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The aim of this paper is to study the asymptotic expansion in total variation in the central limit theorem when
the law of the basic random variable is locally lower-bounded by the Lebesgue measure (or equivalently,
has an absolutely continuous component): we develop the error in powers of n−1/2 and give an explicit
formula for the approximating measure.
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1. Introduction

The aim of this paper is to study the convergence in total variation in the Central Limit Theorem
(CLT) under a certain regularity condition for the random variable at hand. Given two measures
μ,ν in R

N , we recall that the distance in total variation is defined as

dTV(μ, ν) = sup

{∣∣∣∣∫ f dμ −
∫

f dν

∣∣∣∣ : ‖f ‖∞ ≤ 1

}
.

Let F be a centred r.v. in R
N with identity covariance matrix and let Fk , k ∈ N, denote indepen-

dent copies of F . We set

Sn = 1√
n

n∑
k=1

Fk.

We also define μn the law of Sn and � the standard Gaussian law in R
N .

The problem of the convergence in total variation for the CLT, that is, dTV(μn,�) → 0 as
n → ∞, is very old. Prohorov [14] in 1952 proved that, in dimension 1, a necessary and sufficient
condition in order to get the result is that there exists n0 such that the law of

∑n0
k=1 Fk has an

absolutely continuous component (see next Definition 2.1). Then many related problems have
been considered in the literature, such as the generalization to the multidimensional case, the
study of the speed of convergence, the convergence and the development of the density of Sn, if it
exists, or the case of a r.v. F whose law has not necessarily an absolutely continuous component,
the latter implying the use of a different distance, which is similar to the total variation one but
defined on a special class of test functions, typically indicator functions of special sets.
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A first class of results has been obtained by Rao [15] and then improved by Battacharaya [6]:
in [15], one proves that the convergence in the CLT holds when the test function is the indicator
function of a convex set D. This result is improved in [6] where D is no more a convex set
but a set with a boundary which is small in some sense. An overview on this topic is given
in [5]. But it turns out that one is not generally able to extend the above mentioned results to a
general set D (and so to general measurable and bounded test functions), because thanks to the
Prohorov’s result, one needs to assume a little bit of regularity on the law of the basic random
variable F which comes on in the CLT. In such a case, Sirazhdinov and Mamatov [16] prove that
if F ∈ L3(�) then the density of the absolutely continuous component of the law μn converges
in L1(RN) to the standard Gaussian density and, therefore, the convergence of the CLT holding
in total variation distance, at speed 1/

√
n. This is done in the one-dimensional case, but it works

as well in the multidimensional case. The second part of the book [5] gives a complete view
on the recent research on this topic, mainly on the development of the density of Sn around the
standard Gaussian density. Results concerning the convergence in the entropy distance (under
the same type of hypothesis) has been recently obtained in [7].

This paper contributes in this direction by giving the precise expansion of the CLT in total
variation distance. More precisely, we assume that the law of F is locally lower bounded by the
Lebesgue measure LebN on R

N in the following sense: there exists an open set D0 and ε0 > 0
such that for every Borel set A one has

P(F ∈ A) ≥ ε0 × LebN(A ∩ D0). (1.1)

We will show that this is equivalent to the request that the law of F has an absolutely continuous
component (and moreover, we can construct such absolutely continuous measure in order that
the associated density is a non-negative lower semicontinuous function, see Appendix A). So
it is clear that our hypotheses overlaps the assumption of the existence of the density but one
cannot reduce one to another (if the law of F gives positive probability to the rational points then
it is not absolutely continuous; and doing convolutions does not help). Let us give a non-trivial
example. Consider a functional F on the Wiener space and assume that F is twice differentiable
in Malliavin sense: F ∈D

2,p with p > N where N is the dimension of F . Let σF be the Malliavin
covariance matrix of F . If P(detσF > 0) = 1 then the celebrated criterion of Bouleau and Hirsh
ensures that the law of F is absolutely continuous, so we are in the classical case (in fact it
suffices that F ∈ D

1,2). But if P(detσF > 0) < 1 this criterion does no more work (and one may
easily produce examples when the law of F is not absolutely continuous). In [3], we proved
that if P(detσF > 0) > 0 then the law of F has the property (1.1). Notice also that in the one-
dimensional case (N = 1) the fact that F is not constant immediately implies that P(σF > 0) > 0.
Indeed, in this case σF = |DF |2 and if this is almost surely null, then F is constant.

Let us introduce our results. We consider a random variable F ∈ L2(RN) which satisfies (1.1),
such that E(F ) = 0 and the covariance matrix of F is the identity matrix. We take a sequence
Fk, k ∈ N of independent copies of F and we denote by μn the law of Sn = 1

n1/2

∑n
k=1 Fk

and by � the standard Gaussian law on R
N . Under these hypotheses, we first prove that

limn→∞ dTV(μn,�) = 0 where dTV is the total variation distance. Then we give the asymp-
totic development, which we are able to find according to additional requests on the existence of
the moments of F . More precisely, we get that, for r ≥ 2, if F ∈ Lr+1(�) and if the moments of
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F up to order r agree with the moments of the standard Gaussian law then under (1.1) one has

dTV(μn,�) ≤ C
(
1 +E

(|F |r+1))[r/3]∨1 × 1

n(r−1)/2
.

In the general case, we obtain the following asymptotic expansion. For r ≥ 2 and n ≥ 1, we
define a measure on R

N through

�n,r (dx) = γ (x)

(
1 +

[r/3]∑
m=1

1

nm/2
Km(x)

)
dx, (1.2)

where γ denotes the probability density function of a standard normal random variable in R
N

and Km(x) is a polynomial of order m ([·] standing for the integer part). Note that for r = 2 one
gets �n,r (dx) = γ (x)dx = �(dx). So, we prove that if F ∈ Lr+1(�) with r ≥ 2 then there exist
polynomials Km(x), m = 1, . . . , [r/3] (no polynomials are needed for r = 2), such that, setting
�n,r the measure in (1.2) and μn the law of Sn, under (1.1) one has

dTV(μn,�n,r ) ≤ C
(
1 +E

(|F |r+1))[r/3]∨1+1 × 1

n([r/3]+1)/2
, (1.3)

where C > 0 depends on r and N . So, in order to improve the development (and the rate of
convergence) one needs to pass from the request F ∈ L3k to F ∈ L3k+3, k ≥ 1.

The development given in (1.3) is analogous to the one obtained in Theorem 19.5, page 199 in
[5]. But our development is explicit: in [5], the result is obtained using the Fourier transform and
consequently the coefficients in the development involve the inverse of the Fourier transform,
whereas here we give an explicit expression for the polynomials Km(x), as a linear combination
of the Hermite polynomials (see next formula (4.38)).

The main instrument used in this paper is the Malliavin-type finite dimensional calculus de-
fined in [4] and [3]. It turns out that for a random variable which satisfies (1.1) a very pleasant
calculus may be settled. The idea is that (1.1) guarantees that the law of F contains some smooth
noise. Then, using a splitting procedure (see Proposition 3.1 for details), we may isolate this
noise and achieve integration by parts formulae based on it.

In the last years, a number of results concerning the weak convergence of functionals on the
Wiener space using Malliavin calculus and Stein’s method have been obtained by Nurdin, Pec-
cati, Nualart and Poly; see, for example, [9–12]. In particular, in [10] and [9] the authors con-
sider functionals living in a finite direct sum of chaoses and prove that under a very weak non-
degeneracy condition (analogous to the one we consider here) the convergence in distribution of
a sequence of such functionals imply the convergence in total variation. The results proved in
these papers may be seen as variants of the CLT but for dependent random variables – so the
framework and the arguments are rather different from the one considered here.

2. Main results

Let X be a random variable in R
N and let μX denote its law. The Lebesgue decomposition of

μX says that there exist a measure μ(dx) = μ(x)dx, that is, μ is absolutely continuous w.r.t. the
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Lebesgue measure, and a further measure ν which is singular, that is, concentrated on a set of
null Lebesgue measure, such that

μX(dx) = μ(x)dx + ν(dx). (2.1)

Definition 2.1. X is said to have an absolutely continuous component if the absolutely continu-
ous measure μ in the decomposition (2.1) is not null, that is, ν(RN) < 1.

Definition 2.1 plays a crucial role when dealing with the convergence of the Central Limit
Theorem (CLT) in the total variation distance dTV. We recall the definition of dTV: for any two
measures μ and ν in R

N then

dTV(μ, ν) = sup

{∣∣∣∣∫ f dμ −
∫

f dν

∣∣∣∣ : ‖f ‖∞ ≤ 1

}
.

We discuss here the CLT in total variation distance, so we consider a sequence {Fk}k of i.i.d.
square integrable random variables, with null mean and covariance matrix C(F). We set A(F)

the inverse of C(F)1/2 and

Sn = 1√
n

n∑
k=1

A(F)Fk.

We recall the following classical result, due to Prohorov [14].

Theorem 2.2 (Prohorov). Let μn denote the law of Sn and � denote the standard Gaussian
law in R

N . The convergence in the CLT takes place w.r.t. the total variation distance, that is
dTV(μn,�) → 0 as n → ∞, if and only if there exists n0 ≥ 1 such that the random variable Sn0

has an absolutely continuous component.

Hereafter, we assume that the common law of the Fk’s has an absolutely continuous compo-
nent, and this is not a big loss in generality. In fact, due to the Prohorov’s theorem, otherwise we
can packet the sequence {Fk}k in groups of n0 r.v.’s, so we can deal with

S̄n = 1√
n

n∑
k=1

F̄k where F̄k = 1√
n0

(k+1)n0∑
i=kn0

Fi.

Let us introduce an equivalent way to see probability laws having an absolutely continuous com-
ponent. From now on, LebN denotes the lebesgue measure in R

N .

Definition 2.3. A probability law μ in R
N is said to be locally lower bounded by the Lebesgue

measure, in symbols μ � LebN , if there exist ε0 > 0 and an open set D0 ⊂R
N such that

μ(A) ≥ ε0 LebN(A ∩ D0) ∀A ∈ B
(
R

N
)
. (2.2)

We have the following.
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Proposition 2.4. Let F be a r.v. in R
N and let μF denote its law. Then the following statements

are equivalent:

(i) μF � LebN ;
(ii) F has an absolutely continuous component;

(iii) there exist three independent r.v.’s χ taking values in {0,1}, with P(χ = 1) > 0, and V,W

in R
N , with V absolutely continuous, such that

P
(
χV + (1 − χ)W ∈ dv

)= μF (dv). (2.3)

Moreover, if one of the above conditions holds then the covariance matrix C(F) of F is invert-
ible.

The proof of Proposition 2.4 is postponed to Appendix A. As an immediate consequence
of Proposition 2.4, if μF � LebN then λ(F ) > 0, λ(F ) denoting the smallest eigenvalue of
Ĉ(F ) = C(F)−1. We denote through λ(F ) the associated largest eigenvalue.

We are now ready to introduce the main contributions of this paper. We first give a new proof
of the convergence in total variation in the CLT.

Theorem 2.5. Suppose that μF � LebN , E(F ) = 0 and E(|F |2) < ∞. Then

lim
n→∞dTV(μn,�) = 0, (2.4)

where μn denotes the law of Sn and � is the standard Gaussian law in R
N .

This is done especially in order to set up the main arguments and results from abstract Malli-
avin calculus coming from representation (2.3) that are used throughout this paper. Let us stress
that Nourdin and Poly in [12] have dealt with r.v.’s fulfilling properties that imply (2.3), to which
they apply results from [2] about a finite dimensional Malliavin-type calculus.

Afterward, we deal with the estimate of the error. In fact, by means of additional requests of
the existence of the moments of F up to order ≥3, we get the asymptotic expansion in powers of
n−1/2 of the law of Sn in total variation distance. We first obtain the following.

Theorem 2.6. Suppose that μF � LebN and E(F ) = 0. Let μn denote the law of Sn and �

denote the standard Gaussian law in R
N . Let r ≥ 2. If E(|F |r+1) < ∞ and all moments up to

order r of A(F)F agree with the moments of a standard Gaussian r.v. in R
N then

dTV(μn,�) ≤ C
(
1 +E

(|F |r+1))[r/3]∨1 × 1

n(r−1)/2
, (2.5)

where C > 0 depends on r , N , λ(F ) and λ(F ).

In the general case, that is the moments do not generally coincide, we get the following ex-
pansion. For r ≥ 2 and n ≥ 1, we define a measure on R

N through

�n,r (dx) = γ (x)

(
1 +

[r/3]∑
m=1

1

nm/2
Km(x)

)
dx, (2.6)
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where γ denotes the probability density function of a standard normal random variable in R
N

and Km(x) is a polynomial of order m – the symbol [·] stands for the integer part and for r = 2
the sums in (2.6) nullify, so that �n,2(dx) = γ (x)dx = �(dx). Then we get the following.

Theorem 2.7. Let r ≥ 2 and E(|F |r+1) < ∞. Then there exist polynomials Km(x), m =
1, . . . , [r/3] (no polynomials are needed for r = 2), such that, setting �n,r the measure in (2.6)
and μn the law of Sn, one has

dTV(μn,�n,r ) ≤ C
(
1 +E

(|F |r+1))[r/3]∨1 × 1

n([r/3]+1)/2
,

where C > 0 depends on r , N , λ(F ) and λ(F ).

The statement of Theorem 2.7 is not properly written, because no information is given about
the polynomials Km’s. We observe that in next formula (4.38) we give a closed-form expression
for the Km’s in terms of a linear combination of Hermite polynomials, whose coefficients can be
explicitly written (so not involving inverse Fourier transforms).

Remark 2.8. Let F ∈ D
2,p with p > N , Dk,p denoting the set of the random variables which

are derivable in Malliavin sense up to order k in Lp (see Nualart [13]). If P(σF > 0) > 0, σF

standing for the Malliavin covariance matrix of F (and note that this request is much weaker than
the non-degeneracy of σF ) then Theorem 2.16 in [3] gives that μF � LebN (and this property
may be strict, that is F may not be absolutely continuous). So both Theorems 2.6 and 2.7 can be
applied.

The rest of this paper is devoted to the proofs of the above results: Section 3 allows us to prove
Theorem 2.5 and the remaining Theorems 2.6 and 2.7 are discussed in Section 4.

3. Convergence in the total variation distance

The aim of this section is to prove Theorem 2.5, whose proof requires some preparatives which
will be useful also in the sequel.

3.1. Abstract Malliavin calculus based on a splitting method

We consider a random variable F ∈ R
N whose law μF is such that μF � LebN . As proved in

Proposition 2.4, the covariance matrix C(F) of F is invertible. So, without loss of generality we
can assume from now on that C(F) is the identity matrix, otherwise we work with A(F)F , A(F)

being the inverse of C(F)1/2.
We consider the following special splitting for the law of μF , giving, as a consequence, rep-

resentation (2.3). We start from the class of localization functions ψa : R → R, a > 0, defined
as

ψa(x) = 1|x|≤a + exp

(
1 − a2

a2 − (|x| − a)2

)
1a<|x|<2a. (3.1)
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Then ψa ∈ C∞
c (R) (the subscript “c” standing for compact support), 0 ≤ ψa ≤ 1 and we have the

following property: for every k,p ∈ N there exists a universal constant Ck,p such that for every
x ∈R+

ψa(x)
∣∣(lnψa)

(k)(x)
∣∣p ≤ Ck,p

apk
. (3.2)

By the very definition, if μF � LebN then we may find v0 ∈ R
N, r0 > 0 and ε0 > 0 such that

P(F ∈ A) ≥ ε0 LebN(A∩Br0(v0)). Then for every non-negative function f : RN →R+ we have

E
(
f (F )

)≥ ε0

∫
RN

ψr0/2
(|v − v0|

)
f (v) dv. (3.3)

We denote

m0 = ε0

∫
RN

ψr0/2
(|v − v0|

)
dv. (3.4)

Of course, m0 > 0. But, up to choose ε0 smaller, we also have m0 < 1. So, we consider three
independent random variables χ ∈ {0,1} and V,W ∈R

N with laws

P(χ = 1) = m0, P(χ = 0) = 1 − m0,

P(V ∈ dv) = ε0

m0
ψr0/2

(|v − v0|
)
dv, (3.5)

P(W ∈ dv) = 1

1 − m0

(
μF (dv) − ε0ψr0/2

(|v − v0|
)
dv
)
.

Then

P
(
χV + (1 − χ)W ∈ dv

)= μF (dv). (3.6)

So, we have just proved the following.

Proposition 3.1. If μF � LebN then representation (2.3) holds.

From now on, we will work with the representation of μF in (3.6) so we always take

F = χV + (1 − χ)W,

χ , V and W being independent and whose laws are given in (3.5).
We come now to the central limit theorem. We consider a sequence χk,Vk,Wk ∈ R

N, k ∈ N

of independent copies of χ,V,W ∈R
N and we take Fk = χkVk + (1 − χk)Wk . Then we look to

Sn = 1

n1/2

n∑
k=1

Fk = 1

n1/2

n∑
k=1

(
χkVk + (1 − χk)Wk

)
.

In order to prove the CLT in the total variation distance, we will use the abstract Malliavin
calculus settled in [4] and [3] associated to the basic noise

V = (V1, . . . , Vn) = ((V 1
1 , . . . , V N

1

)
, . . . ,

(
V 1

n , . . . , V N
n

)) ∈ R
N×n (3.7)



CLT development in total variation distance 2449

(this will be done for each fixed n). To begin, we recall the notation and some results from [3].
We work with functionals X = f (V ) with f ∈ C∞

b (RN×n;R), the subscript “b” standing for
bounded derivatives of any order. Then we set

S = {f (V ) : f ∈ C∞
b

(
R

N×n;R)}
and for a functional X ∈ S we define the Malliavin derivatives

D(k,i)X = ∂X

∂V i
k

= ∂f

∂vi
k

(V ), k = 1, . . . , n, i = 1, . . . ,N. (3.8)

The Malliavin covariance matrix for a multidimensional functional X = (X1, . . . ,Xd) ∈ Sd is
defined as

σ
i,j
X = 〈DXi,DXj

〉= n∑
k=1

N∑
r=1

D(k,r)X
i × D(k,r)X

j , i, j = 1, . . . , d. (3.9)

We will denote by λX the lower eigenvalue of σX, that is,

λX = inf|ξ |=1
〈σXξ, ξ 〉 = inf|ξ |=1

n∑
k=1

N∑
i=1

〈D(k,i)X, ξ 〉2. (3.10)

Moreover, we define the higher order derivatives just by iterating D. We consider a multiindex
α = (α1, . . . , αm) with αj = (kj , ij ), kj ∈ {1, . . . , n}, ij ∈ {1, . . . ,N} and we set |α| = m. Then
we define

DαX = ∂mX

∂V
im
km

· · ·∂V
i1
k1

= ∂αf (V ) (3.11)

with

∂αf (v) = ∂mf

∂v
im
km

· · ·∂v
i1
k1

(v).

We will work with the norms

|X|21,m =
∑

1≤|α|≤m

|DαX|2, |X|2m = |X|2 + |X|21,m, (3.12)

‖X‖1,m,p = ∥∥|X|1,m

∥∥
p

= (E(|X|p1,m

))1/p
, ‖X‖m,p = ‖X‖p + ‖X‖1,m,p. (3.13)

We define now the Ornstein–Uhlenbeck operator by

−LX =
n∑

k=1

N∑
i=1

D(k,i)D(k,i)X +
n∑

k=1

N∑
i=1

D(k,i)X∂i lnψr0/2
(|Vk − v0|

)
. (3.14)
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These are the operators introduced in [4] and [3] in connection to the random variable V in (3.7)
and taking the weights πk = 1. We will use the results from [3] in this framework. In particular,
as a straightforward consequence of Theorem 3.1 in [3] (take � = 1 therein) and Theorem 3.4 in
[3] (see (3.28) therein), we can state integration by parts formulas and estimates for the weights.
For later use, we resume in the following statement such facts.

Proposition 3.2. X ∈ Sd be such that∥∥(detσX)−1
∥∥

p
< ∞ for every p ≥ 1.

Set γX the inverse of σX . Then the following integration by parts formula holds: for every φ ∈
C∞

b (Rd;R), Y ∈ S , q ∈ N and for every β ∈ {1, . . . , d}q one has

E
(
∂βφ(X)Y

)= E
(
φ(X)H

q
β (X,Y )

)
,

where ∂βφ(x) = ∂xβq · · ·∂xβ1 φ(x) and the weights H
q
β (X,Y ) are recursively given by:

• if q = 1, then

H 1
β (X,Y ) ≡ Hβ(X,Y ) =

d∑
r=1

(
Yγ

r,β
X LXr −

n∑
k=1

N∑
i=1

D(k,i)

(
Yγ

r,β
X

)
D(k,i)X

r

)
,

β = 1, . . . , d;
• if q > 1, then

H
q
β (X,Y ) = Hβq

(
X,H

q−1
(β1,...,βq−1)

(X,Y )
)
, β ∈ {1, . . . , d}q .

Moreover, the following estimate holds: for every β ∈ {1, . . . , d}q and m ∈N then∣∣Hq
β (X,Y )

∣∣
m

≤ CAm+q(X)q |Y |m+q,
(3.15)

where Al(X) = (1 ∨ (detσX)−1)l+1(1 + |X|2d(l+2)
1,l+1 + |LX|2l−1

)
,

| · |m being defined in (3.12).

We come now back to Sn, which we write as

Sn = 1√
n

n∑
k=1

(
χkVk + (1 − χk)Wk

)
.

For every k = 1, . . . , n and l, i = 1, . . . ,N , we have

D(k,i)S
l
n = 1√

n
χk1l=i .
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As a consequence, we obtain

σSn = 1

n

n∑
k=1

χkI, (3.16)

where I denotes the identity matrix, and

λSn = 1

n

n∑
k=1

χk. (3.17)

The derivatives of order higher than two of Sn are null, so we obtain for every q ∈ N

|Sn|21,q ≤ 1

n

n∑
k=1

χk ≤ 1, |Sn|2q ≤ |Sn|2 + 1

n

n∑
k=1

χk ≤ |Sn|2 + 1, (3.18)

and consequently

‖Sn‖1,q,p ≤ 1, ‖Sn‖q,p ≤ ‖Sn‖p + 1. (3.19)

In particular, ‖Sn‖1,q,p is finite for every q,p whereas ‖Sn‖q,p is finite according to F ∈ Lp(�).
Let us now compute LSn. We have

−LSl
n =

n∑
k=1

N∑
i=1

D(k,i)D(k,i)S
l
n +

n∑
k=1

N∑
i=1

D(k,i)S
l
n∂i lnψr0/2

(|Vk − v0|
)

= 1√
n

n∑
k=1

χk∂l lnψr0/2
(|Vk − v0|

)
.

We now estimate ‖LSn‖q,p .

Lemma 3.3. For every q ∈N, there exists a universal constant Cq such that

‖LSn‖q,p ≤ Cq

r
q+1
0

. (3.20)

Proof. The basic fact in our calculus is that

E
(
∂i lnψr0/2(Vk − v0)

) = ε0

m0

∫
RN

∂i lnψr0/2
(|v − v0|

)× ψr0/2
(|v − v0|

)
dv

= ε0

m0

∫
RN

∂iψr0/2
(|v − v0|

)
dv = 0.

We denote

Qk = ∇ lnψr0/2(Vk − v0)
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and we have

E
(
Ql

k

)= E
(
∂l lnψr0/2

(|Vk − v0|
))= 0.

So
∑n

k=1 χkQ
l
k , n ∈N, is a martingale and the Burkholder’s inequality gives

E
(∣∣LSl

n

∣∣p)= E

(∣∣∣∣∣ 1√
n

n∑
k=1

χkQ
l
k

∣∣∣∣∣
p)

≤ CE

((
1

n

n∑
k=1

χk

∣∣Ql
k

∣∣2)p/2)
≤ C

n

n∑
k=1

E
(∣∣Ql

k

∣∣p).
By (3.2),

E
(∣∣Ql

k

∣∣p)≤ C
1

r
p

0

so that

‖LSn‖p ≤ C

r0
.

We go further and we compute D(k,i)LSn. We have

−D(k,i)LSl
n = 1√

n

n∑
k′=1

χk′D(k,i)∂l lnψr0/2
(|Vk′ − v0|

)= 1√
n
χkD(k,i)∂l lnψr0/2

(|Vk − v0|
)

so that

|DLSn|21 ≤ |LSn|2 + 1

n

n∑
k=1

N∑
i=1

∣∣D(k,i)∇ lnψr0/2
(|Vk − v0|

)∣∣2
≤ |LSn|2 + C

n

n∑
k=1

N∑
i,j=1

∣∣∂i∂j lnψr0/2
(|Vk − v0|

)∣∣2.
Once again using (3.2), we obtain

∥∥∂i∂j lnψr0/2
(|Vk − v0|

)∥∥
p

≤ C

r2
0

and consequently

‖LSn‖1,p ≤ C

r2
0

.

For higher order norms, the estimates are similar. �

We add a final property on the behavior of the Malliavin covariance matrix that will be used
in next Section 4.2.
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Lemma 3.4. Suppose that μF � LebN . There exists a universal constant C such that for every
n ∈N and every

ε ≤ ε∗ = 2−NmN
0 (3.21)

then

P(detσSn ≤ ε) ≤ C exp

(
− n

4(1/m0 − 1)

)
, (3.22)

m0 being defined in (3.4).

Proof. Using (3.17),

P(detσSn ≤ ε) ≤ P
(
λSn ≤ ε1/N

)= P

(
1

n

n∑
k=1

χk ≤ ε1/N

)
= P

(
1

n

n∑
k=1

(χk − m0) ≤ ε1/N − m0

)
.

Since ε1/N ≤ 1
2m0, the above term is upper bounded by

P

(
1

n

n∑
k=1

(χk − m0) ≤ −1

2
m0

)
= P

(
1

n1/2

n∑
k=1

χk − m0

vm0

≤ −n1/2 m

2vm0

)

with vm0 = (m0(1 − m0))
1/2 = Var(χk). We denote by a = n1/2 m0

2vm0
and we use the Berry–

Esseen theorem in order to upper bound this quantity by

C

∫ a

−∞
exp
(−x2/2

)
dx ≤ C′ exp

(
−a2

4

)
= C′ exp

(
− n

4(1/m0 − 1)

)
. �

3.2. Proof of Theorem 2.5

We need now a localized variant of Lemma 2.5 and Theorem 2.7 in [3]. So, we start with the
basic definitions.

We consider a localizing r.v. � taking values in [0,1] of the form

� = ψa(Z), a > 0,Z ∈ S, (3.23)

ψa being defined in (3.1). We set P� and E� through

dP� = �dP and E� = expectation w.r.t. P�.

For X ∈ Sd , we define the localized Sobolev norms

‖X‖p,� = E�

(|X|p)1/p
, ‖X‖1,m,p,� = E�

(|X|p1,m

)1/p and ‖X‖m,p,� = E�

(|X|pm
)1/p

,

|X|1,m and |X|m being given in (3.12), and we set

Ap,�(X) = ‖X‖3,p,� + ‖LX‖1,p,�. (3.24)
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We also consider the law of a d-dimensional r.v. X under P�: it is the measure in R
d defined as

μX,�(dx) = P�(X ∈ dx).

We allow the case a = +∞ in (3.23): this gives � ≡ 1, so P� ≡ P and no localization is taken
into account.

Finally, for k ∈N, we define the distance dk between two measures μ,ν in R
d as

dk(μ, ν) = sup

{∣∣∣∣∫ f dμ −
∫

f dν

∣∣∣∣ : ‖f ‖k,∞ ≤ 1

}
, (3.25)

where ‖f ‖k,∞ =∑0≤|α|≤k ‖∂αf ‖∞. Then we have d0 = dTV and d1 = dFM (Fortet–Mourier
distance).

The following result is a localized version of Lemma 2.5 in [3]. Here, γδ denotes the density
of the centred normal law of covariance δ × I on R

d , δ > 0 (I denoting the identity matrix) and
f ∗ γδ denotes the convolution between f and γδ .

Lemma 3.5. Let � be a localizing r.v. as in (3.23). Then, for every ε > 0, δ > 0, X ∈ Sd and for
every bounded and measurable function f : Rd → R one has

∣∣E�

(
f (X)

)−E�

(
f ∗ γδ(X)

)∣∣≤ C‖f ‖∞
(
P�(σX < ε) +

√
δ

εp

(
1 + Ap,�(X)

)a)
, (3.26)

where Ap,�(X) is defined in (3.24) and C,p,a > 0 are suitable universal constants depending
on the dimension d only.

Proof. The proof is identical to the one of Lemma 2.5 in [3] (the case � ≡ 1 being the same
result): just consider the localized measure P� instead of P in the proof of Lemma 2.5 in [3]
(namely, replace the localizing variable �ε therein with �ε�). �

We state now a variant of Theorem 2.7 in [3] that takes into account localizations.

Theorem 3.6. Let �,U be localizing r.v.’s as in (3.23) and let X,Y ∈ Sd be such that Al,�(X),
Al,U (Y ) < ∞, such quantities being defined in (3.24). Let μX,� denote the law of X under P�

and let μY,U denote the law of Y under PU . Let k ∈N. Then there exist some universal constants
C,p,a, b > 0 (independent of �, U , X, Y , k) such that

d0(μX,�,μY,U ) ≤ C

εb

(
1 + Al,�(X) + Al,U (Y )

)a(
dk(μX,�,μY,U )

)1/(k+1)

(3.27)
+ CP�(detσX < ε) + CPU(detσY < ε).

Proof. We take a bounded and measurable function f and we write∣∣E�

(
f (X)

)−EU

(
f (Y )

)∣∣ ≤ ∣∣E�

(
f (X)

)−E�

(
f ∗ γδ(X)

)∣∣+ ∣∣EU

(
f (X)

)−EU

(
f ∗ γδ(Y )

)∣∣
+ ∣∣E�

(
f ∗ γδ(X)

)−EU

(
f ∗ γδ(Y )

)∣∣
=: I�(X) + IU (Y ) + I�,U (X,Y ).
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By using (3.26), we get

I�(X) + IU (Y ) ≤ C‖f ‖∞
(
P�(σX < ε) + PU(σY < ε) +

√
δ

εp

(
1 + Ap,�(X) + Ap,U (Y )

)a)
.

Moreover, by recalling that ‖f ∗ γδ‖k,∞ ≤ Cδ−k/2‖f ‖∞, we have

I�,U (X,Y ) ≤ Cδ−k/2‖f ‖∞dk(μX,�,μY,U ).

Following the proof of Theorem 2.7 in [3], we now insert everything, optimize w.r.t. δ and we
get the result. �

Remark 3.7. Lemma 3.5 and Theorem 3.6 are valid not only with the basic noise V1, . . . , Vn

introduced in Section 3.1. Actually, both results remains true whenever the basic noise fulfils the
abstract integration by parts framework developed in Section 2.1 of [3], the one considered in
this paper being a particular case.

We are finally ready for the following.

Proof of Theorem 2.5. Let G denote a standard normal r.v. in R
N . For each K ≥ 1 set

�n,K = ψK(Sn), dP�n,K
= �n,K dP and �K = ψK(G), dP�K

= �K dP,

ψK being defined in (3.1). Let μn,K be the law of Sn under P�n,K
and μK be the law of G under

P�K
, that is,

μn,K(dx) = P�n,K
(Sn ∈ dx) and μK(dx) = P�K

(G ∈ dx).

Consider a measurable function f : RN →R such that ‖f ‖∞ ≤ 1. We write∣∣E(f (Sn)
)−E

(
f (G)

)∣∣ ≤ ∣∣E(f (Sn)(1 − �n,K)
)∣∣+ ∣∣E(f (G)(1 − �K)

)∣∣
+ ∣∣E(f (Sn)�n,K

)−E
(
f (G)�K

)∣∣.
Using the Chebyshev’s inequality,∣∣E(f (Sn)(1 − �n,K)

)∣∣≤ ‖f ‖∞P
(|Sn| ≥ 2K

)≤ C

K2
‖f ‖∞

and a similar estimates holds for |E(f (G)(1 − �K))|. We conclude that

sup
‖f ‖∞≤1

∣∣E(f (Sn)
)−E

(
f (G)

)∣∣≤ C

K2
+ sup

‖f ‖∞≤1

∣∣E(f (Sn)�n,K

)−E
(
f (G)�K

)∣∣.
We obtain

lim sup
n→∞

sup
‖f ‖∞≤1

∣∣E(f (Sn)
)−E

(
f (G)

)∣∣≤ C

K2
+ lim sup

n→∞
dTV(μn,K,μK)
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for every K ≥ 1. If we show that, for each fixed K , dTV(μn,K,μK) → 0 as n → ∞, the statement
will follow by letting K go to +∞. So, we study dTV(μn,K,μK), for a fixed K > 1.

We use Theorem 3.6 with � = �n,K , X = Sn, U = �K and Y = G. Here, the noise includes
the Gaussian r.v. G, so we add it to the underlying noise (recall Remark 3.7) in a standard way –
we stress this trick because it will be used also in the sequel, for example, in Lemma 4.12.

Without loss of generality, we assume that G is defined on the same probability space and is
independent of V1, . . . , Vn. We consider as basic noise the one coming from (G,V1, . . . , Vn). For
X = φ(G,V1, . . . , Vn) with φ ∈ C∞

b (RN(1+n);R), we set

D(0,i)X = ∂

∂Gi
φ(G,V1, . . . , Vn)

and D(k,i) for k = 1, . . . , n as in (3.8). The Ornstein–Uhlenbeck generator takes into account the
contribution from the standard Gaussian G, so it becomes

−LX =
N∑

i=1

D(0,i)D(0,i)X −
N∑

i=1

D(0,i)XGi

+
n∑

k=1

N∑
i=1

D(k,i)D(k,i)X +
n∑

k=1

N∑
i=1

D(k,i)X∂i lnψr0/2
(|Vk − v0|

)
.

And if X is a random vector in R
d , the associated Malliavin covariance matrix is

σ
i,j
X =

n∑
k=0

N∑
r=1

D(k,r)X
i × D(k,r)X

j , i, j = 1, . . . , d.

It is standard to see that the above quantities bring to an abstract Malliavin calculus as devel-
oped in [3]. Of course, when the randomness does not depend on G then everything agrees with
what developed in Section 3.1 and when the randomness does not depend on V then we get the
standard Gaussian–Malliavin calculus. So, we use Remark 3.7 and we apply Theorem 3.6. In
order to use (3.27), we need to study A�n,K

(Sn) and A�K
(G). By (3.18) and by recalling that

1{�n,K �=0}|Sn| ≤ 2K , we obtain

‖Sn‖q,p,�n,K
+ ‖LSn‖q−2,p,�n,K

≤ CK.

Standard computations give ‖G‖q,p,�K
+ ‖LG‖q−2,p,�K

≤ ‖G‖q,p + ‖LG‖q−2,p ≤ C, so we
can write

A�n,K
(Sn) + A�K

(G) ≤ CK,

C > 0 being independent of K and n. Moreover, σG is the identity matrix. And since |�n,K | ≤ 1
and χk, k ∈N are i.i.d., the law of large numbers says that for ε1/N < E(χk) = m0 one has

lim sup
n→∞

P�n,K
(detσSn ≤ ε) ≤ lim sup

n→∞
P�n,K

(
λSn ≤ ε1/N

)≤ lim sup
n→∞

P

(
1

n

n∑
k=1

χk ≤ ε1/N

)
= 0
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in which we have used (3.17). We apply now Theorem 3.6 with k = 1 and ε < 1∧mN
0 : by passing

to the limit in (3.27) we obtain

lim sup
n→∞

d0(μn,K,μK) ≤ C

εa
(1 + CK)b lim sup

n→∞
dFM(μn,K,μK)1/2.

So, it remains to show that dFM(μn,K,μK) → 0 as n → ∞. Since ψK ∈ Cc(R
N), the CLT gives

lim
n

E�n,K

(
f (Sn)

)= lim
n

E
(
ψK(Sn)f (Sn)

)= E
(
ψK(G)f (G)

)= E�K

(
f (G)

)
for every f ∈ C(Rd). So, if we define the probability laws

μ̂n,K(dx) = 1

E(�n,K)
μn,K(dx) and μ̂K(dx) = 1

E(�K)
μK(dx),

we get μ̂n,K → μ̂K weakly as n → ∞. Since weak convergence of probability laws is equivalent
to convergence in dFM (see, e.g., Theorem 11.3.3 in [8]), we have dFM(μ̂n,K, μ̂K) → 0 as n →
∞. Finally, straightforward computations give

dFM(μn,K,μK) ≤ ∣∣E(�n,K) −E(�K)
∣∣+ dFM(μ̂n,K, μ̂K) → 0

as n → ∞, and the statement follows. �

Remark 3.8. We note that if C(F) was not the identity matrix then (3.16) and (3.17) would
become

σSn = 1

n

n∑
k=1

χkĈ(F ) and λSn = λ(F )
1

n

n∑
k=1

χk

respectively, where Ĉ(F ) = C(F)−1 and λ(F ) is the smallest eigenvalue of Ĉ(F ). This means
that the estimates in (3.19) and (3.20) continue to hold up to a multiplying constant that now
depends on λ(F ) and λ(F ) as well, the latter denoting the largest eigenvalue of Ĉ(F ).

4. Asymptotic expansion

The aim of this section is to prove Theorems 2.6 and 2.7. We first study the case of smooth
functions and then, using a regularizing argument, we will be able to deal with general functions.

4.1. The development for smooth test functions

We recall that we are assuming that the r.v. F has null mean and non-degenerate covariance
matrix, that we have set equal to the identity matrix. And we have set

Fi = χiVi + (1 − χi)Wi
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so that Sn = 1√
n

∑n
i=1 Fi = 1√

n

∑n
i=1(χiVi + (1 − χi)Wi). Moreover, we consider Gi =

(G1
i , . . . ,G

N
i ), i ∈ N, some independent standard normal random variables in R

N . For k ∈
{0,1, . . . , n}, we define

Sk
n = 1√

n

(
k∑

i=1

Fi +
n∑

i=k+1

Gi

)
, Ŝk

n = 1√
n

(
k−1∑
i=1

Fi +
n∑

i=k+1

Gi

)
(4.1)

in which we use the convention that the sums are null when done on the indexes i ∈ {i0, . . . , i1}
with i0 > i1. Therefore, one has

Sn
n = Sn and S0

n = 1√
n

n∑
i=1

Gi

and S0
n is a standard normal random variable in R

N . Moreover,

Sk
n = Ŝk

n + Fk√
n

and Sk−1
n = Ŝk

n + Gk√
n
. (4.2)

In the sequel, we will use the following notation. For a multiindex α = (α1, . . . , αr) ∈
{1, . . . ,N}r and x = (x1, . . . , xN) we denote xα = ∏r

i=1 xαi . We also denote by ∂α =
∂xα1 · · · ∂xαr the derivative corresponding to α and by |α| = r the length of α. We allow α to
be the null multiindex: in this case, we set |α| = 0, ∂αf = f and xα = 1.

Moreover, we will use the following form of the Taylor formula of order r ∈ N: for f ∈
Cr+1(RN),

f (x + y) = f (x) +
r∑

p=1

1

p!
∑

|α|=p

∂αf (x)yα + Urf (x, y) (4.3)

with

Urf (x, y) = 1

r!
∑

|α|=r+1

yα

∫ 1

0
(1 − λ)r∂αf (x + λy)dλ. (4.4)

We notice that for some cr > 0 it holds∣∣Urf (x, y)
∣∣≤ cr |y|r+1‖f ‖r+1,∞, (4.5)

where ‖ · ‖r+1,∞ is the usual norm on Cr+1
b (RN): ‖f ‖r+1,∞ =∑|α|≤r+1 ‖∂αf ‖∞.

For a multiindex α = (α1, . . . , αr) ∈ {1, . . . ,N}r , that is, |α| = r , we now set

�α = E
(
Fα
)−E

(
Gα
)= E

(
r∏

i=1

Fαi

)
−E

(
r∏

i=1

Gαi

)
(4.6)

and θα = 1 if r is even and α2j−1 = α2j for every j = 1, . . . , r/2, otherwise θα = 0. For r = 0,
we have α = ∅ and we set �∅ = 0 and θ∅ = 1. It is clear that �α = 0 for |α| ≤ 2 and, for r ≥ 3,
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the assumption sup|α|≤r |�α| = 0 means that all moments of F up to order r (and not only up to
order 2) agree with the moments of a standard Gaussian random variable.

We now introduce the basic differential operators which appear in the asymptotic expansion:
we set

�t =
t∑

p=0

(−1)(t−p)/2

2(t−p)/2p!((t − p)/2)!
∑

|α|=p

∑
|β|=t−p

�αθβ∂β∂α, t = 0,1,2, . . . . (4.7)

Recall that θβ is null when t − p is odd, so the sum actually runs on the indexes p such that
(t − p)/2 ∈ N. The property �α = 0 if |α| ≤ 2 gives that the above sum actually starts from
p = 3, so we have

�t = 0 if t = 0,1,2 and

�t =
t∑

p=3

(−1)(t−p)/2

2(t−p)/2p!((t − p)/2)!
∑

|α|=p

∑
|β|=t−p

�αθβ∂β∂α, t ≥ 3.

From now on, we use the convention
∑t

p=3(·) = 0 if t < 3. So, for example we can write

�t =
t∑

p=3

(−1)(t−p)/2

2(t−p)/2p!((t − p)/2)!
∑

|α|=p

∑
|β|=t−p

�αθβ∂β∂α, t = 0,1,2, . . . .

We note that �t = 0 for all t when �α = 0 for all α, that is when all the moments of F agree
with the moments of the standard Gaussian law. And moreover, for every t ≥ 3 and q ≥ 0 there
exists Ct,q > 0 such that if f ∈ C

t+q
b then

‖�tf ‖q,∞ ≤ Ct,q sup
|α|=t

|�α| × ‖f ‖t+q,∞. (4.8)

We also define the following objects (“remainders”): for r ∈ N,

Rk
r,nf =

r∑
p=3

n−([(r−p)/2]+1/2−(r−p)/2) (−1)[(r−p)/2]+1

2[(r−p)/2]+1p![(r − p)/2]!

×
∑

|α|=p

∑
|β|=2[(r−p)/2]+2

�αθβ

∫ 1

0
s[(r−p)/2]

E

(
∂β ∂αf

(
Ŝk

n + √
s

Gk√
n

))
ds (4.9)

+ n(r+1)/2
[
E

(
Urf

(
Ŝk

n,
Fk√

n

))
−E

(
Urf

(
Ŝk

n,
Gk√

n

))]
,

Urf being defined in (4.4). As usual, the first term of the above r.h.s. is set equal to zero if r < 3.
Moreover, [(r − p)/2] + 1/2 − (r − p)/2 ∈ {0,1/2}, hence n−([(r−p)2]+1/2−(r−p)/2) ≤ 1.
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Remark 4.1. We note here if F ∈ L2 then for every f ∈ C2
b one has

Rk
0,nf = 1√

n
Rk

1,nf.

And if F ∈ L3(�) then for every f ∈ C3
b one has

Rk
0,nf = 1√

n
Rk

1,nf = 1

n
Rk

2,nf. (4.10)

In fact, for every r ≥ 0, if f ∈ Cr+2
b then

Urf (x, y) = Ur+1f (x, y) − 1

(r + 1)!
∑

|α|=r+1

yα∂αf (x).

Therefore, for r = 0, F ∈ L2 and f ∈ C2
b we obtain

Rk
0,nf = √

n

[
E

(
U1f

(
Ŝk

n,
Fk√

n

))
−E

(
U1f

(
Ŝk

n,
Gk√

n

))]
− √

n
∑
|α|=1

E

([(
Fk√

n

)α

−
(

Gk√
n

)α]
f
(
Ŝk

n

))
.

Since Ŝk
n is independent of Fk and Gk and since �α = 0 for |α| = 1 we get E([(Fk)

α −
(Gk)

α]f (Ŝk
n)) = �αE(f (Ŝk

n)) = 0, so that

Rk
0,nf = 1√

n
Rk

1,nf.

As for (4.10), one uses �α = 0 for |α| = 2 and the statement is proved similarly.

Since E(f (Sn)) − E(f (G)) = E(f (Sn
n)) − E(f (S0

n)), we study E(f (Sk
n)) − E(f (Sk−1

n )) for
k = 1, . . . , n and then apply a recurrence argument.

Lemma 4.2. Let n ∈ N,1 ≤ k ≤ n and r ∈N. If F ∈ Lr+1(�) then for every f ∈ Cr+1
b (RN) one

has

E
(
f
(
Sk

n

))−E
(
f
(
Sk−1

n

))= r∑
p=3

1

p!np/2

∑
|α|=p

E
(
∂αf

(
Ŝk

n

))
�α + 1

n(r+1)/2
R̃k

r,nf, (4.11)

where

R̃k
r,nf = n(r+1)/2

[
E

(
Urf

(
Ŝk

n,
Fk√

n

))
−E

(
Urf

(
Ŝk

n,
Gk√

n

))]
.
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Proof. We will use the Taylor formula (4.3). Since Sk
n = Ŝk

n + Fk

n1/2 and Fk is independent of Ŝk
n ,

we obtain

E
(
f
(
Sk

n

))= E
(
f
(
Ŝk

n

))+ r∑
p=1

1

p!np/2

∑
|α|=p

E
(
∂αf

(
Ŝk

n

))
E
(
Fα

k

)+E

(
Urf

(
Ŝk

n,
Fk

n1/2

))
.

We now use that Sk−1
n = Ŝk

n + Gk

n1/2 : the same reasoning for Gk gives

E
(
f
(
Sk−1

n

))= E
(
f
(
Ŝk

n

))+ r∑
p=1

1

p!np/2

∑
|α|=p

E
(
∂αf

(
Ŝk

n

))
E
(
Gα

k

)+E

(
Urf

(
Ŝk

n,
Gk

n1/2

))
.

By recalling that �α = E(Fα) −E(Gα) = 0 for |α| ≤ 2, the statement holds. �

Our aim is now to replace Ŝk
n by Sk−1

n in the development (4.11). This opens the way to use a
recurrence procedure.

Lemma 4.3. Let n ∈N,1 ≤ k ≤ n and r ∈N. If F ∈ Lr+1(�) then for every f ∈ Cr+2
b (RN) one

has

E
(
f
(
Sk

n

))−E
(
f
(
Sk−1

n

))= r∑
t=3

1

nt/2
E
(
�tf

(
Sk−1

n

))+ 1

n(r+1)/2
Rk

r,nf,

where �t and Rk
r,n are defined in (4.7) and (4.9), respectively.

Proof. Consider the generical term E(∂αf (Ŝk
n)) of (4.11). We recall that Ŝk

n + Gk/
√

n = Sk−1
n

and that Ŝk
n and Gk are independent. So, we apply the backward Taylor’s formula in (C.1) to

g(x) = ∂αf (Ŝk
n + x/

√
n) with |α| = p ≤ r , and we expand up to order [(r − p)/2]. Hence we

can write

E
(
∂αf (Ŝk

n)
)

=
[(r−p)/2]∑

q=0

(−1)q

2qq!nq

∑
|β|=2q

θβE
(
∂β∂αf (Sk−1

n )
)+ 1

n[(r−p)/2]+1
Ũ[(r−p)/2]∂αf

(
Sk−1

n ,
Gk√

n

)
,

where

Ũqg

(
Ŝk

n,
Gk√

n

)
= (−1)q+1

2q+1q!
∑

|β|=2q+2

θβ

∫ 1

0
sq
E

(
∂βg

(
Ŝk

n + √
s

Gk√
n

))
ds.

By inserting in (4.11), we get

E
(
f
(
Sk

n

))−E
(
f
(
Sk−1

n

))
=

r∑
p=3

1

p!np/2

∑
|α|=p

�α

[(r−p)/2]∑
q=0

(−1)q

2qq!nq

∑
|β|=2q

θβE
(
∂β∂αf

(
Sk−1

n

))
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+
r∑

p=3

1

p!np/2

∑
|α|=p

�α

1

n[(r−p)/2]+1
Ũ[(r−p)/2]∂αf

(
Ŝk

n,
Gk√

n

)
+ 1

n(r+1)/2
R̃k

r,nf

=
r∑

p=0

[(r−p)/2]∑
q=0

(−1)q

2qp!q!n(p+2q)/2

∑
|α|=p

∑
|β|=2q

E
(
∂β∂αf (Sk−1

n )
)
θβ�α + 1

n(r+1)/2
Rk

r,nf

in which, for the last line, we have used (4.9) and in the first sum we can let the index p start
from 0 because as p = 0,1,2, �α = 0. Now, by considering the change of variable t = p + q in
the first term, we get

E
(
f
(
Sk

n

))−E
(
f
(
Sk−1

n

))
=

r∑
t=0

t∑
s=0

(−1)(t−s)/2

2(t−s)/2s!((t − s)/2)!nt/2

∑
|α|=s

∑
|β|=t−s

E
(
∂β∂αf

(
Sk−1

n

))
�αθβ + 1

n(r+1)/2
Rk

r,nf

=
r∑

t=0

1

nt/2
E

(
t∑

s=0

(−1)(t−s)/2

2(t−s)/2s!((t − s)/2)!
∑
|α|=s

∑
|β|=t−s

∂β∂αf
(
Sk−1

n

)
�αθβ

)
+ 1

n(r+1)/2
Rk

r,nf

=
r∑

t=0

1

nt/2
E
(
�tf

(
Sk−1

n

))+ 1

n(r+1)/2
Rk

r,nf.

Since �t = 0 for t ≤ 2, the statement holds. �

For k = 1, . . . , n, we define

�
(1)
t = �t and for k ≥ 2, �

(k)
t = �

(k−1)
t +

t∑
p=0

�p�
(k−1)
t−p , t = 0,1, . . . . (4.12)

Notice that �
(k)
t is a differential operator which is linked to the convolution w.r.t. t between �·

and the preceding operator �
(k−1)· . We also notice that �

(k)
t = 0 for t = 0,1,2, as an immediate

consequence of the fact that �t = 0 for t ≤ 2. So, for k ≥ 2 we can write

�
(k)
t = 1{t≥3}�(k−1)

t + 1{t≥6}
t−3∑
p=3

�p�
(k−1)
t−p , t = 0,1, . . . . (4.13)

We also define the following reminder operators: for r ∈N,

�(k)
r,nf =

k−1∑
j=1

r∑
t=0

Rk−j
r−t,n�

(j)
t f +Rk

r,nf. (4.14)

Note that, by definition, �
(0)
r,n =R0

r,n and �
(k)
0,n =Rk

0,n.
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Lemma 4.4. Let n ∈N,1 ≤ k ≤ n and r ∈N. If F ∈ Lr+1(�) then for every f ∈ Cr+2
b (RN) one

has

E
(
f
(
Sk

n

))−E
(
f
(
Sk−1

n

))= r∑
t=3

1

nt/2
E
(
�

(k)
t f

(
S0

n

))+ 1

n(r+1)/2
�(k)

r,nf,

�
(k)
t and �

(k)
r,n being given in (4.12) and (4.14), respectively.

Proof. We consider the development in Lemma 4.3:

E
(
f
(
Sk

n

))−E
(
f
(
Sk−1

n

))= r∑
t=0

1

nt/2
E
(
�tf

(
Sk−1

n

))+ 1

n(r+1)/2
Rk

r,nf.

For t ≤ r , we apply such development up to order r − t to E(�tf (Sk−1
n )) and we get

E
(
�tf

(
Sk−1

n

))= E
(
�tf

(
Sk−2

n

))+ r−t∑
p=0

1

np/2
E
(
�p�tf

(
Sk−2

n

))+ 1

n(r−t+1)/2
Rk−1

r−t,n�tf.

By inserting, we obtain

E
(
f
(
Sk

n

))−E
(
f
(
Sk−1

n

)) =
r∑

t=0

1

nt/2
E
(
�tf

(
Sk−2

n

))+ r∑
t=0

r−t∑
p=0

1

n(t+p)/2
E
(
�p�tf

(
Sk−2

n

))
+ 1

n(r+1)/2

r∑
t=0

Rk−1
r−t,n�tf + 1

n(r+1)/2
Rk

r,nf

and by a change of variable in the second sum above we get

E
(
f
(
Sk

n

))−E
(
f
(
Sk−1

n

))= r∑
t=0

1

nt/2
E
(
�

(2)
t f

(
Sk−2

n

))+ 1

n(r+1)/2

[
r∑

t=0

Rk−1
r−t,n�tf +Rk

r,nf

]
.

By iterating the same procedure up to step k, we obtain the statement. �

We now set

T n
t =

n∑
k=1

�
(k)
t and Un

r =
n∑

k=1

�(k)
r,n (4.15)

�
(k)
t and �

(k)
r,n being given in (4.12) and (4.14), respectively.

Proposition 4.5. Let n ∈ N,1 ≤ k ≤ n and r ∈N. If F ∈ Lr+1(�) then for every f ∈ Cr+2
b (RN)

one has

E
(
f
(
Sn

n

))−E
(
f
(
S0

n

))= r∑
t=3

1

nt/2
E
(
T n

t f
(
S0

n

))+ 1

n(r+1)/2
Un

r f

T n
t and Un

r are defined in (4.15).
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Proof. Since E(f (Sn
n)) −E(f (S0

n)) =∑n
k=1(E(f (Sk

n)) −E(f (Sk−1
n ))), the statement immedi-

ately follows from Lemma 4.4. �

We give now an explicit expression for the operators �
(k)
t in (4.12) and, as a consequence, for

T n
t in (4.15). For �t given in (4.7), i = 1,2, . . . , we set

A1
t = �t and for i ≥ 1, Ai+1

t =
t∑

p=0

�pAi
t−p.

Since �t = 0 for t = 0,1,2, straightforward computations give that Ai
t = 0 if t < 3i, so that we

can also write

A1
t = �t and for i ≥ 1, Ai+1

t =
t−3i∑
p=3

�pAi
t−p. (4.16)

We can give an alternative representation for the Ai
t ’s. We set M the set of all multiindexes and

for α,β ∈ M (possibly with different length), we set (α,β) ∈ M the associated concatenation.
So, for γ ∈ M we define

Aγ = {(α,β) : (α,β) = γ
}

and

c1
γ =

∑
(α,β)∈Aγ

(−1)|β|/2

2|β|/2|α|!(|β|/2)!�αθβ and for i ≥ 1,

(4.17)
ci+1
γ =

∑
(α,β)∈Aγ

c1
αci

β, i ≥ 1.

Since c1
γ = 0 if |γ | < 3, by recurrence one gets ci

γ = 0 if |γ | < 3i for every i. Then straightfor-
ward computations give that, for i ≥ 1,

Ai
t =

∑
γ :|γ |=t

ci
γ ∂γ with

{
ci
γ

}
γ∈M given in (4.17). (4.18)

It is immediate to see that for every γ ∈M there exists C such that for every i ≥ 1∣∣ci
γ

∣∣≤ C sup
|α|≤|γ |

|�α|i . (4.19)

As a consequence, for t, q ≥ 0 there exists C > 0 (depending on t, q only) such that for every
i ≥ 1 and f ∈ C

t+q
b (RN)∥∥Ai

t f
∥∥

q,∞ ≤ C sup
|α|≤t

|�α|i × ‖f ‖t+q,∞ ≤ C
(
1 +E

(|F |t))i−1 sup
|α|≤t

|�α| × ‖f ‖t+q,∞. (4.20)

Moreover, the Ai
t ’s give the following representation formula for the �

(k)
t ’s.
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Proposition 4.6. For every k ≥ 1 the operator �(k) given in (4.12) can be written as

�
(k)
t =

[t/3]∑
i=1

Qi−1(k)Ai
t , t = 0,1, . . . ,

where Qi−1(k) is defined as follows:

Q0(k) = 1 and for l ≥ 1, Ql(k) =
k∑

j=l+1

Ql−1(j − 1).

In particular, Ql(k) = 0 if k ≤ l and Ql(k) > 0 otherwise.

Proof. We have already observed that if [t/3] = 0 then �
(k)
t = �t = 0 for every k and if [t/3] =

1 then �
(k)
t = �t for every k (see (4.13)), so the formulas agree. We now assume that the formula

is true for [t/3] = j ≥ 1 and for every k, and we prove it for [t/3] = j + 1 and for every k. We
recall that �

(k)
t = �

(k−1)
t +∑t−3

p=3 �p�
(k−1)
t−p . But if [t/3] = j + 1 then [(t − p)/3] ≤ j for any

p = 3, . . . , t − 3, so that by induction �
(k−1)
t−p fulfils the formula. Therefore, we can write

�
(k)
t = �

(k−1)
t +

t−3∑
p=3

[(t−p)/3]∑
i=1

Qi−1(k − 1)�pAi
t−p.

We do a change of variable in the last sum: the condition i ≤ [(t − p)]/3 gives 3i ≤ t − p, that
is, p ≤ t − 3i, and if p ≥ 3 then i ≤ [t/3] − 1. So, by using also (4.16) we get

�
(k)
t − �

(k−1)
t =

[t/3]−1∑
i=1

Qi−1(k − 1)

t−3i∑
p=3

�pAi
t−p

=
[t/3]−1∑

i=1

Qi−1(k − 1)Ai+1
t =

[t/3]∑
i=2

Qi−2(k − 1)Ai
t .

By summing

�
(k)
t = �t +

[t/3]∑
i=2

k∑
j=2

Qi−2(j − 1)Ai
t = Q0(k)A1

t +
[t/3]∑
i=2

k∑
j=2

Qi−2(j − 1)Ai
t

and the statement holds for Q0(k) = 1 and Qi−1(k) =∑k
j=2 Qi−2(j − 1), i ≥ 2. We now prove

that Ql(k) = 0 if k ≤ l and Ql(k) > 0 for k ≥ l + 1. For l = 1, Ql(k) = k − 1, and the statement
holds. If we assume that Ql(k) is not null for k ≥ l + 1 then

Ql+1(k) =
k∑

j=2

Ql(j − 1)1j−1≥l+1 =
k∑

j=2

Ql(j − 1)1j≥l+2

and this is null for k ≤ l + 1 and strictly positive if k ≥ l + 2. �
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We now give an explicit formula for T n
t , namely we write it in such a way that n �→ T n

t is
a polynomial whose coefficients will be explicitly written. To this purpose, we need to handle
polynomials of the type

n �→ Sl(n − 1) =
n−1∑
k=1

kl, l ∈ N, n ≥ 1.

We recall the exact expansion for Sl (L) =∑L
k=1 kl :

Sl (L) = 1

l + 1

l+1∑
p=1

(
l + 1

p

)
Bl+1−pLp, (4.21)

where {Bm}m denotes the sequence of the (second) Bernoulli numbers (which are in fact defined
as the numbers for which the above equality holds, see [1]), whose first numbers are given by

B0 = 1, B1 = 1

2
, B2 = 1

6
, B3 = 0, B4 = − 1

30
, B5 = 0, B6 = 1

42
,

B7 = 0, B8 = − 1

30
, . . . .

Then straightforward computations give that for l ∈ N and n ≥ 1,

Sl (n − 1) =
n−1∑
k=1

kl =
l+1∑
q=0

bl,qnq,

where the sequence (bl,q)q=0,...,l+1 is given by

bl,q = 1

l + 1

l+1∑
p=q∨1

(
l + 1

p

)
Bl+1−p

(
p

q

)
(−1)p−q, q = 0,1, . . . , l + 1 and l ∈N, (4.22)

in which Bl , l ≥ 0, denote the (second) Bernoulli numbers. Just as an example:

• l = 0: b0,0 = −1,b0,1 = 1;
• l = 1: b1,0 = 0, b1,1 = − 1

2 , b1,2 = 1
2 ;

• l = 2: b2,0 = 0, b2,1 = 1
6 , b2,2 = − 1

2 , b2,3 = 1
3 .

Then one has the following.

Proposition 4.7. Let n ≥ 1, r ∈ N and F ∈ Lqr+1(�), where qr = max(r,2). For t ≤ r , let T n
t

be defined as in (4.15). Then

T n
t =

[t/3]∑
i=1

Pi(n)Ai
t , t = 0,1, . . . ,
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where Pi(n) = 0 if n < i and for n ≥ i,

Pi(n) =
i∑

p=0

ai,pnp, i = 1, . . . , n (4.23)

with

a1,0 = 0, a1,1 = 1 and for i ≥ 1,
(4.24)

ai+1,0 =
i∑

l=0

ai,lbl,0 −
i∑

l=0

ai,lSl (i − 1), ai+1,p =
i∑

l=p−1

ai,lbl,p, p = 1, . . . , i

the sequence (bl,p)p=0,...,l+1 being defined in (4.22) and Sl (i − 1) being given in (4.21).

Proof. Since T n
t =∑n

k=1 �
(k)
t , we get

T n
t =

[t/3]∑
i=1

n∑
k=1

Qi−1(k)Ai
t

so that Pi(n) =∑n
k=1 Qi−1(k) =∑n+1

j=2 Qi−1(j − 1) = Qi(n+ 1). As a consequence, Pi(n) = 0
if n + 1 ≤ i, that is n < i. So, let n ≥ i. We have P1(n) =∑n

k=1 Q0(k) = n and for i ≥ 2,

Pi(n) = Qi(n + 1) =
n+1∑
j=2

Qi−1(j − 1)1j−1≥i =
n−1∑

k=i−1

Qi−1(k + 1) =
n−1∑

k=i−1

Pi−1(k). (4.25)

Since P1(n) = n, we get a1,0 = 0 and a1,1 = 1. In order to compute the sequence (ai,l)l=0,...,i ,
we use a recurrence argument. For i ≥ 1, one has

Pi+1(n) =
n−1∑
k=i

Pi(k) =
n−1∑
k=i

i∑
l=0

ai,lk
l =

i∑
l=0

ai,l

n−1∑
k=i

kl =
i∑

l=0

ai,l

(
Sl (n − 1) − Sl (i − 1)

)

=
i∑

l=0

ai,lSl (n − 1) −
i∑

l=0

ai,lSl (i − 1) =
i∑

l=0

ai,l

l+1∑
p=0

bl,pnp −
i∑

l=0

ai,lSl (i − 1)

=
i+1∑
p=0

np
i∑

l=0∨(p−1)

ai,lbl,p −
i∑

l=0

ai,lSl(i − 1)

and (4.24) follows. �

We are now ready to prove our result on the asymptotic expansion for smooth functions. We
set:
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• for m ≥ 1 and f ∈ Cm
b (RN),

Dmf =
3m∑

t=3∨m
t−m even

[t/3]∑
i=1∨(t−m)/2

ai,(t−m)/2E
(
Ai

t f (G)
); (4.26)

• for r ≥ 2 and f ∈ Cr+1
b (RN),

En
r f = n([r/3]+1)/2

(4.27)

×
[

r∑
m=[r/3]+1

1

nm/2

(3m)∧r∑
t=3∨m

t−m even

[t/3]∑
i=1∨(t−m)/2

ai,(t−m)/2E
(
Ai

t f (G)
)+ 1

n(r+1)/2
Un

r f

]
.

Then we have:

Theorem 4.8. Let r ≥ 2. If F ∈ Lr+1(�), then for every f ∈ Cr+3
b (RN) one has

E
(
f (Sn)

)−E
(
f (G)

)= [r/3]∑
m=1

1

nm/2
Dmf + 1

n([r/3]+1)/2
En

r f,

where Dmf and En
r f are defined in (4.26) and (4.27), respectively.

Remark 4.9. At this stage, we could prove that

∣∣En
r f
∣∣≤ C

(
1 +E

(|F |r+1))[r/3]∨1
[
‖f ‖r+3,∞ sup

|α|≤r

|�α| + ‖f ‖r+1,∞
1

n(r−[r/3]−2)/2

]
, (4.28)

C denoting a suitable constant depending on r and N only. But since we aim to deal with the
distance in total variation, we need a representation and an estimate of the reminder in terms of
f and not of its derivatives. So, we skip this point and we postpone the problem to next section.

Proof of Theorem 4.8. Take r ≥ 2. We use Proposition 4.5: for every n ∈N and f ∈ Cr+2
b (RN)

we have

E
(
f
(
Sn

n

))−E
(
f
(
S0

n

)) =
r∑

t=3

1

nt/2

[t/3]∑
i=1

Pi(n)E
(
Ai

t f (G)
)+ 1

n(r+1)/2
Un

r f

=
r∑

t=3

1

nt/2

[t/3]∑
i=1

i∑
p=0

ai,pnp
E
(
Ai

t f (G)
)+ 1

n(r+1)/2
Un

r f

=
r∑

t=3

[t/3]∑
p=0

1

nt/2−p

[t/3]∑
i=1∨p

ai,pE
(
Ai

t f (G)
)+ 1

n(r+1)/2
Un

r f.
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So, by recalling that Sn = Sn
n and G

L= S0
n we obtain

E
(
f (Sn)

)−E
(
f (G)

) =
r∑

t=3

[t/3]∑
p=0

1

nt/2−p

[t/3]∑
i=1∨p

ai,pE
(
Ai

t f (G)
)+ 1

n(r+1)/2
Un

r f.

We set now t −2p = m, so t −m is an even number. Now, p ≥ 0 gives that t ≥ m and since t ≥ 3
then t ≥ 3 ∨ m and m ≤ r ; p ≤ [t/3] gives that (t − m)/2 ≤ [t/3]. Therefore, the sum over t ≤ r

must be done on the set {t : 3 ∨ m ≤ t ≤ r, t − m even, t − 2[t/3] ≤ m}. It is easy to see that this
set equals to {t : 3 ∨ m ≤ t ≤ (3m) ∧ r, t − m even}. So, we obtain

E
(
f (Sn)

)−E
(
f (G)

)= r∑
m=1

1

nm/2

(3m)∧r∑
t=3∨m

t−m even

[t/3]∑
i=1∨(t−m)/2

ai,(t−m)/2E
(
Ai

t f (G)
)+ 1

n(r+1)/2
Un

r f.

The statement now follows by using (4.26) (notice that 3m ≤ r if m ≤ [r/3]) and (4.27). �

4.2. Regularized functions and estimate of the reminder

Our problem is now to prove an estimate for the reminder in the development for a function f in
terms of ‖f ‖∞ instead of ‖f ‖r+1,∞. To this purpose, we need some preliminary results.

For δ > 0, we denote by γδ the density of the centred Gaussian law in R
N of variance δI and

for f : RN → R we denote fδ = f ∗ γδ . Using standard integration by parts on R
N , one may

prove that for each r ∈ N there exists an universal constant C (depending on N and r only) such
that for every multiindex α with |α| = r one has

‖∂αfδ‖∞ ≤ C

δr/2
‖f ‖∞. (4.29)

We give now some estimates following from Lemma 3.5 with � = 1, which is actually
Lemma 2.5 in [3].

Lemma 4.10. Suppose that μF � LebN . There exist universal constants C > 0 and b > 4, de-
pending on N only, such that for every δ > 0, n ∈ N and for every bounded and measurable
function f : RN → R one has∣∣E(f (Sn)

)−E
(
fδ(Sn)

)∣∣≤ C‖f ‖∞
(
1 +E

(|F |))(e−n/C + δ1/bn(b−2)/(2b)
)
. (4.30)

Proof. Let K ≥ 1 and �K ∈ C∞(RN) be such that 1BK(0) ≤ �K ≤ 1BK+1(0) and such that, for
some L > 0, ‖∂α�K‖∞ ≤ L for every multiindex α. Then we have

∣∣E(f (Sn)
)−E

(
f
(
�K(Sn)Sn

))∣∣≤ ‖f ‖∞P
(|Sn| ≥ K

)≤ ‖f ‖∞
E(|Sn|)

K
≤ ‖f ‖∞

√
n

K
E
(|F |)
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and in a similar way |E(fδ(Sn)) −E(fδ(�K(Sn)Sn))| ≤ ‖f ‖E(|F |)√n/K . So we can write∣∣E(f (Sn)
)−E

(
fδ(Sn)

)∣∣
≤ ∣∣E(f (Sn)

)−E
(
f
(
�K(Sn)Sn

))∣∣+ ∣∣E(fδ(Sn)
)−E

(
fδ

(
�K(Sn)Sn

))∣∣
+ ∣∣E(f (�K(Sn)Sn

))−E
(
fδ

(
�K(Sn)Sn

))∣∣
≤ 2E

(|F |)‖f ‖∞
√

n

K
+ ∣∣E(f (�K(Sn)Sn

))−E
(
fδ

(
�K(Sn)Sn

))∣∣.
As for the last term in the above right-hand side, we apply Lemma 3.5 with � = 1 and X =
�K(Sn)Sn: there exist some universal constants C,p,a depending only on N such that for every
ε > 0, δ > 0 and every f ∈ L∞(RN) then∣∣E(f (�K(Sn)Sn

))−E
(
fδ

(
�K(Sn)Sn

))∣∣
≤ C‖f ‖∞ ×

(
P(detσ�K(Sn)Sn < ε) +

√
δ

εp

(
1 + ∥∥�K(Sn)Sn

∥∥
3,p

+ ∥∥L(�K(Sn)Sn

)∥∥
1,p

)a)
.

We note that we are forced to introduce the localization �K(Sn) because in the above estimate it
appears ‖�K(Sn)Sn‖p with p > 1: since the r.v.’s are only square integrable, if we take �K ≡ 1
then in principle we do not know if such norm is finite.

Now, on the set {|Sn| ≤ K} we have detσ�K(Sn)Sn = detσSn , so that

P(detσ�K(Sn)Sn < ε) ≤ P(detσSn < ε) + P
(|Sn| > K

)≤ P(detσSn < ε) + E(|Sn|)
K

≤ P(detσSn < ε) +E
(|F |)√n

K
.

By taking ε = ε∗/2 as in Lemma 3.4, (3.22) gives

P(detσ�K(Sn)Sn < ε) ≤ Ce−n/C +E
(|F |)√n

K
.

Therefore, we can write∣∣E(f (Sn)
)−E

(
fδ(Sn)

)∣∣
≤ C‖f ‖∞

(
e−n/C +E

(|F |)√n

K
+ √

δ
(
1 + ∥∥�K(Sn)Sn

∥∥
3,p

+ ∥∥L(�K(Sn)Sn

)∥∥
1,p

)a)
.

We use now Lemma B.1 in Appendix B: inequalities (B.1) and (B.2) give∥∥�K(Sn)Sn

∥∥
3,p

+ ∥∥L(�K(Sn)Sn

)∥∥
1,p

≤ CK
(
1 + ‖Sn‖1,3,4p

)6 + CK
(
1 + ‖Sn‖1,2,8p

)5(1 + ‖LSn‖1,4p

)
≤ CK

(
1 + ‖Sn‖1,3,8p + ‖LSn‖1,4p

)6
.
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By using (3.19) and (3.20), we have∥∥�K(Sn)Sn

∥∥
3,p

+ ∥∥L(�K(Sn)Sn

)∥∥
1,p

≤ CK,

so that

∣∣E(f (Sn)
)−E

(
fδ(Sn)

)∣∣ ≤ C‖f ‖∞
(

e−n/C +E
(|F |)√n

K
+ √

δKa

)
≤ C‖f ‖∞

(
1 +E

(|F |))(e−n/C +
√

n

K
+ √

δKa

)
.

We now optimize on K by taking it in order that
√

n/K = √
δKa . Straightforward computations

give now (4.30), with 1
b

= 1
2 (1 − a

a+1 ) < 1
4 . �

Remark 4.11. We stress that when C(F) �= Id then the constant in (3.22) depends on λ(F ). As
a consequence, this dependence holds for the constant C appearing in (4.30) as well.

We now propose the following key result, allowing us to deal with the remaining terms.

Lemma 4.12. Suppose that μF � LebN . Let α and β denote multiindexes, with |α| = r and
|β| = m. If F ∈ Lm(�), then there exists a constant C (which depends on N , r and m) such that
for every f ∈ L∞(RN), δ > 0, n ≥ 1 and λ ∈R then∣∣∣∣E(∂αfδ

(
Ŝk

n + λ
Fk

n1/2

)
F

β
k

)∣∣∣∣≤ C‖f ‖∞E
(|F |m)(1 + δ−r/2e−n/C

)
,∣∣∣∣E(∂αfδ

(
Ŝk

n + λ
Gk

n1/2

)
G

β
k

)∣∣∣∣≤ C‖f ‖∞E
(|G|m)(1 + δ−r/2e−n/C

)
,

in which fδ = f ∗ γδ , γδ being the centred normal density in R
N with covariance matrix δI .

Proof. Without loss of generality, we suppose that n is even and we study separately the cases
k ≤ n/2 and k ≥ n/2 + 1 – if n was odd, it would be sufficient to study k ≤ (n − 1)/2 and
k ≥ (n − 1)/2 + 1.

Case 1: k ≤ n/2. We denote

Ak = 1

n1/2

(
k−1∑
i=1

Fi +
n/2∑

i=k+1

Gi

)
+ λ

Fk

n1/2
, B = 1

n1/2

n∑
i=n/2+1

Gi

so that

Ŝk
n + λ

Fk

n1/2
= Ak + B.
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Notice that B is a Gaussian random variable with covariance 1
2I which is independent of Ak and

of Fk . Using integration by parts with respect to B we may find a random variable Hα having all
moments and

E

(
∂αfδ

(
Ŝk

n + λ
Fk

n1/2

)
F

β
k

)
= E

(
∂αfδ(Ak + B)F

β
k

)= E
(
fδ(Ak + B)F

β
k Hα

)
.

Since Fk and Hα are independent, Hα being a suitable function of Gn/2, . . . ,Gn, it follows that∣∣∣∣E(∂αfδ

(
Ŝk

n + λ
Fk

n1/2

)
F

β
k

)∣∣∣∣≤ C‖fδ‖∞E
(|Fk|m

)
E
(|Hα|)≤ C‖f ‖∞E

(|F |m).
Similarly, we obtain ∣∣∣∣E(∂αfδ

(
Ŝk

n + λ
Gk

n1/2

)
G

β
k

)∣∣∣∣≤ C‖f ‖∞E
(|G|m).

Case 2: k > n/2. We denote

A = 1

n1/2

n/2∑
i=1

Fi, Bk = 1

n1/2

(
k−1∑

i=n/2+1

Fi +
n∑

i=k+1

Gi

)
+ λ

Fk

n1/2

so that

Ŝk
n + λ

Fk

n1/2
= A + Bk.

We notice that

A = 1√
2
Sn/2,

so we can use the noise from the absolutely continuous r.v.’s V1, . . . , Vn/2 “inside” Sn/2, as al-
ready seen in Section 3.1. We then proceed to use integration by parts w.r.t. the noise from A.

We notice that σA = 1
2σSn/2 and that the covariance matrix σSn/2 of Sn/2 may degenerate. So,

we use a localization: we consider a function φ ∈ C1(R+) such that 1(ε∗/2,∞) ≤ φ ≤ 1(ε∗,∞) and
‖∇φ‖∞ ≤ 2/ε∗ with ε∗ given in (3.21). Then we write

E

(
∂αfδ

(
Ŝk

n + λ
Fk

n1/2

)
F

β
k

)
= E

(
∂αfδ(A + Bk)F

β
k

)= I + J

with

I = E
(
∂αfδ(A + Bk)F

β
k φ(detσA)

)
,

J = E
(
∂αfδ(A + Bk)F

β
k

(
1 − φ(detσA)

))
.
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We estimate I . Notice that φ(detσA) �= 0 implies that detσA ≥ ε∗/2. We use the integration by
parts with respect to A in Proposition 3.2, and we obtain

I = E
(
fδ(A + Bk)F

α
k Hr

α

(
A,φ(detσA)

))
.

The estimate (3.15) for the weight gives that∣∣Hr
α(A,detσA)

∣∣≤ C
(
1 ∨ (detσA)−1)r(r+1)(1 + |A|2N(r+2)

1,r+1 + |LA|2r−1

)r × ∣∣φ(detσA)
∣∣
r
,

C denoting a universal constant. Since σA = 1
2σSn/2 = 1

2n

∑n/2
k=1 χkI , all the Malliavin derivatives

are null, so |φ(detσA)|r = |φ(detσA)| ≤ 1, so that∣∣Hr
α(A,detσA)

∣∣≤ C
(
1 ∨ (detσA)−1)r(r+1)(1 + |A|2N(r+2)

1,r+1 + |LA|2r−1

)r
.

We pass now to expectation: by using the Hölder inequality, we may find some universal con-
stants C,q,p such that

E
(∣∣Hr

α

(
A,φ(detσA)

)∣∣2)≤ C

ε
q∗
(
1 + ‖A‖1,r+1,p + ‖LA‖r−1,p

)q ≤ C′,

the latter inequality following from (3.19) and (3.20). Now, Fk and Hr
α(A,φ(detσA)) are inde-

pendent, so that

|I | ≤ C‖f ‖∞E
(|F |m).

We estimate now J . By recalling again that Fk and σA are independent and by using (4.29)
and (3.22), we obtain

|J | ≤ ‖∂αfδ‖∞E
(∣∣Fβ

k

(
1 − φ(detσA)

∣∣)≤ δ−r/2‖f ‖∞E
(|Fk|m

)
P(σSn/2 ≤ ε∗)

)
≤ Cδ−r/2‖f ‖∞E

(|F |m)× e−n/C.

By resuming, we get∣∣∣∣E(∂αfδ

(
Ŝk

n + λ
Fk

n1/2

)
F

β
k

)∣∣∣∣≤ C‖f ‖∞E
(|F |m)(1 + δ−r/2e−n/C

)
.

And similarly, we prove that∣∣∣∣E(∂αfδ

(
Ŝk

n + λ
Gk

n1/2

)
G

β
k

)∣∣∣∣≤ C‖f ‖∞E
(|G|m)(1 + δ−r/2e−n/C

)
. �

We can now give a nice estimate for Un
r fδ in terms of ‖f ‖∞. And this is enough for the

moment.

Lemma 4.13. Suppose that μF � LebN . Let r ≥ 2 and F ∈ Lr+1(�). For f ∈ L∞(RN) and
δ > 0, set fδ = f ∗ γδ , γδ being the centred normal density in R

N with covariance matrix δI .
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Then there exists C > 0 depending on r and N only such that for every f ∈ L∞(RN) one has∣∣Un
r fδ

∣∣ ≤ C
(
1 +E

(|F |r+1))[r/3]∨1

(4.31)
× ‖f ‖∞

(
1 + δ−(r+4)/2e−n/C

)(
sup
|α|≤r

|�α| × n(r−[r/3])/2 + n
)
.

Proof. By using (4.15) and (4.14), we can write

Un
r f =

n∑
k=1

[
k−1∑
j=1

r∑
t=3

Rk−j
r−t,n�

(j)
t f +Rk

r,nf

]
.

Since g �→ Rl
t,ng is linear, by using the expansion of �(k) in Lemma 4.6 and by recalling that

Qi−1(k) ≥ 0, we get

∣∣Un
r f
∣∣≤ n∑

k=2

k−1∑
j=1

r∑
t=3

[t/3]∑
i=1

Qi−1(j)
∣∣Rk−j

r−t,nAi
t f
∣∣+ n∑

k=1

∣∣Rk
r,nf

∣∣.
Since r ≥ 2, (4.10) gives R�

0,n = 1
n
R�

2,n and R�
1,n = 1√

n
R�

2,n. So, we isolate in the sum the terms
with t = r − 1, r and we obtain

∣∣Un
r fδ

∣∣ ≤ n∑
k=2

k−1∑
j=1

[
1r≥5

r−2∑
t=3

[t/3]∑
i=1

Qi−1(j)
∣∣Rk−j

r−t,nAi
t fδ

∣∣
+ 1r≥4

1√
n

[(r−1)/3]∑
i=1

Qi−1(j)
∣∣Rk−j

2,n Ai
r−1fδ

∣∣ (4.32)

+ 1r≥3
1

n

[r/3]∑
i=1

Qi−1(j)
∣∣Rk−j

2,n Ai
rfδ

∣∣]+
n∑

k=1

∣∣Rk
r,nfδ

∣∣.
We have (recall formula (4.9))

∣∣Rk
r,nfδ

∣∣ ≤ r∑
p=3

∑
|α|=p

∑
|β|=2[(r−p)/2]+2

|�α|
∫ 1

0

∣∣∣∣E(∂β ∂αfδ

(
Ŝk

n + √
s
Gk√

n

))∣∣∣∣ds

+ n(r+1)/2
[∣∣∣∣E(Urfδ

(
Ŝk

n,
Fk√

n

))∣∣∣∣+ ∣∣∣∣E(Urfδ

(
Ŝk

n,
Gk√

n

))∣∣∣∣]
and by using Lemma 4.12 we get∣∣Rk

r,nfδ

∣∣≤ C
(
1 +E

(|F |r+1))‖f ‖∞
(
1 + δ−(r+1)/2e−n/C

)
. (4.33)
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As for the other sums in the right-hand side of (4.32), for s ≥ 2 we have∣∣Rk−j
s,n Ai

t fδ

∣∣≤ ∑
|γ |=t

∣∣ci
γ

∣∣× ∣∣Rk−j
s,n ∂γ fδ

∣∣≤ C sup
|α|≤t

|�α|(1 +E
(|F |t))i−1 ∑

|γ |=t

∣∣Rk−j
s,n ∂γ fδ

∣∣,
last inequality following from (4.19). We use again Lemma 4.12: for |γ | = t ,∣∣Rk−j

s,n ∂γ fδ

∣∣≤ C
(
1 +E

(|F |s+1))‖f ‖∞
(
1 + δ−(s+t+1)/2e−n/C

)
.

We apply such inequality with: t ≤ r − 2 and s = r − t , t = r − 1 and s = 2, t = r and s = 2.
Then ∣∣Rk−j

r−t,nAi
t fδ

∣∣ ≤ C sup
|α|≤r

|�α|(1 +E
(|F |r+1))[r/3]∨1‖f ‖∞

(
1 + δ−(r+2)/2e−n/C

)
,

∣∣Rk−j

2,n Ai
r−1fδ

∣∣ ≤ C sup
|α|≤r

|�α|(1 +E
(|F |r+1))[r/3]∨1‖f ‖∞

(
1 + δ−(r+3)/2e−n/C

)
,

∣∣Rk−j

2,n Ai
rfδ

∣∣ ≤ C sup
|α|≤r

|�α|(1 +E
(|F |r+1))[r/3]∨1‖f ‖∞

(
1 + δ−(r+4)/2e−n/C

)
.

By inserting such estimates and (4.33) in (4.32), we get

∣∣Un
r fδ

∣∣ ≤ n∑
k=2

k−1∑
j=1

[
1r≥5

r−2∑
t=3

[t/3]∑
i=1

Qi−1(j)
∣∣Rk−j

r−t,nAi
t fδ

∣∣
+ 1r≥4

1√
n

[(r−1)/3]∑
i=1

Qi−1(j)
∣∣Rk−j

2,n Ai
r−1fδ

∣∣
+ 1r≥3

1

n

[r/3]∑
i=1

Qi−1(j)
∣∣Rk−j

2,n Ai
rfδ

∣∣]+
n∑

k=1

∣∣Rk
r,nfδ

∣∣
≤ C

(
1 +E

(|F |r+1))[r/3]∨1‖f ‖∞
(
1 + δ−(r+4)/2e−n/C

)
×
(

sup
|α|≤r

|�α|
n∑

k=2

k−1∑
j=1

[
1r≥5

[(r−2)/3]∑
i=1

Qi−1(j) + 1r≥4
1√
n

[(r−1)/3]∑
i=1

Qi−1(j)

+ 1r≥3
1

n

[r/3]∑
i=1

Qi−1(j)

]
+ n

)
.

Since
∑n

k=2
∑k−1

j=1
∑L

i=1 Qi−1(j) =∑L
i=1 Pi+1(n−1) is a polynomial of order L+1 we obtain∣∣Un

r fδ

∣∣ ≤ C
(
1 +E

(|F |r+1))[r/3]∨1‖f ‖∞
(
1 + δ−(r+4)/2e−n/C

)
×
(

sup
|α|≤r

|�α|[1r≥5n
[(r−2)/3]+1 + 1r≥4n

[(r−1)/3]+1/2 + 1r≥3n
[r/3]]+ n

)
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and the statement follows by noticing that

n[(r−2)/3]+11r≥5 + n[(r−1)/3]+1/21r≥4 + n[r/3]1r≥3 ≤ Cn[r/3]+(r−3[r/3])/2. �

4.3. Estimate of the error in total variation distance

We want to get rid of the derivatives of f which appear in the coefficients Dmf . In order to do it,
we will use integration by parts w.r.t. the Gaussian law and then the Hermite polynomials come
on. Again, we assume μF � LebN and F has null mean and identical covariance matrix.

We denote by Hm the Hermite polynomial of order m on R, that is,

Hm(x) = (−1)me(1/2)x2 dm

xm
e−(1/2)x2

. (4.34)

For a multiindex α = (α1, . . . , αr) ∈ {1, . . . ,N}r we denote βi(α) = card{j : αj = i} so that ∂α =
∂

β1(α)
x1 . . . ∂

βd (α)

xN . And we define the Hermite polynomial on R
N corresponding to the multiindex

α by

Hα(x) =
N∏

i=1

Hβi(α)(xi) for x = (x1, . . . , xN). (4.35)

With this definition, we have

∂αe−(1/2)|x|2 = (−1)|α|Hα(x)e−(1/2)|x|2

and using integration by parts, for a centred Gaussian random variable G ∈ R
N

E
(
∂αf (G)

)= E
(
f (G)Hα(G)

)
. (4.36)

This means that we can compute E(Ai
t f (G)) by means of f and not of its derivatives. In fact,

for i ≥ 1 and t ≥ 0, we define the polynomials Hi
t (x) as follows:

Hi
t (x) =

∑
α:|α|=t

ci
βHα(x), ci

α defined in (4.17) and Hα given in (4.35). (4.37)

Since Ai
t =∑α:|α|=t c

i
α∂α , (4.36) gives

E
(
Ai

t f (G)
)= ∑

α:|α|=t

ci
γE
(
∂αf (G)

)= ∑
α:|α|=t

ci
αE
(
f (G)Hα(G)

)= E
(
f (G)Hi

t (G)
)
.

Therefore, for every f ∈ Cm
b (RN) the coefficients Dmf , m ≥ 1, in (4.26) can be written as

Dmf = E
(
f (G)Km(G)

)
, m ≥ 1,

(4.38)

where Km(x) =
3m∑

t=3∨m
t−m even

[t/3]∑
i=1∨(t−m)/2

ai,(t−m)2Hi
t (x), ai,l given in (4.24) and Hi

t given in (4.37).
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We are now ready to tackle our original problem: the exact expansion in total variation distance
of the law μn of Sn. To this purpose, for r ≥ 2 and n ≥ 1 we define the following measure in R

N :

�n,r (dx) = γ (x)

(
1 +

[r/3]∑
m=1

1

nm/2
Km(x)

)
dx, Km(x) given in (4.38), (4.39)

where γ (x) denotes the probability density function of a standard normal random variable in
R

N . We stress that �n,r (dx) = γ (x)dx =: �(dx) not only for r = 2 but also when �α = 0 for
every |α| ≤ r . In fact, in the latter case, (4.19) gives ci

α = 0 for every i ≥ 1 and |α| ≤ r , then
from (4.37) we have Hi

t ≡ 0 for every i ≥ 1 and t ≤ r and from (4.38) we obtain Km ≡ 0 for
every m ≤ r .

Theorem 4.14. Suppose μF � LebN . Let r ≥ 2 and F ∈ Lr+1(�). For n ≥ 1, let μn denote the
law of Sn and �n,r stand for the measure in (4.39). Then there exists a constant C > 0 depending
on r and N only such that for every n ∈ N,

dTV(μn,�n,r ) ≤ C
(
1 +E

(|F |r+1))[r/3]∨1
[

sup
|α|≤r

|�α| × 1

n([r/3]+1)/2
+ 1

n(r−1)/2

]
.

Proof. We study | ∫ f dμn − ∫ f d�n,r | for f ∈ L∞(RN). From now on, C will denote a con-
stant, possibly varying from line to line, that may depend only on N and r .

We take δ > 0 and we consider the regularized function fδ = f ∗ γδ where γδ is the centred
Gaussian density of covariance matrix δI . We have∣∣∣∣∫ f dμn −

∫
f d�n,r

∣∣∣∣≤ In,δ + I ′
n,δ + Jn,δ

with

In,δ =
∣∣∣∣∫ (f − fδ) dμn

∣∣∣∣, I ′
n,δ =

∣∣∣∣∫ (f − fδ) d�n,r

∣∣∣∣, Jn,δ =
∣∣∣∣∫ fδ dμn −

∫
fδ d�n,r

∣∣∣∣.
By (4.30),

In,δ ≤ C‖f ‖∞
(
1 +E

(|F |))(e−n/C + δ1/bn(b−2)/(2b)
)
,

where b > 4 is a suitable constant, independent of F and f . And using standard integration by
parts on R

N ,

I ′
n,δ ≤ C‖f ‖∞δ1/2.

Moreover, since ∫
fδ d�n,r = E

(
fδ(G)

)+ [r/3]∑
m=1

1

nm/2
Dmfδ,
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Theorem 4.8 gives

Jn,δ = 1

n([r/3]+1)/2

∣∣En
r fδ

∣∣
with

∣∣En
r fδ

∣∣ ≤ n([r/3]+1)/2

[
r∑

m=[r/3]+1

1

nm/2

(3m)∧r∑
t=3∨m

[t/3]∑
i=1∨(t−m)/2

|ai,(t−m)/2|

× ∣∣E(Ai
t fδ(G)

)∣∣+ 1

n(r+1)/2

∣∣Un
r fδ

∣∣].

But since E(Ai
t fδ(G)) = E(fδ(G)Hi

t (G)), then∣∣E(Ai
t fδ(G)

)∣∣≤ ‖fδ‖∞E
(∣∣Hi

t (G)
∣∣)≤ C‖f ‖∞

(
1 +E

(|F |t−1)) sup
|α|≤t

|�α|.

We use now Lemma 4.13: for r ≥ 2, we apply (4.31) and we get∣∣En
r fδ

∣∣ ≤ C
(
1 +E

(|F |r+1))[r/3]∨1‖f ‖∞
(
1 + δ−(r+4)/2e−n/C

)[
sup
|α|≤r

|�α| + 1

n(r−[r/3]−2)/2

]
.

By replacing, we get

Jn,δ ≤ C
(
1 +E

(|F |r+1))[r/3]∨1‖f ‖∞

× (1 + δ−(r+4)/2e−n/C
)[

sup
|α|≤r

|�α| × 1

n([r/3]+1)/2
+ 1

n(r−1)/2

]
.

By resuming, we can write∣∣∣∣∫ f dμn −
∫

f d�n,r

∣∣∣∣ ≤ C‖f ‖∞
(
1 +E

(|F |r+1))[r/3]∨1
[
e−n/C + δ1/2 + δ1/bn(b−2)/(2b)

+ (1 + δ−(r+4)/2e−n/C
)(

sup
|α|≤r

|�α| × 1

n([r/3]+1)/2
+ 1

n(r−1)/2

)]
.

Now, we choose δ = δn such that δ
1/b
n n(b−2)/(2b) = 1

n(r−1)/2 . By observing that n �→ δ
−(r+4)/2
n ×

e−n/C is bounded and δ
1/2
n ≤ 1

n(r−1)/2 , we get∣∣∣∣∫ f dμn −
∫

f d�n,r

∣∣∣∣≤ C‖f ‖∞
(
1+E

(|F |r+1))[r/3]∨1
[

sup
|α|≤r

|�α|× 1

n([r/3]+1)/2
+ 1

n(r−1)/2

]
and the result follows. �

We can now pass to the following.
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Proof of Theorems 2.6 and 2.7. We apply Theorem 4.14 with F replaced by A(F)F , where
A(F) is the inverse of C(F)1/2, C(F) denoting the covariance matrix. And it is clear that now
the constants appearing in the estimates will depend on C(F) as well, through its most significant
eigenvalues (the smallest and the largest one; see, e.g., in Remark 3.8 and 4.11). �

We conclude by explicitly writing Km(x) for m = 1,2,3. From (4.38), we have:

K1(x) = a1,1H1
3(x),

K2(x) = a1,1H1
4(x) + a2,2H2

6(x),

K3(x) = a1,0H1
3(x) + a1,1H1

5(x) + a2,2H2
7(x) + a3,3H3

9(x),

where Hi
t (x) =∑|γ |=t c

i
γ Hγ (x). Now, from (4.17) it is easy to see that

c1
γ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1

3!�γ , if |γ | = 3,

1

4!�γ , if |γ | = 4,

− 1

3!2!�(γ1,γ2,γ3)1γ4=γ5 + 1

5!�γ , if |γ | = 5,

c2
γ =

⎧⎪⎪⎨⎪⎪⎩
1

(3!)2
�(γ1,γ2,γ3)�(γ4,γ5,γ6), if |γ | = 6,

1

3!4! (�(γ1,γ2,γ3)�(γ4,γ5γ6,γ7) + �(γ1,γ2,γ3,γ4)�(γ5,γ6,γ7)), if |γ | = 7,

c3
γ = 1

(3!)3
�(γ1,γ2,γ3)�(γ4,γ5,γ6)�(γ7,γ8,γ9) if |γ | = 9.

Moreover, a1,0 = 0, a1,1 = 1, a2,2 = b1,2 = 1
2B0 = 1

2 and a3,3 = a2,2b2,3 = 1
2 · 1

3B0 = 1
6 . So, we

can write

K1(x) = 1

3!
∑
|γ |=3

�γ Hγ (x),

K2(x) = 1

4!
∑
|γ |=4

�γ Hγ (x) + 1

2(3!)2

∑
|γ |=6

�(γ1,γ2,γ3)�(γ4,γ5,γ6)Hγ (x),

K3(x) =
∑
|γ |=5

(
− 1

3!2!�(γ1,γ2,γ3)1γ4=γ5 + 1

5!�γ

)
Hγ (x)

+ 1

2 × 3!4!
∑
|γ |=7

(�(γ1,γ2,γ3)�(γ4,γ5,γ6,γ7) + �(γ1,γ2,γ3,γ4)�(γ5,γ6,γ7))Hγ (x)

+ 1

6 × (3!)3

∑
|γ |=9

�(γ1,γ2,γ3)�(γ4,γ5,γ6)�(γ7,γ8,γ9)Hγ (x).
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In the case N = 1, for t ∈ N set

�t = E(F t )

Var(F )t/2
.

Note that �t is strictly connected to the Lyapunov ratio Lt = E(|F |t )
Var(F )t/2 . By recalling that for

G ∼ N(0,1) then E(Gt ) = 0 if t is odd and E(Gt ) = (t − 1)!! if t is even (with the convention
(−1)!! = 1), we obtain �t = �t if t is odd and �t = �t − (t − 1)!! if t is even. Remark that
�3 = �3 and �4 = �4 − 3 are the skewness and the kurtosis, respectively. Hence, we obtain the
polynomials in the classical Edgeworth expansion:

K1(x) = �3

6
H3(x), K2(x) = (�4 − 3)

24
H4(x) + �2

3

72
H6(x),

K3(x) =
(

− �3

3!2! + �5

5!
)

H5(x) + �3(�4 − 3)

3!4! H7(x) + �3
3

6(3!)3
H9(x).

Appendix A: Probability measures which are locally lower
bounded by the Lebesgue measure

We discuss here the proof of Proposition 2.4. For a random variable F ∈ R
N with law μF , we

recall that μF � LebN if there exists an open set D ⊂R
N and ε > 0 such that

μF (A) := P(F ∈ A) ≥ ε LebN(A ∩ D) ∀A ∈ B
(
R

N
)
. (A.1)

Remark that we have already proved that if μF � LebN then (2.3) holds (see Proposition 3.1).
We first prove the equivalence (i) ⇔ (ii):

Lemma A.1. μF � LebN if and only if there exists a non-negative measure μ with μ(RN) < 1
and a non-negative lower semi-continuous function p with

∫
RN p(v)dv = 1 − μ(RN) such that

μF (dv) = μ(dv) + p(v)dv. (A.2)

Proof. If (A.1) holds, we take v0 ∈ D and r > 0 such that Br(v0) ⊂ D. Then it suffices to take
p(x) = ε1Br(v0)(x) and μ(A) = P(F ∈ A) − ∫

A
p(v)dv, which turns out to be a non-negative

measure.
Suppose now that (A.2) holds. Since p is non-negative and lower semicontinuous we may find

an increasing sequence of non-negative and continuous functions pn,n ∈ N such that pn ↑ p. It
follows that

∫
pn ↑ ∫ p = 1 −μ(RN) > 0, and we may find n such that

∫
pn > 0. So there exists

v0 such that pn(v0) > 0. Since pn is continuous, this implies that p(v) ≥ pn(v) ≥ 1
2pn(v0) for

|v − v0| < r for some small r . �

As a consequence, we get the final property in Proposition 2.4.

Lemma A.2. If μF � LebN , then the covariance matrix of F is invertible.
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Proof. We fix v0 ∈ R
N and ε > 0 such that (A.1) holds with D = Br(v0). We assume that

E(F i) = 0 so that the covariance matrix is given by Ci,j (F ) = E(F iF j ). Then, for ξ ∈ R
N we

write 〈
C(F)ξ, ξ

〉= E
(〈F, ξ 〉2)≥ ε

∫
Br (v0)

〈v, ξ 〉2 dv.

We denote Aδ(ξ) = {v : 〈v, ξ 〉2 ≥ δ|ξ |2} and we note that we may choose δ(v0, r) such that

inf|ξ |=1
LebN

(
Aδ(v0,r)(ξ)

)=: η(v0, r) > 0.

Then

inf|ξ |=1

〈
C(F)ξ, ξ

〉≥ εη(v0, r)LebN

(
Br(v0)

)
. �

We have already proved in Proposition 3.1 the implication (i) ⇒ (iii). Last implication (iii) ⇒
(ii) is trivial. In fact, let

P
(
χV + (1 − χ)W ∈ dv

)= P(F ∈ dv),

where χ is a Bernoulli r.v. with parameter p > 0, V in R
N is absolutely continuous and W is a

r.v. in R
N . Setting μF , μV and μW , the law of F , V and W , respectively, then

μF (dv) = pμV (v)dv + (1 − p)μW(dv),

so F has an absolutely continuous component.

Appendix B: Estimates for the Sobolev norms in Lemma 4.10

This section is devoted to the proof the estimates used in Lemma 4.10, that is, the following.

Lemma B.1. Let d ≥ 1, m ∈ N, p ≥ 1. Then there exists C > 0 such that for every K > 1 and
X = (X1, . . . ,Xd) the following estimates holds:∥∥�K(X)X

∥∥
m,p

≤ CK
(
1 + ‖X‖1,m,(m+1)p

)m+1
, (B.1)∥∥L(�K(X)X

)∥∥
m,p

≤ CK
(
1 + ‖X‖1,m+1,4(m∨2)p

)2m+3(1 + ‖LX‖m,4p

)
, (B.2)

where �K(X) denote any function in C∞(Rd) such that 1BK(0) ≤ �K ≤ 1BK+1(0) and whose
derivatives are uniformly bounded, that is there exists L > 0 such that |∂α�K | ≤ L for every
multiindex α.

Proof. For a multiindex α, one has

Dα

(
�K(X)Xi

)= Dα�K(X)Xi +
∑

β,γ∈Aα,|β|≥1

Dγ �K(X)DβXi,
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where the condition “β,γ ∈ Aα” means that β,γ is a partition of α. Moreover, one has

Dγ �K(X) =
|γ |∑
�=1

∑
|ρ|=�

∂ρ�K(X)
∑

β1,...,β�∈Bγ

Dβ1X
ρ1 · · ·Dβ�

Xρ�,

where “β1, . . . , β� ∈ Bγ ” means that β1, . . . , β� are non-empty multiindexes of γ running
through the list of all of the (non-empty) “blocks” of γ . Then, for |γ | ≤ m we obtain

∣∣Dγ �K(X)
∣∣≤ C1|X|≤K+1

(
1 +

∑
1≤|ρ|≤m

|DρX|
)m

. (B.3)

So, for |α| = m we have ∣∣Dα

(
�K(X)X

)∣∣ ≤ CK
(
1 + |X|1,m

)m+1

and (B.1) follows. Consider now L(�K(X)Xl). We have

−L
(
�K(X)Xl

) = −L�K(X)Xl − �K(X)LXl +
n∑

k=1

d∑
i=1

D(k,i)�K(X)D(k,i)X
l.

We use now the inequality ‖XY‖m,p ≤ C‖X‖m,2p‖Y‖m,2p . But concerning the first term of the
right-hand side of the equality above, we take care of the derivatives of �K as done to obtain
formula (B.3) and we get∥∥L(�K(X)X

)∥∥
m,p

≤ C
∥∥L�K(X)

∥∥
m,2p

(‖X1|X|<K+1‖2p + ‖X‖1,m,2p

)
≤ CK

∥∥L�K(X)
∥∥

m,2p

(
1 + ‖X‖1,m,2p

)
.

So, we obtain∥∥L(�K(X)X
)∥∥

m,p
≤ C

(
K
∥∥L�K(X)

∥∥
m,2p

(
1 + ‖X‖1,m,2p

)
+ ∥∥�K(X)

∥∥
m,2p

‖LX‖m,2p + ∥∥�K(X)
∥∥

1,m,2p
‖X‖1,m,2p

)
.

(B.3) gives that ∥∥�K(X)
∥∥

m,2p
≤ C

(
1 + ‖X‖1,m,2mp

)m
, (B.4)

so we can write∥∥L(�K(X)X
)∥∥

m,p
≤ CK

(
1 + ‖X‖1,m,2mp

)m+1(1 + ∥∥L�K(X)
∥∥

m,2p
+ ‖LX‖m,2p

)
.

It remains to estimate ‖L�K(X)‖m,2p . Since

L�K(X) =
d∑

j=1

∂j�K(X)LXj − 1

2

d∑
i,j=1

∂i∂j�K(X)
〈
DXi,DXj

〉
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we have∥∥L�K(X)
∥∥

m,2p
≤ C

(∥∥∇�K(X)
∥∥

m,4p
‖LX‖m,4p + ∥∥∇2�K(X)

∥∥
m,4p

‖DX‖2
m,8p

)
.

An inequality analogous to (B.4) can be proved for ∇�K and ∇2�K , so we obtain∥∥L�K(X)
∥∥

m,2p
≤ C

((
1 + ‖X‖1,m,4mp

)m‖LX‖m,4p + (1 + ‖X‖1,m,4mp

)m‖X‖2
1,m+1,8p

)
≤ C

(
1 + ‖X‖1,m+1,4(m∨2)p

)m+2(1 + ‖LX‖m,4p

)
.

Therefore, we can write∥∥L(�K(X)X
)∥∥

m,p
≤ CK

(
1 + ‖X‖1,m,2mp

)m+1(1 + ‖X‖1,m+1,4(m∨2)p

)m+2

× (1 + ‖LX‖m,4p + ‖LX‖m,2p

)
≤ CK

(
1 + ‖X‖1,m+1,4(m∨2)p

)2m+3(1 + ‖LX‖m,4p

)
and the statement holds. �

Appendix C: A backward Taylor formula for the Gaussian law

Proposition C.1. Let G denote a centred normal distributed r.v. in R
N . Then for every L ∈ N

and g ∈ C
2(L+1)
b (RN) one has

g(0) =
L∑

�=0

(−1)�

2��!
∑

|α|=2�

θαE
(
∂αg(G)

)+ (−1)L+1

2L+1L!
∑

|α|=2(L+1)

θα

∫ 1

0
sL

E
(
∂αg(

√
s G)

)
ds, (C.1)

where for |α| = 0 then θα = 1 and for |α| = r > 0, θα = 1 if r is even and α2j−1 = α2j for every
j = 1, . . . , r/2, otherwise θα = 0.

Proof. Let W denote a Brownian motion in R
N . By Itô’s formula, one has E(g(W1)) = g(Wt)+

1
2

∫ 1
t
E(�g(Ws)) ds, so we can write

E
(
g(Wt)

)= g(W1) − 1

2

∑
|α|=2

θα

∫ 1

t

E
(
∂αg(Ws)

)
ds. (C.2)

Taking t = 0, this gives

g(0) = E
(
g(W1)

)− 1

2

∑
|α|=2

θα

∫ 1

0
E
(
∂αg(Ws)

)
ds.
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By iteration, we write

g(0) = E
(
g(W1)

)− 1

2

∑
|α|=2

θαE
(
∂αg(W1)

)− 1

2

∑
|α|=2

θα

∫ 1

0

[
E
(
∂αg(Ws)

)−E
(
∂αg(W1)

)]
ds

and by using (C.2) we get

g(0) = E
(
g(W1)

)− 1

2

∑
|α|=2

θαE
(
∂αg(W1)

)+ 1

4

∑
|α|=4

θα

∫ 1

0
uE
(
∂αg(Wu)

)
du.

Further iterations then give

g(0) =
L∑

�=0

(−1)�

2��!
∑

|α|=2�

θαE
(
∂αg(W1)

)+ (−1)L+1

2L+1L!
∑

|α|=2L+2

θα

∫ 1

0
sL

E
(
∂αg(Ws)

)
ds.

(C.1) now follows because, for every s ∈ [0,1], √
s G and Ws have the same law. �
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