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We prove, using optimal transport tools, weighted Poincaré inequalities for log-concave random vectors sat-
isfying some centering conditions. We recover by this way similar results by Klartag and Barthe–Cordero-
Erausquin for log-concave random vectors with symmetries. In addition, we prove that the variance conjec-
ture is true for increments of log-concave martingales.
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1. Introduction

In all the paper, if X = (X1, . . . ,Xn) is a random vector defined on some probability space
(�,A,P) with values in R

n and h : Rn → R is an Borel (bounded or nonnegative) function, we
use the following notation for the conditional expectations:

Ei

[
h(X)

] := E
[
h(X)|X1, . . . ,Xi

]
,

with the convention that E0[h(X)] = E[h(X)]. To any random vector X, we associate the random
vector X defined as follows:

Xi = Xi −Ei−1[Xi] ∀i ∈ {1, . . . , n}.
This recentering procedure will play an important role in all the paper (see also [9] for another
application). We aim at proving Poincaré and transport inequalities for X, when X is log-concave.

Recall that a random vector X with values in R
n is log-concave if for all nonempty compact

sets A,B ⊂R
n, it holds

P
(
X ∈ (1 − t)A + tB

) ≥ P(X ∈ A)1−t
P(X ∈ B)t ∀t ∈ [0,1].

According to a celebrated result of Borell [11,12], a random vector X is log-concave if and only
if there is an affine map � : Rk → R

n, k ≤ n and a random vector Y taking values in R
k such

that X = �(Y ) and Y has a density of the form e−V with respect to the Lebesgue measure on R
k ,

where V : Rk → R ∪ {+∞} is a convex function. In what follows, by an “n-dimensional log-
concave random vector,” we will understand a vector X satisfying the conditions above with
k = n (and � = Id).
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The main result of this note is that the class of all random vectors X with X n-dimensional
and log-concave satisfies a general weighted Poincaré inequality.

Theorem 1.1. There exists a universal numerical constant a > 0 such that for any n and any
n-dimensional log-concave random vector X, it holds

Var
(
f (X)

) ≤ a

n∑
i=1

E
[
E

[
X

2
i |X1, . . . ,Xi−1

]
∂if (X)2] (1.1)

for all locally-Lipschitz f : Rn → R belonging to L2(X), where Var(Y ) := E[Y 2] − E[Y ]2

denotes the variance of a real valued random variable Y . In particular, if X is such that
Ei−1[Xi] = 0 for all i ∈ {1, . . . , n}, then X = X and it holds

Var
(
f (X)

) ≤ a

n∑
i=1

E
[
Ei−1

[
X2

i

]
∂if (X)2] (1.2)

Remark 1.2. If the operation X 
→ X was preserving log-concavity then, of course, (1.1) would
follow from (1.2) applied to X. It is not difficult to find examples of log-concave random vec-
tors X such that X is not log-concave anymore. A random vector X such that X = X can be
interpreted as a sequence of martingale increments (see Section 3 for more details).

Theorem 1.1 is reminiscent of recent results of Klartag [24] and of Barthe and Cordero-
Erausquin [4] which were based on L2 methods. The objective of this note is to give alternative
proofs of variants of some of the results from [4,24] using mass transport arguments.

Recall that a random vector X is unconditional when X = (X1, . . . ,Xn) has the same law
as (ε1X1, . . . , εnXn) for any choice of εi = ±1. Since unconditional random vectors satisfy
Ei−1[Xi] = 0 for all 1 ≤ i ≤ n, Theorem 1.1 can be seen as an extension of the following re-
sult by Klartag [24]: for any log-concave and unconditional random vector X, it holds

Var
(
f (X)

) ≤ c

n∑
i=1

E
[(

X2
i +E

[
X2

i

])
∂if (X)2], (1.3)

for all f : Rn → R smooth enough, where c > 0 is some absolute constant. Moreover, when f

is itself unconditional (i.e., f (ε1x1, . . . , εnxn) = f (x1, . . . , xn) for all εi = ±1), then the terms
E[X2

i ] can be removed from the right-hand side of (1.3). Note that in [24], Klartag also obtains
weighted Poincaré inequalities for a larger class of unconditional distributions with a density of
the form e−φ with φ : Rn →R whose restriction to R

n+ is p convex (i.e., x 
→ φ(x
1/p

1 , . . . , x
1/p
n )

is convex). Inequalities of the form (1.3) were also investigated in details in the recent paper [4].
There, the authors establish general weighted Poincaré inequalities for classes of probability
measures invariant by a subgroup of isometries, not only the coordinate reflections.

Note that (1.2) applies to random vectors having less symmetries than unconditional random
vectors. For instance, if the Xi are independent mean zero and variance one log-concave random
variables then Ei−1[Xi] = 0 for all i, whereas X does not have any particular symmetry. In this
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case, the conclusion (1.2) of Theorem 1.1 is consistent with the Poincaré inequality obtained
using the (elementary) tensorisation property of the Poincaré inequality.

Theorem 1.1 also easily implies some variance estimates for log-concave random vectors.

Corollary 1.3. There exists a universal constant b > 0 such that if X is an n-dimensional log-
concave random vector, then, denoting by | · | the standard Euclidean norm on R

n, it holds

Var
(|X|2) ≤ b

n∑
i=1

E
[
X

4
i

] ≤ 16b

n∑
i=1

E
[
X4

i

]
. (1.4)

In particular, when E[X2
i ] = 1 for all i ∈ {1, . . . , n}, we have

Var
(|X|2) ≤ cn (1.5)

and if in addition X satisfies Ei−1[Xi] = 0 for all i, then

Var
(|X|2) ≤ cn, (1.6)

for some other universal constant c.

The inequality (1.6) on the variance immediately yields to the following concentration in a
thin shell estimate

P
(∣∣|X| − √

n
∣∣ ≥ t

√
n
) ≤ be−cn1/4√t ∀t > 0.

This type of concentration inequalities plays a central role in the proof of the central limit theorem
for log-concave random vectors [2,7,21,23].

Corollary 1.3 is also motivated by the so called variance conjecture. Recall that a random
vector X is said isotropic if E[X] = 0 and E[XiXj ] = δi,j for all i, j ∈ {1, . . . , n}. The variance
conjecture asserts that any log-concave and isotropic random vector X satisfies (1.6) for some
universal positive constant b. This conjecture was shown to be true in restriction to the class of
unconditional log-concave random vectors by Klartag [22,24]. We refer to [4] and [1] for other
subclasses of log-concave distributions satisfying the variance conjecture. The best (dimensional)
estimate in date is due to Guédon and Milman [18] who proved that Var(|X|) ≤ bn2/3 for any
isotropic log-concave random vector X. The variance conjecture is a weak form of a celebrated
conjecture by Kannan, Lovasz and Simonovits [20] stating that any log-concave and isotropic
random vector X satisfies a Poincaré inequality

Var
(
f (X)

) ≤ aE
[|∇f |2(X)

] ∀f smooth enough,

for some universal constant a > 0. According to a remarkable recent result of Eldan [14], the
variance conjecture implies the KLS conjecture up to some log(n) factor.

Corollary 1.3 thus shows that the variance conjecture is satisfied on the class of isotropic log-
concave random vectors such that X = X (see also [4], Theorem 4 and Remark 6.1 below for
a related result). It is not difficult to see that this class is strictly larger than the class of uncon-
ditional isotropic and log-concave random vectors (some informations on log-concave random
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vectors such that X = X can be found in Proposition 2.3 and Remark 2.4 below). For general log-
concave random vectors X, let us mention that it is always at least possible to bound Var(|X|2)
in terms of Var(|X|2) and of Var(|X′|2), where the “reduced” random vector X′ is defined by

X′
i = Ei−1[Xi] ∀i ∈ {1, . . . , n}.

The basic observation behind the following elementary result is that X = X + X′ is an orthogo-
nal decomposition of X in the space H := L2(�,A,P;Rn) of square integrable n-dimensional
random vectors. More precisely, for any X ∈ H , the vector X is the orthogonal projection of X

onto the linear subspace H0(X) = {Y ∈ H ;E[Yi |X1, . . . ,Xi−1] = 0, ∀i ∈ {1, . . . , n}} (the space
of random sequences that are martingale increments with respect to the filtration σ(X1, . . . ,Xi),
0 ≤ i ≤ n − 1). We will prove the following useful identity

Var
(|X|2) = Var

(|X|2) + Var
(∣∣X′∣∣2) + 2 Cov

(|X|2, ∣∣X′∣∣2)
(1.7)

+ 4E
[(

X · X′)2] + 4E
[|X|2X · X′] + 4E

[∣∣X′∣∣2
X · X′],

from which one deduces the following result.

Corollary 1.4. If X is an isotropic and log-concave random vector in R
n, and X′ is defined as

above, then

Var
(|X|2) ≤ a

(
n + Var

(∣∣X′∣∣2))
and Var

(∣∣X′∣∣2) ≤ a
(
n + Var

(|X|2)),
for some universal constant a.

It follows that the variance conjecture is (technically) equivalent to the existence of a universal
constant b > 0 such that for any isotropic log-concave random vector X,

Var
(∣∣X′∣∣2) ≤ bn.

It would be of some interest to see if for some specific classes of vectors X, the variance term
Var(|X′|2) can be estimated by some power of n.

The proof of Theorem 1.1 is based on mass transport. More precisely, we will establish a
transport-entropy inequality (Theorem 4.1) which is of independent interest, of the form

Tμ(μ, ν) ≤ D(ν‖μ) ∀ν,

where μ and ν are the laws of random vectors X and Y , with X,Y distributed according to μ

and ν. The optimal transport cost Tμ will be of the form

Tμ(ν0, ν1) = inf
π∈C(ν0,ν1)

∫ ∫
cμ(x, y)π(dx dy),

for a particular cost function cμ (precise definitions will be given later). Then, Theorem 1.1 will
follow from this transport-entropy inequality by a standard linearization procedure. The argu-
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ment towards our transport inequality will use an above tangent lemma introduced by Cordero-
Erausquin [13] which is a handy tool to prove classical functional inequalities (Log-Sobolev, Ta-
lagrand) for uniformly log-concave random vectors and to recover the celebrated HWI inequality
of Otto and Villani [30].

Let us mention here a byproduct of this approach in terms of transport inequalities involving
the classical W2 distance (definitions are recalled below).

Theorem 1.5. There exists a universal constant c such that for any n dimensional log-concave
random vector X taking values in the hypercube [−R,R]n, R > 0, it holds

W 2
2 (μ, ν) ≤ cR2D(ν‖μ),

for all probability measures ν on R
n, where μ and ν denote, respectively, the laws of X and Y ,

Y being distributed according to ν.

Theorem 1.5 can be considered as a variant of results by Eldan and Klartag [15], Theorem 6.1
and by Klartag [25], Theorem 4.2. Let us mention that the present paper uses techniques of proof
very similar to those involved in [15,25]. To be more precise, Theorem 6.1 of [15] gives a similar
inequality when μ and ν are both unconditional and log-concave. In their statement, the relative
entropy is replaced by

∫
[−R,R]n H(f,g) − 1, where H(f,g)(y) = supx∈Rn

√
f (x + y)g(x − y),

denoting by f,g the densities of μ and ν with respect to Lebesgue. This quantity is relevant in
their study of the stability of the Brunn–Minkowski inequality. In Theorem 4.2 of [25], Klartag
obtains the inequality

W 2
2 (μ, ν) ≤ cL2D(ν‖μ) ∀ν

for all log-concave probability measures μ supported on the hypercube Q = [−1,1]n and such
that in addition the density f of μ with respect to Lebesgue satisfies for some L ≥ 1

f
(
(1 − t)x + ty

) ≤ L
[
(1 − t)f (x) + tf (y)

] ∀t ∈ [0,1],
for all x, y ∈ Q with x − y proportional to one of the standard basis vectors ei . This condition is,
for instance, realized with L = eM/8 if f = e−V for some smooth convex function V : Q → R

such that supi≤n supx∈Q ∂2
i V (x) ≤ M for some M ≥ 0.

The paper is organized as follows. In Section 2, we gather various observations on the relations
between X and X for log-concave random vectors. In Section 3, we give some background on
the mass transportation tools that are used to establish our general transport-inequality, which is
stated and proved in Section 4, together with Theorem 1.5. Then, in Section 5 we linearize this
transport-entropy inequality and establish Theorem 1.1. In the final Section 6, we explain how to
derive the Corollaries 1.3 and 1.4 on the variance.

2. Some observations about log-concave random vectors such
that X = X

First, we begin with a straightforward proposition identifying the class of random vectors such
that X = X as increments of martingales.
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Proposition 2.1. A random vector X = (X1, . . . ,Xn) is such that X = X if and only if M =
(M0,M1, . . . ,Mn), with M0 = 0 and Mk = ∑k

i=1 Xi is a martingale with respect to the increas-
ing sequence of sub-sigma fields Fk = σ(M0, . . . ,Mk), k ∈ {0, . . . , n}.

The proof is left to the reader.
If M := (M0,M1, . . . ,Mn) is a martingale, we denote by �i = Mi − Mi−1, i ∈ {1, . . . , n} the

increments of M . The quadratic variation process of M is then defined by [M]k = ∑k
i=0 �2

i , for
all k ∈ {0,1, . . . , n}. With these definitions, Corollary 1.4 can be restated as follows.

Proposition 2.2. There exists a universal constant c > 0 such that for all martingale M =
(M0,M1, . . . ,Mn) such that M0 = 0 and (M1, . . . ,Mn) has a log-concave density, it holds

Var
([M]k

) ≤ c

k∑
i=1

E
[
�4

i

] ∀k ≤ n.

Proof. Since the class of log-concave random vectors is stable under affine transformations, it
follows that (M1, . . . ,Mn) has a log-concave density if and only if (X1, . . . ,Xn) with Xi = �i

has a log-concave density. The result then follows immediately from Corollary 1.4. �

We now collect in the following proposition some elementary information on log-concave
random vectors X such that X = X.

Proposition 2.3. (1) If X is a log-concave random vector with values in R
n then X = X if and

only if E[X] = 0 and for all k ∈ {1, . . . , n − 1}, E[X|X1, . . . ,Xk] = (X1, . . . ,Xk,0, . . . ,0). In
particular, if C ⊂R

n is a convex body and X is uniformly distributed over C, then X = X if and
only if the barycenter of C is at 0 and for all x = (x1, . . . , xn) ∈R

n

Bar
(
C ∩ {

(x1, . . . , xk)
} ×R

n−i
) = (x1, . . . , xk,0, . . . ,0) ∀k ∈ {1, . . . , n − 1}

(whenever this section is not empty). In particular, C is symmetric with respect to the hyperplane
{xn = 0}.

(2) Let C ⊂ R
n be a convex body satisfying the conditions above. Consider the convex body

D ⊂R
n+1 defined by

D = {(
t, ϕ(t)x

) : t ∈ [a, b], x ∈ C
}
,

where ϕ : [a, b] → [0,∞) is some concave function and let D′ = D − Bar(D). Then a vector X

uniformly distributed on D′ satisfies X = X. A typical example is given by a cone of the form

D′ = D − Bar(D) with D = convex − hull
(
0, {a} × C

) ⊂R
n+1, a ∈R.

(3) If C ⊂ R
2 is a bounded convex body with barycenter at 0 and X is uniformly distributed

over C, then X is uniformly distributed over the convex body C obtained from C by applying
Steiner symmetrization with respect to the axis D = R× {0}. In particular, X = X if and only if
C is symmetric with respect to D.
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(4) If X,Y are two independent log-concave random vectors (defined on the same probability
space) such that X = X and Y = Y , then X + Y = X + Y .

Proof. (1) The second point follows easily from the fact that for k ≤ i − 1,

E[Xi |X1, . . . ,Xk] = E
[
E[Xi |X1, . . . ,Xi−1]|X1, . . . ,Xk

]
.

(2) It is not difficult to check that Bar(D) = (m,0, . . . ,0) for some m ∈ R and that

Bar
(
D ∩ {

(t, x1, . . . , xk)
} ×R

n−k
) = (

t,Bar
((

ϕ(t)−1C
) ∩ {

(x1, . . . , xk)
} ×R

n−k
))

= (t, x1, . . . , xk,0, . . . ,0),

where the second line comes from the assumption made on C. This easily implies that D′ enjoys
the centering conditions of point (2) and so that X satisfies X = X.

(3) Observe that C can be written as C = {(x1, x2) ∈ R
2;x1 ∈ [α,β], a(x1) ≤ x2 ≤ b(x1)}, for

some α < β , and where a : [α,β] → R is a concave function and b : [α,β] → R is a convex
function. Recall that the Steiner symmetrization of C with respect to D is the set C defined by

C = {
(x1, x2) ∈R

2;x1 ∈ [α,β], 1
2

(
a(x1) − b(x1)

) ≤ x2 ≤ 1
2

(
b(x1) − a(x1)

)}
.

Since the function a − b is convex, the set C is convex. Moreover, X = (X1,X2 − 1
2 (a(X1) +

b(X1))) and so for all bounded measurable test function f : R2 →R

E
[
f (X)

] = 1

Vol(C)

∫ β

α

∫ b(x1)

a(x1)

f

(
x1, x2 − 1

2

(
a(x1) + b(x1)

))
dx2 dx1

= 1

Vol(C)

∫ β

α

∫ (1/2)(b(x1)−a(x1))

(1/2)(a(x1)−b(x1))

f (x1, y2) dy2 dx1

= 1

Vol(C)

∫
C

f (y1, y2) dy1 dy2.

This shows that X is uniformly distributed on C.
(4) It is well known that X + Y is still log-concave. Let us show that X + Y = X + Y . Let

i ∈ {2, . . . , n} and take f : Ri−1 → R a bounded measurable test function, then it holds

E
[
Xif (X1 + Y1, . . . ,Xi−1 + Yi−1)

] = EX

[
XiEY

[
f (X1 + Y1, . . . ,Xi−1 + Yi−1)

]] = 0.

Similarly, E[Yif (X1 +Y1, . . . ,Xi−1 +Yi−1)] = 0. Therefore, E[(Xi +Yi)f (X1 +Y1, . . . ,Xi−1 +
Yi−1)] = 0, and since this holds for all test function f , one concludes that Ei−1[(X + Y)i] = 0
for all i and so X + Y = X + Y . �

Remark 2.4. As we already mentioned, the class of log-concave random vectors such that X =
X already contains unconditional log-concave random vectors and log-concave random vectors
with centered independent components. Using the properties above, it is possible to give other
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examples of log-concave random vectors such that X = X in arbitrary large dimension. Namely,
observe that if X is a log-concave random vector taking values in R

k and such that X = X, then
it is easy to check that for all i ∈ {1, . . . , k + 1}, the random vector Xi defined by

Xi = (X1, . . . ,Xi−1,0,Xi, . . . ,Xk) ∈R
k+1

is still log-concave and verifies Xi = Xi . Thanks to point (4) of Proposition 2.3, one thus sees
that if X1, . . . ,Xk+1 are independent log-concave random vectors with values in R

k and such that
Xi = Xi , then the random vector Y = X1

1 + X2
2 + · · · + Xk+1

k+1 is still log-concave and satisfies
Y = Y . Initializing this construction with k = 2 with the help of point (3) of Proposition 2.3 and
iterating the process gives rise to a large class of nontrivial examples of log-concave random
vectors such that X = X. Similarly, starting with a two dimensional convex body as in point (3)
of Proposition 2.3 one can construct with the help of point (2) convex bodies of arbitrary large
dimensions such that a random vector uniformly distributed on them satisfies X = X. This class
of convex bodies contains in particular the regular simplex in appropriate coordinates; namely,
the regular simplex �n ⊂ R

n defined by the sequences of side-one simplexes as follows: �1 =
C1 = [− 1

2 , 1
2 ] ⊂R and

�n = Cn − Bar(Cn), Cn = convex − hull

(
0,

{√
n + 1

2n

}
× �n−1

)
⊂R

n.

3. Some background on mass transport

The key lemma used in [13] is the so called above tangent lemma recalled below. In what follows,
the relative entropy (also called the Kullback–Leibler distance) of ν with respect to μ is defined
by

D(ν‖μ) =
∫

log
dν

dμ
dν, (3.1)

if ν is absolutely continuous with respect to μ (otherwise, we set D(ν‖μ) = ∞).

Lemma 3.1 ([13]). If μ is a probability measure on R
n absolutely continuous with respect to the

Lebesgue measure with a density of the form μ(dx) = e−V (x) dx where V : Rn →R is a function
of class C2 such that HessV ≥ ρ, ρ ∈ R, then for all compactly supported probability measures
ν0, ν1 absolutely continuous with respect to μ, it holds

D(ν1‖μ) ≥ D(ν0‖μ) +
∫ 〈

∇ dν0

dμ
(x), T x − x

〉
μ(dx) + ρ

2

∫
|T x − x|2ν0(dx)

(3.2)

+
∫ (

Tr(DTx − In) − log |DTx |
)
ν0(dx),

where T : Rn → R
n pushes forward ν0 onto ν1 and defines a “suitable” change of variables,

and where |DTx | ≥ 0 denotes the determinant of the Jacobian matrix DTx .
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By “suitable” we mean, for instance, a C1-diffeomorphism, but actually the inequality (3.2)
remains true for less regular transport maps (in particular for Brenier’s map which is only almost
surely differentiable). We refer to [13] for a precise statement.

First, let us recall the classical applications of (3.2). In [13], the inequality (3.2) was applied
with the Brenier map T (see [33]), that is to say the ν0 almost surely unique map T achieving
the infimum in the definition of the square Kantorovich distance W2:∫

|T x − x|2ν0(dx) = inf
π∈C(ν0,ν1)

∫ ∫
|y − x|2π(dx dy) := W 2

2 (ν0, ν1),

where C(ν0, ν1) denotes the set of all couplings of ν0, ν1 (i.e., probability measures π on R
n×R

n

having ν0 and ν1 as marginals). A fundamental property of the Brenier map T is that it is the
gradient of a convex function: there exists φ : Rn → R convex such that T (x) = ∇φ(x) for ν0
almost every x ∈ R

n. As a consequence of the inequality log(λ) ≤ λ − 1, λ > 0 and of the fact
that DTx = Hessx φ has a nonnegative spectrum, the last term in (3.2) is always nonnegative
(assuming for simplicity that T is smooth). So (3.2) becomes

D(ν1‖μ) ≥ D(ν0‖μ) +
∫ 〈

∇ dν0

dμ
(x), T x − x

〉
μ(dx) + ρ

2
W 2

2 (ν0, ν1). (3.3)

Inequality (3.3), which expresses in some sense that the graph of the map D(·‖μ) lies above its
tangent, is also related to the notion of displacement-convexity of the relative entropy along W2
geodesics (see [29,33]). When ρ > 0, interesting consequences can be drawn from the inequality
above. For instance, choosing ν0 = μ yields to the following transport-entropy inequality

W 2
2 (ν1,μ) ≤ 2

ρ
D(ν1‖μ) ∀ν1.

This type of inequalities goes back to the works by Marton [28] and Talagrand [32] (see [16,27,
33] for an introduction to the subject). On the other hand, choosing ν1 = μ it is not difficult to
derive from (3.3) the logarithmic-Sobolev inequality (see [3,13,16] for details)

D(ν0‖μ) ≤ 2

ρ

∫ |∇h0|2
h0

dμ ∀ν0 = h0μ.

We refer to [5,9] for other applications and variants of (3.2) and (3.3).
In this paper, we will use (3.2) with ρ = 0 and ν0 = μ:

D(ν1‖μ) ≥
∫ (

Tr(DTx − In) − log |DTx |
)
μ(dx).

But as a main difference, we will rather use as T the Knothe map [26] between μ and ν1.
Let us recall the definition of the Knothe transport between two probability measures. If μ,ν

are two Borel probability on R and μ has no atom, then there exists a unique nondecreasing
and left continuous map T : R → [−∞,∞] transporting μ on ν in the sense that

∫
f (T )dμ =∫

f dν for all say bounded continuous function f . This map T is given by

T (x) = F−1
ν ◦ Fμ(x) ∀x ∈R,
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where, for x ∈ R and t ∈ [0,1],
Fμ(x) = μ(−∞, x] and F−1

μ (t) = inf
{
x ∈ R;Fμ(x) ≥ t

} ∈ [−∞,∞].
The map T takes finite values μ almost surely. Let us mention that the map T achieves the
minimum value in a large class of optimal transportation problems (see, e.g., [31]). This fact will
not be explicitly used in the sequel.

The Knothe transport map is a multidimensional extension of this one dimensional transport.
To define it properly, we need to introduce the following notation. If μ is a probability measure
on R

n and X = (X1, . . . ,Xn) is a random vector of law μ, we will denote by μi the law of
(X1, . . . ,Xi). For i ≥ 2 and x1, . . . , xi−1 ∈ R, we denote by μi(·|x1, . . . , xi−1) the conditional
law of Xi knowing X1 = x1,X2 = x2, . . . ,Xi−1 = xi−1. The conditional probability measure
μi(·|x1, . . . , xi−1) is well defined for μi−1 almost all (x1, . . . , xi−1) ∈ R

i−1. When μ has a posi-
tive density h with respect to the Lebesgue measure on R

n, the conditional probability measures
μi(·|x1, . . . , xi−1) have an explicit density with respect to Lebesgue measure on R it holds∫

f (ui)μi(dui |x1, . . . , xi−1) =
∫

f (ui)h(x1, . . . , xi−1, ui, ui+1, . . . , un) dui · · ·dun∫
h(x1, . . . , xi−1, ui, ui+1, . . . , un) dui · · ·dun

,

for all bounded continuous f : R→R.
The Knothe map T = (T1, . . . , Tn) transporting a probability measure μ on R

n with a positive
density on another probability ν, is defined recursively as follows:

– T1 is the optimal transport map sending μ1 on ν1;
– for a given x ∈ R

n, Ti(x1, x2, . . . , xi−1, ·) is the one dimensional monotone map sending
μi(·|x1, . . . , xi−1) on νi(·|T1(x), . . . , Ti−1(x)).

Note that in particular, T is triangular in the sense that Ti(x) depends only on x1, . . . , xi .
The following lemma is a formally contained in Lemma 3.1; for completeness, we recall its

short proof below.

Lemma 3.2. Let μ be probability measure on R
n with μ(dx) = e−V (x) dx with V : Rn → R

a convex function of class C1; for all probability measure ν on R
n compactly supported with a

smooth density, it holds

D(ν‖μ) ≥
∫ [

Tr
(
DT (x) − I

) − log
(∣∣DT (x)

∣∣)]μ(dx)

=
∫ n∑

i=1

[
∂iTi(x) − 1 − log ∂iTi(x)

]
μ(dx),

where T is the Knothe map transporting μ on ν and |DTx | ≥ 0 is the determinant of the Jacobian
matrix DTx .

Proof. Write g = dν
dx

and h = dν
dμ

. First, assume that T is C1; according to the change of variable
formula, it holds

e−V (x) = h(T x)e−V (T x)
∣∣DT (x)

∣∣,



144 D. Cordero-Erausquin and N. Gozlan

so taking the log and integrating with respect to μ, we obtain

−
∫

V (x)μ(dx) =
∫

log
(
h(T x)

)
μ(dx) −

∫
V (T x)μ(dx) +

∫
log

(∣∣DT (x)
∣∣)μ(dx).

So

D(ν‖μ) =
∫

V (T x) − V (x)μ(dx) −
∫

log
∣∣DT (x)

∣∣μ(dx).

By assumption,

V (y) ≥ V (x) + ∇V (x) · (y − x) ∀x, y ∈ R
n.

So,

D(ν‖μ) ≥
∫

∇V (x) · (T x − x)μ(dx) −
∫

log
∣∣DT (x)

∣∣μ(dx).

Note that, integrating by parts (and using that ν is compactly supported),

∫
∇V (x) · (T x − x)μ(dx) =

∫ n∑
i=1

(
∂iTi(x) − 1

)
e−V (x) dx =

∫
Tr

(
DT (x) − I

)
μ(dx).

Thus,

D(ν‖μ) ≥
∫ [

Tr
(
DT (x) − I

) − log
∣∣DT (x)

∣∣]μ(dx). (3.4)

Actually the map T is not necessarily of class C1 so the change of variable formula above needs
to be justified. One can consult Section 3 of [8] and invoke, for instance, [8], Lemma 3.1. �

4. A general transport inequality for log-concave probability
measures

Before introducing our transport cost, we need to briefly discuss on the Cheeger constant (or
equivalently, the Poincaré constant) of one-dimensional log-concave densities, a case where
optimal bounds are known. If γ is a log-concave probability measure on R, denote by λγ its
Cheeger’s constant, namely the largest constant for which

λγ

∫ ∣∣f − m(f )
∣∣dγ ≤

∫ ∣∣f ′∣∣dγ (4.1)

holds for all f : R → R locally-Lipschitz, where m(f ) denotes a median of f . It was proven by
Bobkov [6] that when γ is log-concave probability measure on R, one has

1

3 Var(X)
≤ λ2

γ ≤ 2

Var(X)
, (4.2)
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with X ∼ γ . Note that if X is a constant random variable, Var(X) = 0 and λ = ∞.
In what follows, μ is a log-concave probability measure on R

n with full support and X =
(X1, . . . ,Xn) a random vector distributed according to μ.

According to Bobkov’s estimate (4.2), for all x ∈ R
n, the one dimensional (log-concave) prob-

ability μi(·|x1, . . . , xi−1) verifies Cheeger’s inequality (4.1) with a constant (optimal up to uni-
versal factor)

λ2
i (x) = λ2

i (x1, . . . , xi−1) := 1

3 Var(Xi |X1 = x1, . . . ,Xi−1 = xi−1)
∈ (0,+∞], (4.3)

where

Var(Xi |X1 = x1, . . . ,Xi−1 = xi−1)

=
∫

u2μi(du|x1, . . . , xi−1) −
(∫

uμi(du|x1, . . . , xi−1)

)2

∈ [0,+∞).

In Theorem 4.1 below, we prove that any log-concave probability measure on R
n verifies some

transport-entropy inequality with a cost function cμ determined by the functions λi introduced
above. In order to state the result, we need to introduce some additional notation. Recall that if
Z is a random vector, we denote by Z the random vector defined by

Zi = Zi −E[Zi |Z1, . . . ,Zi−1].

Note in particular that X = R(X), where the recentering map R : Rn → R
n is defined by R(x) =

(R1(x), . . . ,Rn(x)), where

Ri(x) = xi − mi(x) with mi(x) = mi(x1, x2, . . . , xi−1) =
∫

uμi(du|x1, . . . , xi−1). (4.4)

It is not difficult to check that the map R is invertible. We will denote by S = R−1 its inverse.
The cost function cμ :Rn ×R

n → [0,∞] is defined as follows,

cμ(x, y) = 1

16

n∑
i=1

N
(
λi

(
S(x)

)
(xi − yi)

) ∀x, y ∈R
n,

where N(t) = |t | − log(1 + |t |) (with the conventions 0 × ∞ = 0 and a × ∞ = sign of a × ∞
for a �= 0). The associated optimal transport cost denoted by Tμ is defined by

Tμ(ν1, ν2) = inf
π∈C(ν1,ν2)

∫ ∫
cμ(x1, x2)π(dx1 dx2),

where C(ν1, ν2) is the set of all probability measures π on R
n ×R

n such that

π
(
dx1 ×R

n
) = ν1(dx1) and π

(
R

n × dx2
) = ν2(dx2).
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Let us mention that the transport inequality below also holds with the cost function c̃μ : Rn ×
R

n → [0,∞] defined as follows

c̃μ(x, y) = 1

16
N

(√√√√ n∑
i=1

λi

(
S(x)

)2
(xi − yi)2

)
∀x, y ∈ R

n. (4.5)

Indeed the function x 
→ N(
√

x) is subadditive, since it is concave on R
+ and vanishes at 0, so

we have for all x, y ∈ R
n, cμ(x, y) ≥ c̃μ(x, y).

Theorem 4.1. Let X be an n-dimensional log-concave random vector and let μ be its law; for
all probability measure ν on R

n with finite first moment, it holds

Tμ(μ, ν) ≤ D(ν‖μ), (4.6)

where μ is the law of X and ν is the law of Y with Y distributed according to ν.

Note that the transport cost depends on μ, and not μ. Indeed, it is given by the values of λi ,
which depend on X ∼ μ through formula (4.3).

Proof of Theorem 4.1. According to a result by Bobkov and Houdré [10], if γ is probability
measure on R verifying Cheeger’s inequality (4.1) with constant λ, then for all convex even
function L : R → R

+ such that L(0) = 0, L(x) > 0 for all x > 0 and pL := sup xL′(x)
L(x)

< +∞, it
holds ∫

L
(
f − m(f )

)
dγ ≤

∫
L

(
pLf ′/λ

)
dγ,

where m(f ) denotes the median of f . It will be convenient to replace the median of f by
its mean denoted by γ (f ). First, observe that Jensen inequality yields L(γ (f ) − m(f )) ≤∫

L(pLf ′/λ)dγ . On the other hand, the convexity of L implies that∫
L

(
f − γ (f )

)
dγ ≤ 1

2

∫
L

(
2
(
f − m(f )

))
dγ + 1

2
L

(
2
(
m(f ) − γ (f )

))
.

Finally, it is not difficult to check that the function L1/pL is subbadditive (see, e.g., [17],
Lemma 4.7). It follows that L(2a) ≤ 2pLL(a), a ≥ 0. Therefore,∫

L
(
f − γ (f )

)
dγ ≤ 2pL

∫
L

(
pLf ′/λ

)
dγ.

As it is easy to see, for the function N , it holds pN ≤ 2. So we have the inequality

1

16

∫
N

(
λ
(
f − γ (f )

))
dγ ≤

∫
N

(
f ′)dγ. (4.7)

First, let us assume that μ(dx) = e−V (x) dx where V : Rn → R is a convex function of class C1

and ν is compactly supported with a smooth density. If X is a random vector of law μ, then using
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Lemma 3.2, the inequality t − log(1 + t) ≥ N(t), t > −1 and the inequality (4.7), it holds

D(ν‖μ) ≥
n∑

i=1

E
[
N

(
∂iTi(X) − 1

)]

=
n∑

i=1

E
[
E

[
N

(
∂iTi(X) − 1

)|X1, . . . ,Xi−1
]]

=
n∑

i=1

E
[
E

[
N

(
∂i(Ti − xi)(X)

)|X1, . . . ,Xi−1
]]

≥ 1

16

n∑
i=1

E
{
E

[
N

(
λi(X)

(
Ti(X) −E

[
Ti(X)|X1, . . . ,Xi−1

] − Xi

+E[Xi |X1, . . . ,Xi−1]
))

|X1, . . . ,Xi−1
]}

= 1

16

n∑
i=1

E
[
N

(
λi(X)

(
Ti(X) −E

[
Ti(X)|X1, . . . ,Xi−1

] − Xi

+E[Xi |X1, . . . ,Xi−1]
))]

.

Note that, since T1(X), . . . , Ti−1(X) are functions of X1, . . . ,Xi−1, it holds

E
[
Ti(X)|X1, . . . ,Xi−1

] = E
[
Ti(X)|T1(X), . . . , Ti−1(X)

]
almost surely. It follows, that the vector Y defined by Y i = Ti(X) −E[Ti(X)|X1, . . . ,Xi−1] has
law ν. Using the definition of our cost, we see that

D(ν‖μ) ≥ 1

16
E

[
n∑

i=1

N
(
λi

(
S(X)

)
(Y i − Xi)

)] = E
[
cμ(X,Y )

]
.

Therefore, by definition of Tμ, we have

D(ν‖μ) ≥ Tμ(μ, ν).

Using classical approximation arguments, one extends the inequality above to all probability
measures ν with finite first moment.

This completes the proof of Theorem 4.1 in the case where μ(dx) = e−V (x) dx with a convex
function V of class C1 on R

n. The conclusion is then extended, using classical approximation
arguments, to any μ(dx) = e−V (x) dx where V : Rn → R ∪ {+∞} is a lower semi-continuous
convex function whose domain has a nonempty interior. A way to do it is to consider the family
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of convex functions Vs , s > 0 defined by

Vs(x) = inf
y∈Rn

{
V (y) + 1

s
|x − y|2

}
, x ∈R

n, s > 0.

It is well known that for all s > 0, Vs : Rn → R is a C1 smooth convex function on R
n converging

monotonically to V as s → 0 (see, e.g., [19], Theorem 4.1.4). Details are left to the reader. �

Proof of Theorem 1.5. Assume that μ is the law of an n-dimensional log-concave random
vector X taking values in the hypercube Q = [−R,R]n. This assumption on the support of μ has
for consequence that for all x ∈ Q,

Var(Xi |X1 = x1, . . . ,Xi−1 = xi) ≤ 2R2.

Therefore, λi(x) ≥ 1/(
√

6R) for all i ∈ {1, . . . , n} and x ∈ Q. It is not difficult to check that
there is an absolute constant c > 0 such that N(u) ≥ cu2 for all |u| ≤ 2/

√
6. So, if ν is a given

probability measure on Q, then by Theorem 4.1 it holds

D(ν‖μ) ≥ c

R2
E

[|X − Y |2],
which completes the proof. �

5. Weighted Poincaré inequalities for log-concave probability
measures

In this last section, we use a classical linearization technique to prove that the transport cost in-
equality obtained in Theorem 4.1 implies the weighted Poincaré inequality of Theorem 1.1. Such
linearization depends only on the behavior of the cost for small distances. It will be more conve-
nient, notationaly speaking, but equivalent, to use the cost c̃μ defined by (4.5) in the definition of
Tμ and in Theorem 4.1, rather than cμ.

Let us introduce the following supremum convolution operator

Ptf (x) = sup
y∈Rn

{
f (y) − 1

t
c̃μ(x, y)

}
∀x ∈R

n,∀t > 0,

which is well defined, for instance, for bounded continuous function f on R
n. It can be shown

that the function u(t, x) = Ptf (x) satisfies in some weak sense the following Hamilton–Jacobi
equation

∂tu(t, x) = 8
n∑

i=1

1

λ2
i (S(x))

(∂xi
u)2(t, x).

Actually, in what follows, we will only need the following elementary inequality.
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Lemma 5.1. For all differentiable bounded Lipschitz function f :Rn → R,

lim sup
t→0

1

t

∫
Ptf − f dν ≤ 8

∫ n∑
i=1

1

λ2
i (S(x))

(∂xi
f )2(x)ν(dx),

for all probability measure ν on R
n such that

∫
λ−2

i (S) dν is finite for every i ∈ {1, . . . , n}.

Let us admit the lemma for a moment and prove Theorem 1.1.

Proof of Theorem 1.1. Let X be an n-dimensional log-concave random vector whose law is
denoted by μ in the sequel and let g : Rn → R be a bounded function such that

∫
g dμ = 0

and define for all t ≥ 0 the measure νt (dx) = (1 + tg)μ(dx). If t is small enough, then νt is a
probability measure. Let π be a coupling of μ and νt , and a > 0 be a parameter whose value will
be fixed later on; for all bounded differentiable Lipschitz function f : Rn → R, it holds

1

t

(∫
f dνt −

∫
f dμ

)
= 1

t

∫
f (y) − f (x)π(dx dy)

= 1

t

∫
f (y) − Patf (x)π(dx dy) + 1

t

∫
Patf (x) − f (x)μ(dx)

≤ 1

at2

∫
c̃μ(x, y)π(dx dy) + 1

t

∫
Patf (x) − f (x)μ(dx),

where the last line comes from the inequality f (y) − Psf (x) ≤ 1
s
c̃μ(x, y) for all s > 0. So

optimizing over π ∈ C(μ,νt ), we get, for all t small enough,

1

t

(∫
f dνt −

∫
f dμ

)
≤ 1

at2
Tμ

(
μ,νt

) + 1

t

∫
Patf (x) − f (x)μ(dx)

≤ 1

at2
D

(
νt‖μ) + 1

t

∫
Patf (x) − f (x)μ(dx),

where the last inequality comes from Theorem 4.1. A straightforward calculation shows that
t−2D(νt‖μ) → 1

2

∫
g2 dμ when t goes to 0. Therefore, using Lemma 5.1, we get

lim sup
t→0

1

t

(∫
f dνt −

∫
f dμ

)
≤ 1

2a

∫
g2 dμ + 8a

∫ n∑
i=1

1

λ2
i (S(x))

(∂xi
f )2(x)μ(dx)

and optimizing over a > 0

lim sup
t→0

1

t

(∫
f dνt −

∫
f dμ

)
≤ 4

(∫
g2 dμ

)1/2
(∫ n∑

i=1

1

λ2
i (S(x))

(∂xi
f )2(x)μ(dx)

)1/2

.
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Now let us evaluate the left-hand side. Consider the map Rt defined by

Rt(x) =
[
x1 −

∫
u1ν

t
1(du), x2 −

∫
u2ν

t
2(du2|x1), . . . , xn −

∫
unν

t
n(dun|x1, . . . , xn−1)

]
.

For t = 0, R0 = R is the map introduced in (4.4). Then νt is the image of νt by the map Rt and
μ the image of μ by the map R. Therefore,

1

t

(∫
f dνt −

∫
f dμ

)
= 1

t

(∫
f

(
Rt

)
(1 + tg) dμ −

∫
f (R)dμ

)
(5.1)

→ −
∫

∇f (R) · U dμ +
∫

f (R)g dμ,

when t goes to 0, where U := limt→0
1
t
(Rt − R). Let us calculate U . Writing the definition, it is

not difficult to see that, ∫
uiν

t
i (dui |x1, . . . , xi−1) = ai + tbi

ci + tdi

,

with

ai =
∫

uie
−V (x1,...,xi−1,ui ,...,un) dui · · · dun,

bi =
∫

uig(x1, . . . , xi−1, ui, . . . , un)e
−V (x1,...,xi−1,ui ,...,un) dui · · ·dun,

ci =
∫

e−V (x1,...,xi−1,ui ,...,un) dui · · ·dun,

di =
∫

g(x1, . . . , xi−1, ui, . . . , un)e
−V (x1,...,xi−1,ui ,...,un) dui · · ·dun.

Therefore,

Ui(x) = lim
t→0

1

t

(∫
ui dνt

i (dui |x1, . . . , xi−1) −
∫

ui dμi(dui |x1, . . . , xi−1)

)

= lim
t→0

1

t

(
ai + tbi

ci + tdi

− ai

ci

)
= bi

ci

− ai

ci

di

ci

= E
[
Xig(X)|X1 = x1, . . . ,Xi−1 = xi−1

]
−E[Xi |X1 = x1, . . . ,Xi−1 = xi−1] ·E[

g(X)|X1 = x1, . . . ,Xi−1 = xi−1
]
.

It is easy to check that 1
t
| ai+tbi

ci+tdi
− ai

ci
| ≤ 2M

1−tM
|ai |
ci

for t sufficiently small, where M = sup |g|.
This can be used to justify the limit in (5.1). Details are left to the reader.

According to what precedes,

U(X) = Ei−1
[
Xig(X)

] −Ei−1[Xi]Ei−1
[
g(X)

] = Ei−1
[
Xig(X)

]
.
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So putting everything together, we get

E
[
f (X)g(X)

] ≤ 4E
[
g2(X)

]1/2
E

[
n∑

i=1

1

λ2
i (S(X))

(
∂if (X)

)2

]1/2

+
n∑

i=1

E
[
Ei−1

[
Xig(X)

]
∂if (X)

]

= 4
√

3E
[
g2(X)

]1/2
E

[
n∑

i=1

E
[
X

2
i |X1, . . . ,Xi−1

](
∂if (X)

)2

]1/2

+
n∑

i=1

E
[
Ei−1

[
Xig(X)

]
∂if (X)

]
,

where the second line comes from the definition of the λi ’s and the identity

Var
(
Xi |X1 = S1(x), . . . ,Xi−1 = Si−1(x)

) = E
[
X

2
i |X1 = S1(x), . . . ,Xi−1 = Si−1(x)

]
= E

[
X

2
i |X1 = x1, . . . ,Xi−1 = xi−1

]
,

for all x = (x1, . . . , xn) ∈ R
n. Finally, let us bound the last term. Using Cauchy–Schwarz, it

holds
n∑

i=1

E
[
Ei−1

[
Xig(X)

]
∂if (X)

] =
n∑

i=1

E
[
Xig(X)Ei−1

[
∂if (X)

]]

≤ E
[
g2(X)

]1/2
E

[(
n∑

i=1

XiEi−1
[
∂if (X)

])2]1/2

.

Now observe that if i ≤ j − 1, then, since XiEi−1[∂if (X)]Ej−1[∂if (X)] is a function of
X1, . . . ,Xj−1, it holds

E[XiEi−1
[
∂if (X)

] · XjEj−1
[
∂if (X)

] = E
[
XiEi−1

[
∂if (X)

]
Ej−1

[
∂if (X)

] ·Ej−1[Xj ]
] = 0,

since Ej−1[Xj ] = 0. Therefore,

n∑
i=1

E
[
Ei−1

[
Xig(X)

]
∂if (X)

] ≤ E
[
g2(X)

]1/2
E

[
n∑

i=1

X
2
i Ei−1

[
∂if (X)

]2

]1/2

≤ E
[
g2(X)

]1/2
E

[
n∑

i=1

X
2
i Ei−1

[
∂if (X)2]]1/2

= E
[
g2(X)

]1/2
E

[
n∑

i=1

Ei−1
[
X

2
i

]
∂if (X)2

]1/2

.
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Using again that Ei−1[X2
i ] = E[X2

i |X1, . . . ,Xi−1], we get

E
[
f (X)g(X)

] ≤ (4
√

3 + 1)E
[
g2(X)

]1/2
E

[
n∑

i=1

E
[
X

2
i |X1, . . . ,Xi−1

](
∂if (X)

)2

]1/2

.

Taking g = f ◦ R with f such that
∫

f dμ = 0, we obtain

E
[
f (X)2] ≤ (4

√
3 + 1)2

E

[
n∑

i=1

E
[
X

2
i |X1, . . . ,Xi−1

](
∂if (X)

)2

]
.

The inequality is then extended by density to all locally Lipschitz functions f : Rn → R such
that

∫
f 2 dμ < ∞. �

It remains to prove Lemma 5.1.

Proof of Lemma 5.1. Let f : Rn →R be a differentiable bounded Lipschitz function and denote
by M = 1 + sup |f |. For all x ∈R

n, we denote by ‖ · ‖x the quantity defined by

‖u‖x =
√√√√ n∑

i=1

λ2
i

(
S(x)

)
u2

i ∀u ∈R
n.

When x is such that λi(S(x)) < ∞ for all i, then ‖ · ‖x is a norm on R
n. With this notation

c̃μ(x, y) = 1
16N(‖x − y‖x). and

Ptf (x) = sup
y∈Rn

{
f (y) − 1

16t
N

(‖y − x‖x

)}
.

First, note that, for all x ∈ R
n, the supremum in the definition of Ptf (x) is attained on the ball

{y ∈ R
n; ‖y − x‖x ≤ N−1(48Mt)}. Namely, if y is outside the ball, it holds

f (y) − f (x) − 1

16t
N

(‖y − x‖x

) ≤ −M < 0.

Since Ptf (x) ≥ f (x), we conclude that the supremum is reached inside the ball.
Now let us bound from above the derivative of Ptf with respect to the t variable. Let x ∈ R

n

be such that λi(x) < ∞ for all i. Using the preceding remark and the inequality uv ≤ u2

2 + v2

2 ,
we see that

1

t

(
Ptf (x) − f (x)

) = sup
‖y−x‖x≤N−1(48Mt)

{
f (y) − f (x)

t
− 1

16t2
N

(‖y − x‖x

)}

≤ 4 sup
‖y−x‖x≤N−1(48Mt)

{
(f (y) − f (x))2

N(‖y − x‖x)

}
(5.2)
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= 4 sup
‖u‖x≤N−1(48Mt)

{
(∇f (x) · u)2 + o(‖u‖2

x)

‖u‖2
x/2 + o(‖u‖2

x)

}

≤ 8 sup
‖u‖x≤N−1(48Mt)

{∑n
i=1(1/λ2

i (S(x)))(∂if )(x)2 + o(1)

1 + o(1)

}

→ 8
n∑

i=1

1

λ2
i (S(x))

(∂if )(x)2,

when t goes to 0, where the last inequality follows from Cauchy–Schwarz. So we conclude that
if x is such that λi(S(x)) < ∞ for all i, then

lim sup
t→0

1

t

(
Ptf (x) − f (x)

) ≤ 8
n∑

i=1

1

λ2
i (S(x))

(∂if )(x)2.

If x is such that λi(x) = ∞ for some i, then Ptf (x) = f (x) and so the inequality above is still
true.

Moreover, denoting by λ∗(x) = min{λi(S(x))} > 0 a.s. (as regards the positivity, we recall that
1/λi(y) = Var(Xi |X1 = y1, . . . ,Xi−1 = yi−1) and is therefore finite for almost every y ∈ R

n), it
follows from (5.2) and from the inequality ‖u‖x ≥ λ∗(x)|u|, u ∈R

n, that for all t ≤ 1/(48M)

1

t

(
Ptf (x) − f (x)

) ≤ 4 sup
λ∗(x)|y−x|≤N−1(1)

{
(f (y) − f (x))2

N(λ∗(x)|y − x|)
}

(5.3)

≤ a
L2

λ∗(x)2
,

where L the Lipschitz constant of f and a = 4 sup0<v≤N−1(1)
v2

N(v)
is some universal constant.

Now, let ν be a probability measure on R
n such that

∫ 1
λ2

i (S(x))
ν(dx) < +∞ for all i. Then

1/λ∗ is also square integrable with respect to ν. Therefore, thanks to (5.3), one can apply Fatou’s
lemma in its lim sup form:

lim sup
t→0

∫
1

t
(Ptf − f )dν ≤

∫
lim sup

t→0

1

t
(Ptf − f )dν

≤ 8
∫ n∑

i=1

1

λ2
i (S(x))

(∂if )(x)2 dν.
�

6. Variance estimates

Here we prove Corollary 1.3, identity (1.7) and Corollary 1.4.
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Proof of Corollary 1.3. According to Theorem 1.1 and standard properties of conditional ex-
pectations, it holds

Var
(|X|2) ≤ 4a

n∑
i=1

E
[
E

[
X

2
i |X1, . . . ,Xi−1

]
X

2
i

] = 4a

n∑
i=1

E
[
E

[
X

2
i |X1, . . . ,Xi−1

]2]

≤ 4a

n∑
i=1

E
[
E

[
X

4
i |X1, . . . ,Xi−1

]] = 4a

n∑
i=1

E
[
Xi

4]
.

Observe that E[X4
i ] ≤ 8E[X4

i ]+ 8E[Ei−1[Xi]4] ≤ 16E[X4
i ]. We conclude using Borell’s reverse

Hölder inequality [11]: there exists some universal constant a′ such that for any log-concave
random variable Y , it holds E[Y 4] ≤ a′

E[Y 2]2. So,

Var
(|X|2) ≤ 64aa′n. �

Remark 6.1. Our main result Theorem 1.1 is closely related to a result by Barthe and Cordero-
Erausquin [4]. Namely, it follows from [4], Theorem 4, that if X is a random vector following a
law μ(dx) = e−V (x) dx on R

n with HessV ≥ ρ Id for some ρ ≥ 0, then for all smooth function
f : Rn →R such that

E
[
∂if (X)|X1, . . . ,Xi−1,Xi+1, . . . ,Xn

] = 0 ∀i ∈ {1, . . . , n} (6.1)

it holds

Varμ
(
f (X)

) ≤
n∑

i=1

E

[
1

ρ + 1/Ci(X)
∂if

2(X)

]
,

where, for all x = (x1, . . . , xn) ∈ R
n, Ci(x) denotes the Poincaré constant of the conditional

distribution of Xi knowing X1 = x1, . . . ,Xi−1 = xi−1,Xi+1 = xi+1, . . . ,Xn = xn. Note that
the conclusion of [4], Theorem 4, is more general than what we state above. In the general
formulation, to any decomposition of the identity Id = ∑m

i=1 ciPEi
where ci > 0 and PEi

is the
orthogonal projection on a subspace Ei corresponds a weighted Poincaré inequality involving
the Poincaré constants of the conditional distributions of X knowing PFi

(X), with Fi = E⊥
i .

It is well known (see, e.g., Theorem 4.2 below) that Poincaré constants of one dimensional
log-concave probability measures can be estimated by the variance. In particular, it holds

Ci(x) ≤ 3 Var(Xi |X1 = x1, . . . ,Xi−1 = xi−1,Xi+1 = xi+1, . . . ,Xn = xn) ∀i ∈ {1, . . . , n}.
Therefore, taking ρ = 0, it holds

Varμ
(
f (X)

) ≤ 3
n∑

i=1

E
[
Var(Xi |X1, . . . ,Xi−1,Xi+1, . . . ,Xn)∂if

2(X)
]
, (6.2)

for all smooth f enjoying (6.1). The difference between this result and Theorem 1.1 (besides the
fact that we condition only with respect to the first variables) is that our result is true for all f

but for X instead of X.
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Let us see how to recover the conclusion of Corollary 1.3 from (6.2). Let us assume that X is
such that

E[Xi |X1, . . . ,Xi−1,Xi+1, . . . ,Xn] = 0 ∀i ∈ {1, . . . , n}.
This condition (which is actually a bit stronger than the condition X = X) exactly amounts
to require that the function f (x) = |x|2 satisfies (6.1). So applying (6.2) to this function and
reasoning as in the proof of Corollary 1.3 we thus get from (6.2) that Var(|X|2) ≤ an for some
universal constant a.

Proof of Corollary 1.4. Let us start with identity (1.7). For all i ∈ {1, . . . , n}, it holds

E
[
XiEi−1[Xi]

] = E
[(

Xi −Ei−1[Xi]
)
Ei−1[Xi]

] = E
[
Ei−1

[
Xi −Ei−1[Xi]

]
Ei−1[Xi]

] = 0.

As a result X and X′ are orthogonal in L2(�,A,P;Rn). Therefore, it holds

E
[|X|2] = E

[|X|2] +E
[∣∣X′∣∣2] and

E
[|X|2]2 = E

[|X|2]2 + 2E
[|X|2]E[∣∣X′∣∣2] +E

[∣∣X′∣∣2]2
.

Since

E
[|X|4] = E

[|X|4] + 2E
[|X|2]E[∣∣X′∣∣2] +E

[∣∣X′∣∣4] + 4E
[(

X · X′)2] + 4E
[|X|2X · X′]

+ 4E
[∣∣X′∣∣2

X · X′],
we get that

Var
(|X|2) = Var

(|X|2) + Var
(∣∣X′∣∣2) + 2 Cov

(|X|2, ∣∣X′∣∣2) + 4E
[(

X · X′)2]
+ 4E

[|X|2X · X′] + 4E
[∣∣X′∣∣2

X · X′].
Using Cauchy–Schwarz, and the orthogonality of X and X′ we get

∣∣Cov
(|X|2, ∣∣X′∣∣2)∣∣ ≤

√
Var

(|X|2)√Var
(∣∣X′∣∣2)

,

∣∣E[|X|2X · X′]∣∣ = ∣∣E[(|X|2 −E
[|X|2)X · X′]∣∣ ≤

√
Var

(|X|2)√E
[(

X · X′)2]
,

∣∣E[∣∣X′∣∣2
X · X′]∣∣ = ∣∣E[(∣∣X′∣∣2 −E

[∣∣X′∣∣2)
X · X′]∣∣ ≤

√
Var

(∣∣X′∣∣2)√
E

[(
X · X′)2]

.

Moreover, note that if i < j the random variable XiEi−1[Xi]Ej−1[Xj ] is measurable with re-
spect to the σ field generated by X1, . . . ,Xj−1. Therefore,

E
[
XiEi−1[Xi]XjEj−1[Xj ]

] = E
[
XiEi−1[Xi]Ej−1[Xj ]Ej−1[Xj ]

] = 0.



156 D. Cordero-Erausquin and N. Gozlan

So, it holds

E
[(

X · X′)2] =
n∑

i=1

E
[
X

2
i Ei−1[Xi]2] + 2

∑
i<j

E
[
XiEi−1[Xi]XjEj−1[Xj ]

]

=
n∑

i=1

E
[
X

2
i Ei−1[Xi]2] =

n∑
i=1

E
[
Ei−1

[
X2

i

]
Ei−1[Xi]2 −Ei−1[Xi]4]

≤
n∑

i=1

E
[
X4

i

] ≤ a′n,

where a′ is some universal constant such that E[Y 4] ≤ a′
E[Y 2]2 for all log-concave random

variable Y . We conclude from the inequalities above that

Var
(|X|2) ≤ (√

Var
(|X|2) +

√
Var

(∣∣X′∣∣2))2 + 4a′n + 4
√

a′n
(√

Var
(|X|2) +

√
Var

(∣∣X′∣∣2))
= (√

Var
(|X|2) +

√
Var

(∣∣X′∣∣2) + 2
√

a′n
)2 ≤ (√

Var
(∣∣X′∣∣2) + (

2
√

a′ + b
)√

n
)2

≤ 2 Var
(∣∣X′∣∣2) + 2

(
2
√

a′ + b
)2

n,

where in the last inequalities b is the universal constant given by Corollary 1.3.
Similarly,

Var
(|X|2) ≥ (√

Var
(∣∣X′∣∣2) −

√
Var

(|X|2))2 − 4
√

a′n
(√

Var
(∣∣X′∣∣2) +

√
Var

(|X|2)).
Therefore, expanding the square, we see that the number

√
V ′ := √

Var(|X′|2) is less than or
equal the positive root of the equation

x2 − 2x
(√

V + 2
√

a′n
) + V − 4

√
a′n

√
V − V = 0,

with V = Var(|X|2) and V = Var(|X|2). An easy calculation thus gives

√
V ′ ≤

√
V + 2

√
a′n + √

4a′n + V ,

which together with Corollary 1.3 easily gives the desired inequality. �
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