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The aim of this paper is to study the asymptotic expansion in total variation in the central limit theorem when
the law of the basic random variable is locally lower-bounded by the Lebesgue measure (or equivalently,
has an absolutely continuous component): we develop the error in powers of n~Y2 and give an explicit
formula for the approximating measure.
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1. Introduction

The aim of this paper is to study the convergence in total variation in the Central Limit Theorem
(CLT) under a certain regularity condition for the random variable at hand. Given two measures
W, vin RY, we recall that the distance in total variation is defined as

dva,v):supH/fdu—/fdv

2||f||oo§1}.

Let F be a centred r.v. in RY with identity covariance matrix and let Fy, k € N, denote indepen-
dent copies of F. We set

1 n
S, =— F.
>

We also define j1,, the law of S, and I' the standard Gaussian law in RV .

The problem of the convergence in total variation for the CLT, that is, drv(u,, ") — 0 as
n — 00, is very old. Prohorov [14] in 1952 proved that, in dimension 1, a necessary and sufficient
condition in order to get the result is that there exists ng such that the law of ZZOZ | Fk has an
absolutely continuous component (see next Definition 2.1). Then many related problems have
been considered in the literature, such as the generalization to the multidimensional case, the
study of the speed of convergence, the convergence and the development of the density of S,,, if it
exists, or the case of ar.v. F whose law has not necessarily an absolutely continuous component,
the latter implying the use of a different distance, which is similar to the total variation one but
defined on a special class of test functions, typically indicator functions of special sets.

1350-7265 © 2016 ISI/BS


http://www.bernoulli-society.org/index.php/publications/bernoulli-journal/bernoulli-journal
http://dx.doi.org/10.3150/15-BEJ734
mailto:bally@univ-mlv.fr
mailto:caramell@mat.uniroma2.it

CLT development in total variation distance 2443

A first class of results has been obtained by Rao [15] and then improved by Battacharaya [6]:
in [15], one proves that the convergence in the CLT holds when the test function is the indicator
function of a convex set D. This result is improved in [6] where D is no more a convex set
but a set with a boundary which is small in some sense. An overview on this topic is given
in [5]. But it turns out that one is not generally able to extend the above mentioned results to a
general set D (and so to general measurable and bounded test functions), because thanks to the
Prohorov’s result, one needs to assume a little bit of regularity on the law of the basic random
variable F which comes on in the CLT. In such a case, Sirazhdinov and Mamatov [16] prove that
if F e L3() then the density of the absolutely continuous component of the law 1, converges
in L'(RY) to the standard Gaussian density and, therefore, the convergence of the CLT holding
in total variation distance, at speed 1//n. This is done in the one-dimensional case, but it works
as well in the multidimensional case. The second part of the book [5] gives a complete view
on the recent research on this topic, mainly on the development of the density of S, around the
standard Gaussian density. Results concerning the convergence in the entropy distance (under
the same type of hypothesis) has been recently obtained in [7].

This paper contributes in this direction by giving the precise expansion of the CLT in total
variation distance. More precisely, we assume that the law of F is locally lower bounded by the
Lebesgue measure Leby on RY in the following sense: there exists an open set Dy and gy > 0
such that for every Borel set A one has

P(F € A) > & x Leby (A N Dy). (1.1)

We will show that this is equivalent to the request that the law of F has an absolutely continuous
component (and moreover, we can construct such absolutely continuous measure in order that
the associated density is a non-negative lower semicontinuous function, see Appendix A). So
it is clear that our hypotheses overlaps the assumption of the existence of the density but one
cannot reduce one to another (if the law of F gives positive probability to the rational points then
it is not absolutely continuous; and doing convolutions does not help). Let us give a non-trivial
example. Consider a functional F' on the Wiener space and assume that F' is twice differentiable
in Malliavin sense: F € D?” with p > N where N is the dimension of F. Let o be the Malliavin
covariance matrix of F. If P(detor > 0) = 1 then the celebrated criterion of Bouleau and Hirsh
ensures that the law of F' is absolutely continuous, so we are in the classical case (in fact it
suffices that F € D'-2). But if P(detor > 0) < 1 this criterion does no more work (and one may
easily produce examples when the law of F' is not absolutely continuous). In [3], we proved
that if P(detor > 0) > O then the law of F has the property (1.1). Notice also that in the one-
dimensional case (N = 1) the fact that F' is not constant immediately implies that P(of > 0) > 0.
Indeed, in this case o = |DF |2 and if this is almost surely null, then F is constant.

Let us introduce our results. We consider a random variable F € L2(RN) which satisfies (1.1),
such that E(F) = 0 and the covariance matrix of F is the identity matrix. We take a sequence
Fi,k € N of independent copies of F and we denote by u, the law of S, = nl% Y et Fr

and by I' the standard Gaussian law on RY. Under these hypotheses, we first prove that
lim;,— o0 dTv(ttn, I') = 0 where dtv is the total variation distance. Then we give the asymp-
totic development, which we are able to find according to additional requests on the existence of
the moments of F. More precisely, we get that, for r > 2,if F € L+l (R2) and if the moments of
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F up to order r agree with the moments of the standard Gaussian law then under (1.1) one has

1

dry (. T) = C(1+E(FIH) M s

In the general case, we obtain the following asymptotic expansion. For r > 2 and n > 1, we
define a measure on RV through

[r/3]
1
T, (dx) =y (x) (1 + 2_:1 W}Cm(x)> dx, (1.2)

where y denotes the probability density function of a standard normal random variable in RY
and /C;, (x) is a polynomial of order m ([-] standing for the integer part). Note that for »r =2 one
gets I'y, (dx) = y(x)dx =T'(dx). So, we prove that if F L"T1(Q) with r > 2 then there exist
polynomials /C,;,(x), m =1, ..., [r/3] (no polynomials are needed for r = 2), such that, setting
Iy, r the measure in (1.2) and p, the law of S,,, under (1.1) one has

1

1y /31141
drv(pn, Tn.r) SC(I +E(|F| )) X ROE SR

(1.3)
where C > 0 depends on r and N. So, in order to improve the development (and the rate of
convergence) one needs to pass from the request F € L* to F e L3**3 k> 1.

The development given in (1.3) is analogous to the one obtained in Theorem 19.5, page 199 in
[5]. But our development is explicit: in [5], the result is obtained using the Fourier transform and
consequently the coefficients in the development involve the inverse of the Fourier transform,
whereas here we give an explicit expression for the polynomials /C;, (x), as a linear combination
of the Hermite polynomials (see next formula (4.38)).

The main instrument used in this paper is the Malliavin-type finite dimensional calculus de-
fined in [4] and [3]. It turns out that for a random variable which satisfies (1.1) a very pleasant
calculus may be settled. The idea is that (1.1) guarantees that the law of F' contains some smooth
noise. Then, using a splitting procedure (see Proposition 3.1 for details), we may isolate this
noise and achieve integration by parts formulae based on it.

In the last years, a number of results concerning the weak convergence of functionals on the
Wiener space using Malliavin calculus and Stein’s method have been obtained by Nurdin, Pec-
cati, Nualart and Poly; see, for example, [9—12]. In particular, in [10] and [9] the authors con-
sider functionals living in a finite direct sum of chaoses and prove that under a very weak non-
degeneracy condition (analogous to the one we consider here) the convergence in distribution of
a sequence of such functionals imply the convergence in total variation. The results proved in
these papers may be seen as variants of the CLT but for dependent random variables — so the
framework and the arguments are rather different from the one considered here.

2. Main results

Let X be a random variable in RV and let sy denote its law. The Lebesgue decomposition of
Wx says that there exist a measure p(dx) = u(x) dx, thatis, pu is absolutely continuous w.r.t. the
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Lebesgue measure, and a further measure v which is singular, that is, concentrated on a set of
null Lebesgue measure, such that

ux(dx)=pux)dx +v(dx). 2.1

Definition 2.1. X is said to have an absolutely continuous component if the absolutely continu-
ous measure i in the decomposition (2.1) is not null, that is, v(RY) < 1.

Definition 2.1 plays a crucial role when dealing with the convergence of the Central Limit

Theorem (CLT) in the total variation distance dy. We recall the definition of dv: for any two
measures i and v in RV then

dva,v):supH/fdu—/fdv

iIIfIIoosl}.

We discuss here the CLT in total variation distance, so we consider a sequence {Fy}; of i.i.d.
square integrable random variables, with null mean and covariance matrix C(F). We set A(F)
the inverse of C (F)/2 and

1 n
Sp=— A(F)Fy.
0 ﬁ]; (F)Fy
We recall the following classical result, due to Prohorov [14].

Theorem 2.2 (Prohorov). Let w, denote the law of S, and T denote the standard Gaussian
law in RN . The convergence in the CLT takes place w.rt. the total variation distance, that is
drv(pn, I') = 0 as n — oo, if and only if there exists ng > 1 such that the random variable S,
has an absolutely continuous component.

Hereafter, we assume that the common law of the Fj’s has an absolutely continuous compo-
nent, and this is not a big loss in generality. In fact, due to the Prohorov’s theorem, otherwise we
can packet the sequence { Fy}, in groups of ng r.v.’s, so we can deal with

. 1 I B 1 ®tDno
Sy =— F where F = — F;.

Let us introduce an equivalent way to see probability laws having an absolutely continuous com-
ponent. From now on, Leby denotes the lebesgue measure in RV .

Definition 2.3. A probability law 1 in RN is said to be locally lower bounded by the Lebesgue
measure, in symbols u > Leby, if there exist eg > 0 and an open set Dy C RY such that

L(A) > egLeby(ANDg) VA eB(RY). 2.2)

We have the following.
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Proposition 2.4. Let F be a rv. in RN and let wr denote its law. Then the following statements
are equivalent:

(i) nr > Leby;
(i) F has an absolutely continuous component;
(iii) there exist three independent r.v.’s x taking values in {0, 1}, withP(x =1) > 0,and V, W
in RN with V absolutely continuous, such that

P(xV + (1 — )W €dv) = ur(dv). (2.3)

Moreover, if one of the above conditions holds then the covariance matrix C(F) of F is invert-
ible.

The proof of Proposition 2.4 is postponed to Appendix A. As an immediate consequence
of Proposition 2.4, if ur > Leby then A(F) > 0, A(F) denoting the smallest eigenvalue of
Cc (F)=C(F)~'. We denote through A(F) the associated largest eigenvalue.

We are now ready to introduce the main contributions of this paper. We first give a new proof
of the convergence in total variation in the CLT.

Theorem 2.5. Suppose that jur = Leby, E(F) =0 and E(|F|?) < 0cc. Then

n—>oo
where |, denotes the law of S,, and T is the standard Gaussian law in RN,

This is done especially in order to set up the main arguments and results from abstract Malli-
avin calculus coming from representation (2.3) that are used throughout this paper. Let us stress
that Nourdin and Poly in [12] have dealt with r.v.’s fulfilling properties that imply (2.3), to which
they apply results from [2] about a finite dimensional Malliavin-type calculus.

Afterward, we deal with the estimate of the error. In fact, by means of additional requests of
the existence of the moments of F up to order >3, we get the asymptotic expansion in powers of
n~1/2 of the law of S, in total variation distance. We first obtain the following.

Theorem 2.6. Suppose that wr = Leby and E(F) = 0. Let w, denote the law of S, and T’
denote the standard Gaussian law in RN . Let r > 2. IFE(|F|"t") < oo and all moments up to
order r of A(F)F agree with the moments of a standard Gaussian r.v. in RY then

1
/31

dry(un, ) < C(L+E(IF|"M)) L—D/2

(2.5)

where C > 0 depends onr, N, .(F) and x(F).
In the general case, that is the moments do not generally coincide, we get the following ex-
pansion. For r > 2 and n > 1, we define a measure on RN through

[r/3]
1
T (dx) =y (x) (1 + m; WIC,,, (x)) dx, (2.6)
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where y denotes the probability density function of a standard normal random variable in RV
and /C,,, (x) is a polynomial of order m — the symbol [-] stands for the integer part and for r =2
the sums in (2.6) nullify, so that I', 2(dx) = y (x) dx =I'(dx). Then we get the following.

Theorem 2.7. Let r > 2 and E(|F|"t') < co. Then there exist polynomials K, (x), m =
1,...,[r/3] (no polynomials are needed for r = 2), such that, setting Iy, , the measure in (2.6)
and wu, the law of S, one has

[r/3]v1 1

drv(un, 1—‘n,r) = C(l +E(|F|r+l)) m»

where C > 0 depends onr, N, A(F) and A(F).

The statement of Theorem 2.7 is not properly written, because no information is given about
the polynomials KC,,,’s. We observe that in next formula (4.38) we give a closed-form expression
for the /Cp,’s in terms of a linear combination of Hermite polynomials, whose coefficients can be
explicitly written (so not involving inverse Fourier transforms).

Remark 2.8. Let F € D*? with p > N, D*7 denoting the set of the random variables which
are derivable in Malliavin sense up to order k in L? (see Nualart [13]). If P(oF > 0) > 0, oF
standing for the Malliavin covariance matrix of F' (and note that this request is much weaker than
the non-degeneracy of o) then Theorem 2.16 in [3] gives that wr > Leby (and this property
may be strict, that is F may not be absolutely continuous). So both Theorems 2.6 and 2.7 can be
applied.

The rest of this paper is devoted to the proofs of the above results: Section 3 allows us to prove
Theorem 2.5 and the remaining Theorems 2.6 and 2.7 are discussed in Section 4.

3. Convergence in the total variation distance

The aim of this section is to prove Theorem 2.5, whose proof requires some preparatives which
will be useful also in the sequel.

3.1. Abstract Malliavin calculus based on a splitting method

We consider a random variable F € RY whose law pr is such that £z > Leby. As proved in
Proposition 2.4, the covariance matrix C(F) of F is invertible. So, without loss of generality we
can assume from now on that C (F) is the identity matrix, otherwise we work with A(F)F, A(F)
being the inverse of C(F)'/2,

We consider the following special splitting for the law of uF, giving, as a consequence, rep-
resentation (2.3). We start from the class of localization functions ¥, : R — R, a > 0, defined
as
2

a

Yalx) = 1|x|§a +6Xp<1 - m>1a<x|<2a- 3.1
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Then v, € CZ°(R) (the subscript “c” standing for compact support), 0 < 1, < 1 and we have the
following property: for every k, p € N there exists a universal constant Cy_, such that for every
X € ]R+

C
Ya ()| () ()] < 2. (3.2)

By the very definition, if wr > Leby then we may find vy € RY,ry > 0 and gy > 0 such that
P(F € A) > g9 Leby (AN By, (vp)). Then for every non-negative function f : RN - R we have

E(f(F)) = &0 /RN Yros2(lv — vol) f (v) dv. (3.3)
We denote
MO=804N Yros2(lv — vol) dv. 34

Of course, mg > 0. But, up to choose go smaller, we also have my < 1. So, we consider three
independent random variables x € {0, 1} and V, W € RV with laws

P(x =1) = mo, P(x =0)=1—mo,

P(V € dv) = ;—(;wm/z(w — vol) dv, (3.5)
P(W edv) = o (mr(dv) — 0¥y 2(lv — vol) dv).
Then
P(xV + (1 — )W € dv) = pur(dv). (3.6)

So, we have just proved the following.
Proposition 3.1. If ur > Leby then representation (2.3) holds.
From now on, we will work with the representation of ur in (3.6) so we always take
F=xV+d-x)W,

X, V and W being independent and whose laws are given in (3.5).
We come now to the central limit theorem. We consider a sequence y, Vi, Wi € RN keN
of independent copies of x, V, W € R¥ and we take Fy = xx Vi + (1 — xx) Wx. Then we look to

1 < I ¢
So = D Fe = D (Vi (1= x) W),
k=1 k=1

In order to prove the CLT in the total variation distance, we will use the abstract Malliavin
calculus settled in [4] and [3] associated to the basic noise

V=W V)= (Vo V) (V) V) e RV 3.7)
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(this will be done for each fixed n). To begin, we recall the notation and some results from [3].
We work with functionals X = f(V) with f € C;° (RN>*": R), the subscript “b” standing for
bounded derivatives of any order. Then we set

S={f(V): f e CP R R)}

and for a functional X € S we define the Malliavin derivatives

af

0X
Dg.nX =

- = ——(V), k=1,...,n,i=1,...,N. 3.8)
vy vy
The Malliavin covariance matrix for a multidimensional functional X = (X!,..., X d) eS?is
defined as
. n N
oy! =(DX'. DX7)=Y">"DynX' x DX’ i j=1.....d. (3.9)
k=1r=1

We will denote by Ax the lower eigenvalue of ox, that s,

n N
Ay = inf (ox&,&) = inf > > (DX, &) (3.10)
lEl= f=1 i
Moreover, we define the higher order derivatives just by iterating D. We consider a multiindex
a=(ay,...,an) witho; = (kj,i;),kj €{l,...,n},i; €{1,..., N} and we set |a| = m. Then
we define
X
DyX = —————— =0 f(V) (3.11)
AV - aV,!
m 1
with
amf
8af(v) - i il (U)
8vk':; 8vkl

We will work with the norms

X3, = Y IDaXP. XI5 =IXP+IX],. (3.12)
I<|a|<m
1
1X U p = [1XTLm ], = EOXT D)7 UKy = 1X 1 + 1 X . (313)

We define now the Ornstein—Uhlenbeck operator by

n N n N
—LX =" "DuiDuinyX + Y > Dy Xd; vy a(1Vi — vol).- (3.14)

k=1 i=1 k=1i=1
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These are the operators introduced in [4] and [3] in connection to the random variable V in (3.7)
and taking the weights m; = 1. We will use the results from [3] in this framework. In particular,
as a straightforward consequence of Theorem 3.1 in [3] (take ® = 1 therein) and Theorem 3.4 in
[3] (see (3.28) therein), we can state integration by parts formulas and estimates for the weights.
For later use, we resume in the following statement such facts.

Proposition 3.2. X € 8¢ be such that
” (detoy) ™! Hp <00 forevery p > 1.

Set yx the inverse of ox. Then the following integration by parts formula holds: for every ¢ €
Cgo(Rd; R),Y €S, g e Nand forevery B €{l,...,d} one has

E(3p0(X)Y) =E(o(X)Hf (X, Y)),
where dgp (x) = 0,8, - -+ 0,8, @ (x) and the weights Hg (X, Y) are recursively given by:

e ifg=1,then

d

n N
Hj(X.Y)=Hp(X.Y) = Z(Yy;ﬂLxr =33 D (Yvi’) Duin X )

k=1 i=1

r=1

=1,
e ifg>1,then

HY(X.Y) = Hp, (X HE X)), Bell ay.

Br-s
Moreover, the following estimate holds: for every 8 € {1, ...,d}? and m € N then
|HE(X. V)], < CApig ()Y g, (3.15)
where Aj(X) = (1v (detoy) ™) (1+ X390 + 1LX12)),

| - |m being defined in (3.12).

We come now back to S,,, which we write as

l n
Sp= 7 k;(xwk + (1 = xx) Wi).

Foreveryk=1,...,nandl,i=1,..., N, we have
! 1
D(k,i)Sn = ﬁXkll:i.
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As a consequence, we obtain

1 n
= — 1, 3.16
o5, =~ ;;Xk (3.16)

where [ denotes the identity matrix, and

l n
As, = — . .
=0 M (3.17)
k=1
The derivatives of order higher than two of S, are null, so we obtain for every g € N

1 ¢ 1 «
Sl =~ D =l ISulg ISP+ =D =187+ 1, (3.18)
k=1 k=1

and consequently
I1Snllt,g,p <1, I1Snllg,p < IISnllp + 1. (3.19)

In particular, [|S,|l1,q, p is finite for every g, p whereas || S, |4, » is finite according to F' € LP ().
Let us now compute LS,,. We have

n N n N
—LSy =" DuiyDiyS+ Y Y Dy Sydi In vy 2 (1 Vi — vol)

k=1i=1 k=1i=1
1 n

= D xwdi gy 2 (1Vie — vol).
k=1

We now estimate ||LSy |4, p-

Lemma 3.3. For every q € N, there exists a universal constant Cy such that

ILSnllg,p < (3.20)

49
qg+1°
o

Proof. The basic fact in our calculus is that

B0 02V = 00) = 2= [ 30210 = vol) x (0 = vol) o

&0
) iVro2(1v — vol) dv

We denote

Ok = VInir2(Vi — vo)
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and we have
E(0}) = E(1n 2(1Ve — wol)) =

So > r_y Xk Qi, n € N, is a martingale and the Burkholder’s inequality gives

B(|Ls! ) ( )SCE((gng|Qu2)M) < ggz@ugu")

By (3.2),

ZXka

1
E(loi|") <cC p
o
so that

C
ILSullp < —.
ro

We go further and we compute D ;)LS,. We have

1
—D.i)LS), = []; Xk Dik,iy 0 In Y 2 (1 Vie — wol) = ﬁXkD(k,i)al In ¥y /2(1Vi — vol)

so that

1 & 2
IDLS, |3 < |LS,|* + ;;;w(k,i)vmwro/z(m — vgl)|
=] 1=

C n N
< ILSuP 4+ 30 3 [0 In g 2(1Ve = vol)

k=li,j=I

Once again using (3.2), we obtain
C
10:0; Iy 2 (1 Vi — vol)Hp < >
0

and consequently

C
ILSnll1.p < ok
0
For higher order norms, the estimates are similar. |

We add a final property on the behavior of the Malliavin covariance matrix that will be used
in next Section 4.2.
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Lemma 3.4. Suppose that ur = Leby. There exists a universal constant C such that for every
n € N and every

e<en=2""ml (3.21)
then
n
P(detog, <e)<C -, 3.22
(detos, <¢) < exp( 4(1/m0_1)> (322)
mq being defined in (3.4).

Proof. Using (3.17),

1 n
P(det <e)<P(rg, < VN < — —mo) <e'/N —myg ).
(detos, <&) <P(rs, <¢ E xe <&/ nkE_I(Xk 0)=<¢ 0

Since ¢!/N 5 my, the above term is upper bounded by

Xk =mo _ m
Z(X" —mo) = __mo 1/2 Z "1/22—
k= mo Um()

with vy, = (mo(1 — mg))!/? = Var(x;). We denote by a = nl/zz':f—o and we use the Berry—
mo

Esseen theorem in order to upper bound this quantity by

a 2
C/ exp(—x?/2) dx < C/eXp<_aT) - C/eXp<_m>' H

3.2. Proof of Theorem 2.5

We need now a localized variant of Lemma 2.5 and Theorem 2.7 in [3]. So, we start with the
basic definitions.
We consider a localizing r.v. ® taking values in [0, 1] of the form

O =1v,(2), a>0,Z¢eS, (3.23)
Y, being defined in (3.1). We set Pg and Eg through
dPe =0OdP and Eg = expectation w.r.t. Pg.
For X € 8¢ , we define the localized Sobolev norms
IXllp.0 =Eo(IX1?)". IXllmp.o=Ee(1XI7,)"” and [Xlnpo=Ee(Xlh)"".
|X|1,m and | X|,, being given in (3.12), and we set

Apo(X)=[Xl3p.0 +[LX]1,p6- (3.24)
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We also consider the law of a d-dimensional r.v. X under Pg: it is the measure in R? defined as
ux,e(dx) =Pe(X €dx).

We allow the case a = 400 in (3.23): this gives ® = 1, so Pg = P and no localization is taken
into account.
Finally, for k € N, we define the distance di between two measures i, v in RY as

di (. V)=sup”/fdu—/fdv

where || fllk,co = ZOslalsk 194 f lloo- Then we have dy = dry and d| = dpm (Fortet—-Mourier
distance).

The following result is a localized version of Lemma 2.5 in [3]. Here, y;5 denotes the density
of the centred normal law of covariance 8§ x I on R?, § > 0 (I denoting the identity matrix) and
f * ys denotes the convolution between f and ys.

koo < 1}, (3.25)

Lemma 3.5. Let © be a localizing rv. as in (3.23). Then, for every ¢ > 0,8 > 0, X € 8¢ and for
every bounded and measurable function f : R — R one has

8 a
[Eo(f (X)) —Eo(f *v:(X))| < Cllflloo<IP’<->(0X <e&)+ ;/—1,—(1 +Ape(X)) ) (3.26)

where A, o(X) is defined in (3.24) and C, p, a > 0 are suitable universal constants depending
on the dimension d only.

Proof. The proof is identical to the one of Lemma 2.5 in [3] (the case ® = 1 being the same
result): just consider the localized measure Pg instead of P in the proof of Lemma 2.5 in [3]
(namely, replace the localizing variable ®, therein with ©,0). (|

We state now a variant of Theorem 2.7 in [3] that takes into account localizations.

Theorem 3.6. Let ®, U be localizing rv.s as in (3.23) and let X, Y € 84 be such that A o(X),

A;,u(Y) < oo, such quantities being defined in (3.24). Let ux, @ denote the law of X under Pg

and let py y denote the law of Y under Py . Let k € N. Then there exist some universal constants
C, p,a,b > 0 (independent of ®, U, X, Y, k) such that

c 1/(k+1

do(ux,e, hy,u) < s_”(l + ALe(X) + ALy (M) (de(kx,0. ky.0)) /0D

(3.27)
+ CPg(detoy <€) + CPy(detoy < €).

Proof. We take a bounded and measurable function f and we write

|Eo(f(X)) —Eu(f(M)| < [Eo(fX) —Eo(f *ys(X))|+ |Ev(f(X)) —Ey(f * ys(¥))]
+ |Eo(f * v5(X)) —Eu (f * ys(Y))]
= lo(X)+ Iy(Y)+lou(X,Y).
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By using (3.26), we get
V8 a
lo(X)+1Iu(¥Y) =Cl flloc| Polox <€) +Pyloy <&) + g—p(l +Ape(X)+A,u(M)" ).

Moreover, by recalling that || f * yslk,c0 < C372|| fll oo, We have

lo.u(X,Y) < C572|| fllsodi (ux.0, 1y,0)-

Following the proof of Theorem 2.7 in [3], we now insert everything, optimize w.r.t. § and we
get the result. (I

Remark 3.7. Lemma 3.5 and Theorem 3.6 are valid not only with the basic noise Vi,...,V,
introduced in Section 3.1. Actually, both results remains true whenever the basic noise fulfils the
abstract integration by parts framework developed in Section 2.1 of [3], the one considered in
this paper being a particular case.

We are finally ready for the following.
Proof of Theorem 2.5. Let G denote a standard normal r.v. in RV . For each K > 1 set
On,xk = VK (Sn), dPg, x = Op xdP and Og =Yg (G), dPg, = Ok dP,

¥k being defined in (3.1). Let u, g be the law of S, under Pg, , and g be the law of G under
IP)(-)K , that is,

Unk(dx) =Pg, ((Sp €dx) and pg(dx) =Py (G €dx).
Consider a measurable function f : RY — R such that || f s < 1. We write

[E(£(S) —E(f(®)] < [E(f(S) = On))| +|E(F(G)(1 - Ok))|
+|E(f(S)Onk) —E(f(G)Ok)|.

Using the Chebyshev’s inequality,
C
[E(f(S) (1 =80, k)| < 1 f P (ISn] = 2K) < 22 1/ lloo

and a similar estimates holds for |E(f(G)(1 — ®g))|. We conclude that

C
S 1!IE(f(Sn)) ~E(f(@) =45 + S 1!IE(f(Sn)®n,K) —E(f(G)Ok)|.

We obtain

. c .
limsup sup |E(f(Sn) —E(f(G))| < w2 THimsupdry (un.k . 1K)
n—o0

=00 || fllo=1
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forevery K > 1. If we show that, for each fixed K, drv(in.x, tx) — 0as n — 0o, the statement
will follow by letting K go to +o00. So, we study drv (u,, k. k), for a fixed K > 1.

We use Theorem 3.6 with ® =0, x, X = S,, U = Ok and Y = G. Here, the noise includes
the Gaussian r.v. G, so we add it to the underlying noise (recall Remark 3.7) in a standard way —
we stress this trick because it will be used also in the sequel, for example, in Lemma 4.12.

Without loss of generality, we assume that G is defined on the same probability space and is
independent of V1, ..., V,. We consider as basic noise the one coming from (G, Vi, ..., V). For
X=¢(G,Vi,..., V) with ¢ € CPRNITV; R), we set

0

bonX =35

¢(G7 Vla"'v Vn)

and D ;) fork=1,...,n as in (3.8). The Ornstein—-Uhlenbeck generator takes into account the
contribution from the standard Gaussian G, so it becomes

N N
—LX =Y Do.ihDonX - DoinXG'
i=1 i=1

n N n N
+ Z Z D,iy Dke,in X + Z Z D ,iy X0 In ¥y 12 (IVie — vol).

k=1i=1 k=1i=1
And if X is a random vector in Rd, the associated Malliavin covariance matrix is

n N

G;(}]:ZZD(k’r)XiXD(kJ)Xj, i,j=1,...,d.
k=0r=1

It is standard to see that the above quantities bring to an abstract Malliavin calculus as devel-
oped in [3]. Of course, when the randomness does not depend on G then everything agrees with
what developed in Section 3.1 and when the randomness does not depend on V then we get the
standard Gaussian—Malliavin calculus. So, we use Remark 3.7 and we apply Theorem 3.6. In
order to use (3.27), we need to study Ag, ,(S;) and Ag, (G). By (3.18) and by recalling that
1{@)1,1(750} |S,| < 2K, we obtain

”Sn”q,p,@,,_[( + HLSn”q—Z,p,@,LK < CK.

Standard computations give |Glly,p,0x + ILGllg—2,p.0x < Gllg,p + ILGllg—2,p < C, so we
can write
A, x (Sn) + Aek (G) < CK,

C > 0 being independent of K and n. Moreover, o¢ is the identity matrix. And since |®, g| <1
and yi, k € N are i.i.d., the law of large numbers says that for eUN < E(xx) = mo one has

n—0o0 n—0o0 n—00

1 n
limsup P, , (detos, < &) <limsupPe, . (rs, <&'/") < limsupIP’<— > x = gl/N) =0
) s n
k=1
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in which we have used (3.17). We apply now Theorem 3.6 withk =1and e < 1 A mf)v : by passing
to the limit in (3.27) we obtain

lim sup do (s, . 1) < —(1+CK)bhmsudeM(unK k)2

n—oo n—oo

So, it remains to show that dpv (in x, k) — 0 as n — oco. Since Y € C.(RM), the CLT gives
limEe, (fSw) = lir{nE(WK(Sn)f(Sn)) =E(vx(G) f(G)) =Eex (f(G))

for every f € C(R?). So, if we define the probability laws

. 1 .
fn,k (dX) = ————pn k (dx) and fig(dx)= pk (dx),

E(©u,x)" E(©k)

we get (i, k — Lk weakly as n — 00. Since weak convergence of probability laws is equivalent
to convergence in dry (see, e.g., Theorem 11.3.3 in [8]), we have dpm(fin k, k) — 0 as n —
oo. Finally, straightforward computations give

dem(fn, K, K) < ’E(®n,l() - ]E(®1<)| +drm(fin, k. k) — 0

as n — 00, and the statement follows. [l

Remark 3.8. We note that if C(F) was not the identity matrix then (3.16) and (3.17) would
become

1l ~ 1 &
o5, =~ C(F) and s, =a(F)~>

k=1 k=1
respectively, where c (F) = C(F)~! and A(F) is the smallest eigenvalue of c (F). This means
that the estimates in (3.19) and (3.20) continue to hold up to a multiplying constant that now
depends on A(F) and A(F) as well, the latter denoting the largest eigenvalue of C(F ).
4. Asymptotic expansion

The aim of this section is to prove Theorems 2.6 and 2.7. We first study the case of smooth
functions and then, using a regularizing argument, we will be able to deal with general functions.

4.1. The development for smooth test functions

We recall that we are assuming that the r.v. F has null mean and non-degenerate covariance
matrix, that we have set equal to the identity matrix. And we have set

Fi=xVi+0—-x)W;
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so that S, = le VFi= [Zl 1(xiVi + (1 — xi)W;). Moreover, we consider G; =

(Gl ey GIN ),i € N, some independent standard normal random variables in RN, For k €
{0, 1, ..., n}, we define

(ZF+ZG> <ZF+ZG> .1

i=k+1 i=k+1

in which we use the convention that the sums are null when done on the indexes i € {ig, ..., 11}
with ig > i;. Therefore, one has

l n
Sp=S, and Si=-—=>"G;
ﬁi:]

and S,? is a standard normal random variable in RY . Moreover,

—~ F —~ G

k k k k—1 % k
S, =5, + ﬁ and S, =S, + «/_ﬁ 4.2)
In the sequel, we will use the following notation. For a multiindex o = («¢g,...,0) €
{1,...,N}" and x = (x],...,xN) we denote x% = I—[lex"‘i. We also denote by 9, =

dye - - - Oyer the derivative corresponding to « and by || = r the length of «. We allow « to
be the null multiindex: in this case, we set || =0, 9, f = f and x¥ = 1.

Moreover, we will use the following form of the Taylor formula of order » € N: for f €
Cr+1 (RN ),

"1
FEAN=FO+Y = D duf@Y +U f(x,y) (4.3)
p=1""lal=p
with
1
U f ) = / (1= 3) 30 f(x + Ay) . (4.4)
\ocl r+1

‘We notice that for some ¢, > 0 it holds
U £ )| < eyl F D000 4.5)

1 .
where || - [|41,00 is the usual norm on C; ™ R™): | fllr41.00 = Y41 <11 19 f lloo-

For a multiindex o = (eq,...,0;) € {1, ..., N}, thatis, |a| = r, we now set
r r
Ay =E(F*) —E(G%) :1{«:(]‘[ F“f) —]E(H G“f) (4.6)
i=1 i=1
and 0y = 1if r iseven and az; 1 = apj forevery j =1,...,r/2, otherwise 6, = 0. For r =0,

we have o = ¥ and we set Ag =0 and 6y = 1. It is clear that A, = 0 for |«| <2 and, for r > 3,
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the assumption sup|, <, |Aq| = 0 means that all moments of F" up to order r (and not only up to
order 2) agree with the moments of a standard Gaussian random variable.

We now introduce the basic differential operators which appear in the asymptotic expansion:
we set

w :i (-nere S Adbpiga 1=0,1,2 @7
T 2P - /D) «Opop e 2 -

p=0 la|=p |Bl=t—p

Recall that 64 is null when ¢t — p is odd, so the sum actually runs on the indexes p such that
(t — p)/2 € N. The property Ay = 0 if |o| <2 gives that the above sum actually starts from
p =3, so we have

v, =0 ift=0,1,2 and

! (_1)(t—p)/2
Y= Z 20=P/2pl((t — p)/2)! Z Z Ay0p0p0y, t>3.

p=3 le|=p |Bl=t—p

From now on, we use the convention 2223(-) =0if t < 3. So, for example we can write

xp:i: SOMMS Z Z Ay0pd50 t=0,1,2
L2 PR~ p)/2)! e I

p=3 le|=p |Bl=t—p

We note that W, =0 for all + when A, = 0 for all «, that is when all the moments of F agree

with the moments of the standard Gaussian law. And moreover, for every ¢ > 3 and g > O there

exists C; 4 > 0 such thatif f € C;fq then

”\Ijtf”q,oo < Ct,q4 sup [Agl| x ||f||l+q,oo- (4.8)

|oe|=t
We also define the following objects (“remainders”): for r € N,

(—=Dlr=p)/21+1
2AC=PAHTpl[(r — p)/2]!

’
RE,f = = (C-p2A1/2-0-p)/)
p=3

1
x Z Z Aaeﬁfo s[“—P)/Z]E(a,g aaf<§,§+ﬁ%))ds 4.9)

la|=p |BI=2[(r—p)/2]+2

ol r(3.15) oo (5. 5)])

U, f being defined in (4.4). As usual, the first term of the above r.h.s. is set equal to zero if » < 3.
Moreover, [(r — p)/2]1+ 1/2 — (r — p)/2 € {0, 1/2}, hence n~(=P)21+1/2=(=p)/2) <
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Remark 4.1. We note here if F € L? then for every f € C}% one has

1 k
ﬁRl,nf'

And if F € L(Q) then for every f € C; one has

RS =

k Ik Ly
Ronf = ﬁRl,nf = Ronl (4.10)

In fact, for every r > 0,if f € C}, "+2 then

Ur fx,3) =Upi f(x, ) = (r+1)‘ D VS

loe|=r+1

Therefore, for r =0, F € L? and fe C,f we obtain

Rhas =il s(v (3155 )) 200 (3. 7))
() () )

Since 3'71( is independent of F; and Gj and since Ay, = 0 for |a| =1 we get E([(Fr)* —
(GO*1£ ($59) = AE(f (55)) =0, so that

1

As for (4.10), one uses Ay = 0 for |o| =2 and the statement is proved similarly.

Since E(f(Sy)) — E(f(G)) = E(f(S1)) — E(£(S82)), we study E(f (X)) — E(f(Sk~")) for
k=1,...,n and then apply a recurrence argument.

Lemmad.2. LetneN,1 <k <nandr e N.If F € L'"*(Q) then for every f € C; ™ (RN) one
has

E(f(S5) —E(f(s51) = Z vnp/Z > E(f(S)) (r+l)/2Rk i @1

lee|=p

sl ) (o2 )

where
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Proof. We will use the Taylor formula (4.3). Since Sk Sk + 1 %> and Fy is independent of S",
we obtain

B (S9) =E(/ () + Z e 2 B GE() + 5 (1 (3555 ) )

la|=p
k=1 _ Gk 4
We now use that §; 7" =S, + 1 7> the same reasoning for Gy gives

r

B () =EU ) + X o X s G)E(G) +B (v (Sh 35 ) )

pl la|=p

By recalling that A, = E(F%) — E(G%*) =0 for |¢| < 2, the statement holds. O

Our aim is now to replace §,’j by S,’zc’l in the development (4.11). This opens the way to use a
recurrence procedure.

Lemmad.3. LetneN,1 <k <nandr e N.If F € L"T\(Q) then for every f € C;H(RN) one
has
-
_ 1 _
E(f(S,f)) —]E(f(SZf 1)) = Z WE(‘I]Tf(SS 1)) + (r+1)/2Rk f

t=3

where V; and R’r‘n are defined in (4.7) and (4.9), respectively.

Proof. Consider the generical term E(9, f (Sk)) of (4.11). We recall that Sk + Gp//n = Sk 1
and that Sk and Gy are independent. So, we apply the backward Taylor’s formula in (C. 1) to
g(x) = 0y f(Sk + x/4/n) with |a| = p < r, and we expand up to order [(r — p)/2]. Hence we
can write

E (0 f ()
[(r—p)/2]
(=D Z k—1 1 ~ k-1 Gk
= E OpE(0p0 f(Sy D) + —5=Uir—py210 f| Sy ", —= ),
24g'nd [(r=p)/2]+1 P n
g=0 I g2y " v
where

~ G (—Dat! 3 ! G
~k k =k

1B1=29+2
By inserting in (4.11), we get
E(f(Sf))—-E(f(Sf‘l))
r [r— 17)/2]
k—1
Z !np/2 Z Z quvnq Z eﬂE 8/38 f S ))
la|=p q=0 1B1=2¢
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r

. G 1~
k k
Z ,n,;/zlz o p)/2]+1U[(Y—P)/2]aaf(sn7ﬁ>+WRr,nf
o
r e g {
— k—1 k
=2 2 gipgmern 2 2 Bl (7000 + rma R
p=0 ¢=0 lel=p |B|=2q

in which, for the last line, we have used (4.9) and in the first sum we can let the index p start
from 0 because as p =0, 1, 2, A, = 0. Now, by considering the change of variable t = p + ¢ in
the first term, we get

E(/(5:) —E(f(S37")

r t
(_1)([—s)/2
=2 s sy 2 2 Elostaf (7)) Aubp + R !

la|=s |Bl=t—s

r 1 t (_1)([7S)/2 i1 1 k
=ZWIE 2}207”/2“(0_@/2)' DD gt f (S ) Al ) + a7 R
S=

" lal=s|Bl=t—s

1 k—1 1 k
- WE(w’f(S" )+ (r+l)/2R I
t=0

Since V; =0 for ¢ < 2, the statement holds. O

Fork=1,...,n, we define

t
vV =w, and fork=2, P =efV 3 wuth =01 @12
p=0

Notice that \IJ,(k) is a differential operator which is linked to the convolution w.r.t. ¢ between W.

and the preceding operator w*D We also notice that \I/t(k) =0fort =0, 1,2, as an immediate
consequence of the fact that W, =0 for ¢ < 2. So, for k > 2 we can write

t—3
U =10 4 120 Y W w Y =001 (4.13)
p=3

We also define the following reminder operators: for r € N,

k—1 r
oN =SSRy W f+RE, £ (4.14)
j=11t=0

Note that, by definition, CDﬁ,)l =RY and CD(k) = Rk

r,n
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Lemmadd. LetneN,1 <k <nandr e N.If F € L'\ (Q) then for every f € C;H(RN) one
has
_ 1 1
E(f(S0) = E(F (7)) = 22 5B f () + s O

t=3

lI/,(k) and CD% being given in (4.12) and (4.14), respectively.

Proof. We consider the development in Lemma 4.3:

r

1 1
E(/(S2) = E(/(Si) =2 5B/ (S:7) + — oz Rra /-

t=0
For t <r, we apply such development up to order r — ¢ to E(¥; f (S,k,_l)) and we get

r—t

_ _ 1 _ 1 _
E(W f(Sy ") =E(W £ (S:7%) + Y WE(‘I’p‘th(Sﬁ %)+ lef—zl,n‘sz-
p=0
By inserting, we obtain
3 r 1 B r r—t 1 3
B(F(55) ~ B(/(5571)) = 20 B (55 2) + 303 B £(5572)
t=0 t=0 p=0

1 - k—1 1 X
+ n(r-i-—l)/Z ZRr—t,n"ptf + Wanf
t=0

and by a change of variable in the second sum above we get

r r
1 1
k k—1Y) _ Q) ¢(ck=2 k—1 k
U SH) B (5 = 3 0 5682+ ot | SR 4 |
=0 1=0
By iterating the same procedure up to step k, we obtain the statement. [
‘We now set
n n
"= and =) o¥ (4.15)
k=1 k=1

w® and ®*) being given in (4.12) and (4.14), respectively.

Proposition4.5. Letn e N, 1 <k <nandr e N. If F € L't (Q) then for every f € Cj T*(RV)

one has
,

B(F(57)) ~ B(F(S2)) = 22 BT 1 (59) + st

t=3
T and U} are defined in (4.15).
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Proof. Since E(f(57)) —E(f(S9)) = > {_; E(f(S5) —E(f(S5~1))), the statement immedi-
ately follows from Lemma 4.4. ]

We give now an explicit expression for the operators \If,(k) in (4.12) and, as a consequence, for
T;" in (4.15). For W; givenin (4.7),i =1,2, ..., we set

t
Al=w, and fori>1, A=Y w4
p=0

Since W; =0 for t =0, 1, 2, straightforward computations give that .Ai =0if r < 3i, so that we
can also write

t—3i
Al'=w, and fori=>1, AT =N "w A (4.16)
p=3

We can give an alternative representation for the .A; ’s. We set M the set of all multiindexes and
for a, B € M (possibly with different length), we set (o, 8) € M the associated concatenation.
So, for y € M we define

A)/ = {(avﬂ)(aaﬂ)zy}

and
—_1)!81/2
1 _ (=D .
Cy = Z WAaeﬁ and fori > 1,
e | | 4.17
c,'_;,_l_ Z Clci s 1 “4.17)
v = aCpr P
(a,B)eA,

Since c}l, =0if |y| < 3, by recurrence one gets c;', =0 if |y| < 3i for every i. Then straightfor-
ward computations give that, fori > 1,

Ai= Y ¢d,  with{c)} _\q givenin(4.17). (4.18)
yilyl=t
It is immediate to see that for every y € M there exists C such that for every i > 1

i, <C sup [A,]". (4.19)
lal<ly|

As a consequence, for ¢, g > 0 there exists C > 0 (depending on ¢, g only) such that for every
i>1and feC, " ®RN)

| A ], 00 =C sup |Aal’ % [ flli+g.00 < C(LHE(FI) ™" sup |Agl % [ flli+go0-  (4.20)
a|<t

lee| <t

Moreover, the A!’s give the following representation formula for the \Ilt(k) ’s.
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Proposition 4.6. For every k > 1 the operator W% given in (4.12) can be written as

[1/3] '
v =30 1AL =01,

i=1

where Q;_1(k) is defined as follows:

k
Qok)=1 and forl=1, Qi)=Y Qi-1(j—1D.

j=l+1

In particular, Q;(k) =0 if k <l and Q,(k) > 0 otherwise.

Proof. We have already observed that if [¢/3] = 0 then ‘-IJ(k) =W, =0 forevery k and if [¢/3] =

1 then \Ilt(k) = U, for every k (see (4.13)), so the formulas agree. We now assume that the formula
is true for [¢/3] = j > 1 and for every k, and we prove it for [#/3] = j + 1 and for every k. We
recall that W, = &~V + 303w, ¢V Butif [1/3] = j + 1 then [(t — p)/3] < j for any

p=3,...,t— 3, so that by induction \I/( 1) fulfils the formula. Therefore, we can write
. . t=3 [(t—p)/3]
O —wE VLSS 0 - DAL,
p=3 i=1

We do a change of variable in the last sum: the condition i < [(t — p)]/3 gives 3i <t — p, that
is, p <t —3i,and if p >3 theni <[t/3] — 1. So, by using also (4.16) we get

[t/3]-1 1=3i

g® kb = Z Qi l(k—l)Z\L’ Al

[1/3]1-1 [1/3]
Y Qicilk— DA =" 00k — DAL
i=1 i=2
By summing
[t/3] k [t/3] &k
VO =0+ 33" 050G = DAL= Qo)A + DY 0i 20 — DAL
i=2 j=2 i=2 j=2

and the statement holds for Q¢(k) =1 and Q;_(k) = 21;22 Qi—2(j — 1), i >2. We now prove
that Q;(k) =0ifk <l and Q;(k) >0fork>1+1.Forl =1, Q;(k) =k — 1, and the statement
holds. If we assume that Q; (k) is not null for k > [ + 1 then

k k
Qi)=Y Qi — Dlj—iz41 =) Qi(j — Dljz142

j=2 j=2

and this is null for k <[ + 1 and strictly positive if k > 1 4 2. O
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We now give an explicit formula for 7}, namely we write it in such a way that n — T}/ is

a polynomial whose coefficients will be explicitly written. To this purpose, we need to handle
polynomials of the type

n—1

ni—)Sz(n—l)=Zk1, leN,n>1.
k=1

We recall the exact expansion for S;(L) = Z/f: LK

I+1
1 I+1
Si(L) = Tl E ( » )BI+1pU’, 4.21)
p=1

where { B, },, denotes the sequence of the (second) Bernoulli numbers (which are in fact defined

as the numbers for which the above equality holds, see [1]), whose first numbers are given by

By=1 B—1 B—1 B;=0 B—1 Bs=0 B—1
o—1 1—29 2—69 3=y, 4 = 5=VY, 6—42,
1

%,....

B; =0, Bg

Then straightforward computations give that for/ e Nand n > 1,

n—1 1+1
Sin—1)=Y k=Y b4’
k=1 g=0

where the sequence (b;,4)4=o0,....;1+1 1S given by

_ I+1 P - _
bl’q_l—i-—l :Z < » >B1+1_p<q>(—1)1’ 4, g=0,1,...,/+1and/ eN, (4.22)

in which By, [ > 0, denote the (second) Bernoulli numbers. Just as an example:
e [=0:bpo=—1,bp1=1;
e I=1:b10=0,b11=—3.bo=

s

D= D]—

o [=2byg=0,by =}, brr=~—

W=

sba3=
Then one has the following.

Proposition 4.7. Letn>1,r eNand F € Lq"H(SZ), where q, = max(r,2). For t <r, let T/
be defined as in (4.15). Then

[t/3] ‘
T/ =) Pi(n)AL r=0,1,...,
i=1
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where P;(n) =0ifn <i and forn >1i,

i
Pim)=Y aipn®,  i=1,...n (4.23)
with
ayo=0, aj1=1 and fori>1,
; . . 4.24)
1 1 1
ait+1,0 = Zai,zbz,o - Zai,z&(i - D), ait1,p = Z a;i 1b1p, p=1,...,i
1=0 1=0 1=pe1

the sequence (b ) p—o,....i+1 being defined in (4.22) and S;(i — 1) being given in (4.21).

.....

Proof. Since T/ = Y"_ W, we get

[t/3] n

=Y Y QA

i=1 k=1

sothat Pi(n) =Y ;_; Qi—1(k) = Z"H Qi-1(j—1)= Q;(n+1). As a consequence, P;(n) =0
ifn+1<i,thatisn <i.So,letn >i. We have Pi(n) =) ;_, Qo(k) =n and for i > 2,

n+1

n—1 n—1
Pim)=Qin+ D)= Qi 1(G—Dlj1zi= Y Qiik+1)= Y Pijk). (4.25)

j=2 k=i—1 k=i—1

Since Pi(n) =n, we get aj,0 =0 and a;,1 = 1. In order to compute the sequence (a; ;)i=0
we use a recurrence argument. For i > 1, one has

n—1 i
Pipi(n) =) Pi(k) = ZZalzk’ Zaqul Zazzsz(n—l)—sz(l—l))
k=i

.....

k=i 1=0 =0 k=i
i I+1
= Za, 1Si(n—1) — Za, 1S —1) = Za, I sz o — Za, 1S —1)
i+1 i i
= Zn” Z ai by p — Zai,lsl(i -1
p=0  I=0v(p—1) =0
and (4.24) follows. U

We are now ready to prove our result on the asymptotic expansion for smooth functions. We
set:
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e form >1and f € CJ*(RV),

[z/3]

Z Yo aia-mpE(ALF(G)): (4.26)

t=3vm i=1Vv(t—m)/2

t—m even
e forr>2and f € C; T (RY),
g1 f = n(r/3n/2 )
r Bm)Ar [£/3] 1
y [ Y LYY s o)+ Hm“”f}
m:[r/3]+l t=3vm i=1v(t—m)/2

I—m even

Then we have:

Theorem 4.8. Let r > 2. If F € L't (Q), then for every f € Cr+3 (RN one has

[r/3]
1 1
E(f(50) —E(f(®) =D — DS+~ f

m=1

where Dy, f and E!' f are defined in (4.26) and (4.27), respectively.

Remark 4.9. At this stage, we could prove that

3lvi 1
&8 f| = L+ B(FIH))Y [||f||r+3oo sup | Ag |+||f||r+loom] (4.28)

la|<r

C denoting a suitable constant depending on » and N only. But since we aim to deal with the
distance in total variation, we need a representation and an estimate of the reminder in terms of
f and not of its derivatives. So, we skip this point and we postpone the problem to next section.

Proof of Theorem 4.8. Take r > 2. We use Proposition 4.5: for every n e Nand f € sz(RN )
we have

r

11/31
1 .
E(f(S3) —E(/(S) =2 73 D PE(A/(G) + (r+1>/2unf
t=3

i=1

r 1 [t/3] i
5 2 S E(ALS () + st
=3 i=1 p=0
r [t/31 [t/3]

_ZZ z/z 7 Z ai pE(A f(G)) + (r+1)/2unf

t=3 p=0 i=1lvp
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So, by recalling that S, = S} and G £ S,? we obtain

ro[t/3] [1/3]
: 1
E(f(50) —E(£(6) ZZ z/z » Z ai pE(A f(G)) + (r+l)/2u’l’1f
t=3 p=0 i=1lvp

We set now t —2p = m, so t —m is an even number. Now, p > 0 gives that > m and since ¢ > 3
thent >3 vmandm <r; p <[t/3] gives that (t+ —m)/2 < [t/3]. Therefore, the sum over t <r
must be done on the set {t : 3 Vv m <t <r,t —m even, t — 2[t/3] <m]}. Itis easy to see that this
setequals to {t : 3V m <t < (3m) Ar,t —m even}. So, we obtain

@Bm)Ar [2/3]

; 1
E(f(S0) —E(£(G)) = Z m/2 X 2 aumpBASO)+ U .

t=3vm i=1v(t—m)/2
t—m even

The statement now follows by using (4.26) (notice that 3m <r if m < [r/3]) and (4.27). O

4.2. Regularized functions and estimate of the reminder

Our problem is now to prove an estimate for the reminder in the development for a function f in
terms of || f]loo instead of || fl,+1,00. To this purpose, we need some preliminary results.

For § > 0, we denote by ys the density of the centred Gaussian law in R" of variance 81 and
for f:RY — R we denote f5 = f % ys5. Using standard integration by parts on RY, one may
prove that for each r € N there exists an universal constant C (depending on N and r only) such
that for every multiindex o with |«| = r one has

C
19 fslloo = <77 [1.flloo- (4.29)

We give now some estimates following from Lemma 3.5 with ® = 1, which is actually
Lemma 2.5 in [3].

Lemma 4.10. Suppose that wp > Leby. There exist universal constants C > 0 and b > 4, de-
pending on N only, such that for every § > 0, n € N and for every bounded and measurable
function f : RN — R one has

IE(£(S0) —E(fs(S)| < Cll fllos(1 +E(|F1)) (e € + §"/0n=2/C0)), (4.30)

Proof. Let K > 1 and Wx € C®(R") be such that 15, ) < Wk < 15, and such that, for
some L > 0, |0y Wk ||co < L for every multiindex «. Then we have

E(ISx]) \/_
= flleo m E(

[E(f(Sn) —E(f (Yk (S)Sn))| < 1 flecP(1Sal = K) < | flloo )
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and in a similar way |E(f5(Sn)) — E(fs(¥k (S)S)| < | fIE(|F|)s/n/ K. So we can write
[E(f (S2)) = E(f5(Sn)]|
<|E(f(S0) = E(f (¥k (S)Sn))| + [E(f5(Sn)) — E(f5(¥k (Sa)Sn))]
+ [B(f (Y& (S2)Sn)) = E(f3(Yk (S2)Sn))]

<2E(|F) ||f||oo% + |E(f(Yk (S0)Sn)) — E(f5(Yk (S)Sn))|-

As for the last term in the above right-hand side, we apply Lemma 3.5 with ® =1 and X =
Wk (S,)S,: there exist some universal constants C, p, a depending only on N such that for every
£>0,8>0andevery f € L°[R) then

[E(f (WK (S)Sn)) = E(f5(Wk (S2)Sh))]
V8 a
<Clfllso x | P(detoy,s,)s, < &)+ 8—p(1 + [k (SSul5 , + [L(YkSDS) )" )-
We note that we are forced to introduce the localization Wk (S, ) because in the above estimate it
appears || Wk (S,)Sy |l p with p > 1: since the r.v.’s are only square integrable, if we take Vg = 1

then in principle we do not know if such norm is finite.
Now, on the set {|S,,| < K} we have detoy, (s,)s, = detos,, so that

P(detoy (s,)s, <€) <P(detos, <e)+ P(|Sn| > K) <P(detos, <e)+

)4,

E(Sx)
K

<P(detos, <¢&) +E(|F]|

By taking ¢ = ¢,/2 as in Lemma 3.4, (3.22) gives

%

P(detoyy(s,)s, <€) < Ce ™€ +IE(|F|)

Therefore, we can write

[E(£(Sn) —E(f5(S0)|

< cnfnoo(e"/‘f +E(|F|)% + V(14 [ Wr (S)Sull 5, + | L(Wk (5)S,) ||1,p)“).

We use now Lemma B.1 in Appendix B: inequalities (B.1) and (B.2) give
[0k (Sl , + [L(ExEDS)],,

<CK(1+11Sull13.4p)° + CK(1+ ISull1.2.85) (1 4+ ILSull1.4p)

6
= CK(I + ||Sn||l,3,8p + ||LSn||1,4p) .
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By using (3.19) and (3.20), we have
[k (S)Sull, + [L(Wk(S)Sa)|, , < CK,

so that
IE(f(Sn) —E(fs(Sw)] < C||f||oo<e—"/c + E(|F|)% + JSK“)

< Cllflloo(1 +E(|Fl))(e‘”/c + % +«/3K”).

We now optimize on K by taking it in order that /n/K = +/§K®. Straightforward computations
give now (4.30), with 3 = 3(1 — 2%7) < g O

Remark 4.11. We stress that when C(F') # Id then the constant in (3.22) depends on A(F'). As
a consequence, this dependence holds for the constant C appearing in (4.30) as well.

We now propose the following key result, allowing us to deal with the remaining terms.

Lemma 4.12. Suppose that pwr > Leby. Let o and B denote multiindexes, with |a| = r and
|Bl=m.If F € L"™(R2), then there exists a constant C (which depends on N, r and m) such that
for every f € L°(RN), 8 >0,n>1and A € R then

'E(&aﬁ(S +A%>Fﬁ>
‘ (a f3<S"+kG]/2>G’S)

in which fs = f x ys, vs being the centred normal density in RN with covariance matrix 81.

< C||f||oo]E(|F|m)(1 + 8—r/26—n/C)’

< ClflcE(IGI™)(1+82e/C),

Proof. Without loss of generality, we suppose that n is even and we study separately the cases
k<n/2 and k >n/2 + 1 — if n was odd, it would be sufficient to study k < (n — 1)/2 and
k>m—-1)/2+1.

Case 1: k <n/2. We denote
n/2 1 n
Ax = 1/2<ZF+ZG> 1/2’ B:m Z Gi
—k+1 i=n/2+1
so that

Fr
2—Ak+B.

<k
Si A
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Notice that B is a Gaussian random variable with covariance %I which is independent of Ay and
of Fy. Using integration by parts with respect to B we may find a random variable H, having all
moments and

Fi
(a f5<5k+kl—/2>F’3) E(dy f5(Ax + BYFL) = E(fs(Ax + BYF Hy).

Since Fy and H, are independent, H, being a suitable function of G2, ..., G, it follows that

‘ <a f5<sk+x f/z)Fﬁ)

Similarly, we obtain
G

Case 2: k > n/2. We denote

< Cll fslloE(1Fe™)E(| Hal) < Cll flocE(IF ™).

< ClIfl<E(IGI").

n/2
A= 1/2ZF“ By = < Z Fi + Z G) 1/2

i=n/2+1 i=k+1
so that

-k Fi
Sn+)”W_A+Bk

We notice that

! S
= 2
2

so we can use the noise from the absolutely continuous r.v.’s Vi, ..., V2 “inside” S, /2, as al-
ready seen in Section 3.1. We then proceed to use integration by parts w.r.t. the noise from A.
‘We notice that o4 = %US,, n and that the covariance matrix og, n of S,/2 may degenerate. So,

A=

we use a localization: we consider a function ¢ € C 1 (R4) such that 1(¢, /2, 00) < ¢ < 1(¢,,00) and
IVo|loo <2/e4 with g, given in (3.21). Then we write

Fi
1E<8afa (S" + kl—/z)Fﬂ> —E(3 f5(A+BOF)=1+J
with

I =T (0 f5(A+ B F[ ¢ (deton)),
J =E(d f3(A+ B F{ (1 — ¢(deton))).
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We estimate /. Notice that ¢ (deto4) # 0 implies that detoy > €,/2. We use the integration by
parts with respect to A in Proposition 3.2, and we obtain

=E(f5(A+ Bx) F{ Hy (A, ¢ (deton))).
The estimate (3.15) for the weight gives that

|H (A, deton)| < C(1v (detan)™!) V(1 + AN 1 ILAR) x ¢

C denoting a universal constant. Since o4 = %ng 2= ﬁ Zz/z 21 xx 1, all the Malliavin derivatives
are null, so |¢(detos)|, = |¢p(detos)| <1, so that

|H (A, deton)| < C(1v deton) ™) P (1414 LA

We pass now to expectation: by using the Holder inequality, we may find some universal con-
stants C, g, p such that

E(|H. (A, ¢(deton))[*) < = (1+ 1Al 41,5 + ILAl—1,)! <C,

NN

the latter inequality following from (3.19) and (3.20). Now, F; and H} (A, ¢ (deto,)) are inde-
pendent, so that

11 < CllflocE(IFI™).

We estimate now J. By recalling again that F; and o4 are independent and by using (4.29)
and (3.22), we obtain

171 < 18a fillooE(|FL (1 — ¢ (deton)|) < 87721 fllooE(| Fe™)P(0s, , < £4))
<CT | flloE(IFI™) x e7/C.

By resuming, we get

‘E(aafs <S + xf—/z> Fﬁ)

And similarly, we prove that

‘ (a f(g(Sk-f—)» 1/2)6‘9)

We can now give a nice estimate for U fs in terms of || f]loc. And this is enough for the
moment.

< ClflE(IFI™)(1+872e7/C).

< ClflE(IGI™)(1+87/2e/C).

O

Lemma 4.13. Suppose that i = Leby. Let r > 2 and F € L"(Q). For f € L°@RY) and
8§ >0, set f5 = f *ys, ys being the centred normal density in RN with covariance matrix 81 .
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Then there exists C > 0 depending on r and N only such that for every f € L [RN) one has

oy g5 < c(1+EQFIH)
(4.31)

L floo (16972 (sup [Agl 0 VI o).

loe|<r

Proof. By using (4.15) and (4.14), we can write

n [k—1 r
=3 | SR |

j=11t=3

Since g — Rﬁ’ng is linear, by using the expansion of W®) in Lemma 4.6 and by recalling that
Qi_1(k) =0, we get

n k=1 r [t/3]

U <3S 0 ()| R Al | +ZIR

k=2 j=11=3 i=1

Since r > 2, (4.10) gives Rf) 0= %Rg , and R‘f 0= ﬁRg .- S0, we isolate in the sum the terms

with t =r — 1, r and we obtain

n k—1 r—21[t/3] ) )
WMSZZP%ZZ@MﬂM%&M

[(r—1)/3]

+lmg— Z 0i-1())| Ry, AL fi (4.32)

7

[r/3]
1
23 ) 0i ()RS, A’fa}vLZIR

11 k=1

We have (recall formula (4.9))

RLA=Y Y Y |Aa|/01’E(%%ﬁ(i’ﬁﬁ%))’d

p=3 la|=p |BI=2[(r—p)/2]+2

SOUCES) RECHEES))

IRE, 5] < CL+E(FI ™)) flloo (1 + 87 CFD2e7/€), (4.33)

+n(r+])/2|:

and by using Lemma 4.12 we get
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As for the other sums in the right-hand side of (4.32), for s > 2 we have

IR ALfs| < 3 |l | % R 8yf5|<Csup|A ((L+EQF)) TS |RG 8y ).
lyl=t ly|=t

last inequality following from (4.19). We use again Lemma 4.12: for |y| =1,
|R ayf8| < C(l +E(|F|S+1))”f”oo(1 +(S (s+1+1)/2 —n/C)

We apply such inequality with: t <r —2and s=r —¢t,t=r —land s =2,¢t=r and s = 2.
Then

|Rf:,j)nAff(;| < C sup |Aql(1 +E(|F|’+1))[’/3JV1||f||oo(1 52/

loe|<r

’Rk ]Al lfﬁ} < C sup |Aa|(1 +E(|F|r+l))[r/3]\/1”f”oo(l +8—(r+3)/26—n/C)’

lee]<r

RS AL fs| < € sup |8al(1+E(IFI )M fllag (14870 +92e70/€),

| <r

By inserting such estimates and (4.33) in (4.32), we get

n k—1 r—21[t/3] ) )
| < 22[1,25 3 0 IR i

k=2 j=1 =3 i=1
[(r—=1)/3]
ez Z Qi1 (DIRG AL £l

[r/3]
1

+1r>3—§ Qi- lu)\R A’fa:|+§:|73
i=1

k=1

< C(l +E(|F|r+l))[r/3]\/1 ||f||oo(1 +5—(r+4)/2e—n/C)

n k—1 [(r—2)/3] 1 [(r—1)/3]
x(sup A |Zz[r>5 Z Qin1() 124 Z Qi1())

laf=r k=2 j=1
1[’/3]
+ 1r23n ; Qz—l(j):| +n).
Since 3 Sk Zl;;i ZiL=1 Qi1()) = ZiL=1 P; 1 (n —1) is a polynomial of order L + 1 we obtain
|l fs| < c(1 +IE)(|F|’+1))[’/3]VI 1/ loo (1 +5—(r+4)/2e—n/C)

% (sup | AI[1y25nl 02T 4, plC=DBII2 4 g olr/31] +n)

lee|<r
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and the statement follows by noticing that

pl0=D/311Y oy pl0=DB12g /31y, s < cplr/3H+0=30/3D/2, 0

4.3. Estimate of the error in total variation distance

We want to get rid of the derivatives of f which appear in the coefficients D,, f. In order to do it,
we will use integration by parts w.r.t. the Gaussian law and then the Hermite polynomials come
on. Again, we assume [ r > Leby and F has null mean and identical covariance matrix.

We denote by H,, the Hermite polynomial of order m on R, that is,

m (1/2)x2 a —(1/2)x2
Hpy(x)=(—1D"e —e . (4.34)
X
For a multiindex o = (@1, ..., o) € {1,..., N} we denote f; (o) =card{j : o; =i} sothat 9, =
e Bf () And we define the Hermite polynomial on RV corresponding to the multiindex
a by

N
Hy(x)=[[Hpiwy(xi)  forx=(x1.....xn). (4.35)

i=1

With this definition, we have
dge— V2P — (1)l g (x)e= (/2
and using integration by parts, for a centred Gaussian random variable G € RY
]E(aaf(G)) =E(f(G)Ha(G)). (4.36)

This means that we can compute E(Ai f(G)) by means of f and not of its derivatives. In fact,
for i > 1 and t > 0, we define the polynomials 7} (x) as follows:

’H; x) = Z cfg H,(x), c(’;[ defined in (4.17) and H, given in (4.35). 4.37)

o:la|=t

Since Aj =Y. 4| Ch > (4.36) gives

E(Af(G) = > E@uf(G)= Y cE(f(G)Hy(G))=E(f(G)H(G)).

o:|a|=t o:la|=t
Therefore, for every f € C Z” (RN ) the coefficients D,, f, m > 1, in (4.26) can be written as

Duf =E(f(G)Kn(G), m=1,
(4.38)
3m [£/3] ‘
where K, (x) = Z Z ai (1—my2H; (x), ai; given in (4.24) and Hﬁ given in (4.37).

1=3vm i=1v(t—m)/2
t—m even
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We are now ready to tackle our original problem: the exact expansion in total variation distance
of the law p,, of ;. To this purpose, for » > 2 and n > 1 we define the following measure in RN

[r/3]
[yr(dx) = )/(x)(l + Z T/Z’C’"(x)> dx, K (x) given in (4.38), (4.39)
m=1 n

where y (x) denotes the probability density function of a standard normal random variable in
RY. We stress that I'y.-(dx) =y (x)dx =:T(dx) not only for » =2 but also when A, =0 for
every |a| <r. In fact, in the latter case, (4.19) gives cél =0 for every i > 1 and || < r, then
from (4.37) we have ’H; =0 for every i > 1 and ¢t < r and from (4.38) we obtain K, = 0 for
everym <r.

Theorem 4.14. Suppose pp = Leby. Letr >2 and F € L’+1(Q). Forn > 1, let u, denote the
law of S, and Ty, stand for the measure in (4.39). Then there exists a constant C > 0 depending
onr and N only such that for every n € N,

r1y\[r/31v1 1 1
drv (i, Tnr) < C(L+E(IFI™)) [33 |1Aal X —ramms + n(r—l)/2:|'

Proof. We study | [ fdu, — [ fdTn,| for f € L®(RY). From now on, C will denote a con-
stant, possibly varying from line to line, that may depend only on N and r.

We take § > 0 and we consider the regularized function f5 = f * ys where y;s is the centred
Gaussian density of covariance matrix 6/. We have

‘/fdun—/fdrn,r

=< In,S + ],/1,3 + Jn,S
with

Iy = ‘/(f —fdp|. Iy= ‘/(f AT, s ‘f fydpin - / f3dTn,

By (4.30),
Lns < Clliflloo(1+E(IF])) (e7/€ + 81/0n6=2/C0)),

where b > 4 is a suitable constant, independent of F' and f. And using standard integration by
parts on RNV,

/ 1/2
I s <Cl fllod?.
Moreover, since

[r/3]
1
/ f5dTy =E(f3(G) + X_j} — 7 D1,
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Theorem 4.8 gives

Jns = mwfﬁﬂ
with
r 1 GBm)Ar [£/3]
|gr"f8| < n([r/3l+1)/2|: Z W Z Z @i, (t—m) 2|
m=[r/3]+1 t=3vmi=1V(t—m)/2

: 1
x [E(A f3(G))] + WW!’J‘@I}.

But since E(A! f5(G)) = E(f35(G)Hi(G)), then

IE(AL ()| < 1 51lcE(|HA(G)]) < Cllflloc (1 +E(IFI™)) sup |Aql.

o] <t

We use now Lemma 4.13: for r > 2, we apply (4.31) and we get

&n fs| < c(L+E(FI )M Flloo (1 +8—<’+‘W2e—”/c)[sup 1Ayl +

loe|<r

n(r=1r/31-2)/2 } '
By replacing, we get

Jus < COO+EFN M flloo

1 1
—(r+4)/2 —n/C
x (1+38 e )[lzufr |Aal x PRSI n(r—l)/2]'

By resuming, we can write

’/fdun—/fdrn,r

< Cllflloo(l +E(|F|r+1))[r/3]v1 [e—n/C +51/2 +81/bn(h—2)/(2b)

1 1
—(r+4)/2 —n/C
+(1+3 e )(3? |Bal X GmmE + n<r—“/2)}

Now, we choose § = §, such that 8,1/bn(b_2)/(2b) = n(,fl)/z. By observing that n — 8,1_(r+4)/2 X

_ . 1/2
e¢~"/€ is bounded and 8,1/ < ﬁ, we get

‘ [ rau~ [ sar..

and the result follows. O

r1\ [/31v1 1 1
= Cll flloo(L+E(IFI™)) [lzufr Aol X~ + n(r—l)/2:|

We can now pass to the following.
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Proof of Theorems 2.6 and 2.7. We apply Theorem 4.14 with F replaced by A(F)F, where
A(F) is the inverse of C(F)/2, C(F) denoting the covariance matrix. And it is clear that now
the constants appearing in the estimates will depend on C (F') as well, through its most significant
eigenvalues (the smallest and the largest one; see, e.g., in Remark 3.8 and 4.11). |

We conclude by explicitly writing /C,, (x) for m =1, 2, 3. From (4.38), we have:
K1(x) = a1 H3(x),
Ka(x) = a1 1Hy(x) + az 2 Hg (x),
K3(x) = a1, oM (x) + a1 1 H5(x) + a2 2H3 (x) + a3 3H3 (x),

where ’H; x)= Zly\:t c; H, (x). Now, from (4.17) it is easy to see that

1 .
S0 ify| =3,
1 1 .
Y=V alr if [y| =4,
1 1 ,
T30 Ay ln=ys + o 51 Ay, if [y|=5,
1 .
5 (31)2 A1y 93 Aays.ve)s if |y| =6,
c, = ’
4 1
m(A(VlﬂVZa%)A(VthSVG’W) Ay Bosvern),  iflvI=T,
3 1

¢ = 33 A1 727 Arays.ve) A vs. vo) if [y =9.

Moreover, aj,0=0,a1,1=1,a22=b12 = %B() = % and a3 3 =ax2b23 = % . %Bo = 6 So, we

can write

1
K100 =5 3 Ay Hy (),

yl=3

Ka(x) = 2 Z Ay Hy(x )+2(3,)2 Z 17203 Days.ve) Hy (X,

lyl|=4 ly|1=6
1 1
IC?’('X) = Z 3'2' (Vl Y2, V3)1V4 V5 +5 5 A HV('X)
ly1=5

1
MR Z (A1) Bwarsyvern T Ay v Aws.ve.yn) Hy (X)
yl=7

1
6 x—(3')3 Z Aty B ays.ve) Dy pe) Hy (X).
ly1=9
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In the case N =1, for t € N set

_ EwF )
"7 Var(F)/2
Note that ¢; is strictly connected to the Lyapunov ratio L; = Vlgr((lgl,;z By recalling that for

G ~N(0, 1) then E(G") =0 if ¢ is odd and E(G?) = (¢ — 1)!! if ¢ is even (with the convention
(—DH!!'=1), we obtain A; = ¥¢; if ¢t is odd and A; = ¢; — (¢t — 1)!! if ¢ is even. Remark that
A3 = {3 and A4 = €4 — 3 are the skewness and the kurtosis, respectively. Hence, we obtain the
polynomials in the classical Edgeworth expansion:

Y 04— 3 02
Ki(x) = §H3(x>, Kooy = & 424 ) Hyr) + - (),
0 Ls 0384 —3) %
Ka(x) = (_ﬁ-’_;)H (X)+—3'4’ Hy(x) + 6(3‘)3H9(X)

Appendix A: Probability measures which are locally lower
bounded by the Lebesgue measure

We discuss here the proof of Proposition 2.4. For a random variable F € RY with law 1 r, we
recall that g > Leby if there exists an open set D C RY and ¢ > 0 such that

nr(A):=P(F € A)>eLeby(AND)  VAeB(RY). (A.1)

Remark that we have already proved that if g > Leby then (2.3) holds (see Proposition 3.1).
We first prove the equivalence (i) < (ii):

Lemma A.l. r > Leby if and only if there exists a non-negative measure ju with W(RV) < 1
and a non-negative lower semi-continuous function p with fRN p()dv =1— uw(RY) such that

pr(dv) = p(dv) + p(v) dv. (A2)

Proof. If (A.1) holds, we take vg € D and r > 0 such that B, (vg) C D. Then it suffices to take
p(x) =€l (y)(x) and w(A) =P(F € A) — fA p(v) dv, which turns out to be a non-negative
measure.

Suppose now that (A.2) holds. Since p is non-negative and lower semicontinuous we may find
an increasing sequence of non-negative and continuous functions p,, n € N such that p, 1 p. It
follows that [ p, 1 [ p=1—p(@®"Y) > 0, and we may find n such that [ p, > 0. So there exists
vo such that p,(vg) > 0. Since p, is continuous, this implies that p(v) > p,(v) > %pn (vg) for
|v — vg| < r for some small r. O

As a consequence, we get the final property in Proposition 2.4.

Lemma A.2. If ur > Leby, then the covariance matrix of F is invertible.
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Proqf. We fix vg € RY and & > 0 such that (A.1) hplds with D = B (vo). We assume that
E(F") = 0 so that the covariance matrix is given by C*/ (F) = E(F!F/). Then, for £ e RY we
write

(C(F)e.€) =E((F. £)?) zs/ (v £)2dv.

By (vo)

We denote As(£) = {v: (v, £)? > §|£]*} and we note that we may choose §(vg, ) such that
Jnf Lebw (As(wy,n (§)) =: n(vo, ) > 0.

Then
| Ei|n=f1<C(F>s, £) > en(vo, r) Leby (B:(v0)). O

We have already proved in Proposition 3.1 the implication (i) = (iii). Last implication (iii) =
(i1) is trivial. In fact, let

P(xV + (1 — )W € dv) =P(F €dv),

where x is a Bernoulli r.v. with parameter p > 0, V in RV is absolutely continuous and W is a
r.v.in RV, Setting 1, wy and pw, the law of F, V and W, respectively, then

wr(dv) = puy @)dv+ (1 — p)uw(dv),

so F has an absolutely continuous component.

Appendix B: Estimates for the Sobolev norms in Lemma 4.10
This section is devoted to the proof the estimates used in Lemma 4.10, that is, the following.

Lemma B.1. Lerd > 1, m € N, p > 1. Then there exists C > 0 such that for every K > 1 and
X =(X',..., X% the following estimates holds:

+1
vk XOX],, , < CK+1XIImminp)" (B.1)
2m+3
|L(Wk (X)X) Hmm < CK(1+ X1 meramvap)” (L + ILX lmap). (B.2)
where Wk (X) denote any function in C®(R?) such that 1y (0) < Yk =< 1By, 0 and whose
derivatives are uniformly bounded, that is there exists L > 0 such that |04 Wk | < L for every

multiindex o.

Proof. For a multiindex «, one has

Do (Vk (X)X') = Do Wk (X)X' + Z D, Wk (X)DgX',
B.yeAa.|Blz1
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where the condition “B, y € A,” means that 8, y is a partition of «. Moreover, one has

v

Dwa(X)=Z Z 3, Wk (X) Z Dp, X' - Dg, X",
=1 |p|=t Br..rBreBy
where “B1,..., B¢ € B,” means that Bi,..., B¢ are non-empty multiindexes of y running

through the list of all of the (non-empty) “blocks” of y. Then, for |y| < m we obtain
m
|DVWK(X)|5C1|XI<K+1<1+ Z |DpX|> : (B.3)
1<|p|=m

So, for |a| = m we have
| Do (Y5 (X)X)| < CK(1+1X]1,m)""

and (B.1) follows. Consider now L(Wg (X)X!). We have

n d
—L(¥k(X)X") = —LYg (X)X — Vg (X)LX' + ZZ Dy Wk (X) Dy X'
k=1i=1

We use now the inequality || XY (s, p < C|X|lm,2plY |lm,2p. But concerning the first term of the
right-hand side of the equality above, we take care of the derivatives of W as done to obtain
formula (B.3) and we get

IL(¥kX)X)|,, , < CILYkX)],, 5, (IX1x1<k+1l2p + [ X[1m.2p)
2p

m,p —

< CK LWk (O], 5, (1 1X111m.2p)-
So, we obtain
|L(wk )X)],, , < C(K[L¥k O], 5, (1 + 1XT1m,2,)

m,p —
+ [ Wk GO, 2, ILXNm2p + [ WK GO ,, 5, 1X111m.2p)-

m,2p
(B.3) gives that

[k X],,, < C(LH1XT1m,2p)" (B.4)
SO we can write

|L(¥xOX)],, , < CK(1+ X0 2mp)" (1 4 | LW (X) lpap +I1LX N 2p)-

It remains to estimate || LWk (X)||z,2p. Since

d d

1 . .

LWk (X)= 28ij(X)fo -3 .Z] 80, Wk (X)(DX', DX)
J= Lj=
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we have

|29k O], = CUVEK O], 41X Ity + [ V2K GO, 4, DX, 5,).

An inequality analogous to (B.4) can be proved for VWx and V2Wg, so we obtain
|29k X)],,5, = C((L+ 1X T 1mamp)" NLX i ap + (141X 1m4mp) " I X 1 5)
2
< C(L+ X ms1.40mv2p)" (L+ ILX i ap)-

Therefore, we can write

|L(¥xOX)],, , < CK(1+ X Wt m2mp)™ (U IX et 4Gmv2)p) ™

X (1 + L X m,ap + ”LX”m,Zp)

2, 3
< CK(1+ X mt1,40mv2p) " (14 ILX llm,p)

and the statement holds. ]

Appendix C: A backward Taylor formula for the Gaussian law

Proposition C.1. Let G denote a centred normal distributed r.v. in RN . Then for every L € N
and g € Cg(L'H)(RN) one has

L (_1)L+l

D'
g0 = - D 0B (0ug(®) + Sy
=0 lee|=2¢ loe|=2(L+1)

1
ea/ sLE(3.2(V5 G))ds, (C.1)
0
where for |a| =0 then 0, = 1 and for |a| =r > 0, 0, = 1 if r is even and azj 1 = ay; for every
j=1,...,r/2, otherwise 6, = 0.

Proof. Let W denote a Brownian motion in R . By It6’s formula, one has E(g(W})) = g(W;) +
% ftl E(Ag(Wy))ds, so we can write

1 1
B(s(¥0) =W — 3 Y- 0 [ E(ug(¥0) ds. €2)
l]=2 !
Taking ¢t = 0, this gives

1 1
SO =E(gWn) 5 3 b /O E(0g (W) ds.

la|=2
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By iteration, we write

g(0) =E(s(W1)) — > Z 0uE(0ag (WD) — 5 Z / (g (W) — E(0ug(W))]ds

\al 2 Ial 2

and by using (C.2) we get

8O =E(gW) — 5 3 0B(ug W) + 3 Y b f WE (g (W,) du

Ia\ 2 \Oll 4

Further iterations then give

( I)Z (_1)L+1 1 L
g(0) = Z S 2 CaB@ue W)+ e D ea/OsE(aag(Wa)ds

=0 T jal=2¢ " la|=2L42
(C.1) now follows because, for every s € [0, 1], /s G and W; have the same law. O
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