
Bernoulli 24(2), 2018, 1233–1265
DOI: 10.3150/16-BEJ898

Smooth backfitting for additive modeling
with small errors-in-variables, with an
application to additive functional regression
for multiple predictor functions
KYUNGHEE HAN1, HANS-GEORG MÜLLER2 and BYEONG U. PARK1,*

1Department of Statistics, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826,
Republic of Korea. E-mail: *bupark@stats.snu.ac.kr
2Department of Statistics, University of California, 1 Shields Avenue, Davis, CA 95616, USA

We study smooth backfitting when there are errors-in-variables, which is motivated by functional additive
models for a functional regression model with a scalar response and multiple functional predictors that
are additive in the functional principal components of the predictor processes. The development of a new
smooth backfitting technique for the estimation of the additive component functions in functional additive
models with multiple functional predictors requires to address the difficulty that the eigenfunctions and
therefore the functional principal components of the predictor processes, which are the arguments of the
proposed additive model, are unknown and need to be estimated from the data. The available estimated
functional principal components contain an error that is small for large samples but nevertheless affects
the estimation of the additive component functions. This error-in-variables situation requires to develop
new asymptotic theory for smooth backfitting. Our analysis also pertains to general situations where one
encounters errors in the predictors for an additive model, when the errors become smaller asymptotically.
We also study the finite sample properties of the proposed method for the application in functional additive
regression through a simulation study and a real data example.

Keywords: errors in predictors; functional additive model; functional data analysis; functional principal
component; kernel smoothing; smooth backfitting

1. Introduction

There is currently no theory available for smooth backfitting with errors-in-variables for the
additive predictors, and we develop such theory in this paper. The need for this is demonstrated
in an example from functional regression that is emphasized throughout the paper. Models that
pair functional predictors with a scalar response are commonly encountered and constitute one of
the central modeling problems in functional data analysis (FDA) (Ramsay and Silverman [20]),
motivated by applied problems where one wishes to predict a scalar outcome from observed
functional predictors or to model the nature of the relationship. Specifically, we consider the
problem where one has d random predictor functions X1, . . . ,Xd defined on intervals I1, . . . ,Id ,
respectively, that are coupled with a continuous scalar response Y . Our goal is to model and
implement the regression E(Y |X1, . . . ,Xd).

1350-7265 © 2018 ISI/BS

http://www.bernoulli-society.org/index.php/publications/bernoulli-journal/bernoulli-journal
http://dx.doi.org/10.3150/16-BEJ898
mailto:bupark@stats.snu.ac.kr


1234 K. Han, H.-G. Müller and B.U. Park

Many approaches have been developed for the special case d = 1. Writing X1 = X and
E(X) = μ, highly structured approaches include the well-established functional linear model
(FLM), where one assumes

E(Y |X) = μ0 +
∫

β(s)
(
X(s) − μ(s)

)
ds (1)

(Cardot et al. [2], Bosq [1]) for a smooth fixed parameter function β . This model is a direct
extension of the classical linear regression model with multiple predictors. While this model is
linear in the predictor process X, extensions to nonlinear cases include the functional quadratic
(and polynomial) model (FQM)

E(Y |X) = μ0 +
∫

β(s)
(
X(s) − μ(s)

)
ds

(2)

+
∫

γ (s, t)
(
X(s) − μ(s)

)(
X(t) − μ(t)

)
ds dt

(Yao and Müller [22]), which contains a second parameter function γ that communicates the
quadratic and interaction effects that are part of this model.

These models can be directly represented in terms of functional principal components, as
follows. For each predictor function Xj , assumed to be fully observed and to be recorded without
noise, let φjk,1 ≤ k < ∞, be the set of the orthonormal eigenfunctions of the integral operator
having the auto-covariance surface Cj (u, v) = E[Xj(u) − μj (u)][Xj(v) − μj (v)] as its kernel.
We assume that φjk are ordered in terms of the respective eigenvalues λj1 ≥ λj2 ≥ · · · . Each
set of eigenfunctions (φjk : 1 ≤ k < ∞) forms a basis for L2(Ij ), 1 ≤ j ≤ d . Let ξjk denote
the functional principal components (FPC) of Xj defined by ξjk = ∫

(Xj (t) − μj (t))φjk(t) dt ,
where μj (t) = EXj(t). Then it is straightforward to see that the FLM can be written as

E(Y |X1) = μ0 +
∑

k

βkξ1k (3)

in terms of the FPCs with coefficients βk , while the FQM can be written as

E(Y |X1) = μ0 +
∑

k

βkξ1k +
∑
k,l

γklξ1kξ1l , (4)

with coefficients βk and γkl . When implementing these models, only a finite number of predictor
scores are used, based on a truncated eigenfunction expansion. Using these representations, these
two models can be straightforwardly extended to the case with multiple predictor functions,
simply by collecting the FPCs from all predictor functions and then applying a multiple linear or
quadratic model to the combined scores.

The perspective of representing the above models in terms of the FPCs suggests a model that
is additive in the FPCs,

E(Y |X1) = μ0 +
∑

k

fk(ξ1k), (5)
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where the additive component functions fk are supposed to be smooth and are required to satisfy
E(fk(ξ1k)) = 0. This model has been referred to as the Functional Additive Model (FAM) [19].
Our goal is to extend the additive model of Stone [21] to functional regression and in particular,
to provide rigorous theoretical justification for this extension. An interesting feature of additive
functional regression models is that in case of independent predictor FPCs, as in the case of a
Gaussian predictor process, the functions fk can be consistently estimated by marginal regres-
sions in model (5), that is, consistent estimates of the component functions fk can be obtained
by regressing Y against each of the predictors ξ1k separately, which can be easily done by com-
ponentwise nonparametric regression. However, for the case of multivariate predictors that we
consider here this simple device is not possible anymore and the marginal regression approach
will be biased, due to the dependencies among the predictor components.

Other approaches along these lines include additive regression models for longitudinal data
[3] and a “time-additive regression” approach that stands in contrast to the “frequency-additive”
regression models described above that are additive in the FPCs, while the time-additive models
are additive in time and have been referred to as “continuous additive model” [17,18]. Another
related class of models are single index [11,15] and multiple index models that have been con-
sidered for single predictor functions [4,8] as well as multiple predictor functions [10]. Additive
models with functional predictors and generalized responses have been considered in [7] and
with penalized least squares in B spline and reproducing kernel Hilbert space settings in [5,25].

In this paper, we develop the theory for smooth backfitting to fit a functional regression model
that is additive in the FPCs of the predictor processes, which are used for dimension reduction
of each of the predictor processes Xj . Specifically, we study the additive functional score model
(AFSM)

E(Y |X1, . . . ,Xd) =
d∑

j=1

∑
k

fjk(ξjk), (6)

where fjk are unknown univariate functions. In the case of more than one predictor function, the
FPC scores of the different predictors will in general be correlated. This means that the marginal
regression approach employed in the Functional Additive Model (FAM) to estimate the various
additive component functions is bound to fail, and needs to be replaced with a more complex
backfitting method in order to obtain consistent estimates of the component functions in (6).
For this, we apply the smooth backfitting technique of [16] for the estimation of the compo-
nent functions fjk in the AFSM. In the case of real-valued predictors, the smooth backfitting
method is known to provide a powerful technique for the estimation of component functions in
various structured nonparametric models. Recent work for the non-functional application and
implementation of smooth backfitting includes [13,14,23] and [24]. Smooth backfitting avoids
the curse of dimensionality and is known to achieve the optimal univariate estimation error rate
in multivariate regression.

In the application of the smooth backfitting technique to estimate the additive component
functions fjk in the AFSM, we replace the unobserved FPC scores ξjk by the FPCs that are
obtained from the spectral decomposition of the sample covariance surfaces, which is the usual
practice in functional data analysis. This is the key feature which motivates the development of
a theory of smooth backfitting with errors-in-variables, as existing theory on smooth backfitting
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is focused on real-valued predictors under the assumption that the predictors are fully observed
without error. To address this issue, we develop here an innovative extension of the theory of
smooth backfitting methods to cover this case. While we illustrate the extension in the context of
functional additive regression, it is also of interest for other applications where one has errors in
the predictors that can be assumed to be asymptotically small. To obtain a complete asymptotic
theory for this case requires to go deep inside the operation of smooth backfitting.

A related paper is Hildebrandt, Bissantz and Dette [9], where it is assumed that the signal
(the regression function) is contaminated (convoluted) by some known function and the goal is
to recover the signal. This model differs substantially from the case considered here, where the
predictors (FPC scores) are contaminated by estimation errors that are asymptotically small but
where the contamination distribution is of unknown nature and therefore the convoluting function
is not known. Since the errors vanish asymptotically in our application to functional data, they
do not affect the asymptotics of the resulting regression estimators and therefore asymptotically
we do not face a deconvolution problem. Another difference lies in the method of estimating
additive regression models, where Hildebrandt, Bissantz and Dette [9] adopt the marginal in-
tegration technique, while we develop our approach for the smooth backfitting approach. The
latter has emerged as a powerful technique that gives reliable estimators for various structural
nonparametric regression problems (see, e.g., Yu, Park and Mammen [23], Lee, Mammen and
Park [13,14] and Zhang, Park and Wang [24]).

The purpose of this paper is to develop smooth backfitting methodology for the case of asymp-
totically small errors in the predictors, as motivated by additive functional regression. We present
rigorous asymptotic theory and our analysis is complemented by simulations and a data applica-
tion. The proposed smooth backfitting approach is introduced in the next sections, followed by
asymptotic theory in Section 3. Simulation results are reported in Section 4 and an application
to bike usage data is in Section 5. This is followed by additional technical details and proofs in
Section 6.

2. Methodology

2.1. Range of estimation

We begin by describing briefly the smooth backfitting method in the case where the predictors
are real-valued and fully observed. In the classical nonparametric additive regression model,
E(Y |Z = z) = f1(z1) + · · · + fd(zd), where Y is the response variable and Z = (Z1, . . . ,Zd) is
the predictor vector having a density that is supported on a bounded set, say [0,1]d , the compo-
nent functions fj are not identifiable, unless one adds a constraint such as Efj (Zj ) = 0. Then
one may rewrite the model as E(Y |Z = z) = f0 + f1(z1) + · · · + fd(zd).

Under this model and the constraints, it holds that

fj (zj ) = E(Y |Zj = zj ) − f0 −
∑
k �=j

∫ 1

0
fk(zk)

pZj ,Zk
(zj , zk)

pZj
(zj )

dzk, 1 ≤ j ≤ d, (7)

and f0 = E(Y), where pZj
and pZj ,Zk

denote the density functions of Zj and (Zj ,Zk), respec-

tively. The smooth backfitting estimator (f̂j : 0 ≤ j ≤ d) of the tuple (fj : 0 ≤ j ≤ d) is defined
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to be the solution of the system of integral equations

f̂j (zj ) = f̃j (zj ) − f̂0 −
∑
k �=j

∫ 1

0
f̂k(zk)

p̂Zj ,Zk
(zj , zk)

p̂Zj
(zj )

dzk, 1 ≤ j ≤ d

subject to
∫ 1

0 f̂j (zj )p̂Zj
(zj ) dxj = 0 for 1 ≤ j ≤ d , where p̂Zj

and p̂Zj ,Zk
are estimators of pZj

and pZj ,Zk
, respectively, and f̃j is an estimator of the marginal regression function E(Y |Zj =

zj ).
For identifiability of the component functions fjk in the AFSM (6) we also need to invoke a

constraint for each and may rewrite the model as

E(Y |X1, . . . ,Xd) = f0 +
d∑

j=1

Lj∑
k=1

fjk(ξjk) (8)

with the constant term f0 depending the constraints. Here and in the following, we assume that
it suffices to approximate the functional predictors Xj by their first Lj functional principal com-
ponents in the AFSM (6), where the truncation points Lj are tuning parameters. To obtain an
analogue of equation (7) for estimating fjk in the AFSM one may consider simply replacing Zj

by the FPC scores ξjk , fj by fjk , and the integration over the interval [0,1] by integrating over
the whole real line. One would then need to estimate the conditional means E(Y |ξjk = ·) and the
densities of ξjk and (ξjk, ξj ′k′) on R or R2. This is however not feasible since the collection of
observed data is bounded. The usual practice in nonparametric regression analysis is to consider
a bounded region for the estimation of the regression function, and we adopt this approach by
aiming to estimate fjk on bounded intervals.

2.2. Constraints for component functions

We note that we may not use the constraint Efjk(ξjk) = 0 for the true component function fjk as
in smooth backfitting for bounded real-valued predictors, since then the corresponding constraint
for the estimator of fjk requires the estimation of fjk on the entire support of the density of
ξjk , which in general has an unbounded support as the ξjk in general are unbounded random
variables. To describe the constraints that we employ instead, let Ijk be the bounded intervals on
which we estimate fjk , and define I = I11 × · · · × IdLd

. Let p denote the density function of
ξ = (ξjk : 1 ≤ j ≤ d,1 ≤ k ≤ Lj ), pj the density function of ξ j = (ξj1, . . . , ξjLj

), and define

pI
0 =

∫
I

p(u) du, pI
jk(ujk) =

∫
I−jk

p(u) du−jk/p
I
0 ,

where u−jk for a vector u = (ujk : 1 ≤ j ≤ d,1 ≤ k ≤ Lj ) is the resulting vector one obtains
from u after deleting ujk , and I−jk = ∏

(j ′,k′)�=(j,k) Ij ′k′ . We then adopt the constraints∫
Ijk

fjk(u)pI
jk(u) du = 0, 1 ≤ j ≤ d,1 ≤ k ≤ Lj , (9)
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which imply f0 = ∫
I
E(Y |ξ = u)p(u) du/pI

0 .
One may prefer to employ other constraints, such as

∫
Ijk

fjk(u)wjk(u) du = 0, instead of (9),
for some known weight functions wjk . We choose the constraint (9) since it is natural and gives
simpler forms for f0 and its estimator. The method and theory that we develop here can be easily
modified if one uses different constraints.

2.3. Smooth backfitting for the additive functional score model

Suppose that we observe (Xi
1, . . . ,X

i
d, Y i), which are independent across 1 ≤ i ≤ n and follow

model (8). Aiming at estimators for the component functions fjk , define

pI
jk,j ′k′(ujk, uj ′k′) =

∫
I−jk,j ′k′

p(u) du−jk,j ′k′/pI
0 ,

where u−jk,j ′k′ is the resulting vector one obtains from u after deleting ujk and uj ′k′ , and
I−jk,j ′k′ = ∏

(j ′′,k′′)�=(j,k),(j ′k′) Ij ′′k′′ . Multiplying both sides of (8) by the joint density p and
then integrating them over the rectangle I−jk gives the following system of integral equations:

fjk(ujk) = 1

pI
0 · pI

jk(ujk)

∫
I−jk

E(Y |ξ = u)p(u) du−jk − f0

−
∑

(j ′,k′)�=(j,k)

∫
Ij ′k′

fj ′k′(uj ′k′)
pI

jk,j ′k′(ujk, uj ′k′)

pI
jk(ujk)

duj ′k′ , (10)

1 ≤ j ≤ d,1 ≤ k ≤ Lj .

It can be shown that this system of integral equations also follows when minimizing E[Y − g0 −
g11(ξ11) − · · · − gdLd

(ξdLd
)]2I (ξ ∈ I ) over a constant g0 and univariate functions gjk .

Let ξ i
jk be the FPC score of the j th predictor Xj for the ith subject, that is, ξ i

jk =∫
Ij

(Xi
j (t) − μj (t))φjk(t) dt . We estimate ξ i

jk from the standard eigenanalysis of the estimated

auto-covariance surface Ĉj , which is defined by

Ĉj (s, t) = n−1
n∑

i=1

[
Xi

j (s) − μ̂j (s)
][

Xi
j (t) − μ̂j (t)

]

with μ̂j (t) = n−1 ∑n
i=1 Xi

j (t). Specifically, let (φ̂jk : 1 ≤ k < ∞) be the orthonormal eigen-

functions in the spectral decomposition of Ĉj , ordered in terms of the respective eigenvalues
λ̂j1 ≥ λ̂j2 ≥ · · · . The estimators of ξ i

jk are then obtained by approximating the defining inte-
grals, that is,

ξ̂ i
jk =

∫
Ij

(
Xi

j (t) − μ̂j (t)
)
φ̂jk(t) dt.
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To consider the estimation of the integral equation (10), we note that pI
jk and pI

jk,j ′k′ are
conditional densities of ξjk and (ξjk, ξj ′k′), respectively, given that the event ξ ∈ I occurs. This
suggests the following kernel estimators of pI

jk and pI
jk,j ′k′ :

p̂I
jk(u) = n−1

n∑
i=1

Khjk

(
u, ξ̂ i

jk

)
I
(
ξ̂ i ∈ I

)
/p̂I

0 ,

p̂I
jk,j ′k′(u, v) = n−1

n∑
i=1

Khjk

(
u, ξ̂ i

jk

)
Khj ′k′

(
v, ξ̂ i

j ′k′
)
I
(
ξ̂ i ∈ I

)
/p̂I

0 ,

where p̂I
0 = n−1 ∑n

i=1 I(ξ̂
i ∈ I ) and I is the indicator. The kernel function Khjk

(u, v) with a
bandwidth hjk and a baseline kernel K is defined by

Khjk
(u, v) = I(u ∈ Ijk)

Khjk
(u − v)∫

Ijk
Khjk

(t − v)dt
(11)

whenever
∫
Ijk

Khjk
(t − v)dt �= 0, and we set Khjk

(u, v) = 0, otherwise. Here, Khjk
(u − v) =

h−1
jk K(h−1

jk (u − v)). With these definitions, it follows that

∫
Ijk

p̂I
jk(u) du = 1,

∫
Ij ′k′

p̂I
jk,j ′k′(u, v) dv = p̂I

jk(u).

We also estimate f0 by f̂0 = n−1 ∑n
i=1 Y i

I(ξ̂ i ∈ I )/p̂I
0 , and the first term on the right-hand side

of (10) by

f̃jk(u) =
[
n−1

n∑
i=1

Khjk

(
u, ξ̂ i

jk

)
I
(
ξ̂ i ∈ I

)]−1

n−1
n∑

i=1

Y iKhjk

(
u, ξ̂ i

jk

)
I
(
ξ̂ i ∈ I

)
. (12)

The system of smooth backfitting equations for the tuple (f̂jk : 1 ≤ j ≤ d,1 ≤ k ≤ Lj) is then
given by

f̂jk(u) = f̃jk(u) − f̂0 −
∑

(j ′,k′)�=(j,k)

∫
Ij ′k′

f̂j ′k′(v)
p̂I

jk,j ′k′(u, v)

p̂I
jk(u)

dv,

(13)
1 ≤ k ≤ Lj ;1 ≤ j ≤ d,

with the constraints for f̂jk that

∫
Ijk

f̂jk(u)p̂I
jk(u) du = 0, 1 ≤ k ≤ Lj ,1 ≤ j ≤ d. (14)
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The solution of equation (13) is obtained by an iteration. With an initial tuple (f̂
[0]
jk : 1 ≤ j ≤

d,1 ≤ k ≤ Lj ), the updating formula for (f̂
[r]
jk : 1 ≤ j ≤ d,1 ≤ k ≤ Lj) in the r th cycle of the

backfitting iteration is given by

f̂
[r]
jk (u) = f̃jk(u) − f̂0 −

j−1∑
j ′=1

Lj ′∑
k′=1

∫
Ij ′k′

f̂
[r]
j ′k′(v)

p̂I
jk,j ′k′(u, v)

p̂I
jk(u)

dv

−
k−1∑
k′=1

∫
Ijk′

f̂
[r]
jk′ (v)

p̂I
jk,jk′(u, v)

p̂I
jk(u)

dv

(15)

−
Lj∑

k′=k+1

∫
Ijk′

f̂
[r−1]
jk′ (v)

p̂I
jk,jk′(u, v)

p̂I
jk(u)

dv

−
d∑

j ′=j+1

Lj ′∑
k′=1

∫
Ij ′k′

f̂
[r−1]
j ′k′ (v)

p̂I
jk,j ′k′(u, v)

p̂I
jk(u)

dv.

We remark that in the estimation of the component functions we use only (ξ̂ i , Y i) with ξ̂ i ∈ I .
One may think of using the full data (ξ̂ i , Y i),1 ≤ i ≤ n, to avoid boundary effect near the end
points of the set I . This turns out to be not relevant, however. The reason is that the smooth back-
fitting technique depends on the range of estimation, I , via the integration of the components fjk

on Ijk . Consequently, the integral equations at (10) involve pI
0 , pI

jk and pI
jk,j ′k′ , instead of the

corresponding p0 = 1,pjk and pjk,j ′k′ , the latter two being the densities of ξjk and (ξjk, ξj ′k′),
respectively, and it is not appropriate to estimate these quantities with the full data. If one is
interested in estimating the component functions on a compact set I , and also wants to avoid
boundary effect when estimating near ∂I , then one may apply the smooth backfitting method
that we describe above, to a compact set which is slightly larger than I , and then take the func-
tion estimates only on the set I .

3. Theoretical properties

We assume without loss of generality that Ijk = [0,1] for all 1 ≤ j ≤ d , 1 ≤ k ≤ Lj , given the
Lj . As already mentioned, we do not assume that ξjk across k are independent, neither that the
predictors Xj are independent.

3.1. Convergence rates of FPC estimators

Here, we derive a uniform (over 1 ≤ i ≤ n) rate of convergence of ξ̂ i
jk under a moment condition

on the predictor processes Xj . The uniform convergence rate will be used frequently in our
theoretical development for the proposed smooth backfitting estimators. Recall that λjk , k ≥
1, denote the ordered eigenvalues in the spectral decomposition of the j th covariance surface
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Cj(s, t) = Cov(Xj (s),Xj (t)). In the following, we denote the L2-norm by ‖ · ‖, for spaces of
square integrable functions that can have one or two arguments.

We assume:

(A1) For each j , the eigenvalues λjk for different k are separated and E‖Xj‖2β < ∞ for
some β ≥ 2.

Let Ĉj denote the covariance operator associated with the covariance surface Ĉj , which maps
f ∈ L2(Ij ) to g = Ĉj f ∈ L2(Ij ) by

g(s) =
∫
Ij

Ĉj (s, t)f (t) dt.

According to Lemma 4.3 of [1],

‖φ̂jk − φjk‖ ≤ 2
√

2

δjk

‖Ĉj − Cj‖, 1 ≤ k ≤ Lj , (16)

where δjk = min1≤	≤k(λj	 − λj,	+1), so that

E‖Ĉj − Cj‖2 =
∫

E
[
Ĉj (s, t) − Cj (s, t)

]2
ds dt = O

(
n−1), (17)

whence (16) and (17) imply that ‖φ̂jk − φjk‖ = Op(n−1/2) for 1 ≤ k ≤ Lj . The approxima-
tion error of the estimated FPC scores ξ̂ i

jk may be then obtained from this. A simple application

of Markov inequality gives max1≤i≤n ‖Xi
j − μj‖2 = Op(n1/β), where β is the constant in the

condition (A1). This with the fact that ‖μ̂j − μj‖ = Op(n−1/2) entails the following proposi-
tion, which will be crucial for replacing estimated by true predictor scores when deriving the
asymptotic properties of the proposed smooth backfitting method.

Proposition 1. Under the condition (A1) it holds that

max
1≤i≤n

∣∣ξ̂ i
jk − ξ i

jk

∣∣ = Op

(
n−(β−1)/2β

)
, 1 ≤ j ≤ d,1 ≤ k ≤ Lj . (18)

3.2. Theory for smooth backfitting with errors-in-variables

Our first theorem demonstrates that, with probability tending to one, when available predictors
ξ̂ i
jk satisfy property (18), then the backfitting equation (13) has a unique solution and the itera-

tive algorithm (15) converges to the solution at a geometric rate. We note that these results are
independent of our application to functional additive regression and pertain to smooth backfitting
in general contexts where one has errors-in-variables. Collecting here the assumptions we use to
establish the convergence of the smooth backfitting algorithm, conditions (A2)–(A6) below are
typical for nonparametric additive modeling.
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(A2) The baseline kernel function K is bounded, has compact support [−1,1], is symmetric
about zero, differentiable and its derivative is Lipschitz continuous.

(A3) The bandwidths hjk satisfy n1/5hjk → cjk for some positive constants cjk .
(A4) The joint density p of ξ is bounded away from zero and infinity on I .
(A5) E|Y |α < ∞ for α > 5/2 and Var(Y |ξjk = ·, ξ ∈ I ) are continuous on [0,1].
(A6) The component functions fjk are twice continuously differentiable and the densities pjk

and pjk,j ′k′ are (partially) continuously differentiable on [0,1].

Theorem 1. Assume the conditions (A1)–(A6), or alternatively, (18) for β ≥ 2 and (A2)–(A6).
Then, the following statements hold: (i) with probability tending to one, there exists a unique
solution (f̂jk : 1 ≤ j ≤ d,1 ≤ k ≤ Lj) of (13) subject to the constraints (14); (ii) there exists a
constant 0 < γ < 1 and c > 0 such that with probability tending to one

∫ 1

0

[
f̂

[r]
jk (u) − f̂jk(u)

]2
pI

jk(u) du ≤ c · γ 2r

(
1 +

∑
j,k

∫ 1

0
f̂

[0]
jk (u)2pI

jk(u) du

)
.

The alternative version of this result applies to general errors-in-variables situations where
the errors in the predictors decrease with increasing sample size, and therefore is of interest
independently of the application to functional regression. Our second theorem gives the rates of
convergence and the asymptotic distributions of the estimators of the component functions fjk .
Here, we make the moment condition on Xj in (A1) a bit stronger for the effect of estimating
ξ i
jk to be negligible in the estimation of the component functions.

(A1′) For each j , the eigenvalues λjk for different k are separated and E‖Xj‖2β < ∞ for
some β > 5.

For the statement of the theorem, let p
(1)
jk (u) = ∂p(u)/∂ujk . Define

β̃jk(u) =
∫

v2K(v)dv
∑
j ′,k′

c2
j ′k′E

(
f ′

j ′k′(ξj ′k′)
p

(1)

j ′k′(ξ )

p(ξ)

∣∣∣∣ξjk = u, ξ ∈ I

)
,

σ 2
jk(u) = 1

pI
0pI

jk(u)
c−1
jk Var(Y |ξjk = u, ξ ∈ I )

∫
K(v)2 dv,

βjk(u) = β∗
jk(u) + 1

2
c2
jkf

′′
jk(u)

∫
u2K(u)du,

where the constants cjk are defined in the condition (A3) above. Let the tuple (β∗
jk : 1 ≤ j ≤

d,1 ≤ k ≤ Lj ) be the solution of the system of integral equations

β∗
jk(u) = β̃jk(u) −

∑
(j ′,k′)�=(j,k)

∫
Ij ′k′

β∗
j ′k′(v)

pI
jk,j ′k′(u, v)

pI
jk(u)

dv, 1 ≤ j ≤ d,1 ≤ k ≤ Lj ,



Additive functional score models 1243

subject to the constraints

∫ 1

0
β∗

jk(u)pI
jk(u) du = μ2c

2
jk

∫ 1

0
f ′

jk(u)
∂

∂u
pI

jk(u) du.

Theorem 2. Assume the conditions (A1′) and (A2)–(A6), or alternatively, (18) for β > 5 and
(A2)–(A6). Then it follows that for a given vector (u : 0 < ujk < 1,1 ≤ j ≤ d,1 ≤ k ≤ Lj ), the
estimators f̂jk(ujk) for different pairs (j, k) are asymptotically independent and

n2/5(f̂jk(ujk) − fjk(ujk)
) d−→N

(
βjk(ujk), σ

2
jk(ujk)

)
.

Furthermore, ‖f̂jk − fjk‖ = Op(n−2/5), supu∈[2hjk,1−2hjk] |f̂jk(u) − fjk(u)| =
Op(n−2/5√logn) and supu∈[0,1] |f̂jk(u) − fjk(u)| = Op(n−1/5).

Again, the alternative version includes a result that is of primary interest for additive modeling
with smooth backfitting when one has a general error-in-variables situation that is not necessarily
related to functional regression. The results of the above theorem also hold for the theoretical
estimators of fjk , denoted by f̂ ∗

jk , that use the true ξ i
jk instead of the estimated ξ̂ i

jk , which is
seen by a straightforward extension of the standard theory of smooth backfitting.

The proof of the above theorem is based on comparisons of the f̂jk with their theoretical

versions f̂ ∗
jk . Let f̂+ = ∑d

j=1
∑Lj

k=1 f̂jk and f̂ ∗+ = ∑d
j=1

∑Lj

k=1 f̂ ∗
jk . Then, the additive functions

f̂+ and f̂ ∗+, respectively, are the solutions of the equations

f̂+ = f̃⊕ + T̂ f̂+, f̂ ∗+ = f̃ ∗⊕ + T̂ ∗f̂ ∗+

for appropriately defined additive functions f̃⊕ and f̃ ∗⊕, and for appropriately defined linear
operators T̂ and T̂ ∗, see Section 6.2 for the explicit forms of these functions and operators.

The additive functions f̃⊕ and f̃ ∗⊕, as well as T̂ and T̂ ∗, differ only in that the former are
based on the estimated FPCs, ξ̂ i

jk , while the latter are based on the true FPCs ξ i
jk . In the proof

of Theorem 1 in Section 6, we show that ‖T̂ − T̂ ∗‖ = op(1) and ‖T̂ ‖ ≤ 1 − δ with probability
tending to one for a small constant δ > 0. From this, we can argue that f̂+ − f̂ ∗+ is of the same
magnitude as f̃⊕ − f̃ ∗⊕. To establish that the estimation of the FPC scores has a negligible effect
on the first-order properties of f̂+, we need f̂+ − f̂ ∗+ to be of an order smaller than n−2/5. One
might want to prove this by establishing that the f̃jk , of which f̃⊕ is composed, differ from the
corresponding f̃ ∗

jk by an order smaller than n−2/5. But it turns out that this is not the case. In

fact, max1≤i≤n |ξ̂ i
jk − ξ i

jk| = Op(n−(β−1)/2β) as demonstrated in Proposition 1, which is inflated

in f̃kJ − f̃ ∗
jk by a factor of the inverse of the bandwidth size, n1/5, so that one can only have

f̃jk − f̃ ∗
jk = Op(n−(3β−5)/10β). Note that (3β − 5)/10β < 3/10 < 2/5 for all β > 0. Thus,

the proof of Theorem 2 requires a careful asymptotic analysis, deep inside the operation of the
smooth backfitting technique. This led us to develop an innovative way of understanding the
theory of smooth backfitting methods, which may be also useful for other related problems.
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Additional overview on the main steps of the proof which provide further insights how the
technical challenges provided by the presence of errors can be overcome and the detailed steps
of the proof can be found in Section 6.3.

4. Finite sample performance

In this section, we demonstrate the finite sample performance of the proposed additive func-
tional regression with smooth backfitting. In a simulation setting, we generated a pair of random
functions X = (X1,X2) such that

Xj(t) = μj (t) + ξj1φj1(t) + ξj2φj2(t), t ∈ [0,1],
for j = 1,2, where the mean functions μj of Xj are given by

μ1(t) = 2t + 2 cos(3πt), μ2(t) = 3t + 1√
2πσ

exp

{
−1

2

(
t − 0.6

σ

)2}
, σ = 0.1.

We chose the normalized Fourier basis φ11(t) = √
2 sin(2πt), φ12(t) = √

2 cos(2πt), φ21(t) =√
2 sin(4πt) and φ22(t) = √

2 cos(4πt) on the interval [0,1] and the FPC score vectors ξ j =
(ξj1, ξj2) to have multivariate normal distributions with mean zero and var(ξ1) = diag(2.5,1.5),
var(ξ2) = diag(2.2,1.2) and(

cov(ξ11, ξ21) cov(ξ11, ξ22)

cov(ξ12, ξ21) cov(ξ12, ξ22)

)
=

(
0.7 −0.4
0.3 −0.5

)
.

Then the two predictor functions X1 and X2 are correlated, as the cross-covariance of ξ1 and ξ2
is nonzero, where the correlation between ξ1 and ξ2 is given by(

corr(ξ11, ξ21) corr(ξ11, ξ22)

corr(ξ12, ξ21) corr(ξ12, ξ22)

)
≈

(
0.298 −0.231
0.165 −0.373

)
.

The scalar response Y was generated by Y = ∑2
j=1

∑2
k=1 gjk(ξjk) + ε, where g11(x) = x,

g12(x) = 2 sin(πx), g21(x) = 0.5(x2 − 4) cos(πx), g22(x) = 1
3 (x2 − 4)x3 and errors ε ∼

N(0,0.12) were independent of ξ . We target the centered component functions fjk = gjk −∫
Ijk

gjkp
I
jk satisfying the constraints (9) in the estimation. For the domains Ijk in the estimation,

we took Ijk = [−2,2]. Under this data generating scheme, we obtained B = 400 Monte Carlo
samples of sizes n = 100,200,400 and 1000.

Let Xn denote a generated sample {(Xi
1,X

i
2, Y

i) : 1 ≤ i ≤ n}. For the eigen-analysis of the
sample covariance function Ĉj , we adopted a standard discretization method [12,20], choosing a
dense grid {(tl, tl′) : 0 ≤ l, l′ ≤ M} on [0,1]2, with equi-spaced 0 = t0 < t1 < · · · < tM = 1, calcu-
lating for each sample properly normalized eigenvectors (φ̂jk(tl) : 1 ≤ l ≤ M) of the discretized
sample covariance matrices (Ĉj (tl, tl′) : 1 ≤ l, l′ ≤ M), then obtaining the estimated FPC scores
ξ̂ i
jk = ∑M

l=1(X
i
j (tl)−μ̂j (tl))φ̂jk(tl)(tl − tl−1). To determine the number of included components,
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Figure 1. Illustration of a simulation sample. Left panel: Mean function μ1 (red) and 200 sample trajecto-
ries of X1 (gray) for first predictor functions X1i . Right panel: Same for the second predictor functions X2i .

we employed a “fraction of variance explained” (FVE) criterion, choosing the first Lj eigenfunc-
tions that explained at least 90% of the variation of the sample predictors {Xi

j : 1 ≤ i ≤ n}. In all
cases, this criterion led to the choice L1 = L2 = 2 for all generated Monte Carlo samples.

Figure 1 depicts one randomly chosen sample of the two predictor processes for sample size
n = 200. We found that covariance estimates, estimated eigenfunctions and estimated functional
principal components (FPCs) were close to their targets.

In the practical implementation of our method, one needs to determine
∑d

j=1 Lj bandwidths
for each updating iteration of the smooth backfitting algorithm. Direct application of cross vali-
dation (CV) is highly time-consuming and therefore not feasible. We propose an alternative effi-
cient “bandwidth shrinkage scheme” that is based on K-fold CV as follows. Let (J	 : 1 ≤ 	 ≤ K)

be a partition of the index set {1, . . . , n} such that
⋃K

	=1 J	 = {1, . . . , n} and J	 ∩ J	′ = ∅ for

	 �= 	′. Let X (	)
n denote the sub-sample corresponding to J	. Then, (i) compute a baseline band-

width vector h(	) = {h(	)
jk : 1 ≤ k ≤ Lj ,1 ≤ j ≤ d} for each 	 using the sub-sample Xn \X (	)

n ; (ii)
calculate

CV	(α) =
∑
i∈J	

(
Y i − f̂−	

(
ξ̂

i;αh(	)
))2

I
(
ξ̂ i ∈ I

)

for α > 0, where f̂−	(u;αh(	)) = f̂0,−	 + ∑d
j=1

∑Lj

k=1 f̂jk,−	(ujk;αh
(	)
jk ) is the estimated addi-

tive function based on the sub-sample Xn \X (	)
n ; (iii) find

α̂ = arg min
α>0

K∑
	=1

CV	(α)
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and choose ĥ = α̂hfull, where hfull is a bandwidth vector obtained by the same method as h(	)

but from the entire sample Xn. We call α̂ the global bandwidth shrinkage factor. In our sim-
ulation, K = 5 and the baseline bandwidth vectors h(	) and hfull were obtained by leave-one-
out CV being employed to marginal regression. For example, hfull

jk = arg minh>0
∑n

i=1(Y
i −

f̃jk,−i (ξ̂
i
jk;h))2, where f̃jk,−i is the leave-ith-out version of the marginal estimator f̃jk defined

at (12).
To assess estimation performance, we computed the Monte Carlo approximation of the mean

integrated squared error (MISE):

MISE(fjk) ≈ 1

B

B∑
b=1

1

4

∫
Ijk

(
f̂

(b)
jk (u) − fjk(u)

)2
du,

where f̂
(b)
jk is the estimate from the bth Monte Carlo sample and we divide the integrated value

by 4 to normalize the integral over the interval Ijk = [−2,2]. The results are summarized in
Table 1 and Figure 2, the latter exhibiting the bias and variance of the component function esti-
mators f̂jk . These results suggest that the bandwidth shrinkage scheme works well, as the global
bandwidth shrinkage factor adjusts for the overall smoothness level of the estimated component
functions f̂jk , while the baseline bandwidths adjust for the smoothness of the individual com-
ponent functions. This bandwidth shrinkage scheme also gave reliable results for the auxiliary
density estimation, demonstrated in Figure 3.

We also compared the prediction performance of the proposed ASFM with that of a naive
application of the functional additive model (FAM) based on marginal regression [19], and also
with the functional linear model (FLM) and functional quadratic model (FQM). For these latter

Table 1. MISE of f̂jk based on B = 400 Monte Carlo samples. The number in parenthesis is the estimated
standard error of the Monte Carlo approximation of MISE

With baseline bandwidths hfull
jk

With shrinkage bandwidths ĥjk

Sample
size (n)

j = 1 j = 2 j = 1 j = 2

k = 1 k = 2 k = 1 k = 2 k = 1 k = 2 k = 1 k = 2

100 0.181 0.890 0.565 0.425 0.172 0.900 0.561 0.413
(0.009) (0.038) (0.019) (0.021) (0.008) (0.038) (0.018) (0.019)

200 0.082 0.412 0.258 0.236 0.075 0.419 0.254 0.234
(0.004) (0.020) (0.010) (0.016) (0.004) (0.020) (0.010) (0.015)

400 0.027 0.176 0.121 0.104 0.023 0.174 0.112 0.104
(0.002) (0.008) (0.005) (0.004) (0.001) (0.008) (0.004) (0.003)

1000 0.014 0.078 0.058 0.049 0.008 0.066 0.044 0.043
(0.001) (0.004) (0.003) (0.002) (0.000) (0.003) (0.002) (0.001)
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Figure 2. Average functions of f̂jk (left panels) and their variance functions (right panels) for sample sizes
n = 100 (grey), n = 200 (red), n = 400 (green) and n = 1000 (blue). True targets are black. Based on 400
Monte Carlo replications.

two models, we used the estimated FPCs as predictors in either a linear or a quadratic regular
regression model.

We assessed the prediction performance by the mean squared prediction error (MSPE)

MSPE = E

[
1

N

N∑
i=1

(
Y new,i − f̂n

(
ξ̂new,i

))2
I
(
ξ̂new,i ∈ I

)]
.

Here, Y new,i are the responses in a test sample X new of size N that are independent of the training
sample Xn of size n, the FPC score vectors ξ̂new,i are computed from the test sample, and f̂n is
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Figure 2. (Continued.)

the estimated model based on the training sample Xn. We report results that are averaged over
B = 400 Monte Carlo training samples and took N = 1000.

The prediction results are provided in Table 2. The unconditional variance of Y was found to
be 64.64 in this simulation setting, which is useful to judge the improvement in prediction one
obtains from each of the four methods in comparison with the naive prediction provided by the
sample mean of the training data responses. The results show that AFSM gave the best perfor-
mance, followed by FAM, and then the parametric FLM and FQM approaches by a large margin,
especially for large sample sizes. The FAM approach performs worse compared to AFSM, be-
cause the former neglects the correlation structure between the FPC scores of different predictors,
while the latter adjusts for it via the backfitting operation. In implementing the FAM approach,
we used the baseline bandwidths hfull

jk .
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Figure 3. Truncated densities pI
jk

(black) and the averages of their estimates p̂I
jk

for B = 400 Monte Carlo
samples of size n = 200.

5. Illustration with bike sharing data

Bike sharing systems increasingly replace traditional bike rentals, where the whole process of
membership, rental and return is automatic [6]. More than 500 bike sharing systems are oper-
ating around the world (http://www.earth-policy.org/plan_b_updates/2013/update112). We ana-
lyze data from the Capital Bike Share System (http://capitalbikeshare.com/) that is operating in
Washington, DC These data include the hourly counts of bike pick-ups between 2011 and 2012
and are available at https://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset. Initial explo-
ration shows that hourly bike pick-up counts on weekdays and weekends tend to have quite
distinct patterns. We focus on a prediction model for the total number of bike pick-ups on a Sun-
day as scalar response, based on the observed hourly bike pick-up counts on the preceding Friday

http://www.earth-policy.org/plan_b_updates/2013/update112
http://capitalbikeshare.com/
https://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset
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Table 2. Comparison of MSPE for the AFSM, FAM, FLM and FQM approaches based on B = 400 Monte
Carlo samples. The number in parenthesis is the estimated standard error of the Monte Carlo approximation
of MSPE

Sample
size (n)

Mean squared prediction error

AFSM FAM FLM FQM

100 1.345 7.441 9.337 10.871
(0.036) (0.628) (0.578) (0.806)

200 0.877 2.447 8.889 9.224
(0.016) (0.143) (0.567) (0.765)

400 0.589 1.379 7.988 8.856
(0.010) (0.057) (0.300) (0.346)

1000 0.343 0.770 6.124 6.111
(0.008) (0.037) (0.098) (0.092)

and Saturday, which constitute the two distinct but clearly correlated functional predictors. The
total bike pick-up counts on Sunday and the hourly count curves on the preceding Friday and
Saturday are in Figure 4. On Fridays the bike pick-ups have two well-defined peaks around 8am
and 6pm that reflect bike usage for commuting to and from work. Saturday bike usage indicates
a leisure use pattern, where most of the usage occurs during the daytime between 10am and 6pm,
with a flat peak in usage during the afternoon.

Applying the FVE method to determine the number of FPC scores to enter into the model
led to the choice of three eigencomponents for Friday and one for Saturday. Each set of eigen-
components explains more than 90% of the variation of the corresponding observed trajectories.
The estimated covariance functions and the estimated eigenfunctions are displayed in Figures 5
and 6. The first eigenfunction φ̂11 of the Friday data has a similar pattern as the average of the
hourly Friday bike usage, depicted by the thick red curve in Figure 4, so this corresponds to
a baseline factor that is likely due to seasonal effects. The second eigenfunction φ̂12 presents
a contrast between morning and afternoon bike usage, while the third eigenfunction φ̂13 further
differentiates usage around midday and evening. Analogously to the situation for the Friday data,
the first eigenfunction φ̂21 for the Saturday data, depicted in Figure 6, also is similar to the mean
bike usage.

We applied the proposed additive functional regression with smooth backfitting method as
well as the functional linear model (FLM) and functional additive model (FAM) approaches to
the Capital Bike Share dataset, aiming to predict the Sunday total bike usage from the functional
profiles generated by the hourly count data observed for the preceding Friday and Saturday.
Figure 7 depicts the estimated component functions by the proposed method. In view of our
interpretation for the estimated eigenfunctions, the patterns of f̂11 and f̂21 in the top left and
bottom right panels indicate that the overall hourly profiles on Friday and Saturday are positively
and monotonously associated with daily bike usage on the following Sunday, noting that the
corresponding eigenfunctions φ̂11 and φ̂21 fall in roughly the same direction as the mean profile.
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Figure 4. Total daily bike pick-up counts for 104 Sundays (top left) and pick-up curves for the preceding
Fridays (top right) and Saturdays (bottom). The vertical grey line in the Sunday data (top left) indicates
January 1st, 2012.

The second component function for the Friday usage profile f̂12 in the top right panel is non-
linear and shows that only negative functional principal components as predictor scores have
a positive effect on Sunday bike usage, but that this effect tapers off as the predictor score in-
creases beyond 0. In view of the shape of φ̂12 in Figure 5, this indicates that substantially larger
bike usage in the morning and reduced bike usage over noon on the preceding Friday is associ-
ated with increased bike usage on Sunday, as these features are associated with a negative value
of ξ̂ i

12. The third additive function f̂13 for the Friday predictor profile in the bottom left panel is
monotonously declining, and viewing it in conjunction with the shape of φ̂13 suggests that rela-
tively more evening bike usage on Fridays, which probably is related to leisure use, relatively to
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Figure 5. Estimated covariance function of bike usage for Fridays (top left) and its first (top right), second
(bottom left) and third (bottom right) eigenfunction. The fraction of variance explained (FVE) by each of
these three eigencomponents is 83.9%, 5.9% and 5.0%, respectively.

morning and mid day use, which probably is related to work usage, is associated with increased
subsequent Sunday bike usage.

We also observe that the additive functions except for the second component of Friday have
an overall linear trend, which suggest that the FLM might also work well for this functional
regression problem. Using all the data, we found that the prediction performance of the FLM
approach was similar to that of the proposed method, as

√
MSPE = 1143.3 for the proposed

method and
√

MSPE = 1145.2 for the FLM, based on 10-fold CV. In contrast, the prediction
error of the FAM was

√
MSPE = 1815.6, which suggests that FAM is strongly biased for this

prediction task, as it assumes independent predictor scores, an assumption that is violated for
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Figure 6. Estimated covariance function of bike usage for Saturdays (left) and its first eigenfunction (right).
The fraction of variance explained (FVE) by the first eigencomponent is 90.2%.

these data. For the naive prediction made by the mean of the Sunday counts in the training
sample,

√
MSPE = 1901.7.

The left panel of Figure 8 plots the predicted counts versus the observed ones. The three
circled cases are outlying in the scatter plot. The circled case in the upper left area corresponds
to the Sunday count on August 28, 2011. It was right after the Saturday when the hurricane
“Irene” hit Washington, DC, so that the prediction is likely off for this reason. The circled case
on the bottom right represents the count on October 7, 2012, right before Columbus Day, which
probably also upended the prediction. The circled data point in the middle right area is for the
2012 George Washington Running Classic in Arlington and Alexandria, Virginia, which also
likely affected bike usage on that Saturday. If we remove these three outliers from the data, we
obtain the prediction results as depicted in the right panel of Figure 8, and the prediction accuracy
was much improved, with

√
MSPE = 819.1 for our method,

√
MSPE = 861.4 for FLM and√

MSPE = 1348.2 for FAM.

6. Technical details

We may estimate the mean functions μj by X̄j = n−1 ∑n
i=1 Xj and these estimates will have

the parametric
√

n rate of convergence to μj . Thus, we assume without loss of generality that
μj ≡ 0 and neglect their estimation. As mentioned earlier, we consider in our asymptotic analy-
sis the theoretical estimators f̂ ∗

jk that use the true unknown FPC scores ξ i
jk . Below, we introduce

some terminology for related terms. We let f̂ ∗
0 , p̂∗I

0 , p̂∗I
jk , p̂∗I

jk,j ′k′ and f̃ ∗
jk , respectively, denote

versions of f̂0, p̂I
0 , p̂I

jk , p̂I
jk,j ′k′ and f̃jk defined in Section 2.3 with ξ̂ i

jk being replaced by ξ i
jk .

The theoretical estimators f̂ ∗
jk are then defined to be the solution of a version of (13) subject to
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Figure 7. Estimated component functions f̂11 (top left), f̂12 (top right), f̂13 (bottom left) and f̂21 (bottom
right) by our method applied to the bike rental data.

a version of (14), with f̂0, p̂I
jk , p̂I

jk,j ′k′ and f̃jk being replaced by f̂ ∗
0 , p̂∗I

jk , p̂∗I
jk,j ′k′ and f̃ ∗

jk , re-

spectively. The corresponding theoretical versions of the r th update f̂
[r]
jk are defined analogously

for the backfitting iteration (15).

We write Ki
jk(u) = Khjk

(u, ξ̂ i
jk), K∗i

jk(u) = Khjk
(u, ξ i

jk), I
i = I(ξ̂

i ∈ I ) and I
∗i = I(ξ i ∈ I ).

Let εi = Y i − ∑d
j=1

∑Lj

k=1 fjk(ξ
i
jk) and define

f̃ A
jk(u) = 1

p̂I
0 p̂I

jk(u)
n−1

n∑
i=1

Ki
jk(u)Iiεi ,
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Figure 8. Prediction results for the proposed additive method and the FLM approach, where circles mark
outliers, as described in the text.

f̃ B
jk(u) = 1

p̂I
0 p̂I

jk(u)
n−1

n∑
i=1

Ki
jk(u)Ii

[
fjk

(
ξ i
jk

) − fjk(u)
]
, (19)

f̃ C
jk,j ′k′(u) = n−1

n∑
i=1

Ki
jk(u)Ii

∫ 1

0
Ki

j ′k′(v)
[
fj ′k′

(
ξ i
j ′k′

) − fj ′k′(v)
]
dv.

Likewise, define f̃ ∗A
jk , f̃ ∗B

jk and f̃ ∗C
jk,j ′k′ , replacing p̂I

0 , p̂I
jk , Ii , Ki

jk , Ki
j ′k′ in the definitions of

f̃ A
jk , f̃ B

jk and f̃ C
jk,j ′k′ by p̂∗I

0 , p̂∗I
jk , I∗i , K∗i

jk , K∗i
j ′k′ , respectively. Note that we have fjk(ξ

i
jk) and

fj ′k′(ξ i
j ′k′), instead of fjk(ξ̂

i
jk) and fj ′k′(ξ̂ i

j ′k′), in the definitions of f̃ B
jk and f̃ C

jk,j ′k′ .

6.1. Preliminary results

Here, we present two lemmas for the approximation of some relevant terms in the analysis of the
backfitting equations. The lemmas are based on Proposition 1 in Section 3.1.

Lemma 1. Under the conditions (A1)–(A6), we have

p̂I
0 − p̂∗I

0 = Op

(
n−(β−1)/(2β)

)
,

sup
u∈[0,1]

∣∣p̂I
jk(u) − p̂∗I

jk (u)
∣∣ = Op

(
n−(3β−5)/(10β)

)
for all j, k,

sup
u,v∈[0,1]

∣∣p̂I
jk,j ′k′(u, v) − p̂∗I

jk,j ′k′(u, v)
∣∣ = Op

(
n−(3β−5)/(10β)

)
for all

(
j ′, k′) �= (j, k).
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Proof. For the proof of the first claim, we may assume that maxi,j,k |ξ̂ i
jk −ξ i

jk| ≤ C0n
−(β−1)/(2β)

for some positive constant C0, due to Proposition 1. Define In = IL
n /IS

n , where

IL
n = {

u : −C0n
−(β−1)/(2β) ≤ ujk ≤ 1 + C0n

−(β−1)/(2β),1 ≤ j ≤ d,1 ≤ k ≤ Lj

}
,

I S
n = {

u : C0n
−(β−1)/(2β) ≤ ujk ≤ 1 − C0n

−(β−1)/(2β),1 ≤ j ≤ d,1 ≤ k ≤ Lj

}
.

The volume of In in R
L1+···+Ld is of order n−(β−1)/(2β). Thus, we have

∣∣p̂I
0 − p̂∗I

0

∣∣ ≤ n−1
n∑

i=1

I
(
ξ i ∈ In

) = Op

(
n−(β−1)/(2β)

)
.

Among the last two claims of the lemma, we only prove the third one. The second one follows
by similar arguments. From the condition (A2) and Proposition 1, we get

sup
u∈[0,1]

∣∣Ki
jk(u) − K∗i

jk(u) − (
ξ̂ i
jk − ξ i

jk

)
K ′

hjk

(
u, ξ i

jk

)∣∣ ≤ L
(
ξ̂ i
jk − ξ i

jk

)2
h−3

jk (20)

for all 1 ≤ i ≤ n, where L > 0 is an absolute constant and K ′
g(u, v) = ∂Kg(u, v)/∂v. We also

obtain

sup
u∈[0,1]

n−1
n∑

i=1

∣∣K∗i
jk(u)

∣∣ = Op(1),

sup
u∈[0,1]

n−1
n∑

i=1

∣∣K ′
hjk

(
u, ξ i

jk

)∣∣ = Op

(
h−1

jk

)
,

(21)

sup
u,v∈[0,1]

n−1
n∑

i=1

∣∣K ′
hjk

(
u, ξ i

jk

)
K∗i

j ′k′(v)
∣∣ = Op

(
h−1

jk

)
,

sup
u,v∈[0,1]

n−1
n∑

i=1

∣∣K ′
hjk

(
u, ξ i

jk

)
K ′

hj ′k′
(
v, ξ i

j ′k′
)∣∣ = Op

(
h−1

jk h−1
j ′k′

)
.

From (20) and (21), we can deduce

n−1
n∑

i=1

Ki
jk(u)Ki

j ′k′(v)Ii = n−1
n∑

i=1

K∗i
jk(u)K∗i

j ′k′(v)Ii + Op

(
n−(3β−5)/(10β)

)

uniformly for u,v ∈ [0,1]. Now, assuming maxi,j,k |ξ̂ i
jk − ξ i

jk| ≤ C0n
−(β−1)/(2β) as in the proof

of the first claim and making the following approximation completes the proof of the third part
of the lemma:

n−1
n∑

i=1

K∗i
jk(u)K∗i

j ′k′(v)
∣∣Ii − I

∗i
∣∣ ≤ n−1

n∑
i=1

K∗i
jk(u)K∗i

j ′k′(v)I
(
ξ i ∈ In

)
(22)

= Op

(
n−(β−1)/(2β)+(1/5)

) = Op

(
n−(3β−5)/(10β)

)
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uniformly for u,v ∈ [0,1]. �

Lemma 2. Under the conditions (A1)–(A6), we have

sup
u∈[0,1]

∣∣f̃ A
jk(u) − f̃ ∗A

jk (u)
∣∣ = Op

(
n−(11β−5)/(20β)(logn)1/2) for all j, k,

sup
u∈[0,1]

∣∣f̃ B
jk(u) − f̃ ∗B

jk (u)
∣∣ = Op

(
n−(β−1)/(2β)

)
for all j, k,

sup
u∈[0,1]

∣∣f̃ C
jk,j ′k′(u) − f̃ ∗C

jk,j ′k′(u)
∣∣ = Op

(
n−(β−1)/(2β)

)
for all

(
j ′, k′) �= (j, k).

Proof. We prove the first and third parts only. The second part follows by the arguments used in
the proof of the third part. For the first part, we note that from (20)

n−1
n∑

i=1

Ki
jk(u)Iiεi = n−1

n∑
i=1

K∗i
jk(u)Iiεi + n−1

n∑
i=1

(
ξ̂ i
jk − ξ i

jk

)
K ′

hjk

(
u, ξ i

jk

)
I
iεi

(23)
+ Op

(
n−(9β−10)/(10β)

)
uniformly for u ∈ [0,1]. By an application of an exponential inequality conditioning on (Xi :
1 ≤ i ≤ n) and the use of Proposition 1, we may show that the second term on the right-hand
side of (23) is of order Op(n−1/2h

−3/2
jk (logn)1/2n−(β−1)/(2β)) = Op(n−(7β−5)/(10β)(logn)1/2)

uniformly for u ∈ [0,1]. Similarly,

n−1
n∑

i=1

K∗i
jk(u)

(
I
i − I

∗i
)
εi = Op

(
n−1/2h−1

jk n−(β−1)/(4β)(logn)1/2)

uniformly for u ∈ [0,1], where we have used

n−1
n∑

i=1

K∗i
jk(u)2(

I
i − I

∗i
)2 = Op

(
h−2

jk n−(β−1)/(2β)
)

uniformly for u ∈ [0,1]. This completes the proof of the first part.
To prove the third part, we replace Ki

jk(u) in f̃ C
jk,j ′k′(u) at (19) by its approximation

K∗i
jk(u)+ (ξ̂ i

jk − ξ i
jk)K

′
hjk

(u, ξ i
jk)+ (remainder), with the remainder being of order n−(2β−5)/(5β)

uniformly for u ∈ [0,1]. Likewise, we replace Ki
j ′k′(v) in f̃ C

jk,j ′k′(u) by similar terms. This gives

a decomposition of f̃ C
jk,j ′k′(u) − f̃ ∗C

jk,j ′k′(u) into several terms. The three leading terms are

I + II + III ≡ n−1
n∑

i=1

K∗i
jk(u)Ii

(
ξ̂ i
j ′k′ − ξ i

j ′k′
)∫ 1

0
K ′

hj ′k′
(
v, ξ i

j ′k′
)[

fj ′k′
(
ξ i
j ′k′

) − fj ′k′(v)
]
dv

+ n−1
n∑

i=1

K ′
hjk

(
u, ξ i

jk

)
I
i
(
ξ̂ i
jk − ξ i

jk

)∫ 1

0
K∗i

j ′k′(v)
[
fj ′k′

(
ξ i
j ′k′

) − fj ′k′(v)
]
dv
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+ n−1
n∑

i=1

K∗i
jk(u)

(
I
i − I

∗i
)∫ 1

0
K∗i

j ′k′(v)
[
fj ′k′

(
ξ i
j ′k′

) − fj ′k′(v)
]
dv.

All others are of smaller order. Using the third property of (21) and the fact that∣∣K ′
hj ′k′

(
v, ξ i

j ′k′
)(

fj ′k′
(
ξ i
j ′k′

) − fj ′k′(v)
)∣∣ ≤ Chj ′k′K ′

hj ′k′
(
v, ξ i

j ′k′
)

(24)

for some constant C > 0, we get that both I and II are of order Op(n−(β−1)/(2β)) uniformly
for u ∈ [0,1]. Note that (24) also holds with K∗i

j ′k′(v) replacing K ′
hj ′k′ (v, ξ i

j ′k′). This together

with (22) gives III = Op(n−(β−1)/(2β)) uniformly for u ∈ [0,1]. This completes the proof of the
lemma. �

6.2. Proof of Theorem 1

Define linear operators

πjk(g) =
∫

I−jk

g(u)
pI (u)

pI
jk(ujk)

du−jk,

and likewise π̂jk and π̂∗
jk , respectively, replacing (pI ,pI

jk) by (p̂I , p̂I
jk) and (p̂∗I , p̂∗I

jk ), where

pI (u) = p(u)/pI
0 , p̂I (u) = p̂(u)/p̂I

0 and p̂∗I (u) = p̂∗(u)/p̂∗I
0 . Define a linear operator

T = (I − πd,Ld
)(I − πd,Ld−1) · · · (I − π1,2)(I − π1,1),

and likewise T̂ and T̂ ∗ with πjk being replaced by π̂jk and π̂∗
jk , respectively. For a linear operator

F that maps the space of additive functions to itself, we define its norm ‖F‖ by

‖F‖2 = sup

{∫
F(g)(u)2pI (u) du : g is additive and

∫
g(u)2pI (u) du = 1

}
.

Then, along the lines of the proof of Theorem 1 in Mammen, Linton and Nielsen [16] it can be
proved that ∥∥T̂ ∗ − T

∥∥ = op(1), ‖T ‖ < γ (25)

for some constant 0 < γ < 1.
Next, we define

f̃⊕ = f̃d,Ld
+ (I − π̂d,Ld

)f̃d,Ld−1 + (I − π̂d,Ld
)(I − π̂d,Ld−1)f̃d,Ld−2

(26)
+ · · · + (I − π̂d,Ld

) · · · (I − π̂1,2)f̃1,1

and likewise f̃ ∗⊕ with π̂jk being replaced by π̂∗
jk . With the additive functions

f̂+(u) ≡
d∑

j=1

Lj∑
k=1

f̂jk(ujk), f̂ ∗+(u) ≡
d∑

j=1

Lj∑
k=1

f̂ ∗
jk(ujk),
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f̂
[r]
+ (u) ≡

d∑
j=1

Lj∑
k=1

f̂
[r]
jk (ujk), f̂

∗[r]
+ (u) ≡

d∑
j=1

Lj∑
k=1

f̂
∗[r]
jk (ujk),

the whole system of the backfitting equations at (13) and its theoretical version can be written as
f̂+ = f̃⊕ + T̂ f̂+ and f̂ ∗+ = f̃ ∗⊕ + T̂ ∗f̂ ∗+, respectively. It also follows that f̂

[r]
+ = f̃⊕ + T̂ f̂

[r−1]
+ and

f̂
∗[r]
+ = f̃ ∗⊕ + T̂ ∗f̂ ∗[r−1]

+ . Because of (25) and from the standard theory of smooth backfitting, the
theorem follows if we prove ‖T̂ − T̂ ∗‖ = op(1). The latter is a direct consequence of Lemma 1
since the second and third parts of the lemma imply ‖π̂jk − π̂∗

jk‖ = Op(n−(3β−5)/(10β)) = op(1).

6.3. Proof of Theorem 2

We assume f0 = 0 and ignore f̂0 and f̂ ∗
0 in the backfitting equation (13) and its theoretical

version, respectively. This is justified since f̂ ∗
0 − f0 is of order n−1/2 and f̂0 − f̂ ∗

0 is of order
n−(β−1)/(2β) = o(n−2/5) if β > 5.

The main idea of the proof is to extract the key stochastic terms from f̃jk , put them into the
smooth backfitting operation together with f̂jk and then prove that the estimation of the FPC
scores ξ i

jk by ξ̂ i
jk has a negligible effect on the resulting smooth backfitting equation. Indeed,

with those terms defined in (19) we may express the backfitting equation (13) as follows.

f̂jk(u) = fjk(u) + f̃ A
jk(u) + f̃ B

jk(u) + 1

p̂I
0 p̂I

jk(u)

∑
(j ′,k′)�=(j,k)

f̃ C
jk,j ′k′(u)

(27)

−
∑

(j ′,k′)�=(j,k)

∫ 1

0

[
f̂j ′k′(v) − fj ′k′(v)

] p̂I
jk,j ′k′(u, v)

p̂I
jk(u)

dv.

For the equation (27), we have used
∫

Ki
jk(u) du = 1. We take some parts of f̃ C

jk,j ′k′(u) and put
them into the integral term in (27) and then approximate the solution of the resulting backfitting
equation to get

f̂jk(u) = fjk(u) + f̃ ∗A
jk (u) + hjk

ajk(u)

μ0,jk(u)
+ 1

2
h2

jkμ2f
′′
jk(u) + �jk(u) + rjk(u). (28)

Here and below, μl,jk(z) = h−l
jk

∫
(w − z)lKhjk

(z,w)dw and ajk(z) = μ1,jk(z)f
′
jk(z). The re-

mainder rjk denotes a generic stochastic term such that

sup
u∈[2hjk,1−2hjk]

∣∣rjk(u)
∣∣ = op

(
n−2/5), sup

u∈[0,1]
∣∣rjk(u)

∣∣ = Op

(
n−2/5).

Also, the tuple (�jk : 1 ≤ j ≤ d,1 ≤ k ≤ Lj) is defined to be the solution of the system of
equations

�jk(u) = �̃jk(u) −
∑

(j ′,k′)�=(j,k)

∫ 1

0
�j ′k′(v)

pI
jk,j ′k′(u, v)

pI
jk(u)

dv (29)
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subject to ∫ 1

0
�jk(u)pI

jk(u) du = μ2h
2
jk

∫ 1

0
f ′

jk(u)
∂

∂u
pI

jk(u) du, (30)

where μl = ∫
ulK(u)du and

�̃jk(u) = μ2

d∑
j ′=1

Lj ′∑
k′=1

h2
j ′k′E

[
f ′

j ′k′(ξj ′k′)
p

(1)

j ′k′(ξ)

p(ξ)

∣∣∣∣ξjk = u, ξ ∈ I

]
.

The tuple that satisfies the system of equations (29) is unique up to an additive constant vec-
tor. This can be seen from the fact that replacing �jk(u) by �jk(u) + c on the left-hand side
and �j ′k′(v) by �j ′k′(v) − c for a particular (j ′, k′) on the right-hand side gives another solu-
tion. With the constraints at (30), however, the tuple (�jk : 1 ≤ j ≤ d,1 ≤ k ≤ Lj ) is uniquely
determined.

The first part of the theorem follows immediately from (28) since f̃ ∗A
jk for different pairs

(j, k) are asymptotically independent and n2/5(f̃ ∗A
jk (u) − fjk(u)) converges in distribution to

N(0, σ 2
jk(u)). For the second part of the theorem, we note

∥∥f̃ ∗A
jk

∥∥ = Op

(
n−2/5), sup

u∈[0,1]
∣∣f̃ ∗A

jk (u)
∣∣ = Op

(
n−2/5

√
logn

)

from standard results of kernel smoothing. Since we also have ajk(u) = 0 for u ∈ [2hjk,1 −
2hjk] and supu∈[0,1] |ajk(u)| = O(1), the second part of the theorem follows from (28). We now
prove (28). The proof is decomposed into several steps.

Approximation of f̃ C
jk,j ′k′(u): First of all, we note from Lemma 2 that f̃ C

jk,j ′k′(u) =
f̃ ∗C

jk,j ′k′(u) + op(n−2/5) uniformly for u ∈ [0,1]. To approximate f̃ ∗C
jk,j ′k′(u) further, define

δi
jk =

∫ [
fjk

(
ξ i
jk

) − fjk(z)
]
Ki

jk(z) dz.

Then, f̃ ∗C
jk,j ′k′(u) = n−1 ∑n

i=1 δi
j ′k′I∗iK∗i

jk(u). Using standard results for kernel smoothing, it can
be shown that

sup
u∈[0,1]

∣∣∣∣∣n−1
n∑

i=1

[
δi
j ′k′ − E

(
δi
j ′k′ |ξ i

jk, I
∗i

)]
K∗i

jk(u)I∗i

∣∣∣∣∣ = Op

(
n−3/5

√
logn

)
. (31)

We compute E(δi
j ′k′ |ξ i

jk = v, ξ i ∈ I ). We note that μl,jk(z) = 0 for z ∈ [2hjk,1 − 2hjk] if l is
an odd positive integer and the baseline kernel K is symmetric. Let bjk(z) = μ2f

′′
jk(z)/2 and

cjk,j ′k′(v, z) = μ2f
′
j ′k′(z)pI

jk,j ′k′(v, z)−1∂pI
jk,j ′k′(v, z)/∂z.
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By expanding fjk(w) − fjk(z) and the conditional density pI
jk,j ′k′(v,w)/pI

jk(v) for w near z,
we get

E
(
δi
j ′k′ |ξ i

jk = v, ξ i ∈ I
) =

∫ 1

0

pI
jk,j ′k′(v, z)

pI
jk(v)

[
hj ′k′aj ′k′(z) + h2

j ′k′bj ′k′(z)

+ h2
j ′k′cjk,j ′k′(v, z)

]
dz + op

(
n−2/5)

uniformly for u ∈ [0,1]. For this, we have used the formula

E
[
g(ξ)|ξjk = ujk, ξ ∈ I

] =
(∫

I−jk

p(u) du−jk

)−1 ∫
I−jk

g(u)p(u) du−jk (32)

for ujk ∈ [0,1]. This together with (31) gives that, uniformly for u ∈ [0,1],

f̃ ∗C
jk,j ′k′(u) = n−1

n∑
i=1

E
(
δi
j ′k′ |ξ i

jk, I
∗i

)
I
∗iK∗i

jk(u) + op

(
n−2/5)

= n−1
n∑

i=1

I
∗i

∫ 1

0

pI
jk,j ′k′(ξ i

jk, z)

pI
jk(ξ

i
jk)

[
hj ′k′aj ′k′(z) + h2

j ′k′bj ′k′(z) (33)

+ h2
j ′k′cjk,j ′k′(u, z)

]
K∗i

jk(u) dz + op

(
n−2/5).

We further approximate the main term on the right-hand side of (33). From (32), we get

E
(
K∗i

j ′k′(z)|ξ i
jk, I

∗i
) =

∫ 1

0
Khj ′k′ (z,w)

pI
jk,j ′k′(ξ i

jk,w)

pI
jk(ξ

i
jk)

dw. (34)

Note that ajk(z) = O(1), bjk(z) = O(1) and cjk,j ′k′(u, z) = O(1) uniformly for u, z ∈ [0,1].
Also, ajk(z) = 0 for z ∈ [2hjk,1 − 2hjk]. Thus, from (34) the main term on the right-hand side
of (33) equals IV + V + op(n−2/5) uniformly for u ∈ [0,1], where

IV = p̂∗I
0

∫ 1

0

[
hj ′k′

aj ′k′(z)

μ0,j ′k′(z)
+ h2

j ′k′bj ′k′(z) + h2
j ′k′cjk,j ′k′(u, z)

]
p̂∗I

jk,j ′k′(u, z) dz,

V = −n−1
n∑

i=1

I
∗i

∫ 1

0

[
hj ′k′

aj ′k′(z)

μ0,j ′k′(z)
+ h2

j ′k′bj ′k′(z) + h2
j ′k′cjk,j ′k′(u, z)

]
(35)

× [
K∗i

j ′k′(z) − E
(
K∗i

j ′k′(z)|ξ i
jk, I

∗i
)]

K∗i
jk(u) dz.

By Lemma 1, we may replace p̂∗I
0 and p̂∗I

jk,j ′k′ by p̂I
0 and p̂I

jk,j ′k′ , respectively, in IV with an

approximation error op(n−2/5) uniformly for u ∈ [0,1]. Also, we get V = op(n−2/5) uniformly
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for u ∈ [0,1]. This gives

f̃ C
jk,j ′k′(u) = p̂I

0

∫ 1

0

[
hj ′k′

aj ′k′(z)

μ0,j ′k′(z)
+ h2

j ′k′bj ′k′(z) + h2
j ′k′cjk,j ′k′(u, z)

]
(36)

× p̂I
jk,j ′k′(u, z) dz + op

(
n−2/5)

uniformly for u ∈ [0.1].
Derivation of a new backfitting equation: From Lemma 2, we have f̃ B

jk(u) = f̃ ∗B
jk (u) +

op(n−2/5) uniformly for u ∈ [0,1]. Furthermore,

f̃ ∗B
jk (u) = hjk

ajk(u)

μ0,jk(u)
+ h2

jkbjk(u) + h2
jkcjk(u) + rjk(u), (37)

where cjk(u) = μ2f
′
jk(u)pI

jk(u)−1∂pI
jk(u)/∂u and rjk denotes a generic stochastic term defined

above. Then, (27), (36), (37) and Lemma 2 give

f̂jk(u) = fjk(u) + f̃ ∗A
jk (u) + hjk

ajk(u)

μ0,jk(u)
+ h2

jkbjk(u) + �̃jk(u)

−
∑

(j ′,k′)�=(j,k)

∫ 1

0

[
f̂j ′k′(v) − fj ′k′(v) − f̃ ∗A

j ′k′(v) − hj ′k′
aj ′k′(v)

μ0,j ′k′(v)
(38)

− h2
j ′k′bj ′k′(v)

]
p̂I

jk,j ′k′(u, v)

p̂I
jk(u)

dv + rjk(u).

In the above equation, we have used

sup
u∈[0,1]

∣∣∣∣
∫ 1

0
f̃ ∗A

j ′k′(v)
p̂I

jk,j ′k′(u, v)

p̂I
jk(u)

dv

∣∣∣∣ = op

(
n−2/5),

sup
u∈[0,1]

∣∣∣∣
∫ 1

0
cjk,j ′k′(u, v)

(
p̂I

jk,j ′k′(u, v)

p̂I
jk(u)

− pI
jk,j ′k′(u, v)

pI
jk(u)

)
dv

∣∣∣∣ = op(1),

which are due to Lemma 1 and standard results for kernel smoothing. With

�̂jk(u) ≡ f̂jk(u) − fjk(u) − f̃ ∗A
jk (u) − hjk

ajk(u)

μ0,jk(u)
− h2

jkbjk(u) − rjk(u),

(38) implies that, up to a remainder that is uniformly of order op(n−2/5), the tuple (�̂jk : 1 ≤
j ≤ d,1 ≤ k ≤ Lj ) satisfies the system of integral equations

�̂jk(u) = �̃jk(u) −
∑

(j ′,k′)�=(j,k)

∫ 1

0
�̂j ′k′(v)

p̂I
jk,j ′k′(u, v)

p̂I
jk(u)

dv. (39)
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Approximation of �̂jk(u): We prove

�̂jk(u) = �jk(u) + rjk(u). (40)

Define �⊕ as f̃⊕ at (26) with f̃jk and π̂jk , respectively, being replaced by �̃jk and πjk . Also,
define �̂⊕ with only f̃jk being replaced by �̃jk . For

�̂+(u) ≡
d∑

j=1

Lj∑
k=1

�̂jk(ujk), �+(u) ≡
d∑

j=1

Lj∑
k=1

�jk(ujk),

the backfitting equations (39) and (29) can be written as �̂+ = �̂⊕ + T̂ �̂+ and �+ = �⊕ +
T �+, respectively. Since supu∈[0,1] |�̃jk(u)| = O(n−2/5), and �̂⊕ differs from �⊕ only in that
it uses π̂jk instead of πjk , it follows from Lemma 1 that

sup
u∈I0

∣∣�̂⊕(u) − �⊕(u)
∣∣ = op

(
n−2/5), (41)

where I0 = {u : 2hjk < ujk < 1 − 2hjk,1 ≤ j ≤ d,1 ≤ k ≤ Lj }. From (25) and the fact ‖T̂ −
T̂ ∗‖ = op(1), we also have ‖T̂ − T ‖ = op(1) and ‖T ‖ < 1. These with (41) entail

sup
u∈I0

∣∣�̂+(u) − �+(u)
∣∣ = op

(
n−2/5), sup

u∈I

∣∣�̂+(u) − �+(u)
∣∣ = Op

(
n−2/5),

so that

�̂jk(u) = �jk(u) + n−2/5Cjk + rjk(u) (42)

for some random variables Cjk such that
∑d

j=1
∑Lj

k=1 Cjk = op(1). Below we prove Cjk =
op(1) for all j and k. This establishes (40).

From the definition of �̂jk , its expansion at (42) and the constraints for f̂jk at (14), we have

0 =
∫ 1

0
fjk(u)p̂I

jk(u) du + hjk

∫ 1

0

ajk(u)

μ0,jk(u)
p̂I

jk(u) du

(43)

+ 1

2
h2

jkμ2

∫ 1

0
f ′′

jk(u)pI
jk(u) du +

∫ 1

0
�jk(u)pI

jk(u) du + n−2/5Cjk + op

(
n−2/5).

Here, we have used Lemma 1 and the fact that supu∈[0,1] |�jk(u)| = O(n−2/5). Using∫
Khjk

(u, v) du = 1 for all v ∈ [0,1], we get

∫ 1

0
fjk(u)p̂I

jk(u) du = n−1
n∑

i=1

I
i

∫ 1

0

[
fjk(u) − fjk

(
ξ i
jk

)]
Khjk

(
u, ξ̂ i

jk

)
du/p̂I

0

+ n−1
n∑

i=1

I
ifjk

(
ξ i
jk

)
/p̂I

0 .
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The second term on the right-hand side of the above equation is of order n−(β−1)/(2β). This is
due to the constraint (9), n−1 ∑n

i=1 |Ii − I
∗i | = Op(n−(β−1)/(2β)) and

n−1
n∑

i=1

I
∗i

[
fjk

(
ξ i
jk

) − E
(
fjk

(
ξ i
jk

)|ξ i ∈ I
)] = Op

(
n−1/2).

For the first term, denoted by VI, we get

VI = n−1
n∑

i=1

I
∗i

∫ 1

0

[
fjk(u) − fjk

(
ξ i
jk

)]
Khjk

(
u, ξ i

jk

)
du/p̂∗I

0 + op

(
n−2/5)

=
∫ 1

0

[
fjk(u) − fjk(v)

]
Khjk

(u, v)pI
jk(v) dv du + op

(
n−2/5)

= −hjk

∫ 1

0
ajk(u)pI

jk(u) du − 1

2
h2

jkμ2

∫ 1

0
f ′′

jk(u)pjk(u) du

− h2
jkμ2

∫ 1

0
f ′

jk(u)
∂

∂u
pI

jk(u) du + op

(
n−2/5).

In the first approximation of VI , we have used Proposition 1 and Lemma 1. We also have

hjk

∫ 1

0

ajk(u)

μ0,jk(u)
p̂I

jk(u) du = hjk

∫ 1

0
ajk(u)pI

jk(u) du + op

(
n−2/5).

These approximations of the terms in (43) and the constraint of �jk at (30) give Cjk = op(1).
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