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A reduction theorem is proved for functionals of Gamma-correlated random fields with long-range depen-
dence in d-dimensional space. As a particular case, integrals of non-linear functions of chi-squared random
fields, with Laguerre rank being equal to one and two, are studied. When the Laguerre rank is equal to one,
the characteristic function of the limit random variable, given by a Rosenblatt-type distribution, is obtained.
When the Laguerre rank is equal to two, a multiple Wiener—It6 stochastic integral representation of the
limit distribution is derived and an infinite series representation, in terms of independent random variables,
is obtained for the limit.
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1. Introduction

This paper considers the family of Gamma-correlated random fields within the general class
of Lancaster—Sarmanov random fields. Such a class includes non-Gaussian random fields with
given marginal distributions and given covariance structure. The bivariate densities of these fields
have diagonal expansions. These expansions were idenpendently discovered in [21] and [36], in
the context of Markov processes, namely, for dimension d = 1, and correlation function y (|x —
y]) = exp(—c|x — y|), ¢ > 0. This line of research was also continued by [44], where Laguerre
polynomials were used as well as Hermite and Jacobi polynomials, in Markovian settings.

The extension of these limit theorems, based on bilinear expansions, to the context of long-
range dependent (LRD) processes was considered in [5] and [6]. Additionally, the extension to
the context of LRD random fields was studied in [1,23] and [2], among others. In this context,
the initial motivation for studying Gamma-correlated random fields is to have a class of LRD
random fields with Gamma-distributed marginals.

This model setting is important for several applications, where the marginal distributions are
positive. Even in the case d = 1, Gamma-marginally-distributed stochastic processes arise in
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financial mathematics in the so-called fractal activity time models (see [15]; [19], and the refer-
ences therein). The Minkowski functional, moreover (see, for example, [24], pages 1457, 1463;
[8], pages 4-5) constitutes an interesting example of Gamma-correlated functionals. It is defined
as

/ X(S(x) >a(r)) dx, @))
A(t)

where A(r), r > 0, is the homothetic image of a set A, x is the indicator function, S : RY —
R# is a Gamma-correlated random field and a(r) is a continuous non-decreasing function. The
indicator function is used to represent the area in excess of some fixed level. This has been
widely applied, for example, in Astrophysics, where Minkowski type functionals are studied in
the context of spherical random fields. Specifically, these functionals are used in the analysis
of the Cosmic Microwave Background (CMB) radiation data (see, for example, [31]). In [33],
Minkowski functionals are applied to the characterization of hot regions (i.e., the excursion sets),
where the normalized temperature fluctuation field exceeds a given threshold. The normalized
temperature fluctuation field, associated with CMB temperature on the sky, is represented in
terms of a chi-squared random field (see also [28]). Furthermore, Minkowski functionals are
attractive due to their geometrical interpretation in two dimensions, in relation to the total area
of all hot regions, the total length of the boundary between hot and cold regions, and the Euler
characteristic, which counts the number of isolated hot regions minus the number of isolated cold
regions. Minkowski functionals have also been applied to brain mapping. For example, in [41],
Minkowski functionals are used to detect local differences in cortical thickness, due to gender,
thresholding a smooth T statistics random field at a suitable high value. Minkowski functionals
of such a test statistics are used to evaluate, for instance, the expected Euler characteristic of its
excursion set (see also [45] for applications to fMRI).

The class of Gamma-correlated random fields, as a subclass of the general family of
Lancaster—Sarmanov random fields, is not empty, as follows from the results given in [20], who
constructed the system of finite-dimensional distributions for a given bivariate distribution, con-
sistent with their marginal distributions, using the calculus of variations and the maximum en-
tropy principle. Examples of this class of random fields can be found, for instance, in [36], and,
more recently, in [25]. Note that Gaussian homogeneous and isotropic random fields, and -
random fields belong to the Lancaster—Sarmanov random field class (see Section 2). Thus, this
class is not empty. Properties of stationary sequences with bivariate densities having diagonal
expansions, as well as limit theorems were obtained by [18] and [32]. Specifically, in [18], long-
range dependence sequences {Z;}°, with exponential marginal distributions and its subordi-
nated sequences are studied. In particular, processes of the form Z; = (Xl.2 + Yl.2) /2,i=1,2,...,
where {X;}72, and {Y;}?2, are independent copies of a zero-mean stationary Gaussian process
with long-range dependence, are investigated. The asymptotic behaviour of a partial-sum process
of the long-range-dependent sequence {G(Z;)}72,, constructed by subordination from {Z;}°,,
is the same as that of the first nonvanishing term of its Laguerre expansion (see also [39] and
[40], in relation to central and noncentral limit theorems for long-range dependence processes
in discrete time). In [32], different properties of bivariate densities (not necessarily associated
with stochastic processes) are studied, when they admit a diagonal expansion, referred to as
Lancaster—Sarmanov expansion, including Mehler’s formula for bivariate Gaussian distributions,
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Myller-Lebedev or Hille-Hardy formula for bivariate Gamma distributions, among others (see,
for example, [4], Chapter 10). In particular, Mehler’s equality and Gebelein’s inequality are gen-
eralized. In addition, conditions are established for defining long-range dependence sequences
satisfying the reduction principle, by subordination to discrete time stationary processes.

The present paper extends the above-referred results to the general setting of random fields
with continuous d-dimensional parameter space, defined by a regular bounded open domain of
R?. In particular, a reduction theorem is derived for Gamma-correlated random fields with long-
range dependence. Some non-central limit results can then be established for LRD random fields
constructed by subordination from chi-squared random fields. Here, we consider the cases of La-
guerre rank equal one and two. In the case of Laguerre rank being equal to one, non-central limit
results for non-linear functionals of LRD Gaussian random fields with Hermite rank equal two
are obtained in [26], providing the convergence to a Rosenblatt-type limit distribution. Applying
the methodology presented in this paper, the convergence to the same family of distributions can
be proved for integrals of non-linear functions of chi-squared random fields with Laguerre rank
equal one. In addition, in this paper, we obtain the multiple Wiener—It6 stochastic integral rep-
resentation of the limit random variable of a sequence of functionals, constructed by integration
of non-linear functions of chi-squared random fields, with Laguerre rank equal two. Its series
expansion, in terms of independent random variables, is also established. These results constitute
an extension of the results derived in [26], on the double Wiener—Ito stochastic integral repre-
sentation of the limit random variable of a sequence of non-linear functionals of LRD Gaussian
random fields with Hermite rank equal two. Its series expansion in terms of independent chi-
squared random variables is obtained as well. We study in some detail functionals of chi-squared
random fields, since an explicit representation is available for them.

The paper is organized as follows. In Section 2, we define the Lancaster—Sarmanov random
field class. In Section 3, we consider the case of Gamma and chi-squared random fields. In
Section 4, we prove the reduction principle for Gamma-correlated random fields. A non-central
limit theorem is obtained for the case of integrals of non-linear functions of chi-squared random
fields, with Laguerre rank equal one, proving the convergence of their characteristic functions. In
Section 5, a multiple Wiener—Itd stochastic integral representation of the limit random variable
is obtained for functionals of chi-squared random fields with Laguerre rank equal two. Finally,
the infinite series representation, in terms of independent random variables, of the limit random
variable for the case of Laguerre rank equal two is derived in Section 6. The Appendix establishes
the infinitely divisibility property of the limit of a sequence of non-linear functionals of a chi-
squared random field, when the Laguerre rank is equal to one.

2. The Lancaster—-Sarmanov random fields

The class of Lancaster—Sarmanov random fields with given one-dimensional marginal distribu-
tions and general covariance structure is now introduced. Denote by £,(€2, F, P) the Hilbert
space of zero-mean second-order random variables defined on the complete probability space
(2, F, P). For a probability density function p on the interval (/,r), with —oco <[ < r < o0,
we consider the Hilbert space L2(({,r), p(u)du) of equivalence classes of Lebesgue measurable
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functions A: (I, r) — R satisfying
r
/ W2 () p(u) du < oo, p(u) > 0.
!

Let us also consider a complete orthonormal system {ek(u)},‘:io of functions in L2((l , 1),
p(u)du), that is,

-
/ ex(w)en w)p W) du = 8 m, 2
I
where 8¢, denotes the Kronecker delta function. We introduce the following condition.

Condition A0. Let {£(x),x € R?} be a mean-square continuous zero-mean homogeneous
isotropic random field with correlation function

B(|x|))
B(0) ’

v (Ixll) = B(Ix]l) =Cov(£(0),£(x)),  xeR‘

We assume that the densities

= Lple < !
plu)=—- {E®) <u}, ue(l,r),

2
ou dw

exist, and that the bilinear expansion

plu,w, Ix—yll) = P{E(x) <u,&(y) <w}, (w, wy e, r)x(,r),

P, w, X —yl) = p(u)p(w)(l - Zyk(nx—yn)ek(u)ek(w)) 3)

k=1
holds, where

e ¢]

> or*(Ixl) <oo, IIxl=

k=1

and {ey (u)},‘:io is, as before, a complete orthonornal system in the Hilbert space L2((l, r),
pu)du). Assume also that eg(u) = 1.

The symmetric kernel

_ puw, Ix—yl)
Qu, w, lIx —yll) = =25

o “
=1+ y*(IIx = yll)ex w)ex (w)

k=1

plays an important role.
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The series (4) converges in the space L2((1,7) x (I,r), p ® p(u, w) du dw) if the integral
2 Y L
I :/1 /Z 0% (u, w, Ix — yll) pw) p(w) du dw
r r
Z/I /l 02, w, Ix—yI) dP{E00 <u} dP{E() < w} < o0,

where 12 — 1 is known as the Pearson functional for the bivariate density p(u, w, [|x]|) (see, for
example, [22]). Then, the symmetric kernel Q(u, w) belongs to the product space L2((,r) x
(I, r), p ® p(u, w)dudw) of square integrable functions on (/,r) x (I, r), with respect to the
measure p ® p(u, w)dudw. Thus, the kernel Q defines an integral Hilbert—Schmidt operator
on the space L3({,r), p(u)du). In particular, from the spectral theorem for compact and self-
adjoint operators (see, for example, [11], page 112), the integral operator Q defined by kernel Q
admits the diagonal spectral expansion

Q(f)(g)=/l /l O(u, w, Ix =yl f(w)gw)p)p(w)dudw
:/1 /1 P(u,w,||X—y||)f(u)g(w)dudw )
:Z/l [l re(lIx =yl )ex (w)ex (w) f () g(w) p(u) p(w) du dw,
k=0

for all
f,g€ Lz((l,r) x (,r), p® p(u, w)dudw).

Here,

{re(ix =y},

is the sequence of eigenvalues, associated with the orthonormal system of eigenfunctions
{ex(u)}32y» which could also depend on x and y in a general setting.
Thus, Condition A0 postulates the expansion (5) for the case where
re(lx = yll) = v* (Ix = yl),
and where ey (1) does not depend on x and y. Condition A0 then implies
r
Elac(6)] = [ ecwptodu=0, k=1,
I
E[en (§0))em (6(y) ]

_ /l /1 en@)em W) p (s w, X — yl) du dw ©)
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=/1 /1 en(u)em(w)p(u)P(w)<1+Zyk(||x—y||)ek(u)ek(w)> dudw

k=1
=3n,mV"(IIX—)’|I), n,m=>1.

We will call the random fields satisfying Condition AQ Lancaster—Sarmanov random fields, due
to Lancaster [21] and Sarmanov [36], in the context of Markov processes. In the next section, we
will refer to the special case of Gamma-correlated random fields, and, in particular, to the case
of chi-squared random fields. We will also let (I, r) in (2) to be (0, 00).

Remark 1. As indicated in the Introduction, the class of Lancaster—Sarmanov random fields is
not empty. In [20] (pages 120-124), using the calculus of variations and the maximum entropy
principle, the system of finite-dimensional distributions, consistent with their marginal distribu-
tions, is constructed from a given bivariate distribution. Homogeneous and isotropic zero-mean
Gaussian random fields, and Xz-random fields constitute two examples of Lancaster—Sarmanov
random fields, which can be constructively defined from the bivariate distribution (3) (see, for
example, [2], page 465).

3. Gamma-correlated random fields
In this paper, all random fields considered are assumed to be measurable and mean-square con-

tinuous. We now refer to the class of random fields with Gamma marginal distribution, and given
correlation function. For details see [5,6,23] and [2], among others.

3.1. General formulation

Following the ideas of [21] and [36], we introduce a homogeneous and isotropic random field
{£(x), x € RY}, with given one-dimensional Gamma distributions, and given correlation structure

y(Ix—yll) = Corr(6x), &(y)),  x,yeR’

Let

1
-1
u exp(—u), u>0,8>0, @)
')
be a Gamma probability density with shape parameter § and scale parameter one, and let
L2((0, 00), pp(u)du) be the Hilbert space of square integrable functions with respect to the
measure pg(u)du, i.e., the space of functions F such that

ppu) =

/OO F(u)pp(u)du < o. (8)
0

An orthogonal basis of the Hilbert space L2((0, 00), pp(u) du) can be constructed from gen-

eralized Laguerre polynomials L,(f3 ), k > 0, of index B (see [4]). Specifically, the elements of
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such a basis are defined as follows: For k, m > 0,

- k) 172 o0
)= wy=1" l)(”)[Wf)k)} : /0 &P (wyeP ) pp () du =8, (9)

where by Rodriguez formula for Laguerre polynomials

k
L = 1w = )~ u explu) S fexp(-u ), (10)

The first three polynomials are then given by

=1 &Pw= \/gw —u)

(B) 2 —1/2 an
e (u)=(u"—2(B+Du+(B+DB)[2B+DB] "
Applying Myller—Lebedev or Hille-Hardy formula (see [4], Chapter 10) we obtain
P w, [x—yl) = PB(M)P/S(W)|:1 + Zyk(nx—y||)e,§ﬁ>(u)e,§ﬂ>(w)]
k=1
(B-1)/2
:( uw ) exp{— u+w } (12)
y(Ix =yl I=ydx—=yD
( qu/(IIX—yll)) 1
x Ig_1|2 )
I—ydx—=ylh) /T@EA—-ydx—ylD)

where y (||[x—Yy]||) is a continuous non-negative definite kernel on R xR, depending on || x—y/|,
and I, (z) is the modified Bessel function of the first kind of order g, with

(z/2)° ! —-1/2
IQ(Z)Zm/I(I—I2)Q exp(zt)dt, z>0.

Summarizing, one can define a homogeneous and isotropic gamma-correlated random field as
arandom field {£(x),x € R4 }, such that its one dimensional densities

%P[ax) <u]

and two-dimensional densities
2

Juow

plu,w, [x=yl)= PlEx) <u,E(y) <w]
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are defined by (7) and (12), respectively. In addition, the correlation function y satisfies
o
> v (lizll) < oo, ze R
k=1

A function F satisfying (8) can be expanded into the series
o 00
Fuy=Y CkePw),  ck =/0 Fuwel) wypgwydu,  q=0,1,2,..., (13)
q=0

which converges in the Hilbert space L>((0, 00), pg(u) du). In particular,

ck :/0 Fuyel? ) pg(u)du =E[F(§x)]. (14)

The Laguerre rank of the function F is defined as the smallest k£ > 1 such that
Ct=0,....,.Ct,=0, CF#o.

From equation (12), for a homogeneous and isotropic Gamma-correlated random field {£ (x), x €
R4}, with correlation function y, the following identities hold:

Ele” ()] =0,  E[ef ()¢ (EW)] = 8mir* (Ix = ). (15)
In order to introduce long-range dependence for Gamma-correlated random fields, we assume
the following condition:
Condition Al. The non-negative definite function

L(zl)
lzll®

y(lzl) = zeRY0<8<d, (16)

where L is a slowly varying function at infinity.

3.2. The chi-squared random fields

One can construct examples of random fields with marginal density (7) and bivariate probability
density (12) considering the class of chi-squared random fields. The chi-squared random fields
are given by
1
KX =S (VP®+ - +12x),  xeR’, (17)
where Y(x), ..., Y,(x) are independent copies of Gaussian random field {¥ (x), x € R?} with
covariance function B(||x||) with B(]|0||) = 1. In this case,

C 2 , 2
y(Ix—yl) = OV\(I);:((;Z(:;)’)(”)=BZ(IIX—YI|), B=r/2. (18)
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Note that by construction, the correlation function of chi-squared random fields is always non-
negative. Moreover,

E0=3.  Vargd®=gVarlm=2.  Cov(xX(0). %) =3B (Ixl)
and
E[ef"? (x2())en'> (x* )] = m i B (Ix = y1), (19)

since as noted in (2),

o0
2 2
/ et ey @) pryp(u) du = 8y .
0

In the case of chi-squared random fields (17), the analogous of Condition A1 setting in (16) is
the following Condition A2.

Condition A2. The random field {Y (x),x € R}, whose independent copies define the chi-
squared random field (17), is a measurable homogeneous and isotropic mean-square continuous
zero-mean Gaussian random field on a probability space (2, A, P), with EY%(x) = 1, for all
x e R4, and correlation function E[Y (X)Y (y)] = B(||x — y||) of the form:

L1zl

, zeR,0<a<d)2. (20)
[zl

B(llzll) =

Since, from Condition A2, the correlation function B of Y is continuous, it follows that L(r) =
ow*),asr — 0.

4. Reduction principle for Gamma-correlated random fields

In this section, the reduction principle formulated for Gamma-correlated random fields is an anal-
ogous, in spirit, to the reduction principle of [39] and [40] (see also [5,6]; [23], among others).

In the following, let us denote by D(T') a homothetic transformation of a set D C R? with
center at the point 0 € D and coefficient or scale factor 7 > 0. In addition, D is assumed to
be a regular bounded open domain, whose interior has positive Lebesgue measure, and with
boundary having null Lebesgue measure. Dirichlet-regularity here is understood in the general
setting established, for example, in [17] (page 253), as given in the following definition.

Definition 1. For a connected bounded open domain D with boundary 3D we say that xg € 3D
is regular if and only if it has a Green kernel G such that

lim GP(x,y)=0 VyeD. Q21
X—>X(
The set D is regular if every point of 9D is regular.

Dirichlet regularity of domain D ensures that the eigenvectors of the operator Ky, introduced
in equation (43) below, vanish continuously at the boundary of domain D (see, for example, [7],
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page 137, in the context of potential theory, and, more recently, [10], for 0 < « < 2, in the context
of subordinate processes in domains).
Let £ be a homogeneous and isotropic gamma-correlated random field, from equation (15),

U / P (ex))e (s(y))dxdy}—akmom) (22)
D(T) JD(T)

where, under Condition Al, for 0 <§ <d/k,

o (T) = Var|: f P (£x) dx}
D(T)

(23)
2.0d—
= / f v (Ix = yll) dxdy = [aq (D)) T~ LYT) (1 + (1)),
D(T) JD(T)
as T —> oo, with
1 1/2
aqx(D) = [/ / —ksdxdy] , k>1. (24)
pJp IIXx =Yl
Note that, for the particular case of chi-squared random fields we have from (19)
[ [ dPGiw)e ““Nxf(y))dxdy] = Semo2(T),
D(T) JD(T)
where, under Condition A2, for 0 <« < zd—k, as T — oo,
okz(T) = Var[/ ek (sz(x)) dxi|
D(T)
(25)
= / f B*(Ix —yll) dxdy = [adk(D)] 72472k L2k (7Y (14 0(1)),
D(T) JD(T)
with
2 1 1/2
a’(D):[//‘idxdy] , k>1, (26)
ok pJp lIx —y|%

(see equations (40)—(43) in [26], for k = 1, for more details on the methodological approach
adopted in that computations).
The following theorem states the reduction principle.

Theorem 1. Let {£(x),x € R} be a Gamma-correlated random field, and consider F €
L2((0, 00), pp () du) having generalized Laguerre rank k, with pg(u) given in (7). Assume that
Condition A1 holds. If, for 0 < <d/k,as T — oo,

Ci o
aq 1 (D) LK2(T)Td~k8)/2 fD( - (5m) dx
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converges, then

= ! f  ird }
5= ad,k(D)ﬁkﬂ(T)Td—(ks)/Z[ o - () dx - CyTY|D| @7

converges to the same limit. The constants C kL and COL are defined in equations (13) and (14),
respectively.

Proof. The proof is based on the generalized Laguerre polynomial expansion of the function F'.
Specifically, under Condition A1, since y (||x]|) <1, and y(0) = 1, we have

YR < vy ), =2

Hence, from equation (23), for T sufficiently large,

! _ ~Lypdyy L o) :
E[ad’k(D)ﬁk AT ( fD (T)F(E(X))dx Cc§TD| - Cf /D ” (S(x))dx>]

1 & e .
_ / i(Ix = yll) dxd
[ad,k(D)ﬁ"/z(T)Td‘(k‘”/z] Z (€5) /D(T)/D(T)y (Ix =yl dxdy

Jj=k+1
1 g k+1 - L\2
< Ix —yll) dxd 2: Cct) = Kp.
[ad,k(D)ﬁk/z(T)Td_(ka)/z] /D(T) /”D(T)y ( ¥l yj:k.i,.]( J)

By Condition Al, for any € > 0, there exists Ag > 0, such that for||x —y|| > Ag, Y (|IXx—¥I) <
€. Let K1 ={(x,y) e D(T) : |[x —yll < Ao)}, and K2 ={(x,y) € D(T) : [|x —y|| > Ao)}. Then,

/D(T) /D(T) J/k+1(|lx—y||)dxdy= {//Kl+//K2}J/k+l(|lx—yll)dxdy

(28)
s 1P,

Using the bound y**!(||x —y||) < 1 on K1, and the bound y**1(|x — y|) < ey*(Ix —y||) on
K>, we obtain, again, for T sufficiently large,

f[K YA+ (I - yll) dxdy

for a suitable constant M; > 0, and

f/K y"“(nx—yn)dxdy‘
// (Ix — yll) dxdy

|sV] < < M7

|57] <

<e¢ <eM,T*47 R ck(T),
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for suitable M; > 0 (see equation (23)), and arbitrary € > 0. Thus,

e ¢]

1 2 5
KR=[ ] / / P (Ix - yll)dxdy 3 (Ct
aq k (DYLK2(TYT4=®)/2 | Jpry Jpr) ( ) j:;rl( ")

(29)

Td T2d—k5£k(T) :|

<M VvM +e€
=" Z[agyk(p)ﬁk(T)TdeS a2 (D) LH(T) T2 K

which can be made arbitrary small together with € > 0.
(See also the proof of Theorem 3.2(ii), in [26], in the particular case of functionals of chi-
squared random fields with Laguerre rank equal one.) |

The following additional condition is assumed for the slowly varying function £ in Condi-
tion A2, in order to ensure the convergence, as T — oo, of the characteristic functions of the

2
functionals S;r , T > 0, introduced in equation (33) below, to the characteristic function (34).

Condition A3. Let L be the slowly varying function introduced in Condition A2. Assume that,
for every m > 2 there exists a constant C > 0, such that

/ () L(Tx1 —x2l) L(Tx2 —x3l)
D p LD)|Ix; —x2|* L(T)|1x2 — x3]|*
L(T X —x11) dxidxa - - dx,, (30)

L) 1% — %1%

dx|dxp - - - dx
Scf...(m).../ m .
D D IIX1 —Xo[|*[Ix2 — x3[[% - - - X — X1 [|¥

Condition A3 is satisfied by slowly varying functions such that

L(T|x; —
T.,x1,x€D ‘C(T)

for 0 < Cq < 1. For instance,

1
B(”Z”):Wa 0<B=<2,y>0,

constitutes a particular case of the family of covariance functions (20) studied here, satisfying
Condition A3, in the case where D C B(0), with B(0) = {x € R?, |x|| < 1}. Specifically, in that
example, we consider o = By, and L(||z)) = ||z||#” /(1 + ||z|#)”.

The next result provides the characteristic function of the limit in distribution of functional
(27) in Theorem 1, when F has Laguerre rank k£ = 1. In the derivation of such a result, the limit
characteristic function (see equation (34) below) is obtained from the application of the Fredholm
determinant formula of a trace operator. The following definition provides this formula.
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Definition 2 (See [37], Chapter 5, pages 47-48, equation (5.12)). Let A be a trace operator on
a separable Hilbert space H. The Fredholm determinant of A is defined as

D(w) = det(] — wA) = exp(— 3 TrkA ) - exp< 3 Z (a)* ) (32)

k=1 k=11=1

for w € C, and ||| All1 < 1, with ||A||1 denoting the trace of operator A. Note that || A™ || <
AT, for A being a trace operator.

Theorem 2. Let { sz (x), x € R} be the chi-squared random field introduced in (17). Consider
the functional

1
ay I(D)ﬁ(T)Td o

2
Sy = [/ F(x?(x))dx — ch‘fmq, (33)
D(T)
2
where function F has Laguerre rank k = 1, and agfl (D) is given in (26) for k = 1. Under Con-

2
ditions A2 and A3, for 0 < «a < d/2, the limit Sg{, , in distribution sense, as T — 00, of (33) has
characteristic function of the form

© (_2iaCL x? DYSErY
¢(0)=E[exp(i0S£)]=eXp(%Z( i0C{ ja) (D)V2r)

m=2

m

cm), 0eR, (34

where ¢, m > 2, are defined as follows:

1 1 1
=1 ... dxy---dxy,. (35)
" /D <m)/D xp —Xof| [Ix2 = x3[[*  [1Xm —x1[|* "

Remark 2. From Theorem 1, the limit in distribution sense, as 7T — 00, of the functional defined
from F in equation (33) coincides with the limit in distribution of

/ 7 (42 (%)) dx 36)
DT)

i
o, (D) L(T) T4

Equivalently, the following limit holds in distribution sense:

X2 ct o/
SX = lim f (x2(x)) dx 37)
T—00 Xr (D)E(T)Td o D(T)

2
where SZ7 has characteristic function given in (34).

Proof. In view of Remark 2, we restrict our attention to the functional in (36). The first Laguerre
polynomial of the chi-squared random field { xr2 (x), x € R?} is the sum of r independent copies
of the second Hermite polynomial of the Gaussian random field {¥ (x), x € R} appearing in (17),
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satisfying Condition A2, that is, for x € R4, we have by (11),

P (2w)=4/2 5 - Y2(x) Yz(x)
7 x
j=1

(38)
(¥; ().
From equation (49) of Theorem 3.2(i) in [26], for every 0 € R,
Y7 (0) = E[exp(i (r’x —1) dx)]
Ta=«L(T) Jpcr)
(39)

| 2i6 m
~oo(s X 5 () i)
m=.

where, as before, Y is a zero-mean Gaussian random field satisfying Condition A2, and

Tr (Rg’nD(T) Z)‘ T(RYD(T))—/D *(m)(Xm,Xm)de
(1)

/ / l_[BOT(X/+1_Xj) Bo,7 (X1 — Xpn) dXy - - - dXp, (40)
D(T) (m) D(T)

Ry par) (@) = fD - By @y f(yydy  VfelL*(D(T)),

with
Bor(x,2) = Bor(x —2) = E[Y 0¥ (2)],

for all x,z € D(T).
From equations (38) and (39), for every 6 € R,

icro /2 (2
or6) = E|:exp< 3 / e (Xr (x)) dx)j|
T4~ L(T)a}), (D) /PT)

icLlo 1 «
= E|exp 1 / (—— H>(Y;(x) )dx):|
[ <TdaL(T)a§j21(D) D(T) «/Zr; (15)

: —icle )
E[exp( 3 / (Y x) — 1) dx)]
1 V2raj | (D)T4=aL(T) /D(T)

j=
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—oCct
7) (41)

(
- ﬁexp(% i:: n%( —26Ct )mTr(R';l,D(T))>

J—ajf (D)T4~L(T)

ros 1 —2i9CL m
=exp| —( ) Tr(RY ) (42)
(22_:’" Varali - (D)T4-L(T) (Ripr)

Note that under Condition A2, since EY?(x) =1,

o0
/ dx = / E[Y?(x)]dx= E[/ Y2 (x) dx} =Y 7Ry pr) En’
D(T) D(T) D(T)

j=1

AT (Ry D(T))-

Il
M

In the following, we will apply, for 0 < o < d/2, the trace property of the square, ICé, of the
operator

Ka(f)(x) = f TSy Y € Supp(Ky) 43)

II"‘

(see Theorem 3.1 in [26]). In particular, the trace of ICgl is given by

1
Tr(/Cﬁ):/D/Ddedy [adl(D)] (44)

In addition, under Condition A3, there exists a positive constant C such that

1
Td—aE(T) Tr(RY D(T))

=/ / L(T|x1 —x20) LT lIx2 — x1 1) 1

4
L(T) L) —xgpe X19% )

1
§C//—dxldxz=CTrIC2 < 00,
D Jp X1 — x| ()

l m
Tdm—am [/:(T)]m Tr(RY,D(T))

/' / L(T|x1 —x2|D) £(T X2 —x3]))
[£(T)]’" D (m) Ix1 —x2|¢ Ix2 — X3¢

LT N%m —x11)
X—

(1% — x|

dxy---dx,, (46)
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1 1 1
SC// dxy ---dx,,
D m Jp X1 — X[ Ix2 — X3||% 1% — X1 |*

=CTr(K}) < oo, m>2,

since ||l |I1 < M||IC§ |1, for certain M > 0, and for m > 2.
From equations (40), (42), (45) and (46), considering the upper bounds derived in equations
(54)—(57) for function ¥7 in [26], we obtain, for every 6 € R,

— —1 g (= l)m e 2m—2
|¥7(©)| = |exp > Z dT Tr (RY D(T))

< exp(% Z% (260)*" Tr IC‘"’))’ 47)
C1 N 4 4\1—C/8
= exp(gz— (1604)" Tr((K3)" ))’:[D,Cé(lée )],

3

where, in the last identity we have applied Definition 2, for A = IC4 and w = 160*. Hence,

equation (47) is finite for [160%| = 166* < 1/[|KC2 |1, or equivalently, “for 0] < 1/2[|1KE)111'4,

since, as indicated in Definition 2, the trace property of ICgl implies the trace property of ICg.
From equations (41) and (47), we then have, for every 6 € R,

L 4\ 7—rC/8
67 ®)] < [D,%(lé(cl—f) )] < o0, (48)
V2ra} (D)

where, as before, chg denotes the Fredholm determinant of IC(A);. Note that, in this case, we have
also applied Definition 2, for A = K2, and

cLe 4
w= 16( >
V2ral (D)

which is finite for

cLe 4
lw| = ‘16( )
N 2r a (D)

or equivalently, for

4
_ 16( clo ) !
@a()ﬁl (D) IC3 11

V2ra) (D)
2C1L[||IC§||1]1/4'

From equation (48), for such |6| the limit, as T — oo, of ¢7(0) exists and it is finite.

101 <
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We are now going to compute such a limit. Since

Tlim L(TIxI)/L(T) =1,

by slowly varying property of function £, we have, for every m > 2,

Tr(RY D(T))

Under Condition A3, from equations (45) and (46), for each m > 2, and for every 6 € R,

1| —=2icto || Tr(RY p(py) 1 2CL9 m
—‘ — T e ‘ Tr(KL). (50)
mlaral )| LD m|J2ral, (D)
The upper bound in equation (50) satisfies, for |$| <1, ie., for |0] < V2ra’ ra; (D) /
@ujfl(v)
2ck,
00 L m 00 L 2m
1 2C4 0 1 2¢C, 9
> —‘ Tr(Kn) = _‘ Tr(K2")
me2 M 2ralf (D) et 21 /2ra ra; (D)
9] L 2m+1
1 2C10
+ Z - ‘ Tr(K2m+1)
el 2m + \/_Cl;(r (D)
> 2CL9 " eb
~ 1
<@y _‘ Tr(K2)
me1 ™1 V2rd}; (D)

=it | ijG(D) )

for certain positive constant M , where, in the last identity, we have applied Definition 2, for
A=K2,and

‘4/ CLQ ‘
w=
2ra (D)
Hence, equation (51) is finite for
‘ 2cto ‘ 1 o < V2raj (D)
<
Vara oyl KD 20T THK2)
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In addition, in the derivation of equation (51), the following straightforward inequalities have
been applied: For m > 1,

o1 1 _ 1 ‘ 2CL9 Zm+1 ‘ 2CL9 m
2m+1 " m 2m — m / Cl (D) / a (D)
‘ 2CL m ’ 2ckg " , 2CL
S|l > since <1,
V2rd} (D) 2ra)’| (D) V2ra} (D)

Tr(;cgmH) < MTr(K2m),

where M = M — 1, with M given in (51).
From equations (42), and (48)—(51), we can apply Dominated Convergence theorem, consid-
ering integration with respect to a counting measure, for

\/_a(D) «/_a(D) «/_a(D)

0 A AN ,
o= 2CHIK2 I 2Ct 2CELIKE 1114
leading to
o0 -~ m
r 1 —2iCv6
lim ¢7(0) = lim exp(— —< ! ) Tr(RY pr ))
T—00 T—o00 ZmZ:zm 2ra§f21(D)Td*0!£(T) ,D(T)
e} L m
ro.. 1 —21C19
=exp| = lim —( ) Tr (R’;’DT ))
(2 T—co Xzz M\ V2ral, (DT~ L(T) @
9] . ~L m
r 1 —21C 6
=exp| = lim ( ) Tr(RY pr )) (52)
(2,,; =20 m\ /2l (D)T - L(T) v
[ee} c ~L m
1 -2 C 0
= exp(i Z —< : ) Tr(lCZ‘))
225 m\2ralf, (D)
[ee} - ~L m
r 1 —21C 0
=exp| = —( ) Cm)=¢(9)-
(22’" JZral, (D)

An analytic continuation argument (see [29], Theorem 7.1.1) guarantees that ¢ defines the
unique limit characteristic function for all real values of 6. ]
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5. Multiple Wiener-Ito stochastic integral representation of the
limit for functionals with Laguerre rank equal to two

Consider the chi-squared field defined (17). The multiple Wiener—Itd stochastic integral repre-
sentation of the limit in distribution of

1
Sor=—; / P (2 (x)) dx (53)
a5 (D)L2(T)T =2 JD(T)

2
is derived in Theorem 3 below. Here, ag’z is defined as in (26) for k = 2, and L£(T) is the slowly
varying function introduced in (20). The function e;/ 2 (u) is given in equations (9)—(10).
Let us denote by
42281 (B/2)

= , 0 d, 54
v(B) L) <p< (54)

and by

FW)(2) = /Rd exp(—i(x, ) ¥ (x) dx,

the Fourier transform of .

Before deriving the main results of this section, Proposition 1 and Theorem 3 below, the fol-
lowing lemma provides the Fourier transforms and convolution formulae that will be needed in
the subsequent development. In particular, these formulae are applied in the space C;°(D) C
S(RY), of infinitely differentiable functions with compact support contained in D, with S(R?)
denoting the space of infinitely differentiable functions on R¢, whose derivatives remain bounded
when multiplied by polynomials, that is, whose derivatives are rapidly decreasing (see Lemma 1
of [38], page 117).

Lemma 1. (i) The Fourier transform of the function ||z| =% P is v(B)||z| =P, in the sense that
/R N2~y @) dz = /R BT FW)@dz Yy e S(RY). (55)
(ii) The identity F((—A)~P2(f))(2) = |z| P F(f)(z) holds in the sense that

AP0 dx

_ 1
- (@n)d

(56)
| FO@INTF@@dx Vg eSE)

for0 < B <d.
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(iii) The following convolution formula is obtained by iteration of (55)—(56)

—d+4BF 0y
/d Sag TG

= f |zl = F(f)(z) dz
Rd

(57)
1 _ _ _ _
= / ey [ / lz = xi 7P lIxi — x| 7P fIxg — y | 7P |yl m dx) dxo dy]
rd V(BT LR34
x f@dz YfeS[R?),0<p<d/4
The proof of this lemma can be seen in [38], page 117, and equations (26)—(27) in [26].
Let K be the characteristic function of the uniform distribution over set D, given by
A 1 A DA
K\, D)= f e HAX) s (x) dx = — / e X gy = L, (58)
D DI Jp ID|

with associated probability density function pp(x) = 1/|D| if x € D, and 0 otherwise.

Theorem 4.1(i) in [26] provides, for 0 < o < d/2, the Hilbert—Schmidt property of the integral
operator with kernel H (A1, A2) = K (A1 + X3, D), where K is given in (58), as an operator acting
on the space of square integrable functions with respect to the measure

di

pdr) = ———.
[[Afjd =

Remark 3. Note that for D = B(0) = {x € R?; ||x|| < 1}, the function ¢ (X) in (58) is of the form:

Ja2(IA D
_ dj2vd/
/B(O) exp(i(x, ) dx = (27) R d>2,

where 7,(z) is the Bessel function of the first kind and order v > —1/2. For a rectangle, D =
[[={ai<xi<bi,i=1,....d},0€]],

d
PA) = ]_[ exp(irjb;) — exp(ir;a;))/ir;, d>1

(see, for example, [24]).
Let us consider the following additional condition.

Condition A4. Suppose that Condition A2 holds, and there exists a spectral density fo(||A]),
A € R, being decreasing function for |A| € (0, €], with & > 0.
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Under Condition A4, from equation (20), applying a Tauberian theorem (see [13], and Theo-
rems 4 and 11 in [24]),

1
So(Ix) ~ e, a)£(||k||>||l||°‘_d, 0<a<d, Al =0, (39)

where
res% 1
2¢7d20(§)  v(w)’

cld,a)=

with v(«) being given in (54).
As indicated in [26], Condition A4 holds, in particular, for the correlation functions of the
form

1
(||Z||) W 0<B=<2,y>0, (60)

with the isotropic spectral density

fo(Il) =

A4 00 sin(y arg(1 + uP exp(:Z8
L/’ Ko, (IAlu) in(y arg(l + u” exp(=-))) %du, 1)
0

29155+l 1+ uf exp(”’ﬁ)v

where K, (z) is the modified Bessel function of the second kind. By Corollary 3.10 in [27], the
spectral density (61) satisfies (59), with o = By <d.

Note that, from Theorem 4.1(ii) in [26], under Conditions A2 and A4, considering the Hilbert—
Schmidt property of the integral operator with kernel constructed from (58), for 0 < o < d/2,

2
the limiting distribution S5, with characteristic function (34), of the functional S5 in (27), for
Laguerre rank equal to one, admits the following double Wiener—It6 stochastic integral represen-
tation:

2 IDICL . Zj(dM)Zj(d)rr)
S5 = Z H(xl,mﬁ, (62)
v(@V2r R2¢ Arll 2 Azl =
where Z;, j=1,...,r,are independent Gaussian white noise measures, v is defined in (54), and

the notation fﬂ/@d means that one does not integrate on the hyperdiagonals A; = £A,. As before,
H(A1,22) =K1 +22,D), (63)

where K (A, D) is given in (58). In particular, equation (62) holds for the limit, in distribution
sense, as T — 00, of (see (37))

CL

S = / (r/z)(xr (x)) dx
o\ (D)L(T)Td~2 JD(D)

|: CL i||: ! 2’: H (Y (X)) dxj|
= — 2 : .
o @ ryrd-e [ V2r S oy

(64)
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On the other hand, the zero-mean Gaussian random field ¥ with an absolutely continuous
spectrum has the isonormal representation

Y0 = fR exp(ia, %)y folInl) Z(@n), ©5)

where Z is a complex white noise Gaussian random measure with Lebesgue control measure.
We now turn to the case k = 2.

Proposition 1. Let D be a regular bounded open domain, and let K (A, D) be defined in (58).
For 0 < o < d/4, the following identities hold:

4 . x? D2 4
|2 4]_[,»:1 dx;_ _ lay’,(D)] 2[V(Oé)] o 66)
[Tz AIx IDd—= D]

/ |K (A +22+ X34+ 14,D)
R4d

2
where a()j(fz (D) is defined as in equation (26) for k =2, and v(«) is introduced in equation (54).

Proof. The proof follows from the application of Theorem 3.1 in [26], where the asymptotic
spectral properties of operator I, in equation (43), on a regular bounded domain D, are estab-
lished.

For 0 < o < d/4, let us now consider on the space of infinitely differentiable functions with
compact support contained in D, C3°(D) C S (R?), the norm

LI ayamare = (=82 720D, f) 2y

- / (AP TR dx
N 67)

1 1 _
=/ JW f(x)dydx

R V(d —4a) Jra ||Ix —y|*
1

- W/Rd|Jf(f)(k)|2||)~||—<ﬂl—4a>d}~ Ve CED).

The associated inner product is given by (0 < o« < d/4)

1 -
(@) (i = / fWe®@dydx  Yf.geCED). (68)

R v(d —40) Jra [Ix — y|*

The closure of C(C)>o (D) with the norm || - || (—AY2—d/2, introduced in (67), defines a Hilbert space,
which will be denoted as
Moy = 76‘(())0 D) -l py2e—as2 .

For a bounded open domain D, from Proposition 2.2 in [9], with D =n — 1, p =¢ =2, and
s = 0 (hence, A;q (D) = Agz(D) = L%(D), where, as usual, L2(D) denotes the space of square



Non-central limit theorems 3491
integrable functions on D), we have
CE D) 2 = 12(D), (69)

(see also [42], for the case of regular bounded open domains with C° —boundaries). In addition,
for all f € C3°(D), by definition of the norm (67),

Il ayze-arn < Cllfll L2way

that is, all convergent sequences of C;°(D) in the L?(R%) norm are also convergent in the Hay—g

norm. Hence, the closure of C§°(D), with respect to the norm | - || L2(Rd)> 18 included in the
closure of C3°(D), with respect to the norm || - l (— a)2e-a/2. Therefore, from equation (69),
(D)= D) P TR 1 = Mg 70)

In particular, let us compute

2
| 1 [a),(D)?
112 _ dydx = ———. 71
|| 'D”’H4a7¢1 /’; V(d—4a) D ”X_y||4o[ yax v(d—4(1) ( )

As noted before, from Theorem 3.1 in [26],

1
Tr(icg)zfpfpmdydx<oo, 0<a<d)/2. (72)
Thus, for @ =28,
1
//—4dydx<oo, 0<p<d/a.
pJp Ix—yl*
Therefore,
a D ————dydx=v(d —4a)|1 < 00, O<a<d/4a.
[T //D||X_y||4a yax=v(d —4a)ll1pl, /

Equivalently, 1p belongs to the Hilbert space Haq—q, for 0 <o < d /4.
Applying the convolution formula (57) in Lemma 1, we then obtain

@y OF
v(d—da) " PMHiaa

_ D)
~ @)

2 _
/{|K(w1,7>>| o174 deoy
Rl

D> v(4a)
~ emd )

—d —d
| (w1,D)| [/ o1 — @2l =" [l — w3l =4
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4
—d —d
X |03 — @]~ w4 +“]"[dw,}dw1

i=2
2
__IDPv(e) [« S p)| iz
Qo)) Jraa | \ & T, IAld—e

Hence,

2 o IDP
@) = Lo /R

4 2T an
K(in,D>‘ =1 ™

4 !
i=1 Hi:l ||)~i||d *

since % = 1. Equation (66) then holds.

Note that by definition of the norm in H4,—4, from equation (70),
Ip*x1p(x) = fRd Ip(y)1p(x+y)dy

_ / Ip(x+y)dy € L*(D) € Haga.
D

since

2
3
dx < |Br) (0],

/‘/ Ip(Y)1px+y)dy
R4 R4

where [Bg(p)(0)| denotes the Lebesgue measure of the ball of center 0 and radius R(D), with
R(D) being equal to two times the diameter of the regular bounded open set D containing the
point 0. Hence,

Flp*1p)&) = [DP|K A, D)’

belongs to the space of Fourier transforms of functions in H4q—g (see also Remark 3.1
in [26]). O

Theorem 2 establishes the limit of (36) involving e%r/ 2 The next theorem provides the limit
of (53), involving eg/ % Note that e;/ 2 is defined in (11), but also satisfies (75) below. As before,
K (-, D) will denote the characteristic function of the uniform distribution over the set D. The
random measures Z;(-), j = 1,2, 3,4, appearing in Theorem 3 below are independent Wiener
measures. The symbol fﬂém means that, in the integration in the mean-square sense, the hy-
perdiagonals A; = £A;, and A3 = dA4, related to each component Z; and Zy, are excluded

(see [16]). Furthermore, fﬁw means that one cannot integrate on the hyperdiagonals A; = £A;,
i#j,i,j=1,2,3,4.

Theorem 3. Assume that Conditions A2 and A4 hold. Then, for 0 < o < d /4, the functional
So.1 defined in (53) converges in distribution sense to the random variable So, admitting the
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following multiple Wiener—Ito stochastic integral representation:

S |D| |: (r " 1)]_1/2
*d ()
/ 4 ) ‘
|: / / K(in,p) Zj (dh)Za(dlz)zk(dh)zk(dh) o)
k. jiksj R2d JR2d i1 ni:l IA; ||(d—o¢)/2
- z / o) I Zear)
P e |

Proof. The restriction to D(T) of the independent copies Y;, j =1,...,r, of Gaussian random
field Y, that is, {Y;(x),x € D(T), j =1, ...,r}, satisfying Conditions A2 and A4, admit the
following stochastic integral representation (see equation (65)):

D(T
v;00 = 12 ;' exp(i(x, 1)) K (A, D(T)) £,/> (M) Z, (d)),

(2m)

(74)
xeD(T),j=1,...,r
It is well known (see, for example, [1]) that
- -1/2

(75)

x[ Y H(Y®)H(Y;(x) ZH4 Yk(x)]

k.j=1,k#j k=1

where, as before, y;: 2(x) is the chi- squared random field introduced in (17), and e( 2 denotes the
second Laguerre polynomial with index r/2 (see [4], Chapter 10). Here, Hy(u) = u? —1is the
second Chebyshev—Hermite polynomial, and Hys(u) = u* — 6u® + 3 is the fourth Chebyshev—
Hermite polynomial.

From equation (75), the functional (53) admits the following representation:

1

S = / r/z(Xr (x)) dx
o (D)L (T) T2 JD(1)

1 r -2 -
:Z<r(§+1)) E[ > /D ) () dx 6

k,j=1,k#]j

—Z Hy(Yi(x))d }

D(T)
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where
2
dr = a),(D)L*(T)T*~>.

Using It6’s formula (see, for example, [12,30]), we obtain from equation (76)

) L 5 L Lol )

i=1
4 2 4
< [Ty fo(ni) [T Zi @ [ | Zetdri) dx
i=l1 i=1 i=3
4 4
- A Aill)Zi(dr)d
Z/D(T)/RMCXp« . >>E\/fo(ll 1) Zk (dA:) X]
1 —1/2 |D|
_Z< (2“)) [v(a)2dr T /RM/RM Zx,,p

i=1

4
( v@]* [Ty follxill/T) )Hz (d\; )szm )

i=1 i=3
r " 4 4
_Z/RMK(ZM,DX v(@)] H\/TH/T)Zk(dxi)],
k=1 i=l —1

Hence, applying Minkowski inequality,

D r —1/2 / 4
E SZ’T_4—[v(a)]2|:r<§+l>] 2 ‘/de/deK ;M,D

| Zi(dh)Z;(dA2) Zi(dh3) Zi(dhs)
[T I 140

. 2
XK le, =1 2@ 78)
P R4d |x||(d7a)/2

ll|

S Y L 2E[Y Yi + Y — Yor?
_Hr<5+ )] [v(a)P} i =k b

17 /r -2 pp 77 N n1/272
G e

77)
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where
ElVir -V = A, D [”(a)]24 M/ T
Y7 - 1] m# /R/R ; )| P TV am)
| 2
- W}Zj(d)ﬂ)Zj(dXZ)Zk(dAB)Zk(d)%)
4
(in,D) QT(X1,12,)~3,M)1—[ WET
o P I || o)
v P
E[Y; — Yor] —;E/R (Zx,,b)[ H\/fo A1/ T)
2

1
TTE, l1a ]| @—e/2

with, for every (A1, A2, A3, A4) € R¥,

4 5 4 2
Q7 (A1, X2, X3, hs) = (1_[ ||xf||<d*”>/2% [TV folinill/T) - 1) :
i=l1 i=1

The convergence to zero, as T — oo, of Q1 (A1, A2, A3, A4), for every (A1, A2,A3,A4) € R¥,
can be proved applying Proposition 1, following the methodological approach given in pages 21—
22 of [24] (see also Theorem 4.1(ii) in [26]). The suitable application of Dominated Convergence
theorem to equation (80) then leads to the convergence to zero of

E[S”_%[FGH)TUZ[J(S)'P[ 2 / (gw)

k. jik#j

:|Zk(dkl)Zk(dkz)Zk(dM)Zk(dM)

4

d\;
Q7 (A1, X2, A3, m]‘[

[ [l 4=

o Zi (dA1)Zj(dX2) Z(dA3) Z (dhs)
[Tizy i@/

2
r 1 4 4
1 Zi(dA;
-3 [ () ity
k=1 R4 i=1 Hi:] ”)‘-i”(a’,70‘)/2
as T — oo, from equation (78), which implies the convergence in probability and hence, in
distribution sense, as we wanted to prove. O
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6. Series representation in terms of independent random
variables

The main result of this section provides the series representation, in terms of independent random
variables, of the limit random variable S, of functional S 7 in (53).
Note that, in the case where the Laguerre rank is equal to one, from Theorem 4.1 and Corol-

2
lary 4.1 in [26], the limit random variable S, admits the following series representation:

2 1 ro o - r oo 5
% =————ID W (F)(e5, — 1) = An (S (2 — 1), 80
d @v(a)l 122D D (e5, = 1) =D (S5 (5, — 1) (80)

j=ln=1 j=ln=1

where v(@) is givenin (54), {¢j,,n > 1, j =1, ..., r} are independent and identically distributed
standard Gaussian random variables, and

2

(S 1Dl pn(H), (81)

N
 V2rv()

with w, (ﬁ), n > 1, being a decreasing sequence of non-negative real numbers, which are the
eigenvalues of the self-adjoint Hilbert—Schmidt operator

H(HM) = /R i =22) f(A)Galdha) : LG, (RY) — LG, (RY), (82)
forall f € LZGQ (RY). Here,

Gy (dx) = (83)

——dXx,
x4

and the symmetric kernel i1 (A —X2) = H(A1,A2) = K(Ziz:1 Ai, D), with K being the charac-
teristic function of the uniform distribution over the set D.
In the following result, we denote by

H: L%?u@:Ga (R*) — L%;oz®Goz (R*),

the integral operator defined by:

4

H(h)(ll,lz)=/ K(ZMﬂ)Mh,M)Ga(dla)Ga(dM), (84
R2d

i=1
forallh e L o (R*).

Theorem 4. Assume that the conditions of Proposition 1 and Theorem 3 hold. For the case
of Laguerre rank being equal to two, the limit random variable S in Theorem 3 admits the
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following series representation:

Soo xR0 XX
— L [r G+ D7D 7 Z Z Z“"(H)Vpnyqn

42 n=1 p=1g=1
(85)
r r
2 2 2 2
x |: Z (8j,p,n - 1)(8k,q,n - 1) - Z(Sk,p,n - 1)(8k,q,n - 1)]’
k,jik#j k=1

where {¢j pn, j=1,...,7, p > 1,n > 1} are independent standard Gaussian random variables,
in particular, E[&j p n€k,q,m] = On,mSp,q8j k. forevery j,k=1,...,r,andn,m,q, p > 1. Here,

un(H), n > 1, are the eigenvalues, arranged in decreasing order of their modulus magnitude,
associated with the eigenvectors ¢,, n > 1, of the integral operator (84). Moreover, for each
n>1, yjn, j = 1, are the eigenvalues associated with the integral operator on L2Ga (RY), with
kernel ¢, (-, -), the nth eigenvector of integral operator (84).

Proof. From Proposition 1, the operator # defined in (84) is a Hilbert—Schmidt operator. Equiv-
alently, its kernel

4
H(h1, A2, A3, Ag) = K(Zx,-, D)
i=1

belongs to the space LZGQ®GQ®GQ®GQ (R*). Thus, H € S(LZGLY@GQ (R%4)), where as usual S(H)
denotes the Hilbert space of Hilbert Schmidt operators on the Hilbert space H. Hence, it admits
a kernel diagonal spectral representation in terms of a sequence of eigenfunctions {¢,,n > 1} C
L%;a ®Go (Rz‘i), and a sequence of associated eigenvalues {u, (H),n > 1}. That is,

o
HA1, A2, 03, 84) = D pta (H)@n (1, A2)0n (A3, Aa). (86)

n=1

: : 2 2d
In particular, since, for every n > 1, ¢, € LG(@G(y (R%), then,

/ |@n(A1,12)
RZd

which means that ¢, (A1, A2) defines an integral Hilbert—Schmidt operator Y on LzGa (RY), given
by

3

|2 dhidir
—_—— <
(2SN /S V¥ Come

T = /R O fONGalhy), A RS e Ly (B,

Therefore, it admits a kernel diagonal spectral representation in Léa (R4), in terms of a se-
quence of eigenvalues {y,,, p > 1}, and an orthonormal system of eigenfunctions {¢p,, p > 1}
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of LZGa (R?), of the form

@n(A1,X2)
-~ (87)
= Z Yon®pn A1) Ppn(X2),
Lég@Ga (R2d p=1

for each n > 1, where convergence holds in the norm of the space L%;a @G (R??). Replacing in
equation (86) the functions {¢,}°2 ; by their respective series representations as given in equation
(87), we obtain

H(Ai, A2, A3,44)
(88)

[o.Sle elNe ¢

= D 3 DY pnYan®pn M) P pnA2)dgn (A3)pgn (Aa),

LéAGa (RM) n=1 p=1¢g=1

where convergence holds in the norm of the space Lé4 Ga (R¥) .= L2Ga®Ga®Ga®Gct (R*), since,
from equations (86)—(87), considering Minkowski inequality, we have

[o. <l Sl ¢]

HH(, ) — Z Z Zﬂn (H)Vpnyqn¢pn(') ® (bpn(') ® ¢qn(') ® ¢qn(‘)

n=1 p=1¢g=1

2 4d
Lgag, ®D

Dt (H)pa -, ) ® gul-, )

n=1

2
(89)

- Z Z Z ()Y pnVgn®pn () @ dpn(-) ® Ggn () @ ¢gn(-)
n=1 p=1g=1

L;4G RA)

o

oo 1/2
< | @] | [on 3. %0)[*Ga(dA3)Galdha)
—r R2d

L

where we have applied convergence in LZGa ®GCy (R%) of the series Y00 Yan®an () ® ¢gn(-) to
the function ¢, (-, -), for each n > 1, which, in particular, implies that such a series differs from
¢n (-, -) in a set of null G, ® Gy-measure.

2

on(A1,32) = Y Vpndpn A1) $pn(A2)

1/242
Ga(dll)Ga(dkz)] :| =0,
p=1
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From Theorem 3,

sG] Pl 5 L Lx(Eme)

k. jiksj
Z (dM)Zj(dA2) Zi(dr3) Zi(dAy)
[Ty 1A )@=/

Z’ Ty [T Zi(dh)
=14k i

- /4d K( xia D)‘tl—((la)ﬂ .

k=1 R i=l1 l_[izl ”xl ”

Replacing

4
H(A, A2, A3, h) = K(in, D)
i=1

by its series representation (88) in the above equation, one can get

Soo 5 4fv()]? |:r<% " 1):| |: Z Z Z ZMH(H)VPWW

k,j:k#jn=1p=1q=1

oy LA
/ nd”’”( O [

r oo o0 X

Zi(d\i)
/ 1_[¢qn()‘ ) e l|{|(d Y] ZZ Z ZMH(H)Vanqn

k=1n=1 p=1g=1

Zi(d)\) Zi(d))
/ l_[¢pn ’)||l ||~ a)/Z/ H¢q”(x)||x [|¢d= a)/2:|

D] , —1/2 00 o0 00
e e A Gl D 909 DL

n=1p=1¢g=1

k,jik#j

Zi(d\) Zi(dAi)
—Z/ 1‘[¢pn< D@ am/ 1"[¢qn( D Wz}

Zjdry) [ Zi(d))
[ 2. / H¢””( Vaen 42dg¢q"(ki)l|xi||<d—a>/2
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Applying Itd6’s formula (see, for example, [12,30]),

|D| r —1/2 00 00 0
4[v(a)]? |:r<§ + 1):| Z Z Zﬂn (H)YpnYqn

n=1 p=1¢g=1

Z;(d\) Zi(d))
[ (/ e Wz) (/ PV o “”2)

Zi(d)) Zi(d))
</ P jeorz 00/2) ([ P Ve “Vzﬂ o

|D|[r(§+1)r‘/2 o

Z Z Z MUn (H)Vpn Yan

; 4[”(0‘)]2 n=1 p=1g=1
, r
X |: Z (8?,1”1 - 1)(8/%,%" o 1) B Z(Slz’p’n B 1)(8%%” - 1):|’
k,jik k=l

as we wanted to prove.
In addition, the orthonormality of the systems of eigenfunctions {¢,,n > 1}, in the Hilbert
space LG ®Ga (Rz‘l), means that

{Ons )2 ey =[ @n(A1, A2)0k (A1, X22)Go (dA1) G o (dA2) = bp ks on
a®Go R2d

where, as before &, ; denotes the Kronecker delta function. Replacing ¢, and ¢ in (91) by its
series representation (87) on LZG(X (R?), we obtain

(@n, Q) g2 G 96y B2

= (Sn,k
92)
= ZZypnqu [ / $pn(ADbgk (A1) G (dm} [ / ¢pn(xz>¢qk(xz>ca(dxz)}
p=1g=1
= Z Z Vpn)’qk[<¢pna ¢qk)[%a (]Rd)]z’
p=1g=1
which implies that
(Dpns ¢qk)L2Ga(Rd) =0, n#kvVp,qg=>1, 93)

and we know that

<¢pna ¢qk>Léa Ry = Sp,q, n=k, (94)
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from the orthonormality of the system of eigenfunctions providing the diagonal spectral repre-
sentation (87) of ¢,, for each n > 1. Hence, in addition, from (92) and (94), we have

o0
dyp=1 Vaxl
p=1

Thus, from equations (90)—-(94), and from the independence of the Gaussian copies Y;(-),
i=1,...,r, of random field Y (-), we obtain E[&; 4 n&k, p,m] = 8p,m0p 40k, j, for every j, k =
1,...,r,andn,m,q, p > 1. |

In the following, let us denote, by 17 and 1, 1 x r and r x 1 vectors with entries equal to one,
respectively. For p,n > 1, &, ,, denotes a r x 1 random vector with entries 8 —1,i=1,
and ® denotes the tensorial product of vectors. Finally, Trace(A) represents the trace of matnx A

Corollary 1. Under the conditions of Theorem 4, for the case where Laguerre rank is equal to
two, the limit random variable (73) admits the series expansion

so= Pl (T s H
0034[1)(0[)]2 |:r<§+ )i| Z:un( )”n

n=1

__ P N\
T (5+1)]

X Z tn(H) |:Z Z Vpn)/qn Epn @ &g n — Trace(ep, ® eq,n))l

p=1g=1

95)

— Trace(ep,, ® e,,),,)i| .
Note that the random variable system {7, },>1, with

N, = Z Z y,,nyqan(ep,,, ® e4,n — Trace(ep , ® eq,n))l — Trace(epn ® €4.n), n>1,
p=1lg=1
is constituted by independent random variables. Specifically, for each n > 1, 5, is a function

of the random variables {(e —1,i=1,...,r, p > 1}. From equation (90), for n # k, with
nk>1,

i,p,n

{(El'z,p,n_1)7i:1,...,r,p21}
and
{(8i2qk_1)»i=1,...,r,q21}

are mutually 1ndependent since the function sequences {¢p,}p>1 and {¢gx}4>1 are orthogonal
in the space L (Rd) as follows from equation (93).
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7. Final comments

In this paper, a reduction principle is established in Theorem 1 for the case of Gamma correlated
random fields, whose marginal distributions are characterized in terms of an arbitrary positive
shape parameter 8. However, we restrict our attention to the case of chi-squared random fields,
when the characteristic function of the limit distribution, and its series expansion, in terms of
independent random variables, are derived. The main reason is of technical nature, since in the
chi-squared random field case, we can exploit the relationship with Gaussian random fields,
to obtain the limit characteristic function. Furthermore, the relationship with the Wiener chaos
is also applied, to use the so-called Itd formula, for deriving the multiple Wiener—Itd stochastic
integral representation of the limit random variable, as well as its series expansion. Otherwise, we
would need to define a Fock space for Laguerre polynomials (see [14]; [34], among others), and
to develop a kind of It6 formula for Laguerre first and second chaos. Specifically, the extension
of the derived results to a more general context, including, for example, non-linear functionals of
LRD random fields with Gamma and Beta marginal distributions would require more complex
tools, which should then be established in terms of the Laguerre and Jacobi first and second
chaos. This goes beyond the aim and scope of this paper. In particular, the Gamma correlated
random field case could be achieved in an easier way than the case of random fields with beta
marginal distributions, which are not infinitely divisible (see [44], for bivariate expansions from
Jacobi polynomials). Note that the integration theory for infinitely divisible random measures,
established in [35], could be applicable for Gamma-correlated processes and fields, but not for
Beta-correlated fields, since the Beta distribution is not infinitely divisible. In the Gamma case,
one can then derive non-central limit results, and the properties of the limiting distributions, from
a multiple stochastic integral representation of such limit random variables, with respect to some
infinite divisible random measure, using a higher order analogue of Fredholm determinants, etc.
These potential results could constitute the subject of a subsequent paper. Note that, even the chi-
squared random field case is non-trivial (see the proof of Theorem 2, and the results displayed in
Sections 5-6). Also, the properties of limiting distributions for the case of Hermite rank larger
than or equal to three are not yet well-established. Moreover, as explained in the Introduction,
non-linear functionals of chi-squared random fields arise in several applied fields in Statistics,
for example, in the context of Minkowski functionals defined in (1). Thus, this case is of interest
by itself. Finally, we remark that the approach presented in [15], for stochastic processes with
discrete time, can also be extended to the random field case studied here.

Appendix

2
This appendix provides the infinitely divisible property of S, the limit random variable ob-
tained in the case where the Laguerre rank is equal to one. Specifically, from Theorem 5.1 in [26],
its Lévy—Khintchine representation is derived, as given in the following result.

Theorem 5. Under the conditions assumed in Theorem 5.1 in [26],

O E[exp(iesg‘f)] = exp(/w(exp(iue) —-1- iu@),u,a/d(du)), (96)
0
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where [iy/q is supported on (0, 00) having density

Gaya (1) = Zexp(

) u>0, 97)
2xk(SX’ )

2
with A (S%), k > 1, being given in (81). Furthermore, qu/a has the following asymptotics as
u —> 0% and u — oo,

[E(d. )| D| =0/ (1=alDp (L () =1/ -a/d
2u[(1 —a/d)]

Gajd(u) ~

(@/d)=2
)u T—a/d)

21 = [¢(d, a)|D|d—)/d /(= Ot/d)r(
[(1 —a/d)]

asu — 0%, (98)

2
Gaja() ~ ;_u eXp(—M/ZM( c),({, )) as u — 0o,

where

&, ) —na/z<3)(d“)/d )
S \d LT (-’

Remark 4. The derived asymptotics of the probability density g4/4 at the origin and at the in-
finity are of Gamma form with different shape parameters in the two asymptotics. Indeed, its tail
behavior is not chi-squared or even gamma, and its behavior at the origin depends only on the
dimension of the space, and the self-similarity parameter.

Proof of Theorem 5. Let us first consider a truncated version of the random series representa-
tion (80)

Séﬁ’”—ZZAk ) (e — 1)
I=1 k=1

2
with Soj‘g 7) S as M tends to infinity. From the Lévy—Khintchine representation of the chi-

squared distribution (see, for instance, [3], Example 1.3.22),

E[exp(iOSég/I))]

= 1_“—[ E[exp(i0A«(S. )(81k 1)]

I=1k=1

%
—Hl‘[exp<—1exk (s2) + / (exp6u) — 1)[exp(—u/(zzuxk(soo)))} du) ©9)

I=1k=1
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M o ~ .2
- Hexp<r/ (exp(i6u) — 1 —i6u) |:exp( u/22u)»k(Soo )):| du)
k=1 0

X , L o
=exp<r/(; (exp(i6u) — 1 — 19“)[5(;1(01/(1) (exp(—u/Z))i| du).

To apply Dominated Convergence theorem, the following upper bound is used:

92
(eXp(iQu) —1- iGu) [;—MGRIE’QM) (exp(—u/Z)):H < rTuGiﬁ)/d) (exp(—u/Z))
(100)
ro2
< —uGjja)(exp(—u/2)),

- 4

where, as indicated in [43], we have applied the inequality |exp(iz) — 1 —z| < %, for z € R. The

right-hand side of (100) is continuous, for 0 < u < oo, and from Lemma 4.1 of [43] with
M X2 1
(M) M(S55)1™
Gfagay ) = )3
k=1

keeping in mind the asymptotic order of eigenvalues of operator Iy, (see, for example, Theo-
rem 3.1 in [26]), we obtain

2
UG (aya) (exp(—u/2)) ~ uexp(—u/21(5%)) as U —> 00
uGj(a/a)(exp(—u/2))

(101)
~[(d, )| D|'7/1]

1/1-a/d u
(1—-a/d)

a/d

1 10— _
F<1_a/d)(l—exp(—u/2)) Va=e/d) o, =Tam  asu—> 0,

for some constant C. Since
o/d
< <
1 —oa/d
both approximations at the right-hand side of (101), which do not depend on M, lead to the
integrability on (0, oo). Hence, by Dominated Convergence theorem,

L,

E[exp(i65¢P)] — E[exp(iQSé%z)]

o0 r
= exp(/ (exp(i@u) —1- i@u)[EGx(a/d) (exp(—u/2))j| du),
0

which proves that equations (96) and (97) hold. Equation (98) follows, in a similar way to the
proof of Theorem 5.1(i) in [26], considering the expression obtained by the Lévy density ¢ in
equation (97). ]

(102)
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From the above equations, in a similar way to Theorem 5.1(ii)—(iv) in [26], it can be seen that

2
% e ID(R) is self decomposable. Hence, it has a bounded density. It can also be showed that

2
é{, is in the Thorin class with Thorin measure

o0
Udx) = %Za (),
k=1 22X

2
where §, (x) is the Dirac delta-function at point a. Finally, S% admits the integral representation

2 0 o0 2 o0
Sk 5/0 exp(—u)d<2xk(sg‘5)A<k>(u)> 7/0 exp(—u)dZu), (103)

k=1

2
where Z(t) = Z,fil kk(Sé(g YA® (1), for each t > 0, with A® k> 1, being independent copies
of a Lévy process.
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