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Let B = (bjk)p×n = (Y1, Y2, . . . , Yn) be a collection of independent real random variables with mean zero

and variance one. Suppose that � is a p by p population covariance matrix. Let Xk = �1/2Yk for k =
1,2, . . . , n and �̂1 = 1

n

∑n
k=1 XkX

T
k

. Under the moment condition supp,n max1≤j≤p,1≤k≤n Eb4
jk

< ∞,

we prove that the log determinant of the sample covariance matrix �̂1 satisfies

log det �̂1 −∑p
k=1 log(1 − k

n ) − log det�√
−2 log(1 − p

n )

d−−−→ N(0,1),

when p/n → 1 and p < n. For p = n, we prove that

log det �̂1 + n logn − log(n − 1)! − log det�√
2 logn

d−−−→ N(0,1).

Keywords: central limit theorem; covariance matrix; determinant; logarithmic law

1. Introduction and main results

Let An = (aij )n,n be a n×n random matrix where the entries {aij ,1 ≤ i, j ≤ n} are independent
real random variables. The determinant of the random matrix An is a very important function
of the matrix and it has been investigated by many authors under different settings. See, for in-
stance, [6–10,12,15–19], and so on. An important topic in the random determinant theory is to
establish the central limit theorems (CLT, in short) for the log-determinant log |detAn|, such as
[10] for random Gaussian matrices, [19] for Wigner matrices, [13] for general real i.i.d. ran-
dom matrices under an exponential tail condition on the entries, and [4] for general real i.i.d.
random matrices based on the existence of 4th moment of the matrix entries, and so forth. The
determinant of random matrices has many applications. For instance, computing the volume of
random parallelotopes in random geometry involves the determinant. More precisely, we suppose
V = (V1, . . . ,Vp) is a n×p (p ≤ n) random matrix with independent columns. Then the convex

hull of these p points in R
n determines a p-parallelotope almost surely. Moreover,

√
det(VT V)

is the volume of this p-parallelotope. One can refer to [14] for more details. The determinant
of the sample covariance matrices is also commonly used for constructing hypothesis tests such
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as the likelihood ratio statistics in multivariate statistics (see [1], for instance). Furthermore, the
difference of the log determinants of two sample covariance matrices is a necessary information
in quadratic discriminant analysis for classification. In view of these applications, it is important
to investigate the properties of the log determinant of the sample covariance matrices.

Motivated by the applications mentioned above, Cai et al. [5] studied the limiting law of the log
determinant of the sample covariance matrices for the high-dimensional Gaussian distributions.
Specifically, let X1,X2, . . . ,Xn+1 be an independent random sample from the p-dimensional
Gaussian distribution Np(μ,�). The sample covariance matrix is

�̂ = 1

n

n+1∑
k=1

(Xk − X̄)(Xk − X̄)T , (1.1)

where X̄ = 1
n+1

∑n+1
k=1 Xk . By using the Bartlett decomposition and an analysis of the character-

istic functions, [5] established a unified central limit theorem for the log determinant of �̂ in the
high-dimensional setting where the dimension p may grow with the sample size n with the only
restriction that p ≤ n. Let

νn,p =
p∑

k=1

[
ψ

(
n − k + 1

2

)
− log

(
n

2

)]
, σn,p =

(
p∑

k=1

2

n − k + 1

)1/2

, (1.2)

where ψ(x) = ∂
∂z

log�(z)|z=x is the Digamma function with �(z) being the gamma function.
Cai et al. [5] proved that

log det �̂ − νn,p − log det�

σn,p

d−−−→ N(0,1) (1.3)

if X1,X2, . . . ,Xn+1
i.i.d.∼ Np(μ,�) and n → ∞ with p ≤ n.

CLT of the form (1.3) provides a nice unified expression for p ≤ n. Cai et al. [5] also worked
out some explicit expressions of the mean νn,p in the case when limn p/n < 1 and in the case
when p/n → 1 but with (n − p) → ∞. Particularly, they proved that for these cases

νn,p =
p∑

k=1

log

(
1 − k

n

)
+ O

(
1

n

)
, σnp =

√
−2 log

(
1 − p

n

)
+ O

(
1

n

)
. (1.4)

However, it is not easy to work out a simple expression of νn,p from (1.2) for the remaining
cases of p/n → 1 as pointed out by [5]. Moreover, their results are for multivariate normal
distributions.

In view of this, we further study the central limit theorem for the log determinant of the sample
covariance matrices under the non-Gaussian samples and in the setting of p/n → 1 with p ≤ n.

Before introducing the main results of the paper, we first list some notations. Let Yk =
(Y1k, Y2k, . . . , Ypk)

T for k = 1,2, . . . , n. Suppose that Y1, Y2, . . . , Yn are independent. Moreover
assume further that Y1k, Y2k, . . . , Ypk are independent for each k = 1,2, . . . , n. Let � be a p by
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p population covariance matrix which is positive definite. Let Xk = �1/2Yk for k = 1,2, . . . , n.
Thus, X1,X2, . . . ,Xn are independent and can be viewed as a sample drawn from the popula-
tion with mean 0 and covariance matrix �. To estimate the log determinant of the covariance
matrix �, we consider the following sample covariance matrix

�̂1 = 1

n

n∑
k=1

XkX
T
k . (1.5)

For positive integers n and p define the constant τn,p by

τn,p =
p−1∑
i=0

log

(
1 − i + 1

n

)
=

p∑
k=1

log

(
1 − k

n

)
. (1.6)

Denote

B = (bjk)p×n = (Y1, Y2, . . . , Yn) =

⎛
⎜⎜⎜⎜⎝

bT
1

bT
2
...

bT
p

⎞
⎟⎟⎟⎟⎠ . (1.7)

It is straightforward from (1.5) to see that

log det �̂1 − log det� = log det
(
�−1/2�̂1�

−1/2)
(1.8)

= log det

(
1

n

n∑
k=1

YkY
T
k

)
= log det

(
1

n
BBT

)
.

It follows that

log det �̂1 − τn,p − log det� = log det
(
BBT

)− p logn − τn,p. (1.9)

If p/n → r ∈ (0,1), then the central limit theorem for the log determinant of �̂1 based on the
existence of 4th moment of the i.i.d. matrix entries can be obtained from Theorem 1.1 of [2] with
f (x) = logx. We aim to consider the case p/n → 1 with p ≤ n.

We are now at a position to state the main results.

Theorem 1.1. Assume that {bij } are independent random variables with mean zero and variance
one. Moreover, suppose that p = n and

sup
n

max
1≤j≤n

Eb4
j1 < ∞. (1.10)

Then the log determinant of the sample covariance matrix �̂1 satisfies

log det �̂1 + n logn − log(n − 1)! − log det�√
2 logn

d−−−→ N(0,1). (1.11)
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Theorem 1.2. Assume that {bij } are independent random variables with mean zero and variance
one. Moreover, suppose that

sup
p

max
1≤j≤p

Eb4
j1 < ∞ (1.12)

and

p

n
→ 1, p < n. (1.13)

Then the log determinant of the sample covariance matrix �̂1 satisfies

log det �̂1 − τn,p − log det�√
−2 log(1 − p

n
)

d−−−→ N(0,1). (1.14)

Remark 1.1. Theorem 1.2 is consistent with (1.3) and (1.4) for the case when p/n → 1 with
(n − p) → ∞ and extends it to include all cases p/n → 1 as long as p < n. Moreover when
p = n − 1 and p = n − 2 (corresponding to the case of (n − p) is bounded) one may prove
from (1.2) that the difference (νn,n−1 − νn,n−2) is of order O(logn). This is consistent with the
result that the difference (τn,n−1 − τn,n−2) of order O(logn) from (1.6). The assumption of i.i.d.
Gaussian entries in [5] is also weakened by i.i.d. entries with the fourth moment assumption.

Our paper is organized as follows. Section 2 is to introduce the QR decomposition and obtain
its martingale expression. Section 3 collects some lemmas while Section 4 presents the details of
the proof with the aid of some additional lemmas, whose proofs are given in the Appendix.

Throughout the paper, let C denote a positive constant which is not necessarily the same in
each appearance and �x	 denote the integer part of x. For two vectors v and w, let (v,w) = vT w
stand for the inner product. We use ‖ · ‖2 and ‖ · ‖op to represent the Euclidean norm of a vector
and the operator norm of a matrix, respectively. For the set A, let Ac denote the complement set
of A and I (A) stand for the indicator function of A.

2. QR decomposition

This section is to use the method of QR decomposition to derive an alternative expression of the
determinant. To state this method rigorously, we need the following proposition, whose proof
will be given in Appendix.

Proposition 2.1. For the matrix B = (bjk)p×n defined in Section 1, we can find a modified
matrix B̄ = (b̄jk)p×n satisfying the assumptions in Theorems 1.1–1.2 such that

P(all square submatrices of B̄ are invertible) = 1 (2.1)

and

P
(
log det

(
BBT

)− log det
(
B̄B̄T

)= o(1)
)= 1 − o(1). (2.2)
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We can always work under the following assumption by Proposition 2.1.

Assumption C0. Let B = (bjk)p×n be a p by n random matrix with

sup
p

max
1≤j≤p

Eb4
j1 < ∞,

where {bjk,1 ≤ j ≤ p,1 ≤ k ≤ n} is a collection of independent real random variables with
common mean 0 and variance 1, and bj1, bj2, . . . , bjn have the identical distribution for each
1 ≤ j ≤ p. Moreover, we assume that all square submatrices of B are invertible with probability
one.

Now let us apply the Gram–Schmidt process to the columns of the full column rank matrix A

to get its QR decomposition, where A = [a1,a2, . . . ,ap] is a n × p matrix with n ≥ p. Define
the projection of a vector a on a vector e by

projea = (e,a)

(e, e)
e.

Then

u1 = a1, e1 = u1

‖u1‖2
,

u2 = a2 − proje1
a2, e2 = u2

‖u2‖2
,

u3 = a3 − proje1
a3 − proje2

a3, e3 = u3

‖u3‖2
,

...
...

up = ap −
p−1∑
j=1

projej
ap, ep = up

‖up‖2
.

Rearrange the above equations we may write

A = QR,

where

Q = [e1, e2, . . . , ep]
and

R =

⎛
⎜⎜⎜⎜⎜⎜⎝

(e1,a1) (e1,a2) (e1,a3) · · · (e1,ap)

0 (e2,a2) (e2,a3) · · · (e2,ap)

0 0 (e3,a3) · · · (e3,ap)
...

...
...

. . . (ep,ap)

0 0 0
. . . (ep,ap)

⎞
⎟⎟⎟⎟⎟⎟⎠

p×p

.= (rij )p×p.
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Recall that B = (bjk)p×n = [b1,b2, . . . ,bp]T is a p by n random matrix with p ≤ n. Applying
the QR decomposition with A = BT and ai = bi for 1 ≤ i ≤ p, we have

BT = QR, B = RT QT ,

and

det
(
BBT

)= det
(
RT QT QR

)= det
(
RT R

)= p∏
i=1

r2
ii =

p−1∏
i=0

r2
i+1,i+1. (2.3)

Let B(j) be the j × n rectangular matrix formed by the first j rows of B . Hence, B(1) = bT
1

and B(p) = B . Let Vi be the subspace generated by the first i rows of B and Pi = (pjk(i))n×n

be the projection matrix onto the space V ⊥
i . P0 = In is the n by n identity matrix. It is easily

checked that

r2
11 = (e1,b1)

2 = ‖b1‖2
2 = bT

1 P0b1, (2.4)

and

r2
i+1,i+1 = (ei+1,bi+1)

2 = (eT
i+1bi+1

)2 =
(

uT
i+1bi+1

‖ui+1‖2

)2

(2.5)

=
(

bT
i+1P

T
i bi+1

‖Pibi+1‖2

)2

= bT
i+1Pibi+1, 1 ≤ i ≤ p − 1.

It follows from the definition of Vi and the Assumption C0 that B(i)B
T
(i) is invertible with proba-

bility one that

Pi = (pjk(i)
)= In − BT

(i)

(
B(i)B

T
(i)

)−1
B(i). (2.6)

By (2.4), (2.5) and (2.6), we have

E
(
r2
i+1,i+1|Pi

)= trPi = n − i, 0 ≤ i ≤ p − 1. (2.7)

The equality (2.3) yields that

log det
(
BBT

) = p−1∑
i=0

log r2
i+1,i+1

(2.8)

=
p−1∑
i=0

log
r2
i+1,i+1

n − i
+ log

[
n(n − 1) · · · (n − p + 1)

]
.

For 0 ≤ i ≤ p − 1, set

Xi+1 = r2
i+1,i+1 − (n − i)

n − i
(2.9)
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and

Ri+1 = log(1 + Xi+1) −
(

Xi+1 − X2
i+1

2

)
. (2.10)

Hence, we have

log
r2
i+1,i+1

n − i
= Xi+1 − X2

i+1

2
+ Ri+1, (2.11)

which, together with (1.6), (1.9), yields that

log det �̂1 − τn,p − log det�√
−2 log(1 − p

n
)

= log det(BBT ) − p logn − τn,p√
−2 log(1 − p

n
)

=
∑p−1

i=0 log
r2
i+1,i+1
n−i

+ log[n(n − 1) · · · (n − p + 1)] − p logn − τn,p√
−2 log(1 − p

n
)

= 1√
−2 log(1 − p

n
)

p−1∑
i=0

Xi+1 − 1√
−2 log(1 − p

n
)

[
p−1∑
i=0

X2
i+1

2
+ log

(
1 − p

n

)]

(2.12)

+ 1√
−2 log(1 − p

n
)

p−1∑
i=0

Ri+1

= 1√
−2 log(1 − p

n
)

p−s1∑
i=0

Xi+1 − 1√
−2 log(1 − p

n
)

[
p−s1∑
i=0

X2
i+1

2
+ log

(
1 − p

n

)]

+ 1√
−2 log(1 − p

n
)

p−s1∑
i=0

Ri+1 + 1√
−2 log(1 − p

n
)

p−1∑
i=p−s1+1

log
r2
i+1,i+1

n − i

.= I1 − I2 + I3 + I4,

where s1 = �(− log εn)
1/4	 and εn = 1 − p/n → 0.

Crudely speaking, the main route is to prove that the first term of (2.12) converges weakly to
the standard Gaussian distribution and the remaining three terms tend to zero in probability.

Let F0
.= {
,φ} and Fi be the σ -algebra generated by the first i rows of B . It follows from

(2.7) and (2.9) that

E(Xi+1|Fi ) = 0, 0 ≤ i ≤ p − 1, (2.13)
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which yields that X1,X2, . . . ,Xp is a martingale difference sequence with respect to the filtration
F0

.= {
,φ} ⊂ F1 ⊂ · · · ⊂ Fp−1. This is a very important fact to prove that the first term of
(2.12) converges weakly to the standard Gaussian distribution by using the classical CLT for
martingales.

3. Some lemmas

This section is to list important lemmas to be used and prove a crucial one. We start with two
lemmas from [4].

Lemma 3.1. Let An = (aij )n×n be a square random matrices, where {aij ,1 ≤ i, j ≤ n} is a
collection of independent real random variables with common mean 0 and variance 1. Moreover,
we assume

sup
n

max
1≤i,j≤n

Ea4
ij < ∞. (3.1)

Then we have the logarithmic law for detA2
n: as n tends to infinity,

log detA2
n − log(n − 1)!√
2 logn

d−−−→ N(0,1). (3.2)

Lemma 3.2. Let {xi,1 ≤ i ≤ n} be independent real random variables with common mean zero
and variance 1. Moreover, we assume that maxi E|xi |l ≤ νl . Let Mn = (mij )n×n be a nonnegative
definite matrix which is deterministic. Then there exists a positive constant C such that

E

∣∣∣∣∣
n∑

i=1

miix
2
i − trMn

∣∣∣∣∣
4

≤ C
[
ν8 trM4

n + ν2
4

(
trM2

n

)2] (3.3)

and

E

∣∣∣∣∑
u �=v

muvxuxv

∣∣∣∣
4

≤ Cν2
4

(
trM2

n

)2
. (3.4)

The next one is the classical CLT for martingales, which can be found in the book of [11], for
instance.

Lemma 3.3. Let {Sni,Fni,1 ≤ i ≤ kn,n ≥ 1} be a zero-mean, square-integrable martingale ar-
ray with difference Zni . Suppose that

max
1≤i≤kn

|Zni | P−−−→ 0, (3.5)
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and

kn∑
i=1

Z2
ni

d−−−→ 1. (3.6)

Moreover, E(max1≤i≤kn Z2
ni) is bounded in n. Then we have

Snkn

d−−−→ N(0,1). (3.7)

The next one is the moment inequality for quadratic forms. One can refer to Lemma B.26
in [3], for instance.

Lemma 3.4. Let A = (aij ) be an n×n nonrandom matrix and X = (x1, x2, . . . , xn) be a random
vector of independent entries. Assume that Exi = 0, E|xi |2 = 1 and E|xj |λ ≤ νλ. Then for any
p ≥ 1,

E
∣∣X∗AX − tr A

∣∣p ≤ Cp

[(
ν4 tr
(
AA∗))p/2 + ν2p tr

(
AA∗)p/2]

,

where Cp is a constant depending on p only.

In [13] and [4], they estimated the entries of the projection matrix Pi individually. We also
obtain a similar estimate. To present it, set

s1 = ⌊(− log εn)
1/4⌋, s2 = ⌊p log−20a p

⌋
, (3.8)

where εn = 1 − p/n → 0 and a > 1/8.

Lemma 3.5. Recall the projection matrix Pi defined in (2.6). If limn→∞ p
n

= 1, then we have

E

(
max

k
pkk(i)

)
≤ C log−8a p (3.9)

and

P

(
max

k
pkk(i) ≥ log−7a p

)
= O
(
n−1/3) (3.10)

for p − s2 ≤ i ≤ p − 1 and n − p = O(n/ log20a n).

Since the proof of Lemma 3.5 is just a slight modification of that in [4] under our setting we
delay it until Appendix.

However, in our setting, the inequality (3.9) is not accurate when n − p ≥ n1−δ for any 0 <

δ < 1. To improve it, our strategy is to treat it globally to get an estimate for their sum (see (3.12)
below). The following is a crucial lemma. For 0 ≤ i ≤ p − s1 and 1 ≤ k ≤ n, let

qkk(i) = pkk(i)

n − i
.
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Lemma 3.6. Under the above notations, if n/2 ≤ i ≤ p − s1, then we have

Ep2
kk(i) ≤ C

[
1

1 + 1
n
E trG(i)(α)

]2

(3.11)

for 1 ≤ k ≤ n, where

G(i)(α) =
(

1

n
B(i)B

T
(i) + αIi

)−1

, α = n−1/6.

In addition, if n − p ≥ n19/20, then we have

p−s1∑
i=0

n∑
k=1

Eq2
kk(i) = O(1). (3.12)

We now start with the proof of Lemma 3.6. Let bj (i) be the j th column of B(i) and B(i,j)

denote the matrix obtained from B(i) by deleting the j th column bj (i). Denote α = αn = n−1/6

and

G(i,k)(α) =
(

1

n
B(i,k)B

T
(i,k) + αIi

)−1

,

G(i)(α) =
(

1

n
B(i)B

T
(i) + αIi

)−1

.

Write

G(i)(α) =
(

1

n
B(i,k)B

T
(i,k) + 1

n
bk(i)bT

k (i) + αIi

)−1

.

It follows from (2.6) and the Sherman–Morrison formula that

pkk(i) = 1 − bT
k (i)
(
B(i)B

T
(i)

)−1bk(i)

= 1 − bT
k (i)
(
B(i,k)B

T
(i,k) + bk(i)bT

k (i)
)−1bk(i)

= 1 − bT
k (i)(B(i,k)B

T
(i,k))

−1bk(i)

1 + bT
k (i)(B(i,k)B

T
(i,k))

−1bk(i)
(3.13)

= 1

1 + bT
k (i)(B(i,k)B

T
(i,k))

−1bk(i)

≤
(

1 + 1

n
bT

k (i)G(i,k)(α)bk(i)

)−1

,



90 X. Wang, X. Han and G. Pan

which implies that

Ep2
kk(i) ≤ E

[
1

1 + 1
n

bT
k (i)G(i,k)(α)bk(i)

]2

= E

[
1

1 + 1
n

bT
k (i)G(i,k)(α)bk(i)

− 1

1 + 1
n
E trG(i,k)(α)

+ 1

1 + 1
n
E trG(i,k)(α)

]2

≤ 2

[
1

1 + 1
n
E trG(i,k)(α)

]2

(3.14)

+ 2E

[
1

1 + 1
n

bT
k (i)G(i,k)(α)bk(i)

− 1

1 + 1
n
E trG(i,k)(α)

]2

≤ 2

[
1

1 + 1
n
E trG(i,k)(α)

]2

+ 2E

[ 1
n

bT
k (i)G(i,k)(α)bk(i) − 1

n
E trG(i,k)(α)

1 + 1
n
E trG(i,k)(α)

]2

.

Write

K
.= E

∣∣∣∣1nbT
k (i)G(i,k)(α)bk(i) − 1

n
E trG(i,k)(α)

∣∣∣∣
2

. (3.15)

We obtain by the Cr -inequality that

K ≤ 2

n2
E
∣∣bT

k (i)G(i,k)(α)bk(i) − trG(i,k)(α)
∣∣2 + 2

n2
E
∣∣trG(i,k)(α) −E trG(i,k)(α)

∣∣2
(3.16)

.= K1 + K2.

It follows from Lemma 3.4 that

K1 ≤ C

n2

[
trG2

(i,k)(α) + trG2
(i,k)(α)

]
(3.17)

≤ C

n2

[
iα−2 + iα−2]≤ C

nα2
.

Similarly to the proof of (5.10) of [4], we have

K2 ≤ C

nα4
. (3.18)

From (3.16)–(3.18), we can see that K = o(1), which, together with (3.14), yields that

Ep2
kk(i) ≤ C

[
1

1 + 1
n
E trG(i,k)(α)

]2

. (3.19)
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Note that [
1

1 + 1
n
E trG(i,k)(α)

]2

≤ 2

[
1

1 + 1
n
E trG(i)(α)

]2

+ 2

[
1

1 + 1
n
E trG(i,k)(α)

− 1

1 + 1
n
E trG(i)(α)

]2

(3.20)

≤ 2

[
1

1 + 1
n
E trG(i)(α)

]2

+ 2

[ 1
n
E trG(i)(α) − 1

n
E trG(i,k)(α)

1 + 1
n
E trG(i)(α)

]2

.

By the Sherman–Morrison formula again, we have

trG(i)(α) − trG(i,k)(α) = −
1
n

bT
k (i)G2

(i,k)(α)bk(i)

1 + 1
n

bT
k (i)G(i,k)(α)bk(i)

, (3.21)

which yields that

∣∣trG(i)(α) − trG(i,k)(α)
∣∣ = 1

n
bT

k (i)G2
(i,k)(α)bk(i)

1 + 1
n

bT
k (i)G(i,k)(α)bk(i)

≤ α−1,

and thus,

∣∣∣∣1nE trG(i)(α) − 1

n
E trG(i,k)(α)

∣∣∣∣
2

≤ 1

n2
E
∣∣trG(i)(α) − trG(i,k)(α)

∣∣2
(3.22)

≤ 1

n2α2
= o(1).

Hence, the desired result (3.11) follows immediately from (3.19)–(3.22).
The next aim is to show that (3.12) holds. Note that qkk(i) = pkk(i)/(n − i) ≤ 1/(n − i) and∑n
k=1 qkk(i) =∑n

k=1 pkk(i)/(n − i) = 1. We have

p−s1∑
i=0

n∑
k=1

Eq2
kk(i) =

�n/2	∑
i=0

n∑
k=1

Eq2
kk(i) +

p−s1∑
i=�n/2	+1

n∑
k=1

Eq2
kk(i)

≤
�n/2	∑
i=0

1

n − i
+

p−s1∑
i=�n/2	+1

1

(n − i)2

n∑
k=1

Ep2
kk(i) (3.23)

≤ O(1) + C

p−s1∑
i=�n/2	+1

n

(n − i)2

[
1

1 + 1
n
E trG(i)(α)

]2

.
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By Lemma A.1, we can see that for n/2 ≤ i ≤ p − s1,

E

(
1

i
trG(i)(α)

)
= si(α) + O

(
n−1/6), (3.24)

where

si(α) = 2

(
α + 1 − i

n
+
√(

α + 1 − i

n

)2

+ 4αi

n

)−1

. (3.25)

Hence, we have by (3.23)–(3.25) that

p−s1∑
i=0

n∑
k=1

Eq2
kk(i) ≤ O(1) + C

p−s1∑
i=�n/2	+1

n

(n − i)2

[
1

1 + i
n

·E( 1
i

trG(i)(α))

]2

(3.26)

≤ O(1) + C

p−s1∑
i=�n/2	+1

n

(n − i)2

[
1

1 + i
n

· 2

α+1− i
n
+
√

(α+1− i
n
)2+ 4αi

n

]2

.

One can see that if

i

n
≤ 2 + α − √

α2 + 4α

2
,

namely,

i ≤ n

(
1 −

√
α2 + 4α − α

2

)
,

then we have

n − i

n
≥ α and

(
n − i

n

)2

≥ α · i

n
. (3.27)

Noting that n − p ≥ n19/20, i ≤ p − s1 and
√

α2+4α−α
2 ∼ √

α = n−1/12, we have

i < p ≤ n
(
1 − n−1/20)≤ n

(
1 −

√
α2 + 4α − α

2

)
.

Hence, (3.27) is satisfied, which together with (3.26) yields that

p−s1∑
i=0

n∑
k=1

Eq2
kk(i) ≤ O(1) + C

p−s1∑
i=�n/2	+1

n

(n − i)2

[
1

1 + 2i
n

· n

(2+2
√

2)(n−i)

]2

= O(1) + C

p−s1∑
i=�n/2	+1

n

(n − i)2

[
(2 + 2

√
2)(n − i)

(2 + 2
√

2)(n − i) + 2i

]2

(3.28)
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≤ O(1) + C

p−s1∑
i=�n/2	+1

n

(n − i)2
· (n − i)2

n2

= O(1) + C

p−s1∑
i=�n/2	+1

1

n
= O(1).

Therefore, (3.12) holds. This completes the proof of Lemma 3.6.

4. Proofs of the main results

4.1. Proof of Theorem 1.1

The proof of Theorem 1.1 follows directly from Lemma 3.1, which was provided by [4]. Here,
we give the details as follows.

Note that the square matrix B = (bjk)n×n satisfies the conditions of Lemma 3.1. Applying
Lemma 3.1 with An = B , we have by (1.10) that

log detB2 − log(n − 1)!√
2 logn

d−−−→ N(0,1), (4.1)

which together with (1.8) yields the desired result (1.11) immediately. The proof is complete.

4.2. Proof of Theorem 1.2

For convenience of the reader, we present the complete proof of Theorem 1.2.
By Proposition 2.1, we assume that all square submatrices of B are invertible. In view of

(2.12), to prove (1.14), it suffices to show the following:

(i)

I1
.= 1√

−2 log(1 − p
n
)

p−s1∑
i=0

Xi+1
d−−−→ N(0,1); (4.2)

(ii)

I2
.= 1√

−2 log(1 − p
n
)

[
p−s1∑
i=0

X2
i+1

2
+ log

(
1 − p

n

)]
P−−−→ 0; (4.3)

(iii)

I3
.= 1√

−2 log(1 − p
n
)

p−s1∑
i=0

Ri+1
P−−−→ 0; (4.4)
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(iv) if the last s1 rows of B are Gaussian, then

I4
.= 1√

−2 log(1 − p
n
)

p−1∑
i=p−s1+1

log
r2
i+1,i+1

n − i

P−−−→ 0; (4.5)

(v) let B̄ be a random matrix satisfying the basic Assumptions C0 and differ from B only in
the last s1 rows. Then

log det(BBT )√
−2 log(1 − p

n
)

− log det(B̄B̄T )√
−2 log(1 − p

n
)

P−−−→ 0, (4.6)

and thus,

log det(BBT ) − p logn − τn,p√
−2 log(1 − p

n
)

− log det(B̄B̄T ) − p logn − τn,p√
−2 log(1 − p

n
)

P−−−→ 0. (4.7)

4.2.1. Proofs of (i) and (ii)

Unlike [13] and [4], we have to distinguish two cases to prove (i) and (ii).

Case I. 1 ≤ n − p ≤ n19/20.
In this case, one can easily see that

1√
−2 log(1 − p

n
)

= O

(
1√

logn

)
.

The remaining proofs of (i) and (ii) are similar to the corresponding ones of Theorem 1.1 in [4]
by using Lemmas 3.5, 3.2 and 3.3.

Case II. n19/20 ≤ n − p = nεn, where εn = 1 − p/n → 0.

Applying Lemma 3.3 with kn = p − s1, Zni = Xi/

√
−2 log(1 − p

n
), we only need to show

that

1√
−2 log(1 − p

n
)

max
0≤i≤p−s1

|Xi+1| P−−−→ 0, (4.8)

1

−2 log(1 − p
n
)

p−s1∑
i=0

X2
i+1

P−−−→ 1, (4.9)

and

1

−2 log(1 − p
n
)
E

(
max

0≤i≤p−s1
X2

i+1

)
≤ C (4.10)

for some positive constant C independent of p and n.
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First, we prove (4.8). It suffices to show that for any ε > 0,

p−s1∑
i=0

P

(
1√

−2 log(1 − p
n
)

|Xi+1| ≥ ε

)
→ 0 as n → ∞. (4.11)

For 0 ≤ i ≤ p − s1, denote

qjk(i) = 1

n − i
pjk(i), Qi

.= (qjk(i)
)
n×n

.= 1

n − i
Pi .

Noting that trQi = 1 from trPi = n − i, we have by (2.5) and (2.9) that

Xi+1 =
n∑

k=1

qkk(i)
(
b2
i+1,k − 1

)+∑
u �=v

quv(i)bi+1,ubi+1,v
.= Ui+1 + Vi+1. (4.12)

Hence, to prove (4.11), we only need to show

1

−2 log(1 − p
n
)

p−s1∑
i=0

EU2
i+1 → 0 as n → ∞ (4.13)

and

1

[−2 log(1 − p
n
)]2

p−s1∑
i=0

EV 4
i+1 → 0 as n → ∞. (4.14)

Note that

EU2
i+1 = E

[
n∑

k=1

qkk(i)
(
b2
i+1,k − 1

)]2

≤ C

n∑
k=1

Eq2
kk(i). (4.15)

We have by n19/20 ≤ n − p, p/n → 1 and (3.12) that

1

−2 log(1 − p
n
)

p−s1∑
i=0

EU2
i+1 ≤ C

−2 log(1 − p
n
)

p−s1∑
i=0

n∑
k=1

Eq2
kk(i) = o(1),

which implies (4.13). On the other hand, noting that εn = 1 − p/n → 0 and s1 =
�(− log εn)

1/4	 → ∞, we have by (3.4) that

1

[−2 log(1 − p
n
)]2

p−s1∑
i=0

EV 4
i+1 ≤ C

(log εn)2

p−s1∑
i=0

E
(
trQ2

i

)2

≤ C

(log εn)2

p−s1∑
i=0

1

(n − i)2
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≤ C

(log εn)2
· 1

s1

= o(1),

which implies (4.14). Hence, (4.8) is proved.
Next, we prove (4.9). Note that (ii) implies (4.9) directly. So we only need to show (ii), namely,

1√
−2 log(1 − p

n
)

[
p−s1∑
i=0

X2
i+1 + 2 log

(
1 − p

n

)]
P−−−→ 0, (4.16)

which can be implied by

1√
−2 log(1 − p

n
)

p−s1∑
i=0

[
X2

i+1 −E
(
X2

i+1|Fi

)] P−−−→ 0, (4.17)

and

1√
−2 log(1 − p

n
)

[
p−s1∑
i=0

E
(
X2

i+1|Fi

)+ 2 log

(
1 − p

n

)]
P−−−→ 0. (4.18)

It can be checked that

E
(
X2

i+1|Fi

) = E

[(
n∑

j,k=1

qjk(i)bi+1,j bi+1,k − 1

)2∣∣∣∣Fi

]

(4.19)

= 2

n − i
+

n∑
k=1

q2
kk(i)
(
Eb4

i+1,k − 3
)

and

p−s1∑
i=0

2

n − i
+ 2 log

(
1 − p

n

)

= 2
[
logn − log(n − p + s1)

]+ O

(
1

n − p + s1

)
+ 2 log

(
1 − p

n

)

= 2
[
log(n − p) − log(n − p + s1)

]+ O

(
1

s1

)
(4.20)

= 2 log

(
1 − s1

n − p + s1

)
+ O

(
1

s1

)
= o(1),
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where the last equality above uses the fact that n19/20 ≤ n − p, εn = 1 − p/n → 0 and s1 =
�(− log εn)

1/4	 → ∞. It follows from n19/20 ≤ n − p, 1 − p/n → 0 and (3.12) again that

1√
−2 log(1 − p

n
)

p−s1∑
i=0

n∑
k=1

Eq2
kk(i) = o(1). (4.21)

Hence, (4.18) follows immediately from (4.19)–(4.21).
For (4.17), we conclude from (4.12) and (4.19) that

X2
i+1 −E

(
X2

i+1|Fi

)

= 2

[
−

n∑
u=1

quu(i)
(
b2
i+1,u − 1

)+ 2
∑
u �=v

q2
uv(i)
(
b2
i+1,ub

2
i+1,v − 1

)

+
∑
u �=v

quu(i)qvv(i)
(
b2
i+1,ub

2
i+1,v − 1

)

+
∑

u1 �=v1,u2 �=v2,{u1,v1}�={u2,v3}
qu1v1(i)qu2v2(i)bi+1,u1bi+1,v1bi+1,u2bi+1,v2

]

+ 2

[
1

2

n∑
u=1

q2
uu(i)

(
b4
i+1,u −Eb4

i+1,u

)

+
(

n∑
u=1

quu(i)
(
b2
i+1,u − 1

)) ·
(∑

u �=v

quv(i)bi+1,ubi+1,v

)]

.= 2W1(i) + 2W2(i)

(one may refer to formula below (3.1) in [4]). To prove (4.17), it suffices to show

J1
.= 1

−2 log(1 − p
n
)
E

(
p−s1∑
i=0

W1(i)

)2

→ 0 as n → ∞ (4.22)

and

J2
.= 1√

−2 log(1 − p
n
)

p−s1∑
i=0

E
∣∣W2(i)

∣∣→ 0 as n → ∞. (4.23)
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First, we deal with (4.23). Noting that n − p = nεn, where εn = 1 − p/n → 0, we obtain by the
Cauchy–Schwarz inequality that

J2 ≤ C√− log εn

p−s1∑
i=0

n∑
k=1

Eq2
kk(i)

+ C√− log εn

p−s1∑
i=0

[
E

(
n∑

u=1

quu(i)
(
b2
i+1,u − 1

))2]1/2

·
[
E

(∑
u �=v

quv(i)bi+1,ubi+1,v

)2]1/2

(4.24)

≤ C√− log εn

p−s1∑
i=0

n∑
k=1

Eq2
kk(i) + C√

log logn

p−s1∑
i=0

(
1

n − i

)1/2

·
(

n∑
k=1

Eq2
kk(i)

)1/2

.= J21 + J22.

It follows from (3.12) that J21 = o(1). For J22, noting that qkk(i) = pkk(i)
n−i

≤ 1
n−i

and
∑

k qkk(i) =
1, we have by (3.11) and the proofs of (3.26) and (3.28) that

J22 = C√− log εn

p−s1∑
i=0

(
1

n − i

)1/2

·
(

n∑
k=1

Eq2
kk(i)

)1/2

≤ C√− log εn

�n/2	∑
i=0

1

n − i
+ C√− log εn

p−s1∑
i=�n/2	+1

(
1

n − i

)1/2

·
(

n∑
k=1

Eq2
kk(i)

)1/2

≤ o(1) + C√− log εn

p−s1∑
i=�n/2	+1

(
1

n − i

)3/2

·
(

n∑
k=1

Ep2
kk(i)

)1/2

≤ o(1) + C√− log εn

p−s1∑
i=�n/2	+1

n1/2

(n − i)3/2
· 1

1 + 1
n
E trG(i)(α)

(4.25)

≤ o(1) + C√− log εn

p−s1∑
i=�n/2	+1

n1/2

(n − i)3/2
· n − i

n

= o(1) + C√− log εn

p−s1∑
i=�n/2	+1

1

(n − i)1/2 · n1/2

= o(1).

This finishes the proof of (4.23) in view of (4.24), (4.25) and J21 = o(1).
Second, we deal with (4.22). It is easy to check that

EW1(i) = 0, EW1(i)W1(j) = 0, i �= j,
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which yields that

J1 = 1

−2 log(1 − p
n
)

p−s1∑
i=0

EW 2
1 (i)

≤ C

−2 log(1 − p
n
)

p−s1∑
i=0

E

(
n∑

u=1

q2
uu(i)

)
+ C

−2 log(1 − p
n
)

p−s1∑
i=0

E

( ∑
u �=v,u �=w

q2
uv(i)q

2
uw(i)

)

+ C

−2 log(1 − p
n
)

p−s1∑
i=0

E

( ∑
u �=v,u �=w

q2
uu(i)qvv(i)qww(i)

)
(4.26)

+ C

−2 log(1 − p
n
)

p−s1∑
i=0

E

( ∑
u1 �=v1,u2 �=v2

∣∣qu1v1(i)qu1v2(i)qu2v1(i)qu2v2(i)
∣∣)

.= J11 + J12 + J13 + J14.

Noting that n19/20 ≤ n − p, 1 − p/n → 0 and
∑

u,v q2
uv(i) = 1

n−i
, we conclude from (3.12) and

Cauchy–Schwarz’s inequality (if needed) again that

J11
.= C

−2 log(1 − p
n
)

p−s1∑
i=0

E

(
n∑

u=1

q2
uu(i)

)
= o(1), (4.27)

J12
.= C

−2 log(1 − p
n
)

p−s1∑
i=0

E

( ∑
u �=v,u �=w

q2
uv(i)q

2
uw(i)

)

≤ C

−2 log(1 − p
n
)

p−s1∑
i=0

E

(∑
u,v

q2
uv(i)

)2

(4.28)

= C

−2 log(1 − p
n
)

p−s1∑
i=0

1

(n − i)2
= o(1),

J13
.= C

−2 log(1 − p
n
)

p−s1∑
i=0

E

( ∑
u �=v,u �=w

q2
uu(i)qvv(i)qww(i)

)

≤ C

−2 log(1 − p
n
)

p−s1∑
i=0

E

(
n∑

u=1

q2
uu(i)

)(
n∑

v=1

qvv(i)

)2

(4.29)

= C

−2 log(1 − p
n
)

p−s1∑
i=0

E

(
n∑

u=1

q2
uu(i)

)
= o(1),
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and

J14
.= C

−2 log(1 − p
n
)

p−s1∑
i=0

E

( ∑
u1 �=v1,u2 �=v2

∣∣qu1v1(i)qu1v2(i)qu2v1(i)qu2v2(i)
∣∣)

(4.30)

≤ C

−2 log(1 − p
n
)

p−s1∑
i=0

E

(∑
u,v

q2
uv(i)

)2

= o(1).

Hence, (4.22) follows immediately from (4.27)–(4.30), which together with (4.23) yields (4.17).
Combining (4.17) with (4.18), we can get (4.16). Thus, (4.9) and (ii) have been proved.

To end the proof of (i), we claim that (4.10) holds. Actually, it follows from (4.19) and (3.12)
that

1

−2 log(1 − p
n
)
E

(
max

0≤i≤p−s1
X2

i+1

)
≤ 1

−2 log(1 − p
n
)

p−s1∑
i=0

EX2
i+1

≤ C

−2 log(1 − p
n
)

[
p−s1∑
i=0

1

n − i
+

p−s1∑
i=0

n∑
k=1

Eq2
kk(i)

]

≤ C · logn − log(n − p + s1)

logn − log(n − p)
+ o(1)

≤ C,

which implies (4.10). This completes the proofs of (i) and (ii).

4.2.2. Proof of (iii) in (4.4)

If 1 ≤ n − p ≤ n19/20, then the proof of (iii) is still similar to the corresponding one of Theo-
rem 1.1 in [4]. So we only need to consider n19/20 ≤ n − p = nεn, where εn = 1 − p/n → 0.

To prove (iii), we need the following two lemmas, whose proofs will be given in Appendix.

Lemma 4.1. If Xi+1 ≥ −1 + (log log ε−1
n )−1, where εn = 1 − p/n → 0, then one has

|Ri+1| ≤ C
(
U2

i+1 + |Vi+1|2+δ
)

log log ε−1
n

for any 0 < δ ≤ 1. Here C
.= C(δ) is a positive constant depending on δ only.

Lemma 4.2. Under the Assumption C0, we have

p−s1∑
i=0

P
(
Xi+1 < −1 + (log log ε−1

n

)−1)→ 0 as n → ∞,

where εn = 1 − p/n → 0.
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Applying Lemmas 4.1 and 4.2, we have with probability 1 − o(1) that

|Ri+1| ≤ C
(
U2

i+1 + |Vi+1|2+δ
)

log log ε−1
n , 0 ≤ i ≤ p − s1.

Hence, to prove (iii), it suffices to show

log log ε−1
n√

−2 log(1 − p
n
)

p−s1∑
i=0

(
U2

i+1 + |Vi+1|2+δ
) P−−−→ 0. (4.31)

Noting that n19/20 ≤ n − p = nεn, where εn = 1 − p/n → 0, we have by (3.12) that

log log ε−1
n√

−2 log(1 − p
n
)

p−s1∑
i=0

EU2
i+1 ≤ C log log ε−1

n√
log ε−1

n

p−s1∑
i=0

n∑
k=1

Eq2
kk(i) = o(1). (4.32)

Moreover, we have

log log ε−1
n√

−2 log(1 − p
n
)

p−s1∑
i=0

E|Vi+1|2+δ ≤ C log log ε−1
n√

log ε−1
n

p−s1∑
i=0

(
EV 4

i+1

) 2+δ
4

≤ C log log ε−1
n√

log ε−1
n

p−s1∑
i=0

(n − i)−
2+δ

2 (4.33)

= o(1),

which together with (4.32) yields (4.31). This completes the proof of (iii).

4.2.3. Proofs of (iv) and (v)

For (iv), note that when the last s1 rows of B are Gaussian, {r2
i+1,i+1, i = p − s1 + 1, . . . , p − 1}

are independent random variables and

r2
i+1,i+1 = bT

i+1Pibi+1 ∼ χ2
tr(Pi )

= χ2
n−i , i = p − s1 + 1, . . . , p − 1.

One may refer to Section 7 of [13] for instance.
Similarly to the proof of equality (7.1) of [13], one can get (4.5) immediately.
Finally, we prove (v). The proof is different from that in [4]. We have to distinguish two

different cases according as (n − p) ≥ dn = s
1/16
1 or (n − p) < dn. Moreover, we use induction

to handle the case of (n − p) < dn. In addition, our overall strategy is to replace one row at each
step, and derive the difference between the distributions of the logarithms of the magnitudes of
two adjacent determinants. Hence, it suffices to compare two matrices with only one different
row. Without loss of generality, we only need to compare two random matrices B = (bjk)p×n

and C̄ = (b̄jk)p×n satisfying Assumption C0 such that they only differ in the last row. Assume
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that bjk = b̄jk,1 ≤ j ≤ p − 1,1 ≤ k ≤ n, and bT
p and b̄T

p are independent. Here we use bT
p and

b̄T
p to denote the pth row of B and C̄.
To prove (v), we consider two cases.
(i) n − p ≥ dn = s

1/16
1 → ∞, where s1 = �(− log εn)

1/4	 and εn = 1 − p/n → 0. Set

B = (bjk)p×n =

⎛
⎜⎜⎜⎜⎝

bT
1
...

bT
p−1

bT
p

⎞
⎟⎟⎟⎟⎠=

(
B(p−1)

bT
p

)
, C̄ = (b̄jk)p×n =

⎛
⎜⎜⎜⎜⎝

bT
1
...

bT
p−1

b̄T
p

⎞
⎟⎟⎟⎟⎠=

(
B(p−1)

b̄T
p

)
.

Note that the following basic properties of determinant:

det

(
A B

C D

)
= det

(
A − BD−1C

)
detD,

det
(
A + uvT

) = (1 + vT A−1u
)

detA.

These and (2.6) yield

det
(
BBT

)
= det

(
B(p−1)B

T
(p−1) B(p−1)bp

bT
pBT

(p−1) bT
p bp

)

= det
(
B(p−1)B

T
(p−1) − B(p−1)bp

(
bT

p bp

)−1bT
pBT

(p−1)

) · det
(
bT

p bp

)
= [1 − bT

pBT
(p−1)

(
B(p−1)B

T
(p−1)

)−1
B(p−1)bp

(
bT

p bp

)−1]det
(
B(p−1)B

T
(p−1)

) · bT
p bp (4.34)

= bT
p

[
In − BT

(p−1)

(
B(p−1)B

T
(p−1)

)−1
B(p−1)

]
bp · det

(
B(p−1)B

T
(p−1)

)
= bT

pPp−1bp · det
(
B(p−1)B

T
(p−1)

)
= r2

pp · det
(
B(p−1)B

T
(p−1)

)
,

where

r2
pp = bT

pPp−1bp = bT
p

(
pjk(p − 1)

)
n×n

bp
(4.35)

=
∑

1≤j,k≤n
j �=k

pjk(p − 1)bpj bpk +
n∑

k=1

pkk(p − 1)b2
pk.

Similarly, we have

det
(
C̄C̄T

) = det

(
B(p−1)B

T
(p−1) B(p−1)b̄p

b̄T
pBT

(p−1) b̄T
p b̄p

)
(4.36)

= r̄2
pp · det

(
B(p−1)B

T
(p−1)

)
,
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where

r̄2
pp = b̄T

pPp−1b̄p = b̄T
p

(
pjk(p − 1)

)
n×n

b̄p
(4.37)

=
∑

1≤j,k≤n
j �=k

pjk(p − 1)b̄pj b̄pk +
n∑

k=1

pkk(p − 1)b̄2
pk.

From (4.34) and (4.36), we can get that

log det(BBT )√
−2 log(1 − p

n
)

− log det(C̄C̄T )√
−2 log(1 − p

n
)

= log r2
pp − logEr2

pp√
−2 log(1 − p

n
)

− log r̄2
pp − logEr̄2

pp√
−2 log(1 − p

n
)

, (4.38)

where Er2
pp = Er̄2

pp = n − p + 1 from (2.7).
We next show that

log r2
pp − logEr2

pp√
−2 log(1 − p

n
)

= OP

(
s
−3/2
1

)
(4.39)

and

log r̄2
pp − logEr̄2

pp√
−2 log(1 − p

n
)

= OP

(
s
−3/2
1

)
. (4.40)

Note that Pp−1 = In − BT
(p−1)(B(p−1)B

T
(p−1))

−1B(p−1) is a projection matrix. Hence, the eigen-

values of Pp−1 are 0 or 1. Since Rank(Pp−1) = tr(Pp−1) = n − p + 1, we have

‖Pp−1‖2 =
n∑

j,k=1

p2
jk(p − 1) = n − p + 1. (4.41)

It can be easily checked by (4.35) that

Var
(
r2
pp|Fp−1

)= (Eb4
p1 − 3

) n∑
k=1

p2
kk(p − 1) + 2‖Pp−1‖2.

By (4.41), we then have

Var
(
r2
pp|Fp−1

)= O(n − p + 1). (4.42)

Let

tnp =
√

−2 log

(
1 − p

n

)
· s−3/2

1 =
√

−2 log

(
1 − p

n

)
· (⌊(− log εn)

1/4⌋)−3/2
> 0.
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Noting that Er2
pp = n − p + 1, we conclude from Markov’s inequality that

P
(∣∣log r2

pp − logEr2
pp

∣∣> tnp
)

= P

(∣∣∣∣log
r2
pp

Er2
pp

∣∣∣∣> tnp

)

= P

(
r2
pp

Er2
pp

> etnp

)
+ P

(
r2
pp

Er2
pp

< e−tnp

)
(4.43)

= P
(
r2
pp −Er2

pp >
(
etnp − 1

)
Er2

pp

)+ P
(
r2
pp −Er2

pp <
(
e−tnp − 1

)
Er2

pp

)
≤ E|r2

pp − (n − p + 1)|2
(etnp − 1)2 · (n − p + 1)2

+ E|r2
pp − (n − p + 1)|2

(e−tnp − 1)2 · (n − p + 1)2

.= H1 + H2.

In the following, we show that H1 = o(1) and H2 = o(1).
It follows from (2.5) and (2.6) that E(r2

pp|Fp−1) = n − p + 1, which together with (4.42)
yields that

E
∣∣r2

pp − (n − p + 1)
∣∣2 = E

[
E
(∣∣r2

pp − (n − p + 1)
∣∣2|Fp−1

)]
= E
[
Var
(
r2
pp|Fp−1

)]
(4.44)

≤ C(n − p + 1).

Noting that

dn ≤ n − p = nεn, εn = 1 − p/n → 0,

we can see that

C2(− log εn)
1/8 ≤ tnp ≤ C3

√
logn, (4.45)

where C2 and C3 are two positive constants independent of n and p. Hence, we have by (4.44),
(4.45) and ex − 1 ≥ x that

H1
.= E|r2

pp − (n − p + 1)|2
(etnp − 1)2 · (n − p + 1)2

≤ C

t2
np · (n − p + 1)

(4.46)

≤ C

(− log εn)1/4
= o(1).
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For H2, noting that ( etnp

etnp −1
)2 is non-increasing for tnp ≥ C2(− log εn)

1/8 > 0, we have by
(4.44) and (4.45) again that

H2
.= E|r2

pp − (n − p + 1)|2
(e−tnp − 1)2 · (n − p + 1)2

=
(

etnp

etnp − 1

)2

· E|r2
pp − (n − p + 1)|2
(n − p + 1)2

(4.47)

≤ C

n − p + 1
≤ C

dn

= o(1).

Hence, (4.39) follows immediately from (4.43), (4.46) and (4.47). Similarly, we can also prove
(4.40). From (4.38)–(4.40), we have

log det(BBT )√
−2 log(1 − p

n
)

− log det(C̄C̄T )√
−2 log(1 − p

n
)

= OP

(
s
−3/2
1

)
. (4.48)

Then after s1 = �(− log εn)
1/4	 steps replacing, we can get (4.6) immediately, and thus, (4.7)

holds.
(ii) 1 ≤ n − p < dn. Noticing that | logn

−2 log(1− p
n
)
| is bounded we replace −2 log(1 − p

n
) by logn

in the sequel. We consider the special case n = p first. Since B and C̄ are n × n matrices, it is
elementary that

det(B) =
n∑

k=1

bnkBnk, det(C̄) =
n∑

k=1

b̄nkBnk,

where Bnk is the cofactor of bnk and b̄nk . Similar to (4.38), it suffices to prove that

log(
∑n

k=1 bnkBnk)
2

√
logn

− log(
∑n

k=1 b̄nkBnk)
2

√
logn

= OP

(
s
−3/2
1

)
,

i.e.

log(
∑n

k=1 bnkBnk)
2 − log(

∑n
k=1 B2

nk)√
logn

− log(
∑n

k=1 b̄nkBnk)
2 − log(

∑n
k=1 B2

nk)√
logn

(4.49)
= OP

(
s
−3/2
1

)
.

Set

t̃np =√logn · s−3/2
1 =√logn · (⌊(− log εn)

1/4⌋)−3/2 → ∞,

and

� =
√√√√ n∑

k=1

B2
nk.
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Similar to (4.43), we have

P

(∣∣∣∣∣log

(
n∑

k=1

bnkBnk

)2

− log�2

∣∣∣∣∣> t̃np

)
(4.50)

= P

( |∑n
k=1 bnkBnk|

�
> et̃np/2

)
+ P

( |∑n
k=1 bnkBnk|

�
< e−t̃np/2

)
.

Referring to the proof of (v) in [4], we can find that

sup
x

∣∣∣∣P
(∑n

k=1 bnkBnk

�
< x

)
− �(x)

∣∣∣∣= o(1),

and

sup
x

∣∣∣∣P
(∑n

k=1 b̄nkBnk

�
< x

)
− �(x)

∣∣∣∣= o(1),

where �(x) is the cumulative distribution function of the standard normal distribution. From the
above two equations and the fact that t̃np → ∞, we have (4.50) = o(1), which implies that (4.49)
holds.

For the general case when n − p < dn, we use induction on p. The aim is to prove that

log det(B(p)B
T
(p))√

logn
− log det(C̄(p)C̄

T
(p))√

logn
= OP

(
(n − p + 1)s

−3/2
1

)
. (4.51)

Note that (4.51) holds for p = n by (4.49). Now suppose that (4.51) is true for p = p1 such that
0 ≤ n−p1 ≤ dn − 1. We next prove that (4.51) holds for p = p1 − 1. In order to apply (4.51) for
p = p1, we define two new matrices based on B(p) and C̄(p):

D =
(

B(p)

b̄T
p

)
, Ē =

(
C̄(p)

b̄T
p

)
,

where b̄T
p is Gaussian, D and Ē only differ in the row next to the last one. According to induction

((4.51) holds for p = p1), we have

log det(DDT )√
logn

− log det(EET )√
logn

= OP

(
(n − p)s

−3/2
1

)
. (4.52)

Similar to (4.34), we expand D and Ē from the last row and obtain

log det
(
DDT

)= r̂2
pp + log det

(
B(p)B

T
(p)

)
, log det

(
EET

)= r̃2
pp + log det

(
C̄(p)C̄

T
(p)

)
,

where

r̂2
pp = b̄T

p

(
In − BT

(p)

(
B(p)B

T
(p)

)−1
B(p)

)
b̄p, r̃2

pp = b̄T
p

(
In − C̄T

(p)

(
C̄(p)C̄

T
(p)

)−1
C̄(p)

)
b̄p.
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Therefore,

log det(DDT )√
logn

− log det(EET )√
logn

= log det(B(p)B
T
(p))√

logn
− log det(C̄(p)C̄

T
(p))√

logn
+ log r̂2

pp√
logn

− log r̃2
pp√

logn
.

Hence, by (4.52), in order to show (4.51), it suffices to prove that

log r̂2
pp − log(n − p)√

logn
− log r̃2

pp − log(n − p)√
logn

= OP

(
s
−3/2
1

)
. (4.53)

Since b̄T
p is Gaussian, r̂2

pp and r̃2
pp ∼ χ2

n−p . By a simple calculation, it is straightforward to get

P
(∣∣log r̂2

pp − log(n − p)
∣∣> t̃np

)+ P
(∣∣log r̃2

pp − log(n − p)
∣∣> t̃np

)= o(1),

which implies (4.53) directly. Thus, by the induction arguments, we have shown that for any
1 ≤ n − p ≤ dn,

log det(BBT )√
−2 log(1 − p

n
)

− log det(C̄C̄T )√
−2 log(1 − p

n
)

= OP

(
dns

−3/2
1

)= OP

(
s
−23/16
1

)
. (4.54)

Then, after s1 steps replacing, we can show that (4.7) holds. This completes the proof of the
theorem.

Remark 4.1. To conclude this section, we present the differences between Theorem 1.2 and the
corresponding ones of [13] and [4], and the novelty of the present approach.

First, the present paper establishes the logarithmic law of sample covariance matrices based
on a rectangular random matrix B = (bjk)p×n, while [13] and [4] established the logarithmic
law of sample covariance matrices based on a square random matrix B = (bjk)n×n.

Second, to make the log determinant manageable we use the QR decomposition to obtain a
martingale decomposition of the determinant, while [13] and [4] directly made use of the Girko’s
method of perpendiculars.

Third, [13] and [4] estimated pkk(i) (see the definition above (2.4)) individually. In our
setting, such an estimate (see the inequality (3.9)) is not enough when n − p ≥ n1−δ for
any 0 < δ < 1. Our strategy is to treat it globally. Namely, we estimate the summation∑p−s1

i=0

∑n
k=1 Ep2

kk(i) instead of E(maxk pkk(i)). We get that
∑p−s1

i=0

∑n
k=1 Ep2

kk(i) = O(1) in-

stead of
∑p−s1

i=0

∑n
k=1 Ep2

kk(i) = O(log logn) given in [13] and [4].
Finally, to prove the Gaussian replacement for the last s1 row of B will not affect CLT, we have

to distinguish two different cases according as (n − p) ≥ dn = s
1/16
1 or (n − p) < dn. Moreover,

we use mathematical induction to handle the case of (n − p) < dn and an appropriate expansion
of the log determinant to avoid resorting to the Berry–Essen bound for quadratic forms. However,
[13] and [4] used the classical Berry–Esseen bound for the sum of independent random variables.
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Appendix

A.1. Proof of Proposition 2.1

Set An = (bjk)n×n. Note that B = (bjk)p×n is then a submatrix of An = (bjk)n×n. Applying
Cauchy’s interlacing law, we can get that

s1(An) ≥ s1(B), sp(B) ≥ sn(An), (A.1)

where s1(An), s2(An), . . . , sn(An) are singular values of matrix An such that s1(An) ≥ s2(An) ≥
· · · ≥ sn(An), and s1(B), s2(B), . . . , sp(B) are singular values of matrix B such that s1(B) ≥
s2(B) ≥ · · · ≥ sp(B).

For s1(An) and sn(An), as in [4] we have for some positive constant L and C,

P
(
s1(An) ≥ n

)≤ Cn−1/2, P
(
sn(An) ≥ n−L

)= 1 − O

(√
logn√

n

)
, (A.2)

which, together with (A.1), yields that

P
(
s1(B) ≥ n

)≤ P
(
s1(An) ≥ n

)≤ Cn−1/2, (A.3)

and

P
(
sp(B) ≥ n−L

)≥ P
(
sn(An) ≥ n−L

)= 1 − O

(√
logn√

n

)
. (A.4)

Now let θ0 follow the uniform distribution on the interval [−√
3,

√
3] independent of B . Let

θjk , 1 ≤ k ≤ p,1 ≤ k ≤ n be independent copies of θ0. And we set B̄ = (b̄jk)p×n, where b̄jk =
(1 − ε2

n)
1/2bjk + εnθjk . Here we choose εn = n−(100+2L)n. Denote �n = (θjk)p×n. It follows

from Weyl’s inequality that

∣∣si(B̄) − (1 − ε2
n

)1/2
si(B)

∣∣≤ εn‖�n‖op ≤ Cn−(99+2L)n, i = 1,2, . . . , p. (A.5)

Combining (A.4) and (A.5), we have with probability 1 − O(
√

logn√
n

) that

det
(
B̄B̄T

) = p∏
i=1

s2
i (B̄) = (1 − ε2

n

)p(1 + O
(
n−(99+L)n

))2p
p∏

i=1

s2
i (B)

(A.6)
= (1 + o(1)

)
det
(
BBT

)
,

which implies (2.2). Noting that θ0 is a continuous random variable and b̄jk = (1 − ε2
n)

1/2bjk +
εnθjk , we can get (2.1) immediately. The proof is completed.
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A.2. Proof of Lemma 3.5

To prove Lemma 3.5, we need the following lemma, whose proof is similar to that of Lemma 5.2
in [4]. So we omit the details.

Lemma A.1. Let X = (xij )p×n be a random matrix, where n/2 ≤ p ≤ n and {xij ,1 ≤ i ≤ p,1 ≤
j ≤ n} is a collection of real independent random variables with mean zero and variance 1.
Moreover, we assume that supn maxi,j Ex4

ij < ∞. Denote G(p)(α) = ( 1
n
XXT + αIp)−1, where

α = n−1/6. Then we have

E

(
1

p
trG(p)(α)

)
= sp(α) + O

(
n−1/6) (A.7)

and

Var

(
1

n
trG(p)(α)

)
= O
(
n−1/3), (A.8)

where

sp(α) = 2

(
α + 1 − p

n
+
√(

α + 1 − p

n

)2

+ 4αp

n

)−1

.

Proof of Lemma 3.5. First, we prove (3.9). In view of (3.13), to prove (3.9), it suffices to show

Emax
k

(
1 + 1

n
bT

k (i)G(i,k)(α)bk(i)

)−1

≤ C log−8a p (A.9)

for p − s2 ≤ i ≤ p − 1.
By the Sherman–Morrison formula again, we have

trG(i)(α) − trG(i,k)(α) = −
1
n

bT
k (i)G2

(i,k)(α)bk(i)

1 + 1
n

bT
k (i)G(i,k)(α)bk(i)

, (A.10)

and thus,

trG(i)(α) ≤ trG(i,k)(α).

For some small constant 0 < ε < 1/2, for p − s2 ≤ i ≤ p − 1 let

χ(i) =
(

1

n
trG(i)(α) ≥ log10a p

)
,

D1(i) =
(

1

n
max

k

∣∣∣∣ ∑
1≤u �=v≤i

G(i,k)(u, v)bukbvk

∣∣∣∣< ε

)
,

D2(i) =
(

max
k

i∑
j=1

G(i,k)(j, j)b2
jk ≥ log−a p · trG(i,k)(α)

)
.
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Let G(i,k)(u, v) denote the (u, v)th entry of G(i,k)(α). When there is no confusion, we will omit
the parameter α from the notations G(i,k)(α) and G(i)(α). It can be easily checked that

Emax
k

(
1 + 1

n
bT

k (i)G(i,k)bk(i)

)−1

≤ P

(
1

n
trG(i)(α) ≤ log10a p

)

+EI
(
χ(i)
)

max
k

(
1 + 1

n
bT

k (i)G(i,k)bk(i)

)−1[
I
(
D1(i)

)+ I
(
Dc

1(i)
)]

≤ P

(
1

n
trG(i)(α) ≤ log10a p

)
+EI

(
χ(i)
)

max
k

(
1 + 1

n

i∑
j=1

G(i,k)(j, j)b2
jk − ε

)−1

+ P

(
1

n
max

k

∣∣∣∣ ∑
1≤u �=v≤i

G(i,k)(u, v)bukbvk

∣∣∣∣≥ ε

)

= P

(
1

n
trG(i)(α) ≤ log10a p

)

+EI
(
χ(i)
)

max
k

(
1 + 1

n

i∑
j=1

G(i,k)(j, j)b2
jk − ε

)−1[
I
(
D2(i)

)+ I
(
Dc

2(i)
)]

+ P

(
1

n
max

k

∣∣∣∣ ∑
1≤u �=v≤i

G(i,k)(u, v)bukbvk

∣∣∣∣≥ ε

)
(A.11)

≤ P

(
1

n
trG(i)(α) ≤ log10a p

)
+EI

(
χ(i)
)

max
k

(
1 + log−a p · 1

n
trG(i,k) − ε

)−1

+ C

n∑
k=1

P

(
i∑

j=1

G(i,k)(j, j)b2
jk < log−a p · trG(i,k),

1

n
trG(i)(α) ≥ log10a p

)

+ P

(
1

n
max

k

∣∣∣∣ ∑
1≤u �=v≤i

G(i,k)(u, v)bukbvk

∣∣∣∣≥ ε

)

≤ P

(
1

n
trG(i)(α) ≤ log10a p

)
+EI

(
χ(i)
)(

1 + log−a p · 1

n
trG(i) − ε

)−1

+ C

n∑
k=1

P

(
i∑

j=1

G(i,k)(j, j)b2
jk < log−a p · trG(i,k),

1

n
trG(i)(α) ≥ log10a p

)

+ P

(
1

n
max

k

∣∣∣∣ ∑
1≤u �=v≤i

G(i,k)(u, v)bukbvk

∣∣∣∣≥ ε

)
.= W1 + W2 + W3 + W4.
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Noting that n − p = O(n/ log20a n) and similarly to the proof of Lemma 3.3 in [4], we have by
Lemmas 3.2 and A.1 that

W1 = o
(
n−1/3), W2 ≤ C log−8a p,

(A.12)
W3 = o

(
n−1/3), W4 = O

(
n−1/3),

which together with (A.11) yields (A.9). Hence, (3.9) is proved.
We next prove (3.10). Similarly to the proof of (A.11), we have by (3.13) that

P

(
max

k
pkk(i) ≥ log−7a p

)

≤ P

(
max

k

(
1 + 1

n
bT

k (i)G(i,k)bk(i)

)−1

≥ log−7a p

)

≤ P

(
1

n
trG(i)(α) ≤ log10a p

)

+ P

(
max

k

(
1 + 1

n
bT

k (i)G(i,k)bk(i)

)−1

≥ log−7a p,
1

n
trG(i)(α) ≥ log10a p

)

≤ P

(
1

n
trG(i)(α) ≤ log10a p

)

+ P

(
max

k

(
1 + 1

n

i∑
j=1

G(i,k)(j, j)b2
jk − ε

)−1

≥ log−7a p,
1

n
trG(i)(α) ≥ log10a p

)

+ P

(
1

n
max

k

∣∣∣∣ ∑
1≤u �=v≤i

G(i,k)(u, v)bukbvk

∣∣∣∣≥ ε

)
(A.13)

≤ P

(
1

n
trG(i)(α) ≤ log10a p

)

+ P

((
1 + log−a p · 1

n
trG(i) − ε

)−1

≥ log−7a p,
1

n
trG(i)(α) ≥ log10a p

)

+ C

n∑
k=1

P

(
i∑

j=1

G(i,k)(j, j)b2
jk < log−a p · trG(i,k),

1

n
trG(i)(α) ≥ log10a p

)

+ P

(
1

n
max

k

∣∣∣∣ ∑
1≤u �=v≤i

G(i,k)(u, v)bukbvk

∣∣∣∣≥ ε

)

.= W1 + W5 + W3 + W4.
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We have proved that W1 = o(n−1/3), W3 = o(n−1/3) and W4 = O(n−1/3) by (A.12). Moreover,
we claim that

W5
.= P

((
1 + log−a p · 1

n
trG(i) − ε

)−1

≥ log−7a p,
1

n
trG(i)(α) ≥ log10a p

)
(A.14)

= 0

for sufficiently large p. In fact,

W5 ≤ P

(
C log−8a p ≥ log−7a p,

1

n
trG(i)(α) ≥ log10a p

)
= 0 (A.15)

for sufficiently large p, which yields W5 = 0 for sufficiently large p. Hence, (3.10) is complete.
This completes the proof of the lemma. �

A.3. Proofs of Lemmas 4.1 and 4.2

The proof of Lemma 4.1 in the paper is similar to that of Lemma 4.1 in [4]. The only difference
is that “logn” in [4] is replaced by “logε−1

n ”, where εn = 1 − p/n → 0. So we omit the details
of the proof.

Next, we give the proof of Lemma 4.2. It is easily checked by (4.12) that

P
(
Xi+1 < −1 + (log log ε−1

n

)−1)
≤ P

(
n∑

k=1

qkk(i)b
2
i+1,k < 2

(
log log ε−1

n

)−1

)
(A.16)

+ P

(∣∣∣∣∑
u �=v

quv(i)bi+1,ubi+1,v

∣∣∣∣≥ 1

2

(
log log ε−1

n

)−1
)

.

Denote

b̂jk = bjkI
(|bjk| ≤

(
log log ε−1

n

)2)
, b̃jk = b̂jk −Eb̂jk√

Var(b̂jk)

.

It follows from the assumption supp max1≤j≤p Eb4
j1 < ∞ that

Eb̂jk = O
((

log log ε−1
n

)−6)
, Var(b̂jk) = 1 + O

((
log log ε−1

n

)−4)
.

Consequently,

b̃jk = b̂jk + O
((

log log ε−1
n

)−2)
,

which implies that

b̃2
jk ≤ 2b̂2

jk + O
((

log log ε−1
n

)−4)≤ 2b̂2
jk + (log log ε−1

n

)−2
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for sufficiently large n. Therefore,

P

(
n∑

k=1

qkk(i)b
2
i+1,k < 2

(
log log ε−1

n

)−1

)
≤ P

(
n∑

k=1

qkk(i)b̂
2
i+1,k < 2

(
log log ε−1

n

)−1

)

≤ P

(
n∑

k=1

qkk(i)b̃
2
i+1,k < C

(
log log ε−1

n

)−1

)

≤ P

(∣∣∣∣∣
n∑

k=1

qkk(i)b̃
2
i+1,k − 1

∣∣∣∣∣≥ 1

2

)
,

which together with (3.3) yields that

P

(
n∑

k=1

qkk(i)b
2
i+1,k < 2

(
log log ε−1

n

)−1

)

≤ C
[(

log log ε−1
n

)8 · trQ4
i + (trQ2

i

)2] (A.17)

= C
[(

log log ε−1
n

)8 · (n − i)−3 + (n − i)−2].
Moreover, it follows from (3.4) that

P

(∣∣∣∣∑
u �=v

quv(i)bi+1,ubi+1,v

∣∣∣∣≥ 1

2

(
log log ε−1

n

)−1
)

≤ C(n − i)−2 · (log log ε−1
n

)4
. (A.18)

Noting that s1 = �(− log εn)
1/4	, we have by (A.16)–(A.18) that

p−s1∑
i=0

P
(
Xi+1 < −1 + (log log ε−1

n

)−1)

≤ C

[(
log log ε−1

n

)8 ·
p−s1∑
i=0

1

(n − i)3
+ (log log ε−1

n

)4 ·
p−s1∑
i=0

1

(n − i)2

]

≤ C

[
(log log ε−1

n )8

(log ε−1
n )1/2

+ (log log ε−1
n )4

(log ε−1
n )1/4

]

→ 0 as n → ∞.

This completes the proof of Lemma 3.6.
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