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The asymptotic theory for the sample mean of a marked point process in d dimensions is established,
allowing for the possibility that the underlying Poisson point process is inhomogeneous. A novel local
block bootstrap method for resampling inhomogeneous Poisson marked point processes is introduced, and
its consistency is proven for the sample mean and related statistics. Finite-sample simulations are carried
out to complement the asymptotic results, and demonstrate the feasibility of the proposed methodology.
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1. Introduction

The literature is vast with resampling methods for data observed at regularly spaced points in
time and/or space; see Lahiri [15] or Politis, Romano, and Wolf [25] for an overview. However,
in many applied settings such as queuing theory, spatial statistics, mining and geostatistics, and
meterology, the observations typically occur at non-lattice, irregularly spaced points.

The most common assumption for the occurrence of irregularly spaced data is that of a Poisson
process which we also adopt. Another central assumption that we will adopt throughout is that the
locations of our points are independent of the associated measurements – also called “marks” –
at these locations. Karr [11] provides some justification for both above mentioned assumptions,
and puts together a complete asymptotic theory for the sample mean of a homogeneous Poisson
process with wide-sense stationary marks.

To elaborate, the mathematical set-up that we adopt goes as follows.

• Let {X(t) for t ∈ R
d} be a real-valued, strictly stationary random field in the continu-

ous, d-dimensional parameter t; denote μ = EX(t) and R(t) = Cov(X(s),X(s + t)) =
Cov(X(0),X(t)) which are assumed finite.

• Let {N(t) for t ∈R
d} be an inhomogeneous Poisson point process with rate λ(t). The point

process {N(t)} is assumed to be independent of the random field {X(t)}.
• Let τ1, τ2, . . . , τN(K) denote the points generated by {N(t)} inside the observation region K

that will be assumed to be a compact, convex subset of Rd .
• The pairs (X(τi),N(τi)) for i = 1, . . . ,N(K) constitute our observed data from an inho-

mogeneous Marked Point Process.
• Let |K| denote the volume of K , and diam(K) the supremum of the diameters of all l∞ balls

contained in K ; so if K is a rectangle, diam(K) is its smallest dimension. All asymptotic
results to be discussed in this paper will be taken under the condition diam(K) → ∞.
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• To avoid possible pitfalls, we will also assume that the observation region K expands in
a “nested” way as diam(K) → ∞, that is, that diam(K) < diam(K ′) has as a necessary
implication that K ⊂ K ′.

Consider the problem of estimation of the mean μ = EX(t) based on the above marked point
process data. A natural estimator is the sample mean,

�XK = 1

N(K)

∫
K

X(t)N(dt).

Note that the denominator includes a random quantity, N(K), which causes difficulties. To start
with, one may adopt the convention that 0/0 = 1. In any case, it is easier to work with the “proxy”
sample mean defined as

X̃K = 1

�(K)

∫
K

X(t)N(dt),

where we denote �(K) = E[N(K)]. In the above, N(dt) acts as a counting measure so each of
the above integrals is really just a sum over the observed values of N , namely the τi , which are
themselves random, that is, we can write

�XK = 1

N(K)

N(K)∑
i=1

X(τi) and X̃K = 1

�(K)

N(K)∑
i=1

X(τi).

Note that X̃K is not a proper statistic unless �(K) is known which is unrealistic since the
rate λ(t) is typically unknown. The sample mean �XK is the statistic of choice; X̃K can serve
as a “proxy” for �XK in terms of analyzing some theoretical properties. For the longest time, it
was thought that �XK and X̃K are asymptotically equivalent. However, this is only true when
μ = 0; see Garner and Politis [6]. Still, the asymptotic normality of �XK can be inferred from the
asymptotic normality of X̃K although the asymptotic variances are different. This is achieved in
Section 2 under standard moment and mixing conditions which are weaker than Brillinger’s [2]
cumulant summability conditions.

In Section 3, we show how existing methods for resampling homogeneous marked point pro-
cesses can be adapted to the inhomogeneous case when the dimension d is one. In Section 4, we
introduce the Local Block Bootstrap (LBB) procedure for general d-dimensional inhomogeneous
marked point processes data, and establish its validity for the sample mean and related statistics.
Finally, in Section 5 we compare the finite-sample performance of these methods. Technical
proofs are given in the appendix, and also in the supplement [5].

2. Basic asymptotic theory for an inhomogeneous Poisson
process

2.1. Background in the homogeneous case

Karr [11] explored the case where N is a homogeneous Poisson process and established the fact
that the quantities �XK and X̃K defined in Section 1 are consistent and asymptotically normal at
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rate
√|K| with the same asymptotic variance, where | · | denotes the Lebesgue measure (volume).

There is an error in Karr’s variance formula which was first noted by Politis, Paparoditis, and
Romano [24]; the error was formally corrected by Garner and Politis [6]. We state the corrected
version of Karr’s theorem below as it is the springboard for our extension to the inhomogeneous
setting.

In terms of notation,
∫

is short-hand for
∫
Rd , while

d−→ denotes convergence in distribution and
p−→ denotes convergence in probability.

Theorem 2.1 (Karr’s theorem–corrected). Assume that λ(t) = λ is constant, and that∫ ∣∣R(t)
∣∣dt < ∞. (2.1)

Also, assume 1√|K|
∫
K

(X(t) − μ)dt
d−→ N(0,

∫
R(t) dt) as diam(K) → ∞. Then, as

diam(K) → ∞, we have√|K|(X̃K − μ)
d−→ N

(
0, σ 2) and

√|K|(�XK − μ)
d−→ N

(
0, θ2),

where θ2 = ∫
K

R(y) dy + R(0)
λ

and σ 2 = θ2 + μ2

λ
.

2.2. Strong mixing coefficients

We shall assume that our random process {X(t), t ∈ R
d} satisfies a certain weak dependence

condition that will be quantified in terms of mixing coefficients. Let ρ(·, ·) denote the distance
in the l∞-norm on R

d . The strong mixing coefficients of Rosenblatt [27] are then defined as:

αX(k) ≡ sup
E1,E2⊂Rd

{∣∣P(A1 ∩ A2) − P(A1)P (A2)
∣∣ : Ai ∈ F(Ei), i = 1,2, ρ(E1,E2) ≥ k

}
,

where F(Ei) is the σ -algebra generated by {X(t), t ∈ Ei}. A random field is said to be α-strong
mixing provided that limk→∞αX(k) = 0.

In a similar manner, Bolthausen [1] defined mixing conditions that also depend on the size of
the sets considered, that is, he let

αX(k; l1, l2) ≡ sup
E1,E2⊂Rd

{∣∣P(A1 ∩ A2) − P(A1)P (A2)
∣∣ : Ai ∈ F(Ei), |Ei | ≤ li ,

i = 1,2, ρ(E1,E2) ≥ k
}
.

Note that αX(k; l1, l2) ≤ αX(k), and αX(k) = αX(k;∞,∞). Bolthausen [1] was able to prove
a Central Limit theorem (CLT) using conditions on the rate of decay of αX(k; l1, l2) with l1, l2
being finite (but allowed to grow with the sample size).
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Politis, Paparoditis, and Romano [23,24] defined a slightly weaker notion of mixing called ᾱ-
strong mixing via the coefficients

ᾱX(k; l) ≡ sup
{∣∣P(A1 ∩ A2) − P(A1)P (A2)

∣∣ : Ai ∈F(Ei), i = 1,2,

E2 = E1 + t, |E1| ≤ l, ρ(E1,E2) ≥ k
}
,

where the supremum is taken over all compact and convex sets E1 ⊂ R
d , and over all t ∈ R

d

such that ρ(E1,E1 + t) ≥ k. Also, we define ᾱX(k) = ᾱX(k;∞). Notice that ᾱX(k) ≤ αX(k), so
that if the random field is α-strong mixing, then it will necessarily be ᾱ-strong mixing. In the
case where we only wish to consider sets E1 and E2 consisting of a single point, a condition on
ᾱX(k;0) is in order.

More discussion and references on strong mixing coefficients can be found in Doukhan [3],
Roussas and Ioannides [28], and Ivanov and Leonenko [10].

2.3. The asymptotic distribution of the sample mean in the inhomogeneous
case

For our theoretical results, we will need a regularity condition on the inhomogeneous Poisson
process, as well as the usual mixing and moment assumptions on the process X(t).

Assumptions.

A.2.1 λ(t) is a continuous function such that 0 < λmin ≤ λ(t) ≤ λmax < ∞.
A.2.2 X(t) is strictly stationary with E[|X(t)|2+δ] < ∞ for some δ > 0.
A.2.3 ᾱX(k;0) < const. k−d−ε for some ε > 2d/δ for the δ specified in Assumption A.2.2.

A standard conditioning argument shows the following lemma.

Lemma 2.2. X̃K and �XK are both unbiased for μ.

The following lemma will allow us to compare X̃K and �XK later on.

Lemma 2.3. Assume A.2.1. Then, as diam(K) → ∞, N(K)
�(K)

p−→ 1.

We can now compute the large-sample variance of X̃K . Note that by Assumption A.2.1

1

�(K)

∫∫
KK

R(s − t)λ(s)λ(t) dsdt ≤ (λmax)
2|K|

�(K)

∫ ∞

−∞
∣∣R(u)

∣∣du.

By equation (2.1), the above upper bound is finite. Hence, we may define θ2 =
limdiam(K)→∞ 1

�(K)

∫∫
KK

R(s − t)λ(s)λ(t) dsdt assuming the limit exists.
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Theorem 2.4. Assuming A.2.1 and equation (2.1), we have that

Var
(√[

�(K)
]
X̃K

) → θ2 + R(0) + μ2 as diam(K) → ∞.

The proof of Theorem 2.4 is immediate noting that

E

[∫∫
KK

X(t)N(dt)X(s)N(ds)
]

=
∫∫

KK

E
[
X(t)X(s)

]
E

[
N(dt)N(ds)

]
and E[X(t)X(s)] = R(s − t) + μ2; here, we used the stationarity of X(·) and the independence
of X(·) and N(·). Since N(dt) is a Poisson(λ(t) dt) random variable, we have that

E
[
N(dt)N(ds)

] =
{

λ(t)λ(s) dtds, if t 
= s,(
λ(t) dt

)2 + λ(t) dt, if t = s,

from which it follows that

E

[∫∫
KK

X(t)N(dt)X(s)N(ds)
]

=
∫∫

KK

(
R(s − t) + μ2)λ(t)λ(s) dtds +

∫
K

(
R(0) + μ2)λ(t) dt

as required.
Our final goal for this section is to establish a CLT for the sample mean of our marked point

process. We will do this under the high-level condition that a CLT holds true for the underlying
continuous-time process, that is, that

1√
�(K)

∫
K

(
X(t) − μ

)
λ(t) dt

d−→ N
(
0, θ2) (2.2)

as diam(K) → ∞, where θ2 is the quantity appearing in Theorem 2.4. Note that the above
continuous-time CLT is guaranteed under standard mixing and moment conditions as the follow-
ing lemma shows.

Lemma 2.5. If there exists a δ > 0 such that Assumptions A.2.2 and A.2.3 hold, then equations
(2.1) and (2.2) hold true.

Different sufficient conditions for equations (2.1) and (2.2) can also be found in Rozanov [29].
As mentioned before, Bolthausen [1] proved a CLT for a discrete-parameter random field using
conditions on the rate of decay of αX(k; l1, l2) with l1, l2 being finite but allowed to grow with
the sample size; it is conjectured that an identical result would hold for the continuous-parameter
random field under consideration.

As mentioned in the Introduction, �XK and X̃K are asymptotically equivalent when μ = 0; this
is the subject of the following lemma whose proof is analogous to the one given in Garner and
Politis [6].
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Lemma 2.6. Assume equations (2.1) and (2.2). If μ = 0, then√
�(K)(�XK − X̃K)

p−→ 0 as diam(K) → ∞.

Our main result in this section now follows.

Theorem 2.7. Assuming A.2.1, and equations (2.1) and (2.2), then√
�(K)(X̃K − μ)

d−→ N
(
0, σ 2) and

√
�(K)(�XK − μ)

d−→ N
(
0, φ2),

as diam(K) → ∞, where φ2 = θ2 + R(0) and σ 2 = φ2 + μ2.

Theorem 2.7 is the extension of Theorem 2.1 to the inhomogeneous case. The reason we are
able to extend results from the homogeneous setting to the inhomogeneous setting is due to the
generality of Campbell’s theorem [12] (stated below) which applies to both homogeneous and
inhomogeneous point processes alike.

Theorem 2.8 (Campbell’s theorem [12]). Let N be a Poisson process on K with rate λ(t),
and let the function f (t) : K → R be measurable. Then the sum S = ∑N(K)

i=1 f (τi) is absolutely
convergent in probability if and only if

∫
K

min(|f (t)|,1)λ(t) dt < ∞. If this condition holds, then

E
[
eθS

] = exp

{∫
K

(
eθf (t) − 1

)
λ(t) dt

}
for any complex θ for which the above integral converges.

Moreover, E[S] = ∫
K

f (t)λ(t) dt in the sense that the expectation exists if and only if the inte-
gral converges, and they are equal. If the expected value exists, then Var[S] = ∫

K
[f (t)]2λ(t) dt,

be that finite or infinite.

Remark 2.9. Lahiri [14] has proven a CLT for irregularly sampled random processes that is
closely related to our Theorem 2.7. Lahiri’s [14] results are quite general, and in particular allow
for the possibility of partially “in-fill” asymptotics. However, the assumptions and sampling set-
up of Lahiri’s [14] CLT deviate from the classical set-up of a random process sampled by an
independent Poisson point process over an expanding domain that we adopt here.

To elaborate, Lahiri [14] assumes that a (nonrandom) number, say n, of sampling points
τ1, . . . , τn are generated by an arbitrary probability density, say fL(·), over a finite domain, say
KL, that can be then “inflated”, that is, scaled up, so that it matches our expanding domain K .
Consequently, equation (3.4) of Lahiri [14] gives an asymptotic variance for the sample mean
that depends on the autocovariance function R(·) as well as the quantity

∫
f 2

L(τ) dτ . Not sur-
prisingly, the quantity φ2 appearing in our Theorem 2.7 depends instead on R(·) and the rate
λ(·).

Hence, to use the CLT of Lahiri [14] in practice, one has to estimate R(·) and f 2
L(·) from the

data at hand; by contrast, to employ Theorem 2.7 one has to estimate R(·) and λ(·). Both of these
procedures are quite cumbersome for a task that is as simple as computing a standard error for
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the mean. It is for this purpose that the local block bootstrap is developed in Section 4 that can
yield tests and confidence intervals for the mean, side-stepping the cumbersome task of analytic
estimation of the asymptotic variance.

3. Overview of existing resampling methods and extensions

3.1. Existing resampling methods in the homogeneous case

The closest related works are by Politis et al. [23,24] for resampling homogeneous marked point
processes and by Politis and Sherman [26] for estimating moments from marked point processes
where the sampling is done with a homogeneous point process. Consequently, it would seem
natural to try to extend this approach to the inhomogeneous setting. As we shall use this method
shortly, we record it below.

Politis et al. [24] propose a block resampling scheme that would fill a block with any block
of equal width from the entire window. We state their circular block bootstrap algorithm below.
(Note: This algorithm performs toroidal wrapping of the data. A similar algorithm is also pre-
sented in the paper that does not wrap, but instead changes the probabilities near the boundary.)

1. Begin by imagining that K = {t = (t1, . . . , td ) : 0 ≤ ti ≤ Ki, i = 1, . . . , d} is a rectangular
set in R

d that is “wrapped around” on a compact torus; in other words, we interpret the
index t as being modulo K . To give meaning to the latter notation, we define t (modulo
K) as the vector whose ith coordinate is ti (modulo Ki ). With this definition, we have data
X(t) even if t /∈ K .

2. Let c = c(K) be a number in (0,1) depending on K such that c → 0 but c mini Ki → ∞.
Define a scaled-down replica of K by B = {ct : t ∈ K}. B has the same shape as K but
smaller dimensions. Also, define the displaced sets B + y and let L = �1/c�.

3. Generate random points Y1, Y2, . . . , YL independent and identically distributed from a uni-
form distribution on K and define

X̃∗ ≡ 1

L

L∑
i=1

1

λ|B|
∫

B+Yi

X(t)N(dt),

where λ is the rate of the homogeneous Poisson point process and

�X∗ ≡ 1

L

L∑
i=1

1

N(B + Yi)

∫
B+Yi

X(t)N(dt).

4. Approximate P(
√|K|(�XK − μ) ≤ x) with P ∗(

√|K|(�X∗ − E∗�X∗) ≤ x), where P ∗ is the
resampling probability mechanism that is understood to be conditional on the marked point
process data that were actually observed.

Remark 3.1. The above algorithm is tailor-made for homogeneous marked point processes. The
literature on resampling for possibly inhomogeneous marked point processes is scarce. To our
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knowledge, the only exception is the bootstrap algorithm of Lahiri and Zhu [16] that is intimately
related to the sampling set-up of Lahiri [14]. The Lahiri and Zhu [16] bootstrap algorithm can
handle an arbitrary degree of inhomogeneity but requires a certain degree of “in-fill” asymptotics
in order to work, i.e., requires the availability of obtaining more and more “dense” data around
any spatial point of interest. As discussed in Remark 2.9, this set-up is quite different from the
classical, expanding domain set-up of sampling via an independent Poisson process that we have
adopted here.

3.2. Proposed extensions of existings methods: Case d = 1

The above mentioned circular block bootstrap has been shown to be applicable for stationary
marked process data. As such, its direct application to inhomogeneous data is not recommended.
However, in the case of d = 1, it is a fact that an inhomogeneous Poisson process X(t) with
rate λ(t) can be transformed into a homogeneous Poisson process Y(u(t)) with rate 1 via the
time transformation u(t) = �(t). Here (and elsewhere when d = 1) we make the simplifying
assumption that the observation region K is simply the interval [0,K]; therefore, the notation
�(K) can be used as short for �([0,K]), and the notation �(t) is short for �([0, t]).

Consequently, after this transformation, we can appeal to the Politis, Paparoditis, and Romano
[24] resampling method described in the previous subsection. We consider this method to be a
“circular block bootstrap after transformation to homogeneity”. It can be broken down into steps
as follows:

1. Identify the cumulative intensity function �(t).
2. Use the fact that an inhomogeneous Poisson process N(t) with rate λ(t) can be transformed

to a homogeneous Poisson process Y(u) with rate 1 via the time transformation u(t) =
�(t).

3. Apply the circular block bootstrap of Politis et al. [24] to the homogeneous marked point
process Y(u(t)); in so doing, create bootstrap pseudo-data Y ∗.

4. Use the inverse of �(t) to map back the Y ∗ pseudo-data to the inhomogeneous setting, that
is, to create X∗ pseudo-data.

5. Recompute the statistic of interest on the X∗ pseudo-data.

Note that if the statistic of interest is the sample mean, Step 4 is superfluous as the average of the
X∗ pseudo-data is tantamount to the average of the Y ∗ pseudo-data.

In practice, the cumulative intensity function, �(t) will not be known, and must be estimated
from the data at hand. Law and Kelton [17] suggest a non-parametric procedure for estimating
λ(t) with a piecewise-constant function. Their method is to divide the interval [0,K] into non-
overlapping pieces (of size 2w) on which the intensity is assumed to be (fairly) constant and
estimate a single rate for each interval. The estimated intensity is λ̂(t) = # of points

2w
. The question

remains as to what constitutes the optimal choice of w which is similar to the difficult problem
of choosing the knots in the context of smoothing splines.

Lewis and Shedler [19] suggest a general nonparametric kernel estimate of the form

λ̂(t;K) = 1

h(K)

N(K)∑
j=1

W

(
t − τj

h(K)

)
,
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where N(K) is the number of observations on [0,K], τ1, . . . , τN(K) are the observed values,
W(·) is a bounded non-negative integrable kernel function with

∫ ∞
−∞ W(u)du = 1, and h(K)

is a positive bandwidth which tends to zero as K → ∞ but in such a way that Kh(K) → ∞.
Choosing the bandwidth optimally in practice is an unavoidable (and difficult) problem associ-
ated with all kernel smoothing methods.

Both methods give a reasonable approximation to the true intensity function λ(t). Once we
have an estimate for λ(t), we can estimate �(t) = ∫ t

0 λ(s) ds, and use the time transformation
u(t) = �(t) as required above. It should be noted that the methods we used above are not ex-
haustive. Many other techniques for estimating λ(t) and �(t) exist. For example, Leemis [18]
provides another nonparametric technique for estimating �(t) that does not require the user to
specify any parameters or weighting functions.

4. Local block bootstrap for an inhomogeneous Poisson process

In Section 2, we established the asymptotic normality of the sample mean. In order to construct
confidence intervals for the mean μ, though, the asymptotic variance would need to be explic-
itly estimated. Bootstrap methods, on the other hand, should be able to capture the asymptotic
variance and distribution automatically.

To address this situation, we introduce the Local Block Bootstrap (LBB) algorithm in Sec-
tion 4.1 that, in principle, can handle an arbitrary dimension d . The LBB is able to yield confi-
dence intervals for the sample mean and related statistics without the need for explicit estimation
of the asymptotic variance. Alternatively, the LBB method may be used to provide an explicit
estimate of the asymptotic variance to be used in connection with the asymptotic normality result
established in Section 2.

For conciseness, in this paper we only explicitly address the case of a stationary random field
sampled via an inhomogeneous Poisson process. Nevertheless, the LBB methodogy is quite gen-
eral and is expected to be valid under more general situations, for example, when the random field
X(t) is only locally stationary; see, for example, Paparoditis and Politis [21] for a discussion in
the discrete-time case.

4.1. Local block bootstrap (LBB) algorithm

Suppose we have observations {τi,X(τi), i = 1, . . . ,N(K)} from an inhomogeneous Poisson
process with intensity function λ(t). K can be any compact, convex set in R

d , though for the
sake of simplicity, we suppose that K is a d-dimensional rectangular “box” given by [0,K1] ×
[0,K2] × · · · × [0,Kd ]. We shall employ a local block bootstrap method to resample such data
in a spirit analogous to the LBB for discrete time of Paparoditis and Politis [21].

We resample the data in blocks (just like a block bootstrap), but when filling a particular block,
we only consider blocks that are in a “local” neighborhood of the original block. The blocks are
compact sets of rectangular shape in R

d ; their size is a parameter while the proximity to the
original block is determined by a second parameter. Define the “bottom-left” vertex of a block as
the point with ith coordinate being the minimum of the ith coordinates of all points in the block
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for i = 1, . . . , d ; the term “bottom-left” refers to R
2 but the above definition holds true for any

dimension d .
The LBB algorithm can be described as follows:

1. For each dimension i = 1,2, . . . , d , select a block size bi and a bandwidth parameter hi

such that bi << hi << Ki ; both bi and hi are real-valued and positive. For the asymptotic
results that follow, we will require that bi → ∞ but b

5/2
i /Ki → 0 as Ki → ∞, and that

hi = �(bα
i ) for some α > 2; the notation h = �(g) is used to denote that there are positive

constants C1,C2 such that C1 ≤ h/g ≤ C2.
2. Consider a blank template identical to the real-world d-dimensional “box” [0,K1] ×

[0,K2] × · · · × [0,Kd ]; this template is to be “filled” with bootstrap data. We break this
template into L (non-overlapping) blocks where each block has size b1 × b2 × · · · × bd ;
the total number of blocks to be “filled” is L = ∏d

i=1 Ki/bi (assumed to be an integer for
simplicity).

3. Order the L blocks in some way, and label them according to their “bottom-left” vertex,
that is, label the j th block by its “bottom-left” vertex cj .

4. Generate i.i.d. random vectors d1, . . . ,dL where the components of dj are i.i.d.
Uniform[−hi, hi] random variables.

5. For j = 1, . . . ,L, create a bootstrap version of the block cj by “filling” it with the points
and associated marks found in the real-world block of size b1 × b2 × · · · × bd that has
cj + dj as its “bottom-left” vertex.

Note: It is possible that parts of the block may lie outside of K . To correct this, imagine
that the real-world observations extend beyond K by “wrapping it around” on itself as in the
well-known circular block bootstrap; in other words, our calculations are done modulo K .

6. The above steps define a realization of the bootstrap marked point process that has marks
denoted by X∗(·) and point process denoted by N∗. The generation of the bootstrap marked
point process is governed by a probability mechanism which we will denote by P ∗, with
moments denoted by E∗, Var∗, etc. This generation is done conditionally on the real-world
marked point process data observed; thus P ∗ is really a conditional probability.

7. Having generated the bootstrap marked point process, we can now re-compute our statistic
of interest on the bootstrap data. In principle, the LBB idea can accommodate a variety of
statistics; for simplicity, we focus on the aforementioned sample mean statistics that can be
computed as X̃∗ = 1

�∗(K)

∑N(K)
i=1 WiX(τi) and �X∗ = 1

N∗(K)

∑N(K)
i=1 WiX(τi), respectively

where Wi is the number of times that X(τi) occurs in the bootstrap data, and �∗(K) =
E∗[N∗(K)].

8. Let P ∗(
√

�∗(K)(X̃∗ − E∗X̃∗) ≤ x) and P ∗(
√

N∗(K)(�X∗ − E∗�X∗) ≤ x) denote the
conditional (given the marked point process data) distribution functions of the boot-
strap sample means. These will be used to approximate the real-world distributions
P(

√
�(K)(X̃K − μ) ≤ x) and P(

√
N(K)(�XK − μ) ≤ x), respectively.

Note that we will not concern ourselves with the trivial matter of divisibility, and issues like
Ki/bi being an integer. The reason for this is that for a practical application with a finite sample,
we can modify the window size Ki and obtain perfect divisibility. As for the asymptotic case, we
can always ignore truncations which are clearly of negligible order.
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Remark 4.1. The LBB algorithm as described above is expected to be valid verbatim even when
the random field {X(t)} is only locally stationary extending the discrete sampling case studied
by Paparoditis and Politis [21]. However, in order to keep the notation and proofs manageable,
we will continue our exposition under the simplifying assumption that {X(t)} is stationary, and
the nonstationarity is only present in the Poisson point process.

For our bootstrap asymptotic results, we need to impose some restrictions on the process X(t),
the mixing coefficients, and the parameters.

Assumptions.

A.4.1 λ(t) is a continuous function such that 0 < λmin ≤ λ(t) ≤ λmax < ∞.
A.4.2 {X(t)} is strictly stationary with E[|X(t)|6+δ] < ∞ for some δ > 0.
A.4.3 ᾱX(k;0) < const. k−d−ε for some ε > max{ 2d

δ
, 8+δ

4+δ
} for the δ specified in Assump-

tion A.4.2.
A.4.4

∫ |Q(u,v,v − w)|dv ≤ CQ for all u,w; here, CQ is some finite number that may de-
pend on the fourth-order cumulant Q(s, t,u) of the random field {X(t)} defined as
Q(s, t,u) = E[X(0)X(s)X(t)X(u)] − R(s)R(u − t) − R(t)R(u − s) − R(u)R(t − s).

A.4.5 hi/Ki → 0 as Ki → ∞ for i = 1,2, . . . , d .
A.4.6 hi = �(bα

i ) for some α > 2, and bi → ∞ but b
5/2
i /Ki → 0 as Ki → ∞ for i =

1,2, . . . , d .

Note that Assumption A.4.6 would imply Assumption A.4.5 under the additional assumption
that α ≤ 5/2; the latter, however, is not required, and thus we do not impose it here.

Remark 4.2. Assumptions A.4.1, A.4.2 and A.4.3 are almost identical (albeit slightly stronger)
to Assumptions A.2.1, A.2.2 and A.2.3 required for the real-world CLT. Assumption A.4.4 is
new but can be shown to hold under some stronger moment and mixing condition. For exam-
ple, in the case d = 1, if μ = 0 and

∫
t2αX(t)δ/(6+δ) dt < ∞ is satisfied, then Assumption A.4.2

together with condition (A1) used in the proof of Theorem 3.3 in Künsch [13] implies that As-
sumption A.4.4 holds; see also Theorem 17.2.3 of Ibragimov and Linnik [9].

Remark 4.3. In the LBB algorithm, reference was made to X̃∗ and �X∗. Define
≈
X∗ and X∗ simi-

larly but with denominators of �(K) and N(K) respectively, that is, let
≈
X

∗ = X̃∗[�∗(K)/�(K)]
and X∗ = �X∗[N∗(K)/N(K)]. Note that N(K) is not random in the bootstrap world. Since the
division by a random quantity complicates matters, we shall use these modified estimators to
prove our bootstrap asymptotic results. Lemma 4.4 below, coupled with Slutsky’s lemma [30],
allows for this simplification.

Lemma 4.4. Assume A.4.1. Then, as diam(K) → ∞, �∗(K)
�(K)

p−→ 1.
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4.2. Consistency of the local block bootstrap for the sample mean

For simplicity of exposition, we focus on the case d = 1 throughout Section 4.2. However, all
consistency results are valid for a general d ≥ 1 under analogous conditions – see Section 4.3 for
details.

So in the present section, the observation region K is the interval [0,K]; that is, K denotes
what was previously denoted by K1. A key element in showing consistency of the LBB is com-
puting the variance Var∗[√�∗(K)X̃∗]. Recall that X̃∗ = 1

�∗(K)

∑N(K)
i=1 WiX(τi), where Wi is the

number of times that X(τi) occurs in the resampled data.
We can think of Wi as a sum of Bernoulli random variables, where the sum runs over all of the

blocks. That is, suppose we have L blocks. Then, Wi = ∑L
j=1 Yij where Yij ∼ Bernoulli(pij );

here, pij represents the probability that τi is contained in block j . Recall that τi denotes the
position of the mark of the ith datapoint, while X(τi) is the mark at τi . Due to the toroidal
wrapping in the LBB algorithm, the following lemma is immediate.

Lemma 4.5. E∗[Wi] = 1.

Next, we consider Cov∗(Wi,Wk). Note that

Cov∗(Wi,Wk) = Cov∗
(

L∑
j=1

Yij ,

L∑
m=1

Ykm

)
=

L∑
j=1

L∑
m=1

Cov∗(Yij , Ykm).

Thus, we have reduced the problem above to computing Cov∗(Yij , Ykm). Since the covariance
of two indicator random variables 1A and 1B is given by P ∗(A ∩ B) − P ∗(A)P ∗(B), we are left
computing the joint probabilities of Yij and Ykm.

Definition 4.6. We say that two points τi and τk are sufficiently close to each other provided that
|τk − τi | < b. Otherwise, we say that τi and τk are far apart.

Definition 4.7. Given an interval [a1, a2], where a1, a2 ∈ R, if |τi − a1| > h and |τi − a2| > h,
then we say that τi is removed from the boundary of [a1, a2] by h units.

Claim 4.8. If τi and τk are far apart, then the probability that a particular LBB block con-
tains both τi and τk will be zero. On the other hand, if τi and τk are sufficiently close, then the
probability that a particular block contains both τi and τk will be positive.

The reason is because if τi and τk are far apart, then both cannot appear in the same block.
Moreover, if, for example, the probability for τi is non-zero, then necessarily the probability for
τj will be zero.

By construction, the probability that block j contains τi and block m contains τk are indepen-
dent, because of the independence of the resampling of the blocks.

Thus, P ∗(YijYkm) = P ∗(Yij )P
∗(Ykm) for all j 
= m, so we have that

Cov∗(Yij , Ykm) = P ∗(YijYkm) − P ∗(Yij )P
∗(Ykm) = 0.
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Hence, Cov∗(Wi,Wk) = ∑L
j=1 Cov∗(Yij , Ykj ), and by Claim 4.8, we only need to consider the

case where τi and τk are sufficiently close, that is, when τi and τk are within b units of each other.
Moreover, we only need to consider those pairs τi and τk that are removed from the boundary by
h units. The reason can be seen via Claim 4.9.

Claim 4.9. Assuming A.4.1 and A.4.5, the expected number of τi that are within h units of the
boundary is O(h).

Recall that if N ∼ Poisson(λ), then on a window of size w, we would expect to see wλ ob-
servations in that window. Under Assumption A.4.1, we have that the expected number of points
within h units of the boundary would be between 2λminh and 2λmaxh. Thus, the number of ob-
served points within h units of the boundary is O(h).

Since K/h → ∞ (by Assumption A.4.5), the expected number of points that are within h

units of the boundary is asymptotically negligible.

Lemma 4.10. For τi and τk sufficiently close, removed from the boundary by h units, we have
that

Cov∗(Wi,Wk) = 1 − |τi − τk|
b

− b

2h
+ O

(
b2

h2

)
,

where the O(·) term is uniform as it does not depend on i and k.

Therefore, we have that

Var∗
[√

�∗(K)X̃∗]
= 1

�∗(K)
Var∗

[
N(K)∑
i=1

WiX(τi)

]

= 1

�∗(K)

N(K)∑
i=1

N(K)∑
k=1

Cov∗(Wi,Wk)X(τi)X(τk)

(4.1)

= 1

�∗(K)

∑
i 
=k

(
1 − |τi − τk|

b

)
1{|τi−τk |<b}X(τi)X(τk)

+ 1

�∗(K)

N(K)∑
i=1

X2(τi)

+ 1

�∗(K)

N(K)∑
i=1

N(K)∑
k=1

O

(
b

h

)
1{|τi−τk |<b}X(τi)X(τk).

The asympotics of the three terms in the variance formula (4.1) are the subject of the following
three lemmas whose proofs are given in the supplement [5].



Bootstrap for inhomogeneous marked point processes 605

Lemma 4.11. Assuming A.4.1, A.4.5, and A.4.6, we have that

1

�∗(K)

N(K)∑
i=1

N(K)∑
k=1

O

(
b

h

)
1{|τi−τk |<b}X(τi)X(τk)

p−→ 0.

Lemma 4.12. Let R̂(0) = 1
�∗(K)

∑N(K)
i=1 X2(τi). Then, under Assumptions A.4.1–A.4.3,

i. E[R̂(0)] = R(0) + μ2;
ii. Var[R̂(0)] → 0 as K → ∞.

Lemma 4.13. Suppose Assumptions A.4.1–A.4.4, and A.4.6 hold.
Let θ̂2 = 1

�∗(K)

∑
i 
=k (1 − |τi−τk |

b
)1{|τi−τk |<b}X(τi)X(τk). As K → ∞,

i. E[θ̂2] p−→ θ2;
ii. Var[θ̂2] → 0;

where θ2 = lim|K|→∞ 1
�∗(K)

∫
K

∫
K

R(s − t)λ(s)λ(t) ds dt .

Lemma 4.14 below puts it all together; its proof is in the supplement [5].

Lemma 4.14. If Assumptions A.4.1–A.4.6 hold, then Var∗[√�∗(K)X̃∗] p−→ θ2 + R(0) + μ2 as
K → ∞.

Having established that the bootstrap variance tends (asymptotically) to the true variance as
given by Theorem 2.4, we are ready to state our main bootstrap theorems.

Theorem 4.15. Suppose Assumptions A.4.1–A.4.6 as well as equations (2.1) and (2.2) hold true.
Then, as K → ∞, we have the following:

i. E∗[X̃∗] = X̃K ;
ii. Var∗[X̃∗]

Var[X̃K ]
p−→ 1;

iii. supx |P ∗(
√

�(K)(X̃∗ − X̃K) ≤ x) − P(
√

�(K)(X̃K − μ) ≤ x)| p−→ 0.

It was mentioned that X̃K is an auxiliary variable as it is not a proper statistic in the usual
situation where �(·) is not known. The statistic of interest is the sample mean �XK that is covered
in the following theorem.

Theorem 4.16. Suppose Assumptions A.4.1–A.4.6 as well as equations (2.1) and (2.2) hold true.
Then, as K → ∞, we have

sup
x

∣∣P ∗(√N(K)
(�X∗ − �XK

) ≤ x
) − P

(√
N(K)(�XK − μ) ≤ x

)∣∣ p−→ 0.
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Theorem 4.16 is our main theoretical result showing asymptotic validity of the LBB for the
sample mean of a stationary random process sampled via an independent, inhomogeneous Pois-
son process. The theorem ensures that the LBB bootstrap is consistent in terms of estimating the
asymptotic distribution of the sample mean �XK . Interestingly, the mixing conditions involved
in proving the bootstrap CLT are only conditions on ᾱX(k;0), that is, pointwise asymptotic in-
dependence. The usual conditions on either ᾱX(k; l1) or αX(k; l1, l2) with l1, l2 growing with
sample size are hidden in the higher-level adoption of equations (2.1) and (2.2).

4.3. Extension to multivariate random fields and smooth functions of
means

We now revert to the d-dimensional case to present some further results. Recall that, up to now,
the marked point process set-up involved the real-valued random field {X(t) for t ∈R

d} sampled
according to the point process {N(t)}. The case of a multivariate random field, say {Y(t) for
t ∈ R

d} where Y(t) takes values in R
q is similar. The sample mean statistics are defined in the

same way, that is,

�YK = 1

N(K)

N(K)∑
i=1

Y(τi) and ỸK = 1

�(K)

N(K)∑
i=1

Y(τi).

Then, by the Cramér–Wold device, we can obtain multivariate analogs of both the real-world
and bootstrap central limit theorems; these are given in the two theorems below. To describe
them, let Y(t) = (Y (1)(t), . . . , Y (q)(t))′ be a strictly stationary random field that is independent
of the Poisson point process {N(t)}; also let μY = EY(t).

Theorem 4.17. Assume that each coordinate of Y(t) satisfies the assumptions of Theorem 2.7,
that is, letting X(t) = Y (j)(t) – for any j – the assumptions of Theorem 2.7 are satisfied. Then,√

�(K)(ỸK − μY )
d−→ N(0,
) and

√
�(K)(�YK − μY )

d−→ N(0,�)

as diam(K) → ∞, where � and 
 are appropriate matrices.

The LBB can generate the bootstrap marked point process that has multivariate marks Y ∗(·)
and point process N∗ in an identical fashion as described in the LBB algorithm of Section 4.1.
The bootstrap theorem below is helpful in estimating the distribution of the sample mean statis-
tics, and by-passes the need to explicitly estimate the large sample covariance matrices � and

 appearing in Theorem 4.17. To state it, let Y(t) = (Y (1)(t), . . . , Y (q)(t))′, and consider the
modified assumptions:

A.4.2′ {Y(t)} is strictly stationary with E[|Y (i)(t)|6+δ] < ∞ for some δ > 0 and for all i.
A.4.3′ ᾱY (k;0) < const. k−d−ε for some ε > max{ 2d

δ
, 8+δ

4+δ
} for the δ specified in Assump-

tion A.4.2′.
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A.4.4′ ∫ |Q(i)(u,v,v − w)|dv ≤ C
(i)
Q for all u,w, and for each i; here, C

(i)
Q is some finite

number that may depend on the fourth-order cumulant Q(i)(s, t,u) of the univariate
random field {Y (i)(t)}.

Theorem 4.18. Assume that Assumptions A.4.1, A.4.2′, A.4.3′, A.4.4′, A.4.5, A.4.6, as well as
equations (2.1) and (2.2) hold true. Then, as diam(K) → ∞, we have

sup
x∈Rq

∣∣P ∗(√N(K)
(�Y ∗ − �YK

) ≤ x
) − P

(√
N(K)(�YK − μY ) ≤ x

)∣∣ p−→ 0,

where the above inequality sign (≤) is to be interpreted coordinate-wise.

In the case d = 1, Theorem 4.18 follows immediately from Theorem 4.16 via the Cramér–
Wold device. In the general case d ≥ 1, Theorem 4.18 follows from a d-dimensional analog of
Theorem 4.16; see Chapter 7 of Garner [4] for details.

Remark 4.19. The above multivariate bootstrap limit theorem allows us to extend the applicabil-
ity of the LBB to the smooth function of means model developed by Hall [7] and Lahiri [15]. To
elaborate, let H : Rq → R

r be a smooth (differentiable) function such that H ′(μY ) 
= 0. Under
the assumptions of Theorem 4.18, the multivariate δ-method immediately implies

sup
x∈Rr

∣∣P ∗(√N(K)
(
H

(�Y ∗) − H(�YK)
) ≤ x

) − P
(√

N(K)
(
H(�YK) − H(μY )

) ≤ x
)∣∣ p−→ 0.

Many statistics of interest can be put in the form H(�YK) with an appropriate choice for the
function H and the random field Y(t); see Lahiri [15] for examples.

Remark 4.20. Any choice of the window/block size parameters hi and bi (as functions of their
respective Ki ) will result into a consistent LBB procedure as long as hi and bi satisfy Assump-
tions A.4.5 and A.4.6. However, the question of optimal choice of these parameters remains open
at this point both at the theoretical as well as the empirical level. To elaborate, optimality depends
on the criterion being optimized. In the case of stationary and regularly sampled time series, Hall
et al. [8] show that choosing the block size, that is, bi , proportional to the 4th root of sample size
is optimal for estimating the distribution of the sample mean as is the subject of Theorems 4.16
and 4.18. Nevertheless, to optimally estimate the variance of the sample mean via a standard
block bootstrap, the optimal block size is proportional to the 3rd root of sample size. Recall that
in our “locally” homogenous context, homogeneity of the Marked Point Process can be thought
to hold (at least approximately) over a window of size hi ; hence, we conjecture that choosing
bi ∼ h

1/α
i with α ∈ [3,4] as in Assumption A.4.6 may give reasonable results. Then, one may let

hi ∼ K
β
i for some β ∈ (0,1). However, β and the size of the window hi are intimately related to

the degree of inhomogeneity of the Marked Point Process. For example, if the process is almost
homogeneous throughout K , one may take β close to 1; otherwise, β should not be taken close
to 1. In the context of Theorems 4.16 and 4.18, the inhomogeneity is only due to the changing
intensity so the optimal β may well have to do with the derivative of λ(·). Future work will
shed light on these important aspects, and help construct viable data-based rules for optimally
choosing the window/block size parameters in practice.
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5. Simulations

In the simulations presented in this section, we focus on the case d = 1; simulations in the case
d = 2 are given in Garner [4].

For the case at hand where d = 1, we employ accept-reject algorithms specified by Lewis
and Shedler [20] to generate one-dimensional inhomogeneous Poisson process data. Pasupathy
[22] is another excellent reference for generating (in)homogeneous Poisson processes data. We
consider five different intensity functions to generate the points.

1. λ1(t) = 2 + sin 2π
250 t for 0 ≤ t ≤ 1000.

2. λ2(t) = 1 + 1
500 t for 0 ≤ t ≤ 1000.

3. λ3(t) = 3 − 1
250 |t − 500| for 0 ≤ t ≤ 1000.

4. λ4(t) = 1 + 3
1 000 000 t2 for 0 ≤ t ≤ 1000.

5. λ5(t) = 4 − 2( t−500
450 )6 for 0 ≤ t ≤ 1000.

Once we have the points, we use two different covariance functions to generate associated
marks. First, we consider R(t) = exp(−|t |) and second, we consider R(t) = exp(−|t |/3).

We shall consider two methods using the local block bootstrap: with toroidal wrapping and
without. Also, we will consider two competing, exisiting methods that will first transform the
inhomogeneous Poisson process into a homogeneous Poisson process and then resample that us-
ing the block bootstrap discussed by Politis, Paparoditis, and Romano [24]. Finally, we compare
that with another transformation method that uses the actual intensity function to see the effect
of estimating λ(t). All approaches require a block size, b, for which we consider three different
choices (b = 2,5,10).

The transformation methods are given as follows:
Method 1: Estimate λ(t) as a piecewise constant function on intervals of length 2w. Estimate

�(t) by finding the area under these rectangles.
Method 2: Estimate λ(t) with a local average over a window [−w,w]. Construct a fine grid

(with points every 0.1) and use this as an approximation to λ(t). Again, by considering the area
under the curve, estimate �(t).

Method 3: Use the true λ(t) to integrate the function and obtain an exact expression for �(t),
that is, �(t) = ∫ t

0 λ(s) ds. The additional parameter w is not needed here as we (unrealistically)
use the actual intensity function.

The local block bootstrap methods require a parameter h to denote the proximity of the re-
sampled block. (We cast a net on the interval [−h,h] to shift the block, and in the case of no
wrapping, we reduced the size accordingly.) We choose h so that the requirement of h = �(bα)

for some α > 5/2 would be plausible. Since the parameter w in the transformation methods plays
a similar role as h, we lump these together in a single column, entitled “Band”, for which we
consider values of 10, 20, and 40.

In the table below, we present the empirical coverage probabilities of 95% equal-tailed con-
fidence intervals for the various methods considered. Each model was simulated 1000 times.
Regarding block sizes, b = 2 seems to be the best choice for all methods. When considering
Table 1, we see that an increase in the block size results in a mild reduction (around 5%) in
coverage probabilities. In Table 2, however, increases in b result in more noticeable reductions
which are likely attributable to the increased dependence among the marks.
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Table 1. Comparison of resampling methods with R(t) = exp(−|t |)

LBB method Transformation method

λi(t) b Band Wrap No wrap Method 1 Method 2 Method 3

1 2 10 95.6% 94.8% 87.9% 83.7% 95.0%
5 20 91.3% 91.6% 78.2% 81.4% 90.7%

10 40 93.7% 92.8% 74.5% 74.4% 87.0%
2 2 10 95.6% 95.2% 85.4% 73.7% 94.9%

5 20 93.1% 92.8% 71.2% 82.7% 93.1%
10 40 87.2% 88.4% 67.3% 67.9% 92.0%

3 2 10 94.4% 95.7% 95.1% 93.7% 93.5%
5 20 88.9% 91.2% 86.5% 88.6% 86.1%

10 40 92.4% 93.5% 86.4% 85.7% 84.8%
4 2 10 94.4% 95.2% 93.1% 94.4% 93.5%

5 20 89.8% 90.8% 88.1% 87.8% 88.9%
10 40 85.0% 83.8% 83.8% 87.5% 85.5%

5 2 10 88.8% 89.6% 57.8% 61.5% 65.6%
5 20 80.7% 85.0% 58.1% 61.4% 66.9%

10 40 76.7% 78.7% 58.7% 59.8% 66.3%

Looking closer at Table 1, we see that in the case of λ1(t) and λ2(t) the coverage of the LBB
methods is 10 percentage points closer to the nominal coverage as compared to the coverage of
the two averaging transformation methods (Methods 1 and 2), and comparable to the exact trans-
formation method (Method 3). For λ3(t) and λ4(t), both sets of methods yield similar results,
with the local block bootstrap performing slightly better. For λ5(t), though, there is a significant
improvement (20–30%) using the local block bootstrap; this may be due to the sharp declines in
the intensity.

Similar results hold in Table 2 when examining λ1(t) and λ2(t). However, significant dif-
ferences appear for λ3(t) and λ4(t), with the local block bootstrap maintaining its coverage
probabilities, but the transformation method failing to work. (The differences are 30–60%!) The
reason for this difference is not clear and the models were re-run with similar results; this will
be the subject of future study. The coverage with λ5(t) drops for all methods and the effects are
more noticeable when considering a larger b which is more in line with expectations.

To summarize the findings from the simulation:

• For the transformation methods, a small choice for block size (b = 2) and a moderate choice
for local window size (w = 10) produced the best results; this may be attributed to the fast
(exponential) decay of R(t). As noted, future work may involve the determination of b

and w from the data itself. As the block size increased, there was a notable difference in
coverage when the dependence of the marks was increased.

• For the local block bootstrap methods, it was again observed that a small block size led to
the best results, and that increasing h led to a reduction in coverage. Notably, choosing h to
be too large would reduce our local block bootstrap to a regular block bootstrap that loses
all information regarding spatial changes of intensity. Future work may entail the study of
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Table 2. Comparison of resampling methods with R(t) = exp(−|t |/3)

LBB method Transformation method

λi(t) b Band Wrap No wrap Method 1 Method 2 Method 3

1 2 10 93.2% 94.2% 87.8% 84.2% 88.3%
5 20 80.5% 83.7% 74.9% 73.4% 78.3%

10 40 74.2% 72.1% 65.6% 62.6% 66.9%
2 2 10 93.2% 94.9% 92.6% 90.2% 87.4%

5 20 85.5% 87.0% 80.7% 81.7% 77.5%
10 40 74.2% 73.9% 67.7% 70.6% 72.0%

3 2 10 92.2% 94.1% 50.3% 45.8% 47.2%
5 20 82.3% 81.7% 46.5% 46.1% 47.1%

10 40 73.6% 80.7% 45.7% 45.6% 43.9%
4 2 10 94.1% 94.1% 36.4% 38.4% 36.6%

5 20 82.3% 83.8% 35.2% 33.3% 35.5%
10 40 71.9% 72.4% 32.7% 34.9% 31.3%

5 2 10 84.4% 86.2% 53.4% 51.4% 51.6%
5 20 72.7% 70.8% 53.6% 52.2% 53.5%

10 40 66.1% 64.4% 48.7% 49.7% 50.4%

data-based determination of b and h. Notably, the LBB method that uses toroidal wrapping
performs similarly to LBB without wrapping but the latter may have some finite-sample
advantages as it avoids the edge effects that wrapping imposes.

• Comparing the two approaches, it appears that the local block bootstrap consistently per-
formed as well – if not better – than the transformation methods.

Appendix: Technical proofs

Proof of Lemma 2.5. The proof is similar to that of Theorem 1.7.1 of Ivanov and Leo-
nenko [10]. We only need to verify the finiteness of

∫ |R(t)|dt which ensures that the limit-
ing variance of 1√

�(K)

∫
K

(X(t) − μ)λ(t) dt is well defined. Note that Assumption A.2.2 implies

|Cov(X(0),X(t))| ≤ const. ᾱX(ρ(0, t);0)1−2/(2+δ) where ρ denotes l∞ distance; see, for exam-
ple, Roussas and Ioannides [28]. Denoting t = (t1, . . . , td)′, we have∫ ∣∣R(t)

∣∣dt = O

(∫
ᾱX

(
max

i
|ti |;0

)1−2/(2+δ)

dt
)

= O

(∫ ∞

1
yd−1

(
1

yd+ε

)1−2/(2+δ)

dy

)
< ∞ by Assumption A.2.3. �
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Proof of Theorem 2.7. We will proceed to show that the characteristic function of√
�(K)(X̃K − μ) converges to that of a N(0, σ 2) random variable.

E
[
exp

(
iα

√
�(K)(X̃K − μ)

)]
= E

[
E

[
exp

(
iα

√
�(K)(X̃K − μ)

)|X]]
= E

[
exp

(∫
K

(
exp

(
iαX(t)√
�(K)

)
− 1

)
λ(t) dt − iαμ√

�(K)

∫
K

λ(t) dt
)]

.

The last line follows by applying Campbell’s theorem to the first term (since X(t) is a deter-
ministic function of t after we condition on it). Note that∫

K

(
e

iα√
�(K)

X(t) − 1
)
λ(t) dt ≈

∫
K

iα√
�(K)

X(t)λ(t) dt +
∫

K

1

2

(
iα√
�(K)

X(t)
)2

λ(t) dt

= iα√
�(K)

∫
K

X(t)λ(t) dt − α2

2�(K)

∫
K

X2(t)λ(t) dt;

in the above, the Taylor Series expansion ex = 1 + x + x2/2 + O(x3) was used, written as
ex − 1 ≈ x + x2/2, and noting that the error term converges in probability to zero even after
integration. Therefore,∫

K

(
exp

(
iαX(t)√
�(K)

)
− 1

)
λ(t) dt − iαμ√

�(K)

∫
K

λ(t) dt

≈ iα√
�(K)

∫
K

[
X(t) − μ

]
λ(t) dt − α2

2�(K)

∫
K

X2(t)λ(t) dt.

Recall that, by assumption, 1√
�(K)

∫
K

(X(t) − μ)λ(t) dt
d−→ N(0, θ2). Hence, the characteris-

tic function converges to that of a normal, that is,

exp

(
iα√
�(K)

∫
K

(
X(t) − μ

)
λ(t) dt

)
→ e− α2

2 θ2
.

By the law of large numbers, we have almost surely,

1

�(K)

∫
K

X2(t)λ(t) dt −→ E
[
X(t)2] = R(0) + μ2.

And hence,

E

[
exp

(
iα√
�(K)

∫
K

[
X(t) − μ

]
λ(t) dt − α2

2�(K)

∫
K

X2(t)λ(t) dt
)]

−→ exp

(
−α2

2
θ2 − α2

2

(
R(0) + μ2)).
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Thus,
√

�(K)(X̃K − μ)
d−→ N(0, σ 2), where σ 2 = θ2 +R(0)+μ2. The asymptotic normality

of �XK now follows from Lemma 2.6 using a centering argument as in the proof of the CLT of
Garner and Politis [6]. �

Proof of Lemma 4.4. Recall the definition �(K) = E[N(K)]. The bootstrap analog is given by
�∗(K) = E∗[N∗(K)], that is, �∗(K) represents the expected number of points in our resampled
data.

Suppose we are given data X(τ1), . . . ,X(τN(K)) from an inhomogeneous marked point pro-

cesses. We can express the number of points in the resampled data as N∗(K) = ∑N(K)
i=1 Wi ,

where Wi = ∑L
j=1 Yij , with L being the total number of blocks and each Yij ∼ Bernoulli(pij ),

where pij is the probability that block j will contain τi .
By Lemma 4.5, E∗[Wi] = 1, so �∗(K) = N(K). Thus, we need only show that N(K)

E[N(K)] =
N(K)
�(K)

p−→ 1; but this was already established in Lemma 2.3. �

Proof of Theorem 4.15. Proof of (i): Recall that
≈
X

∗ = 1
�(K)

∑N(K)
i=1 WiX(τi) and, by Lem-

ma 4.5, E∗[Wi] = 1. In the bootstrap world, the value of N(K) as well as the value of the τi ’s is
given; the only randomness comes from the Wi . Thus,

E∗[≈
X

∗] = 1

�(K)

N(K)∑
i=1

E∗[Wi]X(τi)

= 1

�(K)

N(K)∑
i=1

X(τi)

= 1

�(K)

∫
K

X(t)N(dt)

= X̃K

Proof of (ii): Note that

Var∗[≈
X

∗]
Var[X̃K ] = Var∗[√�(K)

≈
X

∗]
Var[√�(K)X̃K ] .

But by Theorem 2.7 and Lemma 4.14 that both the numerator and denominator tend to θ2 +
R(0) + μ2 as K → ∞. Thus, we have that their ratio tends to 1 in probability.

Proof of (iii): From Theorem 2.7, we have that

√
�(K)(X̃K − μ)

d−→ N
(
0, σ 2).
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As discussed in Remark 4.3, all that remains to be shown is that

√
�(K)(

≈
X

∗ − X̃K)√
Var∗[√�(K)

≈
X∗]

d−→ N(0,1).

But

≈
X

∗ = 1

�(K)

N(K)∑
i=1

WiX(τi)

= 1

�(K)

L∑
j=1

N(K)∑
i=1

YijX(τi).

In addition, using the fact that
∑L

j=1 pij = 1 we have

X̃K = 1

�(K)

N(K)∑
i=1

X(τi)

= 1

�(K)

N(K)∑
i=1

(
L∑

j=1

pij

)
X(τi)

= 1

�(K)

L∑
j=1

N(K)∑
i=1

pijX(τi).

Hence,
√

�(K)(
≈
X

∗ − X̃K) = ∑L
j=1 Tj where Tj = 1√

�(K)

∑N(K)
i=1 (Yij − pij )X(τi) and

pij = E∗[Yij ] is the probability that X(τi) appears in block j in the resampled data. Also,
notice that by our resampling scheme, the different blocks are independent.

The proof of the CLT would be complete by verifying the Liapunov Condition, that is, showing
that ∑L

j=1 E∗[|Tj |6]
Var∗[√�(K)

≈
X∗]3

→ 0 as L → ∞ (where L = K/b).

But by Assumption A.4.1, there are Op(b) points in each of the L resampled blocks.

Also, X(τi) = Op(1). So,
∑N(K)

i=1 (Yij − pij )X(τi) = Op(b) from which it follows that Tj =
Op( b

K1/2 ).

Since Var∗[√�(K)
≈
X

∗] p−→ θ2 + R(0) + μ2 (by Lemma 4.14), we need only show∑L
j=1 E∗[|Tj |6] → 0. Recalling that L = K/b, it follows that

∑L
j=1 E∗[|Tj |6] = Op(Lb6

K3 ) =
Op( b5

K2 ) which tends to 0 by Assumption A.4.6. �
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Proof of Theorem 4.16. The proof is immediate using part (iii) of Theorem 4.15 and Lemma 2.6
together with a centering argument similar to the one given in the proof of the CLT of Garner
and Politis [6]. �
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