x, ¥).
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A similar decomposition has been used in [13] when the coefficients b and o are smooth. The
smoothness of the coefficients notably allows to use Taylor expansions to express the transition
density p as the fundamental solution of the underlying parabolic PDE and to use integration
by parts (that may be expressed as the duality relation satisfied by the infinitesimal generator
when seen as a differential operator) in order to equilibrate time singularities. Obviously, these
arguments do not work here under the mild smoothness assumption (HR) so that computations
become more delicate. In a first step, we express the difference p;iv — pn in an infinite parametrix
series that involves the difference between the two kernels H and Hy . Then, the symmetric It6—
Tanaka formula (3.18) allows to express the difference H — Hy as the difference of the kernel
H between two consecutive discretization times plus a remainder term Ry. We then study the
weak approximation rate induced by Ry in Lemma A.1. The main difficulty lies in the non-
differentiability of x > 9, p(;, 1, x, x") at zero caused by the presence of the local time part
in the dynamics of X" and X" which prevents us to use (again) the Itd—Tanaka formula. In a
second step, in order to study p — p%, we express this difference as an infinite parametrix series
that involves the difference between the two convolution operators ® and ® 5. Then, we notably
use a (kind of) Lipschitz property in time for the transition density p and a smoothing procedure
for the drift part.

e Step 1: Error bound on p% — DPN.

Our first step consists in comparing py with p%. We first remark that for » > 1

poy HY — oy HY
=((pon H(r_l)) ®n (H— Hy)) + ((p ®n H'Y -y H;,r_l)) ®n Hy)
so that summing the previous identity from r = 1 to r = oo yields
Py — pn = Py ®n (H — Hy) + (p}y — pn) ®n Hy.
Finally, by induction, for 0 < j < j' < N, we get
V(x,x") e R x R,

(P — pn) Wty = D {piy ©n (H = HO)} ©n HY (1,17, %, %), (3-30)

r>0

Lemma 3.2. Under (HR) and (HE), for all 0 < j < j' < N, for all r > 0, for all (x,x') €
R x R*, one has

Pl ©n (H — Hy)} ®n HY (tj. 1. x.%)]

r N
] 1 i—Dn n
<Ch (=) 1_[3<1 g s (=)
i=1

(3.31)

for some constant ¢ := c(A, n) > 1 and a non-decreasing positive function T — C := C(T, b, 0).
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Proof. For j' = j + 1, one has
(H—HN)(Ej, tj41,Y,2)
= (b(y)axﬁ(r,», L1, 3.2) + %(am —a(2)d;plt;. tj+1. Y, z))

—h N pNn = PN o tjs1, ¥, 2).

By the proof of Lemma 3.1, one gets

_ ~ h
h l(pN - pN(t]’ tj+17 Y Z)) =< C(T,b,a)ﬁgc([f/—[j)(z - }’)
(tj/—tj) 2 !

and, similarly, by (3.4)
- 1 2~
b(y)oxp(tj,tj+1,y,2) + E(a(y) —a(2))3;p(tj tj41,y,2)

1 h
SC(|b|oo(tj’—tj) 2 +1)72_ﬁgc(r,/7tj)(2—)’)
(tj’ —tj) 2 ’

so that, combining these two estimates, one gets

h
Y(y,2) € R x R*, |(H—Hn)(tj, 11, 9,2)| £ C——8e(t.—1)) (@ — ¥),
2 7N
(lj/—t]) 2

where T + C := C(T, b, o) is a non-decreasing positive function. For j' > j + 1, (y,z2) €
R x R*, using (3.18) we write

(H — Hy)(tj, 1y, y,2) = b0 (p(t), 10, y,2) — pltj +h,tjr, y,2))
1 2 ~ ~
+5 (@) = a@)o; (p(t), 1y, 3,2 = plt; + by 0, 3, 2))
—i—h_lfRN(l‘j, tj/,x,x’).

We treat the first term appearing in the right-hand side of the previous equality. By the mean
value theorem and standard computations (separating eventually in four cases as previously
done), one has

|03 (Btj +hotjr, v, 2) = Pt 1y, 3,2)]

1
1
=Ch o 8cty—tj— - — v)dA
B fo (tj/—tj—,\h)zg“fj tj—) (2 = ¥)

h
= C— =1 - )
= (tj’ _tj)zgc(t] t,)(Z y)
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where we used the inequality (¢, —t; — )\h)_(2+%) <C(tjy— tj)_(2+%) for some positive con-
stant C. Combining the previous bound with (HR) implies

1 ~ ~
E(a(y) - a(Z))a)%(p(tj +h,ti,y,2) = ptj, tj,y, Z))
=C " ( )
——————— 8ty (Z — Y).
= ([j/ _ [j)z_% gc(tj lJ) y

Similar computations show that

~ ~ h
|b()7)ax(l7(t] +h»fj’»yaZ) _p(tjvtjlvysz))} §C|b|007§gc(tj/—tj)(z_)’)

(tj —t;)2
which finally implies for0 < j < j' <N
b(}’)ax(ﬁ(tj» ti,y,2) —ptj+h,tp,y, Z))
1 - 3
+ E(a()’) - G(Z))ax (P(lj, tj,y,2) = ptj+h,tp,y, Z)) (3.32)

1-n h
< C(Ibloo(tyr = 1)) 7 + 1) ————7 8- — ¥)-
(tj’ — tj) 2 ’

We will now use the following decomposition

Vie[2,N], p @y (H—Hy)O,1,x,72)

i—-2
=Zh/ dupy (0, 1, x, w)(H = Hy) (1, 1,1, 2) (333)
R
k=0

+h/ Y0, 11, x, u)(H — HN)(ti—1, i, u, z) du.
R
From (3.28), (3.32) and the semigroup property, one gets

h‘f ph O, 11, x,u)(H — Hy)(ti—1, t;, u, ) du
R

h2
< Cﬁ/ gCti—l(u —x)gch(Z - I/l) du (334)
h“"2 JR

< Ch%gct,- (z —x),

where T +— C := C(T, b, 0) is a positive non-decreasing function.
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From (3.32), Lemma A.1 and the semigroup property, one gets

/ d“Pflv(O, te, X, u)(H — Hy) (. ti, u, 2)
R

h
C), —— | 8uu—2)8c(t;—1)(z—u)d
= ];(l‘i tk)z,g /Rgtk(“ X)8c(ti—1) (2 —u) du
Z "
+C /( +(2‘)‘_1)7ngm(14)>
(tz tk)2_7 ( tk)3

X Ge (U — X)&e(ti—1) (2 — u) du (3.35)

L
(Z ﬁ)gcti(z —x)
k= k72

i—2
2
+CQa—h Z =
k=0 (ti —tx) 2

NS

<Ch

1

X / 8eh (W) ger, (U — X) 8e(ti—1) (2 — u) du,
R

where T +— C := C(T, b, o) is a non-decreasing positive function. Note that for n < 1, the
inequality g.; (u) < 2mwc)~V/ 2p=1/2 allows to achieve the rate A"/2 and concludes the proof.
However, if n = 1, due to the local time part (that is the case o # 1/2), this bound provides an
error of order h'/2| log(h)| which is slightly worse than the announced rate. In order deal with
this issue, we use the Cauchy—Schwarz inequality and the semigroup property in order to write

/RgCh (W) ger, (U — X)8e(t;—1) (2 —u)du

1
< (/R 8er (U — )C)(g,'c;l(l,t))2 du) ’
1

2
X </1\Q 8cty (u — x)(gc(ti—tk)(z - Lt))2 du)

1
= Cﬁ (gC[k+1 (x))

Nl—
ST

(8er; (z —x))

N

t.
< C— g G — ).

1 7 1
hatl (6 —1)*
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Plugging the last bound into the second term appearing in the right-hand side of (3.35) yields

i—2
h22ﬁ/‘gch(“)gctk(u X)8e(ti—n) (2 — u)du
k=0 (&i — Ik
1

. i—2 t'Z
§Ch24<z l—)ga,@ x).

2
k=0 (t; —t;) & tk+1

. 1 (772 )
For 0 < k < Lz/2j one has C~1t; <1, — 1, < Cy; so that h2-1 ,E’/ff t,“ tk+41 t—t)” 1 <
G- I
_1 i 3+3
Ch* 1 ,&'%J les < Ch4t ~3"2 < Ch? for some positive constant C > 1 that does not

l
depend oni.For [i/2] <k <i—1,onehas C_lti <1t < Ct; so that hz_Z Zk:[i/ZH—l ti tk+1 X

(7-2n) 7 . (7-2n) 7 ..
(ti — )~ 3 ! < Ch? ZZ:] S < Ch? for some positive constant C > 1 that does not
depend on i. Using the decomposition, Z;{_:% — ZU/ P ZLI /2)+1 " allows to con-

1 1 (7-2n)
clude that h2~% Z,El/ (2)J tl4 1 +41 (4 — )~ # : < Ch? . From these computations, we come back

to (3.35) and obtain

/ dup$ (0, 1, x, u)(H — Hy) (tx, ti, 1, 2)
R

< Ch3ge(z —x).
Combining all the previous estimates, we derive
Vie[2N],  |pk®n (H = HN)O, 1, x,2)| < Ch" g, (z = ),

where T +— C := C(T, b, o) is a non-decreasing positive function and (3.31) follows easily by
induction. (]

From Lemma 3.2, one clearly obtains
V(x, x’) € R x R¥,

d / /2 , (3.36)
[(Py — PN ) (), 10, 2, %) | < C(T, b, )" geir -1 (x' — ).

e Step 2: Error bound on p — pflv.

Now, to complete the proof of Theorem 2.2, it remains to compare p with p%. Forr > 1, we
write

FOHY —payHY ={(;@H"V)@H - (@ H' V) @y H)
+{(peH"") - (pexH"" ") ey H



On the weak approximation of a skew diffusion by an Euler-type scheme 1675
so that summing the previous equality from r = 1 and to infinity, we get
d __ d
p—pPy=pQH—p®yH+(p—py)®n H.

By induction of the previous identity, we obtain the uniformly and absolutely convergent series

P—pi=> {p®H-poyH}@yH". (3.37)

r>0

The rest of the proof is devoted to the study of (3.37). By the very definition of the continuous
and discrete time space convolution, one has

(p®H—p®N H)(#j,ti,x,y)

il g
=Z/ f{P(tj,s,x,z)H(s,ti,z,y)—p(tj,tk,x,z)H(zk,tl-,Z,y)}dzds
k—j 179 R

L
ZZ/ /(p(tj’s’xvz)_P(tj’lk,,va))H(Svti,Z,y)dst (3.38)
k:j 179 R
il Tkt
+ Z/ / Pty te,x,2)(H(s, ti,2,y) — H(te, 1, 2, ¥)) dz ds. (3.39)
k=j 174 R

We first consider (3.38) and separate the computations in three terms:

Lj+1
A :/ {(/ p(tj,s,x,2)H (s, t;,z, y)dz) — H(s, t,-,x,y)}ds,
tj R

J

Tk+1
A= ) /tk /R(p(tj,s,x,z)—p(tj,tk,x,z))H(s,ti,z,y)dzds,

JHI<k=(i+))/2

Tkt1
Az = Z /tk /R(p(tj,s,x,z)—p(tj,tk,x,z))H(s,t,',z,y)dzds.

(i+)j)/2<k=@i—1)

First, by the semigroup relation and standard computations, one has

Lj+1 1
|A1| S C{/ 1—1 ds}gc(li—tj)(y_z)
t

i ti—s) 2

h
SC——8cti—1H(y —2).
(t _tj)l_% e
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Now, using Lemma A.2, the semigroup property and the inequality (f; — ¢ j)*l <2(t — tj)*l
for j+1<k<(i+j)/2, one gets

h T 1 1
. ( > / 7 ds)z?c(n—t.,-)(y —X)
=1\ k= WGi—s) 72

<C U (/ti ! ds>gc(t-—t')(y_x)
=t \Ji; (6 —s)'"2 Y
Scih 7 8c(ti—t:) (Y — X).
G —tpt=2"

|Az]<C

In order to deal with A,, we proceed using a regularization argument in order to obtain the
differentiability of ¢ — p(0,¢,x,y) on (0, T] for fixed (x,y) € R x R*. Let us note that this
differentiability is not guaranteed under (HR) and (HE). From Theorem 174 in page 111 of
Kestelman [9], there exists a sequence (by)nyen+ of continuous functions such that:

lim by =0, ae. and sup |bnloo < |b|co- (3.40)
N—o0 N eN*

We also consider a positive mollifier p on R and write b, (x) = fR e p((x —y)/e)by (y)dy.
For fixed N and e, b}, is smooth and satisfies: for all x € R, limg_. (b} (x) = by(x),
sup, y 16y loo < |Bloo.

We denote by p® " the transition density of the skew diffusion X*" obtained by replacing the
drift b in dynamics (1.1) by b%,. From the parametrix expansion (3.7) obtained in [11], one has

PN O x ) =Y (@ HY)O.1.x. y), (3.41)

r>0

where He n(s,t,x,y) = b3 (x)0xp(s,t,x,y) + Magﬁ(s, t, x,y). Moreover, the series
is again absolutely and uniformly convergent (0, 7] x R x R* and letting & goes to zero and then
N goes to infinity, from the dominated convergence theorem applied to the series (3.41), one gets
p&N(,t,x,y) = p(0,1,x,y) and p>" satisfies the Gaussian upper-bound:

PN 0,1, 3) < Byt (C(T V2 By + T ))ger (v — )
<E;n, (C(T% 16l + Tl_%))gct(y —Xx).

with constants C (X, 1), c(A, 1) > 1 independent of N and €. By similar arguments as those em-
ployed in [6], Chapter 1, one derives from (3.41) that ¢ pf\, (0,1, x, y) is continuously differ-
entiable on (0, T'] for fixed (x, y) € R x R*. Now, from Lemma A.2 noting that |5} |00 < |P|ccs
it follows that for all # € (0, T']

peN O, t +h,x,y) — p&N(O,t,x,y)
h

[90p* N (0.1, )] = lim <Crlgu(y—x), (3.42)
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where C = C(A, n)(|blooT I)En/ZI(C(T " bloo + T'79), COum), e =) > 1
do not depend on N and &. Moreover, still by dominated convergence theorem, letting ¢ — 0
then N — 400, one has

Tk+1
Ast= / / Ntj,s,%,2) = pN (g, thy %, 2)) H s, ti, 2, y) dzds
173

JH1<k<(@+j)/2

— Aj.

Now, by (3.42), the semigroup property and the inequality (t; — tk)_(l_%) <C( —t j)_(l_ﬁ
valid for j +1 <k < (i + j)/2, one gets for a constant C that does not depend on &

C
AE,N - -
457 = (ti_tj)l_%

Tk+1
X < / // iap (0 r— tj,.x Z)|dt>gc(t1—Y)(y_Z)dZdS
JAHl<k<(i+j)/2" % 173

C Tk+1
= ﬁ( / 10g< )ds>gc(t,—tj)(y_x)
O = 1)) 2 N\ j k=G jy2 7

Ch k+1—j
=ﬁ< > {(k+1—j)10g(?jj) —1}>gc(z,-—z,-)(y—X)

(6 =17) 72\ =it

Ch k+1
=7n< > {(k+1)10g<%>—1}>gc(zi—z,-)(y—x)

. Ay
ti=1) 72 \\ g5 j

Ch
= 8cti—1)p(y — X),
(ti — t]) 2 '

where we used a second order Taylor expansion for the last but one equality. Hence, letting ¢ — 0
and then N — o0 in the previous inequality yields

Ch k+1
ats (8 o) -1 ey -

(6 =1)) 72 \\ 5o

‘We now consider (3.39). One has

|H (s, 1,2, y) — H(t, i 2, y)| =

S
/ o H(t,ti,z,y)dt
179

N
< c( f (T a2 dt)gca,_,k)(y —2)
173




1678 N. Frikha

which, by the semigroup relation, clearly yields

Tk+1
/ / p@j i, x,2)(H(s ti,z,y) — H(t, 1, 2, y)) dzds
17 R

U G am)*)
<C - 7 ) ds ) 8eti—1))(y — X)
N L R A DA A

2 1 3
— (-1t - ) -

)gc(t,-—tj)(y —Xx).

(6 —1)' 72
Again, by a second order Taylor expansion, one easily gets

i—1

2 n n h
Z_((ti_tk)z—(fi_tk+l)2)—ﬁ
i ! (ti — 1) 2

i—j

2 1 n
= {_(th_tkz—l)_ ] n}
=1 1 fn
il |
— 2 {— (k+1)3 —k? ——}
g 't ) (k+1)!—2
§Ch77/2

which in turn yields

L
S [ [ ptnr (620~ Hnz ) dzds
k=] t R

< Chn/zgc(t,'ftj)(y - X).

Combining the two estimates, we finally get

((p® H — p @y H) (1), 1i,%,Y)| < C(T, b, 0)h? ge(y—1,) (y — ),

where T +— C(T, b, o) is a non-decreasing function. As a consequence of the previous compu-
tations, one also obtains

i—1
(p®H—pQy H)®N H(tj, i, x, )| SCth/2< Z h————
k1 Gi—1) 72

)gc(z,-—t,>(y —Xx)

Ui
< C*(t; —t;)"*n"*B (1, 5>gc<m,.)(y —X)



On the weak approximation of a skew diffusion by an Euler-type scheme 1679

and, by induction, for » > 0, one gets

(p®@H—pey H)®y H"(t),1,x,)|
r
n . nn
S Cr+lhr]/2(ti — [])rg l_[B<1 =+ (l - 1)5, E)gc(tilj)(y —)C).

i=1

We plug the previous bound in (3.37). The asymptotic of the Gamma function readily yields
the convergence of the series as well as a Gaussian upper-bound, namely, one gets

’(p - p]d\])(tja ti"x7 Y)} S C(T7b7aa n)hn/zgc(l,‘—l]‘)(y _-x)'

Combining the previous bound with (3.36) completes the proof of Theorem 2.2.

Appendix: Proof of some technical results

Lemma A.1. Under (HR) and (HE), there exists a constant ¢ := c(,,n) > 1 such that for
(j, i) €{0,..., NY* with j + 1 < j" and for all (x, x") € (R*)?, one has

h? h?
|RN(IJ7 tj,»-xsx/)| = C(ﬁ + (2a - 1)73,,gch(x)>gc(tj/—tj)(x/ - x)v
(tjp — ;)72 (ty —t)) 7
where T +— C = C(T, b, o) is a positive non-decreasing function.
Proof. From (3.19), we use the following decomposition
RN(tj,tj/,x,x/) = R}v(tj,tj/,x,x’) +<R%\,(tj,tj/,x,x') +R?V(tj,tj/,x,x’)
with

RY(2175.)
h .
= b(x)/o {]E[axﬁ(tjﬂ,tjr,X;V’t"’x,x’)]—axﬁ(t.,url,tj/,x,x’)}ds,
:ﬂlzv(tj,tj/,x,x/)

1 h , B
= E(a()c) — a(x/))/o {E[afﬁ(tjﬂ, 1, Xﬁv’t"’x,x’)] — afp(tﬂ_l, tj/,x,x’)}ds,

:R?V(tj,tj/,x,x/)
1

h
= —za(x) /O (E[25(tj 1.1 X0 x)] = E[02 5 (41,10, X5 )]} ds.

_ The main difficulty lies in the presence of the local time part in the dynamics of X N and
XN . More precisely, we remark that if o # 1/2, z > 0 p(tjy1,tj,2,x"), Bfﬁ(th,tjr, z,x') are
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not continuous and (consequently) not differentiable at 0 so we cannot apply the It6 formula. We
instead rely on Taylor’s expansion. For the first term R 11\/ (tj.tjr, x,x"), we use the decomposition

tj,x

B0, p(tj 1,0, Xa 5 x')] = 0 p(ta1, £, 6, x')

N /RPN(O’s’x’Z)(axﬁ(fjﬂvfjﬂz’x/) — 9 p(tj1. 1, x.x")) dz

=/ pn (0,5, x,2)(0xp(tj41, 1), 2, X')
R\{z:|lz=x 2 <(t; —1j11)}

— 0 p(tj1, %, X7) = 07 (141,177, %, X') (2 = %)) dz
+/ pn 0,5, %, 2)(3xp(tj41. 1), 2, X)
{zilz=x2<(tjr—1j+1))
- 8Xﬁ(t./”rl’ tj/,x,x/) - afﬁ(th, tqu,x/)(z - x)) dz
+ </ pn(0,5,x,2)(z —x)dz>afﬁ(tj+l, tir,x, x').
R
If [z —x|?> > tj —tj41, 0ne has |3, p(tj41, 57, 2,x)| < C(tjr — tj+1)71/2gc(tj/—t_/-+|)(x/ _<
Clz—x|*(tj — tj+1)*3/2gc(,j,_,j+l)(x’ — z) and similarly one gets |3, p(tj41, 7, x, x')| < C|z —
PGt = 17417 8e(ty 1y (" — x) and [02p(tj 11, 15, %, X)) < Clz = x|(t; — tj51) 73/ x

8clty—tjt1) (x” — x) for some positive constant C := C (1) > 1. Combining the latter bounds with
(3.16) yields

/ PN 0,8, x,2)(8x p(tj41, 10,2, x")
R\{z:lz—x2<(tj—tj11)}

— 0 p(tjs1,tj,x,x') — 8fﬁ(tj+1,tjr,x,x/)(z —x))dz

3
§C(tj'—lj+1)’7/Rgcs(z—x)|z—x|2 Al

X (gC(tj’_tj+l)(x/ —x)+ g"(’j/_’f“)(Z ) de

N
=< Ci;{gc(tj/—t_/‘+|)(x/ - x) + gC(tj/—tj+]+S) (X/ - )C)}
(tjr —tj41)2
SO (),
(tj/ —tj)Z ’

where T +— C := C(T, b, o) is a positive non-decreasing function and where we used that j’ >
J + 1 for the last inequality.
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If |z —x? < tjr — tjx1, we remark that D = {z : z > 3 p(tj41,1js,2,x’) is not twice
differentiable} = {0}, so that by Taylor’s expansion, one gets

/ PN(O,s,x,Z)(axﬁ(th,tj/,z,x’)
{zilz=x2<(t;r—1j+1)}
— axﬁ(tj+1, tj/,x,x/) — afﬁ(th, l‘j/,x,x/)(z —)C)) dz

— 1 3~(.. / 2
= PN O, 5,5, DB (t1, 1y, 6 ') (2 = x)7d,
{zilz—x2<(rj—1j+1))

where ¢ is a point in (z, x). Observe that since |z — x|2 < (tj» — tj41) for any point ¢ € (z, x)

one has
—_xN2 _ 2 W2
ety —tjt1) ety —tjt1) c(ty —tjy1)
Combining the previous inequality with (3.16) and the semigroup property we obtain

1 3~(.. / 2
pN(O’va,Z)Eaxp(t]+1,tj/,;,X)(Z—x) dz
{ZZ|Z—X|2<(ZJ~/—ZJ'+1)}

(A.2)
S

< gy )
([j/ — [])2

where T +— C := C(T, b, 0) is a positive non-decreasing function and where we again used that
j' > j + 1. We now consider the quantity ([ pn(0,s,x,2)(z — x) dz)a)%ﬁ(tjﬂ, tin,x,x') =
(E[XY —x1)32p(tj11, 1), x, x"). Using the dynamics (1.2), we get E[XY — x]=b(x)s + (2o —
l)]E[L?(X N)1. By dominated convergence theorem and the Gaussian upper-estimate (3.16) sat-
isfied by py, one has

.1
B[LO0)] =] fim o [Tz zmatoa

SPX, <n)—-PX, <-
— a(x) lim Xy =n) —PX, = n)du
n—0

0 2n
S pn(0,u,x,0+) + py (0, u,x,0-)
=a(x) du
o 2
s
<c / e (6)
0

< Csges(x)
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which in turn yields

'(/ pNn(0,s,x,2)(z _x)dz>3)%ﬁ(tj+1,l‘j/,x, x')
R

S
<c——
([j/ —[J‘)

(A3)
(14 Qa = Dges (1)) getr, -1 (x" = x),

where T +— C := C(T, b, o) is a non-decreasing positive function. Combining (A.1), (A.2) and
(A.3) we obtain

| Ry (1,17, %, x")|

h
< C/ <% + Qa — 1)%5%@)) ngc(zj/—tj)(xl - x) (A4
0 \(tjr—1))2 (tj —1))

h2 h2 ’
<C|———+Qa—1)——gcn(x) gc(zj/—tj)(x _x)-

‘We now focus on the second remainder term ,ﬂlzv(t Jatjr, X, x"). Similarly to the previous case,
we use the decomposition

l‘,‘,X

E[aﬁﬁ(tjq_l, tj/, Xﬁvg ’ ,x/)] — 3§ﬁ(tj+1, tj/,x,x/)

PN (0,5, %, 2) (32 p(tj1. 7, 2, %)

A\{Z?2X|2<(tj/tj+l)}

= 80P (tjns X x') = 3 B(tj41 1, %, x') (2 = %)) dz
+/ pn 0, 5,x,2) (33 p(tj41. 157 2, x')
{ZZ|Z—)C\2<(ZJ~/—IJ'+1)}
- Bfﬁ(thr],tj/,x,x’) - Bgﬁ(tjﬂ,tj/,x,x’)(z —x))dz
+ (/ pn(0,s,x,2)(z —x)dz>83ﬁ(tj+1, tjr,x,x").
R

Following similar lines of reasoning as for the first case, one successively gets

pn (O, s, x, Z)(3§ﬁ(l‘j+1, tjr, 2, x’)

4\{z:z—x|2<(tj/—tj+1)}
— 02ty 13 x) = O3ty tyr ) 2 — ) dz (AS)

< Cég H(x"—x)
= ([j/ — tj)z C(Zj/—lj)
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and, for some ¢ € (z, x),

’/ pn(0, 5, x, 2 (97 p(tj41.7, 2, %)
{z:lz=x2<(t;r=1j+1)}

— 8§ﬁ(tj+1,tj/,x,x/) — 3;ﬁ(tj+1,tj/,x,x/)(z —X)) dz

(A.6)
1.4
:‘/ pN(O,s,x,z)Eafp(th,tj/,C,x/)(z—x)zdz
{z:lz=x2<(t;r—tj41))

< C;g‘ (x/ —x)
= (tj/ — lj)z c(t‘,-/ftj) s

where T +— C := C(T, b, 0) is a non-decreasing positive function. Finally, one also obtains

‘(/ pn(0,s,x,2)(z —x) dz) Biﬁ(tﬂ_l, tjr,x,x/)
¥ (A7)

<C—" (14 Qo = Dges (1)) getry -1 (' — %)
(tjr —1j)2 :

Combining (A.5), (A.6), (A.7) with (HR) yields

|RY (1.1, x, x")|

< C|x —x’|n

h s s ,
(] (G oemvg St ) st =

jr )2

h? h? ,
<C — St Qo —1)—————58cn(x) gC(t/-/*l‘j)('x —x).
(tj’ _tj) 2 (l‘j/ —l‘j)T ’

We now conclude by the third remainder term (‘7213\,(t I x"). We first remark that

E[07 (1.t X )] = E[02p(t1. 50 X )]

~tj/,x

=/(pN (tj,tj+5,%,2) — pn(0,5,x,2))32p(tj1. 1, 2, x) dz
R

=/R(px/(0,s,x,z) —pN(O,s,x,z))afﬁ(th,tj/,z,x’)dz
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and, similarly to the previous terms, we use the following decomposition
f(px/(O,s,x, 2) = pn(0,5,x, )3 p(tj+1.tj,2,x") dz
R

= </ (pX,(O,s,x, Z) - PN(O, S, X, Z))(Z —X)dz>
R

X 8$ﬁ(tj+1,tj/,x,x’) +/ (px/(O, s,x,z) — pn (0,5, x, z))
{ZZ|Z*X|2<(tj/7l‘j+1)} (A9)

X (afﬁ(tjﬂvtj/v z,x') = 3§ﬁ(fj+l’fj/,x,x/) - afﬁ(tjﬂ,tj/,x, x')(z—x))dz

+/ (px/(O,s,x,z) — pn(0,5,x,2))
R\{ZI|Z—X|2<(IJ-/—ZI'+1)}
x (92p(tj1.ty, 2. x") = 32 p(tj1stjr x,x") = 33 p(tjy1, 1y, x,x') (2 — x)) dz.

From (3.15) and the mean value theorem, for some ¢ € (z, x) one gets

‘/ (pX/(()?S"x?Z)_pN(Ovsﬂxvz))
{z:lz—x2 <@t —tj31)}

x (07 (141,10, 2, x') = O p(tjns 1y %, X) = P (841, 17, %, x) (2 — %)) dz

1 au 2
< C(lblost + o= x") [ Ges(z — 1)z — x| (A.10)
{ZZ‘Z—X|2<(IJ-/—IJ'+1)}
X ‘8iﬁ(tj+1, tir, ;,x’)|dz
s
<C—— 0. ,—in(x' —x
= (tj/ _ U)zﬁ% gc(t] t])( )
and similarly to (A.1)
/ (pxl(O,s,x,z) — pn(0,5,x,2))
R\{z:lz—x > <(t; ~tj+1)}
X (@%ﬁ(fjﬂ, l‘j’,z,x/) - Bﬁﬁ(tjﬂ,tj/,x,x’)
(A.11)

- Bgﬁ(th, tj,x,x')(z—x))dz

<C—S 8e(t t)(x/_x)
—_ c(t;r—1t; )
(tj’ tj)Z—% JN

where T +— C := C(T, b, o) is a non-decreasing positive function. For the first term appear-
ing in the right-hand side of (A.9), we write fR(p"/(O, §,%x,2) — pn@O,8,x,2)(z — x)dz =
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E[XY —x] —E[XY — x] = Qo — DE[LY(X*)] — b(x)s — 2o — DE[LY(X")]. By dominated
convergence theorem, one gets

, $ px/(O,u,x,O—l-)—l—px/(O,u,x,O—)
B[L(x")] - E[L0(x")] =a(v) | : du
$ pN(Oyuaxv 0+)+pN(Ovu’-xa0_)
—a(X)/ 2 du
0

=a(x/)/0 ga(x’)u(x)du_a(x)-/(; ga(x)u(x+b(x)u)du
= (0() =a) [ gucer 0 du

+a(x) [) (ga(x’)u(x) — 8a(x)u (x + b()C)u))du,

where we used the exact expression of the transition densities of (X ;‘/)‘ge[oﬁh] and (X;V’O’x) s€[0,h]
for the last but one equality. From (HR) and (HE), one has |g,(v/)u (X) — ga(x)u(x +b(x)u)| <

C(|b|oou% + |x" — x|") geu (x) which in turn yields
[E[LY(x*)] = E[LO(X™)]| = C(1bloos? + [x' = x|")sges ).

From the previous computations, we conclude that

‘(/ (px/(O,s,x,z) — pN(O,s,x,z))(z —x)dz)i)ﬁﬁ(tj“,tjr,x,x/)
R

C
< ﬁ“bhws + 2o = D]x" = x| sges (1)) et -1 (8" = x) (A.12)
s 5 1 58cs(X) /
SC o1 +( Q@ — ) 3 gc(tj/—l‘_,')(x —X),
(tj’_tj) 2 (l‘j/—l‘j) 2

where T +— C := C(T, b, 0) is a non-decreasing positive function.
Combining (A.10), (A.11) and (A.12), we obtain

R3(ti,ti, x, x'
AR

h N
o \(ty—1;)*2

S
+ Qo — D) g (x)) ds)&u,—zj)(f —x)
(tj/ — IJ)T

(A.13)

h? h? ,
<C o7 + Qo —)———58an(¥) gc(tj/—t_/-)(x - X),
(tjr—1j)72 (typ—t;)T
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where T +— C := C(T, b, 0) is a non-decreasing positive function. This last bound completes

the proof. (]

Lemma A.2. Under (HR) and (HE), there exist constants C(\,n), ¢ := c(\,n) > 1 such that
forallt € (0,TY, forall r >0, for all (x,x") € R x R*, one has

Vs € [0, ¢], ‘ﬁ@H(’)(O,t—i—s,x,x’)—ﬁ@H(r)(O,t,x,x’H
r—1
P (i—Dn n (A.14)
S;C +14 21_[B<1+ 2 ’E)gct(x/—x)

i=1

with C .= C(A, 77)(|I7|0<>T177'7 + 1) and where we use the convention [ |, = 1. Consequently, for
all0 <s <t <T, one has

V(x,x’) x R x R*, ’p(O,t—i—s,x,x’)—p(O,t,x,x’)’

= CEpa(C(IblooT? + 7)) Zgu (v — x).
Proof. Using the fact that s € [0, 7] and standard computations, one has
t+s
|13(O, r+s,x,x')— ﬁ(O, t,x, x’)| < / }BUﬁ(O, v,x,x’)|dv
t
<C@, n);gct(x’ —x)

so (A.14) is valid for r = 0. Now proceeding by induction we assume that (A.14) is valid for
r > 0. By a change of variable, one has

PR H(r+])(0, t+s,x, x’) -p® H(Hl)(O, t, x,x’)

t+s
=/ /17®H(r)(O,M,x,z)H(u,t+s,z,x’)dzdu
0 R
t
—/ /[3®H(r)(O,u,x,z)H(u,t,z,x/)dzdu
0 JR
t+s
:/ /ﬁ®H(r)(0,t+s—u,x,z)H(O,u,z,x’)dzdu
t R

t
+f /{ﬁ@H(’)(O,t—i—s—u,x,z)
0 JR

—]3®H(r)(O,t—u,x,z)}H(O,u,z,x/)dzdu
=1+J.
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For the first term of the above decomposition, from (3.6) and (3.4) combined with standard
computations, one easily gets

r

Cr+2 t+s e 1
] < ] (/t (t+s—u)7du> (HB(1+( 2 U Z))&(zﬂ)(x —x)

i=1

,
s (r+Dy (i—1n n
< ;Cr+2t 2 HB(] + ) gu(x —x)

i=1

with C :=C(T,b,0,n) = C(, 17)(|b|ooT% + 1) and where we used that s € [0, 7] for the last
inequality. For the second term, we write J = J; + J» with

t/2
J1=/ /{ﬁ@H(F)(O,t—i—s—u,x,z)
0 R
—p®H 0,1t —u,x,2)}H(0,u,z,x")dzdu,
t
12=/ /{ﬁ@H(r)(O,t—i—s—u,x,z)
t/2 JR

—pQHD 0,1 —u,x, D} H(0,u,z,x")dzdu.

First, assume that s € [0, #/2]. Then one has s € [0, t — u] for all u € [0, #/2] so that from the

induction hypothesis and (3.4), one gets
— (i — l)n U
[Ta(1+ ,2))ga(x )

1)2
|Jl|§Cr+2%</ (t—u) nu (=3 )du)(
2 0 i=1

r —1
Cr+2 (+1)n1_[ ( )77 Z)gct(x/_x)

r—1

with C := C(T,b,0,1) = C(X, n)(|b|ooT1’T” +1). Now, if s € (t/2, ], one writes J; = J| + J?

with
t/2 ¢ ¢
]112/ / ﬁ®H(r) O, t—u+-—+(s—=),x,z
o Jr 2 2

t
_15®H(r)<0,t—u—|—E,x,z)}H(O,u,z,x’)dzdu,

Ji= P e n® !
1= POH O,t—u—i—i,x,z
0 R

_15®H(’)(0,t—u,x,z)}H(O,u,z,x’)dzdu.
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From the induction hypothesis and (3.4) using the fact that 1/2 <t — u for u € [0, /2], one

t/2 (s — L) t 2N n
1 r+2 2 _ t —(1-1
‘Jl‘SC (/0 73+(Z—u}<t u+2> u 2du)
r—1
-1
X(HB( +¥ Z))gct(x —)C)
i=1
Cr+2 (hq)nl_[ < 1)77 77> (X —X)
5 8t

obtains

Using similar arguments with s > ¢ /2, one also gets

’J2‘< Cr+2 (+) l_[ ( 1)77 g)gct(x —.X)

which finally yields

,
s D) (i—Dn n
[l = —Cr T ] |B(1 5y )ga (' =),

i=1

The last term J> is given by the sum of three terms, namely

s
_—/ /13®H(r)(O,u,x,z)H(O,t—u+s,z,x’)dzdu,
0 JR
%-ﬁ-s
122=/ /]3®H(r)(0,u,x,z)H(O,t—u—|—s,z,x’)dzdu,
L R

J;:/if[3®H(r)(0,u,x,z){H(O,t—u+s,z,x/)—H(O,t—u,z,x/)}dzdu.
0 R

Using (3.6) and (3.4) with similar computations, one easily gets

) r 1
sze([r 1 a)
221 0 (t+s—u)1*%

-1
% 1—[ ( )77’ Z)gct(x/_x)

.
1) 1
<5Cr+2t S B<1+( i n)gct(x —x)
1

272

i=
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and similarly

|J2| < Ci‘+2

1 5+ m 4
1-1 u?
t'72\J4

(i—1
i B( (i )n,g>gcz(x’—x)
i=1

,
r i — 1
< Cr+2 i HB<1+%vg>gcz(x/—x).

i=1

From (HR) and (HE), one has |3, H(0, v, z,x")| < Cv~—?

“Dgew(x’ —2), v € (0, T] and using
the fact that s € [0, ] we derive

f—u—+s
‘H(O,t—u+s,z,x/)—H(O,t—u,z,x/)| fo |8UH(0,v,z,x/)|dv
t—u
= C;ngc(t+s7u)(x/ _Z)
(t—u)*"2

which in turn yields

5, 1
|J5] < LWC’”(/ u%indu>
1172 0 (t—uw)'2

r

 — 1
X HB(I + %, g)gc([+s)(x/ —x)

,
S _pan (thn i@—Dn n
S;Cr 2 HB<1+T 5 gct( —x).

i=1

This completes the proof of (A.14). Summing (A.14) from r = O to infinity and using the
asymptotics of the Gamma function yield

V(t,x,x/) €10, T] x R x R*, |p(0,t+s,x,x/) — p(O,t,x,x/)| < C;gct(x/ —x)

for some constants C := C(T,b,0) = C()L,n)(|b|ooTl%n + 1)E,7/2,1(C(|b|ooT% + T%)),
CA,n),c:=c(r,n)>1. O
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