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This paper is concerned with estimating a predictive density under integrated absolute error (L1) loss.
Based on a spherically symmetric observable X ∼ pX(‖x − μ‖2), x,μ ∈ R

d , we seek to estimate the
(unimodal) density of Y ∼ qY (‖y − μ‖2), y ∈ R

d . We focus on the benchmark (and maximum likelihood
for unimodal p) plug-in density estimator qY (‖y − X‖2) and, for d ≥ 4, we establish its inadmissibility,
as well as provide plug-in density improvements, as measured by the frequentist risk taken with respect
to X. Sharper results are obtained for the subclass of scale mixtures of normal distributions which include
the normal case. The findings rely on the duality between the predictive density estimation problem with
a point estimation problem of estimating μ under a loss which is a concave function of ‖μ̂ − μ‖2, Stein
estimation results and techniques applicable to such losses, and further properties specific to scale mixtures
of normal distributions. Finally, (i) we address univariate implications for cases where there exist parametric
restrictions on μ, and (ii) we show quite generally for logconcave qY that improvements on the benchmark

mle can always be found among the scale expanded predictive densities 1
c qY (

(y−x)2

c2 ), with c − 1 positive
but not too large.

Keywords: concave loss; dominance; frequentist risk; inadmissibility; L1 loss; multivariate normal;
plug-in; predictive density; restricted parameter space; scale mixture of normals; Stein estimation

1. Introduction

The developments of this paper relate to spherically symmetric and independently distributed

X | μ ∼ pX

(‖x − μ‖2), Y | μ ∼ qY

(‖y − μ‖2); x, y,μ ∈R
d; (1)

with p and q known Lebesgue densities, not necessarily equal, and μ is unknown. The set-up in
(1) includes the normal model with

X | μ ∼ Nd

(
μ,σ 2

XId

)
, Y | μ ∼ Nd

(
μ,σ 2

Y Id

)
, (2)

as well as scale mixtures of normal distributions (Definition 2.1).
For predictive analysis purposes, researchers are interested in specifying a predictive density

q̂(y;x), based on observation x, as an estimate of the density qY (‖y − μ‖2). In turn, such a
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density may play a surrogate role for generating either future or missing values of Y . Our interest
and motivation here lies in assessing the efficiency of such predictive densities with integrated
absolute error loss (hereafter referred to as L1) and corresponding frequentist risk, with

L1(μ, q̂) =
∫
Rd

∣∣qY

(‖y − μ‖2) − q̂(y)
∣∣dy, (3)

R(μ, q̂) =
∫
Rd

{∫
Rd

∣∣qY

(‖y − μ‖2) − q̂(y;x)
∣∣dy

}
pX

(‖x − μ‖2)dx. (4)

L1 loss is a quite recognizable and an appealing distance. It has played a prominent role in assess-
ing the efficiency of density estimators over the years, both in a nonparametric and a parametric
setting (e.g., [9,10]; among many others). It is also intrinsic in the sense that, for one-to-one func-
tions g : Rd → R

d with inverse jacobian J , the L1 distance between the densities of g(Y ) and
g(Y ′) is independent of g; i.e.,

∫
Rd |qY (‖g−1(y) − μ‖2)|J | − q̂(g−1(y))|J ||dy is independent

of g.
The tractability of the L1 distance and its associated risk is another matter, and analytical

results relative to the performance of predictive density estimators are lacking. In terms of a
benchmark procedure, the evaluation of the minimum risk equivariant predictive density estima-
tor, which is the Bayes procedure associated with the constant prior measure π0(μ) = 1 is quite
challenging. And more generally, we have been unable to provide the form of Bayesian predictive
density estimators for a given prior π .1 With such a paucity of results and bearings, we focus on
the performance of the plug-in predictive density estimator qY (‖y − X‖2), y ∈R

d , which is also
for unimodal pX the maximum likelihood predictive density estimator (mle) of qY (‖y − μ‖2),
y,μ ∈ R

d . Our main objective and common theme is to provide dominating predictive density
estimators of qY (‖y − X‖2), y ∈ R

d . This is achieved in Section 2 for d ≥ 4, quite generally
with respect to model (1) by substituting the estimator X by a more efficient μ̂(X) as a plug-in
estimator. In Section 3, we obtain improvements in the univariate case by variance expansion of
the predictive density estimator. Here are further details.

In Section 2, we focus on the performance of plug-in predictive density estimators qY (‖y −
μ̂(X)‖2), y ∈R

d , with μ̂(X) an estimator of μ. For d ≥ 4, we provide dominating estimators of
the plug-in qY (‖y − X‖2), y ∈R

d . This is achieved by capitalizing on an explicit representation
for the L1 distance (Lemma 2.1) between two densities of the same spherically symmetric fam-
ily, which implies that our predictive density estimation problem for plug-in estimators is dual to
a point estimation problem under a loss which is a concave function of ‖μ̂−μ‖2 (Corollary 2.1).
Using Stein estimation results and techniques applicable to such concave losses (e.g., [5–7]), we
establish the inadmissibility of plug-in densities qY (‖y − X‖2) for d ≥ 4 and obtain dominat-
ing predictive density estimators. In Section 2.2, we provide further sharper developments for
scale mixtures of normals pX and qY , which include of course the normal case. The dual loss
functions that intervene are of interest on their own and our findings also represent contributions
from the point estimation perspective. Namely, the dual loss for the normal model turns out to

1Two-point priors are an exception with the Bayes estimator given by qY (‖y − med(μ | x)‖2), with med(μ | x) being
the posterior median.
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be the interesting loss L(μ, μ̂) = 4�(
‖μ̂−μ‖

2 ) − 2, where � is the standard normal c.d.f. In Sec-
tion 2.3, for univariate situations where μ is either restricted to an interval (a, b), or restricted
to a half-interval (a,∞), we make use of existing results for strict-bowled shaped losses and
our duality results to show that the plug-in density estimator qY (|y − μ̂πU

(X)|2) dominates the
plug-in qY (|y − X|2) for log-concave density pX , where μ̂πU

(X) is the Bayes point estimator
of μ associated with a uniform prior on the restricted parameter space and the given dual loss.
For Kullback–Leibler loss and normal models as in (2), similar inadmissibility results applica-
ble to the MRE predictive density estimator as well as plug-in predictive density estimators, as
well as connections between predictive density estimation and Stein estimation have been ob-
tained by [8,13,15], and [12], among others. Various findings for integrated squared error loss
and spherically symmetric distributions are given in [16].

In Section 3, we focus on the univariate case and scale expansions of the form q̂c(y;x) =
1
c
qY (

|y−x|2
c2 ), y ∈ R, with c > 1. We show the plug-in density qY (|y − X|2), y ∈ R, is dominated

by a subclass of such scale expansions q̂c, with c − 1 positive but not too large, as long as q

is logconcave. This applies to the normal case, as well as models like Logistic and Laplace,
among others. This is paradoxical in the sense that the variance associated with the plug-in
density qY (|y − X|2) matches the variance of the true density qY (|y − μ|2), but that improve-
ments can be nevertheless found among the q̂c’s with c > 1. Such a result goes back to [1]
who showed directly, for Kullback–Leibler loss and univariate normal models, that the plug-in
density q̂1 ∼ N(X,σ 2

Y ) is dominated by the scale expansion (and MRE predictive density estima-
tor) q̂mre ∼ N(X,σ 2

Y + σ 2
X). This type of phenomenon was generalized, for multivariate normal

models, plug-in density estimators qY (‖y − μ̂(X)‖2) and Kullback–Leibler loss by [12], and ad-
dressed recently for integrated squared error loss by [16]. In the former Kullback–Leibler case,
the authors showed that, universally for any (non-degenerate) estimator μ̂(X), any dimension d ,
any restricted or not parameter space, dominating predictive density estimators 1

cd qY (‖ y−μ̂(X)
c

‖2)

of qY (‖y − μ̂(X)‖2) can always be found among choices c > 1. In the latter case, the authors pro-
vide results for μ̂(X) = aX with 0 < a ≤ 1 with similar scale expansion improvements always
available.

2. L1 loss and plug-in estimators

2.1. An identity for L1 distance and general dominance results of plug-in
predictive density estimators

We begin with a useful L1 distance identity.

Lemma 2.1. Let Y = (Y1, . . . , Yd)′ be a spherically symmetric distributed random vector with
unimodal, Lebesgue density fμ(y) = qY (‖y − μ‖2); y ∈ R

d . Then for any μ1,μ2 ∈ R
d , the L1

distance between fμ1 and fμ2 is given by

ρL1 =
∫
Rd

∣∣qY

(‖y − μ1‖2) − qY

(‖y − μ2‖2)∣∣dy = 4F

(‖μ1 − μ2‖
2

)
− 2, (5)
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where F(t) = P0(Y1 ≤ t), t ∈ R, is the univariate cumulative distribution function of Y1 when
μ1 = 0.

Proof. We have qY (‖y − μ1‖2) ≥ qY (‖y − μ2‖2) ⇔ ‖y − μ1‖2 ≤ ‖y − μ2‖2 ⇔ L(y) ≤ 0,

where L(y) = (μ2 − μ1)
′y + ‖μ1‖2−‖μ2‖2

2 . Setting A = {y ∈ R
d : L(y) ≤ 0}, we obtain splitting

the integration on A and its complement Ac

ρL1 = Pμ1(Y ∈ A) − Pμ2(Y ∈ A) + Pμ2

(
Y ∈ Ac

) − Pμ1

(
Y ∈ Ac

)
(6)

= 2
{
Pμ1

(
L(Y ) ≤ 0

) + Pμ2

(
L(Y ) ≥ 0

) − 1
}
.

Observe that L(Y ) is a linear function of the spherically symmetric distributed Y . For such linear
functions, we have (e.g., [20])

(l′Y + k) − (l′μ + k)

‖l‖ ∼ F,

for all l ∈ R
d − {0}, k ∈ R. We thus obtain Pμ1(L(Y ) ≤ 0) = F(−(L(μ1))) = F(

‖μ1−μ2‖
2 ).

Similarly, we obtain Pμ2(L(Y ) ≥ 0) = F(
‖μ1−μ2‖

2 ), and the desired expression for ρL1 follows
from (6). �

Remark 2.1. For the multivariate normal case, identity (5) was given and derived in a different
manner by [9]. An existing reference for the general case seems likely to us, but we could not
find such a reference. Observe that the distance ρL1 is always a concave function of ‖μ1 − μ2‖
on (0,∞) since F ′ is unimodal, and also of ‖μ1 − μ2‖2 given that F is increasing.

Remark 2.2. The L1 distance formula above also provides an explicit form for the much studied
overlap coefficient (e.g., [23]) OVL between two spherically symmetric densities. The latter is
defined for densities g1 and g2 as

OVL(g1, g2) =
∫
Rd

min
(
g1(y), g2(y)

)
dy, (7)

and is related to the L1 distance through the identity OVL(g1, g2) = 1 − 1
2ρL1(g1, g2) given that

2 min(g1(y), g2(y)) = g1(y) + g2(y) − |g1(y) − g2(y)| for all y.

Corollary 2.1. For estimating a unimodal spherically symmetric Lebesgue density qY (‖y −
μ‖2), y ∈ R

d , under L1 loss and based on X ∼ pX(‖x − μ‖2), the frequentist risk of the plug-in
density estimator qY (‖y − μ̂(X)‖2) is equal to the frequentist risk of the point estimator μ̂(X) of
μ under loss 4F(

‖μ̂−μ‖
2 )−2, with F being the common marginal c.d.f. associated with qY . Con-

sequently, qY (‖y − μ̂1(X)‖2) dominates qY (‖y − μ̂2(X)‖2) iff μ̂1(X) dominates μ̂2(X) under
loss 2F(

‖μ̂−μ‖
2 ) − 1.

Proof. This is a direct consequence of Lemma 2.1. �
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Since the dual problem described above involves loss functions l(‖d − μ‖2) with l(t) =
2F(

√
t

2 ) − 1 being concave (see Remark 2.1), we consider using Stein estimation techniques
and results for such concave losses [5–7], along with Corollary 2.1, to obtain dominating esti-
mators of the plug-in density qY (‖y − X‖2), y ∈R

d , which we now proceed to do, elaborate on,
and illustrate. For what follows, we denote f as the density of ‖X − μ‖ under pX and we recall

that f (t) = 2πd/2

�(d/2)
td−1px(t

2) (e.g., [20]). Here is an adaptation of Theorem 2.1 of [6] applicable
to Baranchik type estimators [3], and followed by related inferences for improving on plug-in
density estimators under L1 loss.

Theorem 2.1 (Brandwein and Strawderman [6]). Let X have a spherically symmetric distri-
bution with density pX(‖x − μ‖2), x ∈ R

d , with respect to σ -finite measure ν. For d ≥ 4 and for
estimating μ ∈R

d under loss l(‖μ̂−μ‖2) with l non-decreasing and concave on R+, estimators
μ̂a,r(·)(X) = (1 − a

r(X′X)
X′X )X dominate X, and are thus minimax, provided:

(i) 0 ≤ r(·) ≤ 1 and r(·) �= 0;
(ii) r(t) is non-decreasing for t > 0;

(iii) r(t)/t is non-increasing for t > 0;
(iv) 0 < EpX

l′(‖X − μ‖2) < ∞;
(v) 0 < a ≤ 2(d−2)

d
1

Eh(R−2)
, where the expectation is taken with respect to the density h(s) on

R+ proportional to l′(s2)f (s) = 2πd/2

�(d/2)
l′(s2)sd−1px(s

2).

This following result follows from Corollary 2.1 and Theorem 2.1.

Corollary 2.2. For estimating a unimodal spherically symmetric Lebesgue density qY (‖y −
μ‖2), y,μ ∈ R

d and d ≥ 4, under integrated L1 loss and based on X ∼ pX(‖x − μ‖2), a plug-
in Baranchik density estimator qY (‖y − μ̂a,r(·)(X)‖2), with μ̂a,r(·)(X) = (1 − a

r(X′X)
X′X )X, domi-

nates the plug-in qY (‖y −X‖2) provided conditions (i), (ii), and (iii) of Theorem 2.1 are satisfied
as well as:

(iv′) 0 < EpX
(
qY (‖X−μ‖2/16)

‖X−μ‖ ) < ∞;

(v′) 0 < a ≤ 2(d−2)
d

∫
(0,∞) u

d−3
2 pX(u)F ′( u

4 ) dν(u)

∫
(0,∞) u

d−5
2 pX(u)F ′( u

4 ) dν(u)

.

Proof. This follows from Corollary 2.1 and Theorem 2.1 with l(u) = 2F(
√

u
2 ) − 1 and l′(u) =

F ′(
√

u
2 )

2
√

u
, as well as the change of variables u = s2. �

Remark 2.3. In our set-up, the model density qY determines the loss l via Lemma 2.1 and is thus
taken to be unimodal and Lebesgue. On the other hand, there no restrictions on pX other than
risk-finiteness for the estimators μ̂a,r(·)(X). Condition (iv′) is weak. For instance, it is satisfied
when both the densities qY and pX are bounded. The upper bound for the multiplier a of the
estimator μ̂a,r(·)(X) in (v′) depends on both qY and pX .
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Here is an evaluation for the particular case when both pX and qY are normal densities.

Example 2.1 (Normal case). For the normal case (2) with qY (u) = (2πσ 2
Y )−d/2e−u/2σ 2

Y , F ′(t) =
(2πσ 2

Y )−1/2e−t2/2σ 2
Y , and pX(u) = (2πσ 2

X)−d/2e−u/2σ 2
X , Corollary 2.2 applies with (iv′) satisfied

and (v′) specializing to

0 < a ≤ 2(d − 2)

d

∫
0,∞ u

d−3
2 e−u/2σ 2

Xe−u/8σ 2
Y du∫

0,∞ u
d−5

2 e−u/2σ 2
Xe−u/8σ 2

Y du
= (d − 2)(d − 3)

d

8σ 2
Xσ 2

Y

σ 2
X + 4σ 2

Y

. (8)

We point out that a simultaneous dominance result is available for a family of pX models by
taking the infimum with respect to pX on the rhs of (v′). For the normal case, if we have for
instance, X ∼ Nd(μ,σ 2

XId) with σ 2
X unknown, but known to bounded below by aX > 0, then

simultaneous dominance occurs for all such pX’s by taking 0 < a ≤ (d−2)(d−3)
d

8aXσ 2
Y

aX+4σ 2
Y

.

2.2. Improvements for scale mixture of normals

Distributions in (1) include the subclass of scale mixture of normals, with examples given by the
multivariate Cauchy, Student, Logistic, Laplace, Generalized Hyperbolic and Exponential Power
distributions, among others (e.g., [2]).

Definition 2.1. Model (1) is referred to as a scale mixture of normals model whenever

pX(t) =
∫
R+

(2πv)−d/2e− t
2v dG(v), qY (t) =

∫
R+

(2πw)−d/2e− t
2w dH(w), (9)

for t ∈ R
d and W ∼ G, V ∼ H are independently distributed mixing random variables on R+,

for which we further assume that E(V −d/2) and E(W−d/2) are finite. We denote such models as
X − μ ∼ SNd(G) and Y − μ ∼ SNd(H).

Further developments for scale mixtures of normals are provided in this section and lead to
wider classes of dominating estimators than those given by Corollary 2.2. We revisit this latter
corollary for situations in (1) where

X − μ ∼ SNd(G), Y − μ ∼ SNd(H). (10)

We define Z as a random variable, FZ as its c.d.f., and τ as a bivariate c.d.f. such that

Z =d 4Z1Z2

Z1 + 4Z2
, with (Z1,Z2) ∼ dτ(z1, z2) ∝ z

(d−1)/2
2

(z1 + 4z2)d/2
dG(z1) dH(z2). (11)

Theorem 2.2. Let X ∼ pX(‖x − μ‖2) and Y ∼ qY (‖y − μ‖2), x, y,μ ∈ R
d , be scale mixtures

of normals as in (10) and consider estimating qY (‖y − μ‖2) under L1 loss based on X.
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(a) For d > 1,2 the plug-in density estimator qY (‖y − μ̂(X)‖2) dominates the plug-in density
qY (‖y − X‖2) provided μ̂(X′) dominates X′ under loss ‖μ̂ − μ‖2 and for X′ ∼ p∗(‖x −
μ‖2), with

p∗(‖s‖2) = K

‖s‖
∫

(0,∞)

(2πz)−d/2e− ‖s‖2

2z dFZ(z), s ∈R
d , (12)

where K is a normalization constant.
(b) In particular, a plug-in Baranchik density estimator qY (‖y − μ̂a,r(·)(X)‖2), with

μ̂a,r(·)(X) = (1 − a
r(X′X)
X′X )X, dominates the plug-in density qY (‖y − X‖2) provided con-

ditions (i), (ii), and (iii) of Theorem 2.1 are satisfied, d ≥ 4, the expectations E(Z−1/2)

and E(Z−3/2) are finite, and 0 < a ≤ 2(d − 3)
E(Z−1/2)

E(Z−3/2)
.

Proof. (a) We apply Corollary 2.1. We thus seek conditions for which the difference in
risks 	(μ, μ̂) = Eμ[l(‖μ̂(X) − μ‖2) − l(‖X − μ‖2)] is less than 0, where l(‖μ̂ − μ‖2) =
2F(

‖μ̂−μ‖
2 ) − 1. We apply the inequality l(s) − l(t) < l′(t)(s − t) for strictly concave l and

s �= t , which implies for the difference in losses that

l
(∥∥μ̂(x) − μ

∥∥2) − l
(‖x − μ‖2) < l′

(‖x − μ‖2)(∥∥μ̂(x) − μ
∥∥2 − ‖x − μ‖2), (13)

for all x,μ ∈R
d such that x �= μ̂(x). Observe that

l′
(‖x − μ‖2) = 1

2‖x − μ‖F ′
(‖x − μ‖

2

)
(14)

= 1

2‖x − μ‖
∫ ∞

0
(2πw)−1/2e− ‖x−μ‖2

8w dH(w),

since the marginal distributions associated with a scale mixture of normals as in (10) are them-
selves univariate scale mixtures of normals with the same mixing distribution.3 Now, using (13)
and (14), it follows that

	(μ, μ̂) < EX
μ

[
(‖μ̂(X) − μ‖2 − ‖X − μ‖2)

2‖X − μ‖
∫ ∞

0
(2πw)−1/2e− ‖X−μ‖2

8w dH(w)

]

=
∫
Rd

(‖μ̂(x) − μ‖2 − ‖x − μ‖2)

2‖x − μ‖
∫ ∞

0

∫ ∞

0

(2π)− d+1
2

(wvd)
1
2

e
− ‖x−μ‖2

( 8wv
v+4w

)
dG(v)dH(w)dx

∝
∫
Rd

(‖μ̂(x) − μ‖2 − ‖x − μ‖2)

2‖x − μ‖
∫ ∞

0

∫ ∞

0

(
8πwv

v + 4w

)− d
2

e
− ‖x−μ‖2

( 8wv
v+4w

)
dτ(v,w)dx

∝
∫
Rd

(‖μ̂(x) − μ‖2 − ‖x − μ‖2)

2‖x − μ‖
∫ ∞

0
(2πz)−d/2e− ‖x−μ‖2

2z dFZ(z) dx,

2For d = 1, the density in (12) is not well defined.
3It is not the case that spherically symmetric distributions share a similar consistency property, but it is true indeed for
scale mixtures of normals distributions (e.g., [14]).
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which establishes part (a).
(b) We apply part (a). We show below that the density p∗(‖s‖2) is a scale mixture of normals.

This permits us to apply the dominance result of [22] for Baranchik estimators satisfying con-

ditions (i), (ii), (iii) of Theorem 2.1, in cases where both E
p∗
0 ‖X‖2 and E

p∗
0 ‖X‖−2 are finite,

and for 0 < a ≤ 2/(E
p∗
0 ‖X‖−2). The finiteness conditions are satisfied for d ≥ 4 and with the

finiteness of E(Z1/2) and E(Z−3/2), and a calculation yields

E
p∗
0 ‖X‖−2 =

∫
Rd

1
‖x‖3

∫ ∞
0 (2πz)−d/2e− ‖x‖2

2z dFZ(z) dx

∫
Rd

1
‖x‖

∫ ∞
0 (2πz)−d/2e− ‖x‖2

2z dFZ(z) dx

=
∫ ∞

0

∫
Rd

1
‖x‖3 (2πz)−d/2e− ‖x‖2

2z dx dFZ(z)

∫ ∞
0

∫
Rd

1
‖x‖ (2πz)−d/2e− ‖x‖2

2z dx dFZ(z)

= 1

(d − 3)

E(Z−3/2)

E(Z−1/2)
,

using expectation expressions for a central χ2
d distribution. This yields the desired result. It re-

mains to show that p∗(‖s‖2), s ∈ R
d , is a scale mixture of normals density. Recall that, in general,

a spherically symmetric density f (‖t − μ‖2) is a scale mixture of normals if and only if f is
completely monotone on (0,∞), i.e., (−1)kf (k)(t) ≥ 0 for t > 0 and k = 0,1,2, . . . (e.g., [4]).
Since both t−1/2 and

∫
(0,∞)

(2πz)−d/2e− t
2z dτ (z) are completely monotone, it follows that their

product is completely monotone (e.g., [11], page 417) and that the density in (12) is indeed a
scale mixture of normals. �

Remark 2.4. Written in terms of the mixing variance cdfs (H,G) in (10), Theorem 2.2(b)’s
bound on a is, using (11), equal to

8(d − 3)

∫
R+

z
−1/2
1 z

d/2−1
2

(z1+4z2)
(d−1)/2 dG(z1) dH(z2)

∫
R+

z
−3/2
1 z

d/2−2
2

(z1+4z2)
(d−3)/2 dG(z1) dH(z2)

.

Example 2.2 (Normal case). In the normal case (2) which arises as a particular case of (10)
for degenerate V,W , we obtain that Z in (11) is also degenerate with P(Z = z0) = 1, with

z0 = 4σ 2
Xσ 2

Y

σ 2
X+4σ 2

Y

. In this case as well, we obtain

p∗(‖s‖2) ∝ 1

‖s‖ (2πz0)
−d/2e

− −‖s‖2

2z0 ,

which is the density of a Kotz distribution (see for instance [21]). By virtue of part (a) of The-
orem 2.2, minimax or dominance results applicable to this particular Kotz distribution gen-
erate plug-in Nd(μ̂(X),σ 2

Y Id) density estimators (such as those in part (b)) which dominate
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the plug-in density of a Nd(X,σ 2
Y Id) under L1 loss. The cut-off point in part (b) reduces to

2(d − 3)z0 = 8(d−3)σ 2
Xσ 2

Y

σ 2
X+4σ 2

Y

. In comparison to Corollary 2.1’s cutoff point given in (8), the cut-off

point here is larger by a multiple of d/(d − 2).
Proceeding with a numerical illustration, we set σ 2

X = 1 (without loss of generality) and

consider the (smooth) Baranchik estimator μ̂a(X) = ( X′X
X′X+a

)X, corresponding to r(t) = t
t+a

.

which satisfies the dominance condition as long as 0 < a ≤ a0(d, σY ) = 8(d−3)σ 2
Y

1+σ 2
Y

. We select

the upper cut-off point a0(d, σY ) and compare the risks of the plug-in predictive density esti-
mators qY (‖y − X‖2) and qY (‖y − μ̂a0(X)‖2). Figure 1(left) shows the ratio of these risks for
d = 6, σY = 0.5,1,2. Our theoretical results tells us that the ratio is less than one. In accordance
with the traditional performance of shrinkage estimators, empirical findings show that (relative)
improvement is most important when λ = ‖μ‖ is close to 0 and such an improvement dissipates
for large λ. Furthermore, these gains are amplified when σ 2

Y increases (i.e., larger uncertainty
in Y is better mitigated by the shrinkage procedure). Similarly, these gains are amplified as the
dimension d rises. With the maximum gain at 0, Figure 1(right) illustrates these above fea-
tures of the ratio of risks evaluated at μ = 0 as a function of σY , and illustrates how important
the gains can be. In practice, one may shrink to any prior plausible value μ0 of μ (by using

μ̂(X) = μ0 + (1 − r(‖X−μ0‖2)

‖X−μ0‖2 )(X − μ0), with improvement expected to be most important for

small ‖μ − μ0‖2.

Example 2.3 (Cases where the mixing distributions are lower bounded). Suppose in (10) that
the mixing variances are lower bounded by positive values, in the sense that there exists known
positive constants aX and aY such that G−(aX) = 0 and H−(aY ) = 0 (G and H need not be

known). In such cases, Theorem 2.2’s cutoff point 2(d − 3)
E(Z−3/2)

E(Z−1/2)
for the constant a of the

Figure 1. Ratios
R(μ,qY (‖y−μ̂a0 (X)‖2)

R(μ,qY (‖y−X‖2)
of risks for d = 6, σ 2

X
= 1, σ 2

Y
= 2,1,0.5, as functions of λ = ‖μ‖

(on the left). For fixed λ, ratios increase in σ 2
Y

. Same ratios at μ = 0 for d = 4,6,8 (on the right). These
ratios decrease in d .
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plug-in Baranchik density estimator μ̂a,r(·)(X) can be lower bounded as follows. We have by the
covariance inequality Cov(g1(Z), g2(Z)) ≥ 0 for decreasing g1(z) = z−3/2, increasing g2(z) =
z, and by making use of (11):

E(Z−1/2)

E(Z−3/2)
≥ E(Z) ≥ 4E

((
1

Z2
+ 4

Z1

))−1

≥ 4

(
1

aY

+ 4

aX

)−1

= 4aXaY

4aY + aX

.

Theorem 2.2’s cutoff point is thus bounded below by 2(d − 3)E(Z) which in turn is bounded
below by 8(d−3)aXaY

4aY +aX
. In the normal case, these bounds are exact and take us back to the bound

given in Example 2.2. The range of predictive density Baranchik estimators which dominate
the plug-in qY (‖y − X‖2) is thus narrower with the lower bound, but the bound is simple, and
dominance applies simultaneously for all scale mixture of normals in (10) such that the lower
bounds aX and aY on the mixing variance apply.

2.3. Improvements in the case of univariate parametric restrictions

We briefly expand on dominance results applicable to univariate (d = 1) cases where μ is either
restricted to an interval (a, b), or to a half-interval (a,∞). Combining Corollary 2.1’s duality
with point estimation loss 2F(

|μ̂−μ|
2 ) − 1, which is a strictly bowled shaped function of |μ̂ − μ|

on R, with findings of [19], or again [18], we derive the following dominance result for estimating
an univariate density qY (|y−μ|2) based on X ∼ pX(|x−μ|2) for cases (such as the normal case)
where the family of densities for X has an increasing monotone likelihood ratio (or equivalently
pX(t2) is logconcave in t ∈ R+).

Corollary 2.3. For estimating an unimodal and univariate symmetric Lebesgue density qY (|y −
μ|2), y ∈ R, μ ∈ (a, b) (or μ ∈ (a,∞)) under L1 loss and based on X ∼ pX(|x − μ|2) with
pX(t2) logconcave, the plug-in density estimator qY (|y − μ̂U (X)|2) with μ̂U (X) the Bayes es-
timator of μ with respect to the uniform prior on (a, b) (or on (a,∞)) dominates the plug-in
density estimator qY (|y − X|2).
Proof. Since μ̂πU

(X) dominates the MRE estimator X as shown by [19] for loss functions ρ(d −
μ) with ρ strict bowled shaped, ρ(t) > ρ(0) = 0 for all t �= 0, and logconcave densities, the result
follows from part (a) of Corollary 2.1. �

3. Scale expansion improvements on plug-in predictive density
estimators

We consider here model (1) in the univariate case and simplify the notation for convenience writ-
ing X ∼ p(x − μ), Y ∼ q(y − μ), x, y,μ ∈ R, with p, q known and even. With normal p.d.f.’s
p and q representing the key example for further reference, we investigate the performance of
predictive density estimators 1

c
q(

y−x
c

) of q(y − μ), for c > 1, under L1 loss as in (3)

∫
R

∣∣∣∣q(y − μ) − 1

c
q

(
y − x

c

)∣∣∣∣dy, (15)
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and associated frequentist risk

Rc(μ) =
∫
R

{∫
R

∣∣∣∣q(y − μ) − 1

c
q

(
y − x

c

)∣∣∣∣dy

}
p(x − μ)dx, μ ∈R.

By the change of variables (x, y) → (x − μ,y − μ) and by exploiting the assumption that p and
q are even, the above risk may be expressed as

Rc(μ) = 2
∫
R+

{∫
R

∣∣∣∣q(y) − 1

c
q

(
y − x

c

)∣∣∣∣dy

}
p(x)dx. (16)

Observe that the risk is thus constant as a function of μ and that an optimal choice of c exists
for any given (p, q). We are particularly interested in seeking improvements in terms of risk of
the maximum likelihood plug-in estimator q(y − x), y ∈ R, by scale expansions 1

c
q(

y−x
c

) with
c > 1.

The crossings of the densities q(y) and 1
c
q(

y−x
c

) will be critical in decomposing the loss in
(15). One may verify without much difficulty that such densities cross once on R− and once on

R+ for cases such as normal (also see Example 3.1) and Laplace (with q(y) = 1
2σ

e− |y|
σ ). The

next result establishes such behaviour quite generally under the assumption that q is logconcave.

Lemma 3.1. Suppose q is an even, differentiable a.e., and logconcave density on R. Then, for
any fixed (x, c) with c > 1 and x �= 0, (i) there is exactly one positive (y+) and one negative (y−)
solution of q(y) − 1

c
q(

y−x
c

) = 0. Furthermore, (ii) q(y) > 1
c
q(

y−x
c

) iff y− < y < y+.

Proof. With the assumptions, we may write q(y) = Ae−h(y) with h even, h(y) increasing in |y|,
and h′(y) increasing in y. We break up the proof into separate parts: (A) y > 0 and (B) y < 0
and we assume x > 0 without loss of generality. Note that

sgn

{
q(y) − 1

c
q

(
y − x

c

)}
= − sgn

{
D(y)

}
, (17)

with D(y) = h(y) − h(
y−x

c
) − log(c). If (i) holds, part (ii) follows as D(0) = h(0) − h(−x

c
) −

log(c) < 0, given the properties of h and since c > 1.

(A) Case y > 0. For y ≥ x, we have

D′(y) = h′(y) − 1

c
h′

(
y − x

c

)
≥ h′(y)

(
1 − 1

c

)
≥ h′(x)

(
1 − 1

c

)
> 0. (18)

Note also that D′(y) ≥ 0 for 0 < y < x since h(y) is increasing in y for y > 0, and
h(

y−x
c

) is decreasing in y for y < x. Hence, D(·) is increasing on R+. Since D(0) < 0, we
conclude that there exists exactly one positive solution of the equation q(y)− 1

c
q(

y−x
c

) =
0.

(B) Case y < 0. Set z = |y|. By symmetry, for y < 0,

D(y) = h(z) − h

(
z + x

c

)
− log(c) = T (z) (say).
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Set z0 = x
c−1 . For z ≤ z0, we have z ≤ z+x

c
and T (z) = h(z) − h(z+x

c
) − log(c) ≤

− log(c) < 0 given that h is increasing on R+. There is hence no root of D on [0, z0].
For z > z0, we have

T ′(z) = h′(z) − 1

c
h′

(
z + x

c

)
≥ h′(z)

(
1 − 1

c

)
≥ h′(z0)

(
1 − 1

c

)
> 0. (19)

Therefore T is strictly monotone on (z0,∞) with T (z) → ∞ as z → ∞, and we infer
that there exists a unique root of T in the interval (z0,∞) and none in the interval (0, z0),
which establishes the result.

�

Theorem 3.1. Suppose q is an even, differentiable a.e., and logconcave density on R. Suppose p

is an even density. Then, the risk Rc(μ) of the predictive density 1
c
q(

y−x
c

) in estimating q(y −μ),
y ∈R, is given by Rc(μ) = 4(A1 + A2), with

A1 =
∫
R+

(
F

(
y− − x

c

)
− F(y−)

)
p(x)dx,

A2 =
∫
R+

(
F(y+) − F

(
y+ − x

c

))
p(x)dx,

where F is the c.d.f. associated with q , and y− and y+ are quantities depending on x representing
the negative and positive crossing respectively of 1

c
q(

y−x
c

) and q(y).

Proof. With q(y) ≥ 1
c
q(

y−x
c

) iff y− ≤ y ≤ y+ by virtue of Lemma 3.1, the given expression
for the risk Rc(μ) follows by evaluating the inner integral in (16) separately on the domains
(−∞, y−), [y−, y+], (y+,∞), and by collecting terms. �

Remark 3.1. Taking c → 1 in Theorem 3.1, we obtain y− → −∞ and y+ → x/2. This yields
A1 → 0, A2 → ∫

R+(2F(x/2) − 1)p(x) dx and

R1(μ) =
∫
R+

(
8F(x/2) − 4

)
p(x)dx = 8

∫
R+

F(x/2)p(x) dx − 2. (20)

The above may be written as 4
∫
R

F(|x|/2)p(x) dx − 2, and we point out that this also follows
from Corollary 2.1.

Example 3.1 (Normal case). For a normal p.d.f. q(y) = 1√
2π

e− y2

2 , the conclusions of Lem-
ma 3.1 may be directly verified with crossings y− and y+ given explicitly by

y− = −x

c2 − 1
− c

c2 − 1
D, y+ = −x

c2 − 1
+ c

c2 − 1
D, (21)

where D = √
x2 + (c2 − 1) log(c2). This is so as q(y) ≥ 1

c
q(

y−x
c

) ⇐⇒ y2(1 − 1
c2 ) − log(c2) −

x2

c2 + 2xy

c2 ≤ 0 ⇐⇒ y− ≤ y ≤ y+ by taking logarithms. Theorem 3.1 thus applies in the normal
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case with the above values of y− and y+. The risk R1(μ) of the plug-in predictive density esti-

mator, given by (20) actually reduces to 2
π

arcsin(
√

5
5 ) ≈ 0.590334. To justify this, write

∫
R+

F(x/2)p(x) dx =
∫
R+

∫ x/2

−∞
p(y)p(x)dy dx

=
∫
R−

∫ −x/2

−∞
p(y)p(x)dy dx = P(Z1 ≤ 0,Z2 ≤ 0),

with (Z1,Z2) distributed as bivariate normal with means 0, variances 1 and correlation ρ =
√

5
5 .

The result for R1(μ) follows with the quadrant probability identity P(Z1 ≤ 0,Z2 ≤ 0) = 1
4 +

arcsin(ρ)
2π

for bivariate normal vectors (e.g., [20], page 44).

We now proceed with the main result of this section.

Theorem 3.2. Suppose q is an even, differentiable a.e., and logconcave density on R. Suppose
p is an even density. Then, for estimating the density q(y − μ), y ∈ R based on X ∼ p(x − μ),
x ∈ R, under L1 loss, the predictive density estimator q(y − x) is inadmissible and dominated
by a subclass of predictive density estimators 1

c
q(

y−x
c

) for c > 1 and small enough c − 1.

Remark 3.2. Observe that the above result is quite general as long as q is logconcave. It applies
namely for the normal case with Y ∼ N(μ,σ 2

Y ). Little, not even unimodality, is required of p

except the evenness.

Proof of Theorem 3.2. We show that d
dc

Rc(μ) |c=1+< 0, which will suffice. We have from
Theorem 3.1 by differentiating under the integral sign

d

dc
A1 =

∫
R+

d

dc

(
F

(
y− − x

c

)
− F(y−)

)
p(x)dx

=
∫
R+

(
q

(
y− − x

c

)
(cy′− − (y− − x))

c2
− q(y−)y′−

)
p(x)dx

=
∫
R+

1

c
q(y−)(x − y−)p(x) dx,

where y′− = d
dc

y−, and where we have made use of the property q(y−) = 1
c
q(

y−−x
c

) which y−
satisfies by definition. Similarly, we obtain

d

dc
A2 =

∫
R+

1

c
q(y+)(y+ − x)p(x)dx.
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Taking c → 1+, we have limc→1+ y− = −∞, limc→1+ y+ = x
2 (Remark 3.1), and hence

limc→1+ y−q(y−) = limt→−∞ tq(t) = 0. We thus have

d

dc
Rc(μ) |c=1+ = lim

c→1+

4

c

∫
R+

(
q(y−)(x − y−) + q(y+)(y+ − x)

)
p(x)dx

= −2
∫
R+

xq

(
x

2

)
p(x)dx < 0,

completing the proof. �

Example 3.2 (Normal case continued). As an illustration, for σ 2
Y = σ 2

X = 1, we obtain numer-
ically that Rc(μ) decreases for 1 < c < c0 and increases for c ≥ c0, with c0 ≈ 1.128 repre-
senting the optimal choice of c among the estimators q̂c(y;x) = 1

c
q(

y−x
c

). We also obtain that
q̂c dominates q̂1 iff 1 < c < c1 with c1 ≈ 1.2936. However, the gains are small. For instance
Rc0(μ) ≈ 0.57690 while R1(μ) ≈ 0.590334 (see Example 3.1), representing a improvement of
around 2.27%.

4. Concluding remarks

We have shown that, for estimating a d-dimensional unimodal spherically symmetric den-
sity qY (‖y − μ‖2) based on X ∼ pX(‖x − μ‖2), and under L1 loss, the benchmark plug-
in qY (‖y − X‖2) predictive density estimator is quite generally inadmissible for d ≥ 4 in
terms of frequentist risk, and dominated by a class of plug-in predictive density estimators
qY (‖y − μ̂(X)‖2), with the μ̂(X) being James–Stein and more generally Baranchick-type es-
timators of μ. We have capitalized on a L1 distance formula (Lemma 2.1) to establish the link
between the predictive density estimation problem and a point estimation of μ problem based on
X under a dual loss of the form ρ(‖d −μ‖2) with concave ρ. Our inadmissibility and dominance
results are obtained by making use of techniques in Stein estimation for such concave losses, and
by working with the specific form of ρ. The findings also represent multivariate mean point
estimation contributions on their own, and further recent work in this regard appears in [17].

We have also shown in the univariate normal case, and more generally for log-concave density
q , that a scale expansion, induced by the predictive density estimator qc(y;x) = 1

c
q(

y−x
c

) with
c > 1, dominates the plug-in q̂1 for c’s slightly larger than 1.

Although L1 distance arises in many varied theoretical and practical situations, its analytical
treatment appears to be quite difficult. The techniques and results presented here address such a
difficulty and, we believe, pave the way for further findings.
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