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We introduce a general form of sequential Monte Carlo algorithm defined in terms of a parameterized
resampling mechanism. We find that a suitably generalized notion of the Effective Sample Size (ESS),
widely used to monitor algorithm degeneracy, appears naturally in a study of its convergence properties. We
are then able to phrase sufficient conditions for time-uniform convergence in terms of algorithmic control
of the ESS, in turn achievable by adaptively modulating the interaction between particles. This leads us to
suggest novel algorithms which are, in senses to be made precise, provably stable and yet designed to avoid
the degree of interaction which hinders parallelization of standard algorithms. As a byproduct, we prove
time-uniform convergence of the popular adaptive resampling particle filter.
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1. Introduction

At the frontier of computational statistics there is growing interest in parallel implementation of
Monte Carlo algorithms using multi-processor and distributed architectures. However, the resam-
pling step of sequential Monte Carlo (SMC) methods [13] (see [16] for a recent overview) which
involves a degree of interaction between simulated “particles”, hinders their parallelization. So,
whilst multi-processor implementation offers some speed up for SMC, the potential benefits of
distributed computing are not fully realized [17].

Performing resampling only occasionally, a technique originally suggested for the somewhat
different reason of variance reduction [19], alleviates this problem to some extent, but the col-
lective nature of the resampling operation remains the computational bottleneck. On the other
hand, crude attempts to entirely do away with the resampling step may result in unstable or even
non-convergent algorithms. With these issues in mind, we seek a better understanding of the re-
lationship between the interaction structure of SMC algorithms and theoretical properties of the
approximations they deliver. Our overall aim is to address the following question:

To what extent can the degree of interaction between particles be reduced, whilst ensuring
provable stability of the algorithm?

Our strategy is to introduce and study an unusually general type of SMC algorithm featuring
a parameterized resampling mechanism. This provides a flexible framework in which we are
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ultimately able to attach meaning to degree of interaction in terms of graph-theoretic quantities.
To address the matter of provable stability, we seek conditions under which the algorithm yields
time-uniformly convergent approximations of prediction filters, and approximations of marginal
likelihoods whose relative variance can be controlled at a linear-in-time cost.

The general algorithm we study is defined in terms of a family of Markov transition matrices,
α, and we refer to the algorithm itself as αSMC. We shall see that through particular choices of
α one obtains, as instances of αSMC, well-known algorithms including sequential importance
sampling (SIS), the bootstrap particle filter (BPF) and the adaptive resampling particle filter
(ARPF) in which resampling is triggered by monitoring some functional criterion, such as the
Effective Sample Size (ESS) [19].

Although the ESS does not necessarily appear in the definition of the general αSMC algo-
rithm, we find that it does appear quite naturally from the inverse quadratic variation of certain
martingale sequences in its analysis. This allows us to make precise a sense in which algorithmic
control of the ESS can guarantee stability of the algorithm. Our results apply immediately to
the ARPF, but our study has wider-reaching methodological consequences: in our framework it
becomes clear that the standard adaptive resampling strategy is just one of many possible ways
of algorithmically controlling the ESS, and we can immediately suggest new, alternative algo-
rithms which are provably stable, but designed to avoid the type of complete interaction which
is inherent to the ARPF and which hinders its parallelization. The structure of this paper and our
main contributions are as follows.

Section 2 introduces the general algorithm, αSMC. We explain how it accommodates several
standard algorithms as particular cases and comment on some other existing SMC methods.

Section 3 presents Theorem 1, a general convergence result for αSMC. We give conditions
which ensure unbiased approximation of marginal likelihoods and we elucidate connections be-
tween certain invariance properties of the matrices α and the negligibility of increments in a mar-
tingale error decomposition, thus formulating simple sufficient conditions for weak and strong
laws of large numbers. We also discuss some related existing results.

Section 4 presents our second main result, Theorem 2. We show, subject to regularity condi-
tions on the hidden Markov model (HMM) under consideration, that enforcement of a strictly
positive lower bound on a certain coefficient associated with ESS of αSMC is sufficient to guar-
antee non-asymptotic, time-uniform bounds on: (1) the exponentially normalized relative second
moment of error in approximation of marginal likelihoods, and (2) the Lp norm of error in ap-
proximation of prediction filters. The former implies a linear-in-time variance bound and the
latter implies time-uniform convergence. These results apply immediately to the ARPF.

Section 5 houses discussion and application of our results. We point out the pitfalls of some
naive approaches to parallelization of SMC and discuss what can go wrong if the conditions of
Theorem 1 are not met. Three new algorithms, which adapt the degree of interaction in order
to control the ESS and which are therefore provably stable, are then introduced. We discuss
computational complexity and through numerical experiments examine the degree of interaction
involved in these algorithms and the quality of the approximations they deliver compared to the
ARPF.
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2. αSMC

A hidden Markov model (HMM) with measurable state space (X,X ) and observation space
(Y,Y) is a process {(Xn,Yn);n ≥ 0} where {Xn;n ≥ 0} is a Markov chain on X, and each obser-
vation Yn, valued in Y, is conditionally independent of the rest of the process given Xn. Let μ0
and f be, respectively, a probability distribution and a Markov kernel on (X,X ), and let g be a
Markov kernel acting from (X,X ) to (Y,Y), with g(x, ·) admitting a density, denoted similarly
by g(x, y), with respect to some dominating σ -finite measure. The HMM specified by μ0, f

and g, is

X0 ∼ μ0(·), Xn|{Xn−1 = xn−1} ∼ f (xn−1, ·), n ≥ 1,
(1)

Yn|{Xn = xn} ∼ g(xn, ·), n ≥ 0.

We shall assume throughout that we are presented with a fixed observation sequence {yn;n ≥
0} and write

gn(x) := g(x, yn), n ≥ 0.

The following assumption imposes some mild regularity which ensures that various objects ap-
pearing below are well defined. It shall be assumed to hold throughout without further comment.

Assumption. (A1) For each n ≥ 0, supx gn(x) < +∞ and gn(x) > 0 for all x ∈ X.

We take as a recursive definition of the prediction filters, the sequence of distributions {πn;n ≥
0} given by

π0 := μ0,
(2)

πn(A) :=
∫

X πn−1(dx)gn−1(x)f (x,A)∫
X πn−1(dx)gn−1(x)

, A ∈X , n ≥ 1,

and let {Zn;n ≥ 0} be defined by

Z0 := 1, Zn := Zn−1

∫
X
πn−1(dx)gn−1(x), n ≥ 1. (3)

Due to the conditional independence structure of the HMM, πn is the conditional distribution of
Xn given Y0:n−1 = y0:n−1; and Zn is the marginal likelihood of the first n observations, evalu-
ated at the point y0:n−1. Our main computational objectives are to approximate {πn;n ≥ 0} and
{Zn;n ≥ 0}.

2.1. The general algorithm

With population size N ≥ 1, we write [N ] := {1, . . . ,N}. To simplify presentation, whenever a
summation sign appears without the summation set made explicit, the summation set is taken to
be [N ], for example, we write

∑
i to mean

∑N
i=1.
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The αSMC algorithm involves simulating a sequence {ζn;n ≥ 0} with each ζn = {ζ 1
n , . . . , ζN

n }
valued in XN . Denoting X := (XN)N, FX := (X⊗N)⊗N, we shall view {ζn;n ≥ 0} as the canoni-
cal coordinate process on the measurable space (X,FX), and write Fn for the σ -algebra gener-
ated by {ζ0, . . . , ζn}. By convention, we let F−1 := {X,∅} be the trivial σ -algebra. The sampling
steps of the αSMC algorithm, described below, amount to specifying a probability measure, say
P, on (X,FX). Expectation w.r.t. P shall be denoted by E.

Let AN be a non-empty set of Markov transition matrices, each of size N × N . For n ≥ 0 let
αn :X → AN be a matrix-valued map, and write α

ij
n for the ith row, j th column entry so that

for each i we have
∑

j α
ij
n = 1 (with dependence on the X-valued argument suppressed). The

following assumption places a restriction on the relationship between α and the particle system
{ζn;n ≥ 0}.

Assumption. (A2) For each n ≥ 0, the entries of αn are all measurable with respect to Fn

Intuitively, the members of AN will specify different possible interaction structures for the
particle algorithm and under (A2), each αn is a random matrix chosen from AN according to
some deterministic function of {ζ0, . . . , ζn}. Examples are given below. We shall write 11/N for
the N × N matrix which has 1/N as every entry and write Id for the identity matrix of size
apparent from the context in which this notation appears. We shall occasionally use Id also to
denote identity operators in certain function space settings. Let M, P and L be, respectively, the
collections of measures, probability measures and real-valued, bounded, X -measurable functions
on X. We write

‖ϕ‖ := sup
x

∣∣ϕ(x)
∣∣, osc(ϕ) := sup

x,y

∣∣ϕ(x) − ϕ(y)
∣∣

and

μ(ϕ) :=
∫

X
ϕ(x)μ(dx) for any ϕ ∈ L,μ ∈ M. (4)

Remark. Note that X, FX, Fn, P, α and various other objects depend on N , but this dependence
is suppressed from the notation. Unless specified otherwise, any conditions which we impose on
such objects should be understood as holding for all N ≥ 1.

Let {Wi
n; i ∈ [N ], n ≥ 0} be defined by the following recursion:

Wi
0 := 1, W i

n :=
∑
j

α
ij

n−1W
j

n−1gn−1
(
ζ

j

n−1

)
, i ∈ [N ], n ≥ 1. (5)

The following algorithm implicitly specifies the law P of the αSMC particle system. For each
n ≥ 1, the “Sample” step should be understood as meaning that the variables ζn = {ζ i

n}i∈[N ] are
conditionally independent given {ζ0, . . . , ζn−1}. The line of Algorithm 1 marked (�) is inten-
tionally generic, it amounts to a practical, if imprecise restatement of (A2). In the sequel, we
shall examine instances of αSMC which arise when we consider specific AN and impose more
structure at line (�).
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Algorithm 1 αSMC
For n = 0,

For i = 1, . . . ,N ,
Set Wi

0 = 1
Sample ζ i

0 ∼ μ0
For n ≥ 1,

(�) Select αn−1 from AN according to some functional of {ζ0, . . . , ζn−1}.
For i = 1, . . . ,N ,

Set Wi
n =∑j α

ij

n−1W
j

n−1gn−1(ζ
j

n−1).

Sample ζ i
n|Fn−1 ∼

∑
j α

ij
n−1W

j
n−1gn−1(ζ

j
n−1)f (ζ

j
n−1,·)

Wi
n

.

We shall study the objects

πN
n :=

∑
i W

i
nδζ i

n∑
i W

i
n

, ZN
n := 1

N

∑
i

W i
n, n ≥ 0, (6)

which as the notation suggests, are to be regarded as approximations of πn and Zn, respectively.
We shall also be centrally concerned with the following coefficient, which is closely related to
the ESS,

EN
n := (N−1∑

i W
i
n)

2

N−1
∑

i (W
i
n)

2
= (N−1∑

i

∑
j α

ij

n−1W
j

n−1gn−1(ζ
j

n−1))
2

N−1
∑

i (
∑

j α
ij

n−1W
j

n−1gn−1(ζ
j

n−1))
2
, n ≥ 1, (7)

and by convention EN
0 := 1. The second equality in (7) is immediate from the definition of Wi

n,
see (5). Note that EN

n is always valued in [0,1], and if we write

Neff
n := NEN

n , (8)

we obtain the ESS of Liu and Chen [19], although of course in a generalized form, since EN
n

is defined in terms of the generic ingredients of αSMC. A few comments on generality are in
order. First, for ease of presentation, we have chosen to work with a particularly simple version
of αSMC, in which new samples are proposed using the HMM Markov kernel f . The algorithm
is easily generalized to accommodate other proposal kernels. Second, while we focus on the
application of SMC methods to HMM’s, our results and methodological ideas are immediately
transferable to other contexts, for example, via the framework of [10].

2.2. Instances of αSMC

We now show how αSMC admits SIS, the BPF and the ARPF, as special cases, through particular
choices of AN . Our presentation is intended to illustrate the structural generality of αSMC, thus
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setting the scene for the developments which follow. The following lemma facilitates exposition
by “unwinding” the quantities {Wi

n}i∈[N ] defined recursively in (5). It is used throughout the
remainder of the paper.

Lemma 1. For n ≥ 1, 0 ≤ p < n and in ∈ [N ],

Win
n =

∑
(ip,...,in−1)∈[N ]n−p

W
ip
p

n−1∏
q=p

gq

(
ζ

iq
q

)
α

iq+1iq
q , (9)

and in particular

Win
n =

∑
(i0,...,in−1)∈[N ]n

n−1∏
p=0

gp

(
ζ

ip
p

)
α

ip+1ip
p . (10)

The proof of (9)–(10) is a simple induction and is therefore omitted. From (10) and definitions
above, we immediately observe the following corollary.

Corollary 1. If (A2) holds, then Wi
n must be measurable w.r.t. Fn−1 for every n ≥ 0 and i ∈ [N ].

Sequential importance sampling: AN = {Id}
Since in this case AN consists of only a single element, α is actually a deterministic sequence,

(A2) is trivially satisfied and at line (�) of Algorithm 1 we have αn = Id fixed for all n ≥ 0. In
this situation, Lemma 1 gives Wi

n =∏n−1
p=0 gp(ζ i

p) for n ≥ 1, so in turn

πN
n =

∑
i δζ i

n

∏n−1
p=0 gp(ζ i

p)∑
i

∏n−1
p=0 gp(ζ i

p)
, ZN

n = 1

N

∑
i

n−1∏
p=0

gp

(
ζ i
p

)
, n ≥ 1,

and αSMC reduces to Algorithm 2.

Algorithm 2 Sequential importance sampling
For n = 0,

For i = 1, . . . ,N ,
Set Wi

0 = 1
Sample ζ i

0 ∼ μ0
For n ≥ 1,

For i = 1, . . . ,N ,
Set Wi

n = Wi
n−1gn−1(ζ

i
n−1)

Sample ζ i
n|Fn−1 ∼ f (ζ i

n−1, ·)
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Bootstrap particle filter: AN = {11/N }
In this case, α is again a deterministic sequence and (A2) is trivially satisfied. At line (�) we

have αn = 11/N fixed for all n ≥ 0. Lemma 1 gives, for all in ∈ [N ],

Win
n =

∑
(i0,...,in−1)∈[N ]n

n−1∏
p=0

gp(ζ
ip
p )

N
=

n−1∏
p=0

(
1

N

∑
ip

gp

(
ζ

ip
p

))
, n ≥ 1. (11)

Note that then Wi
n = W

j
n for all i, j , so NWi

n =∑j W
j
n and we obtain, according to (6),

πN
n = 1

N

∑
i

δζ i
n
, ZN

n =
n−1∏
p=0

(
1

N

∑
ip

gp

(
ζ

ip
p

))
, n ≥ 1, (12)

and αSMC algorithm reduces to Algorithm 3. Since Wi
n = W

j
n for all i, j , we write by convention

the weight update steps only for W 1
n .

Adaptive resampling particle filter: AN = {Id,11/N }
In this case, each αn is allowed to take only the value Id or 11/N , with the latter corresponding

to resampling, and vice-versa. The choice between Id and 11/N is made by comparing some
functional of the particle system to a threshold value. We consider the case of the popular ESS-
based resampling rule [19], partly for simplicity, but also because monitoring of the ESS is
especially pertinent to the discussions which follow. This ARPF arises as an instance of αSMC
if we take as line (�) of Algorithm 1 the rule:

αn−1 :=

⎧⎪⎨⎪⎩11/N , if
(N−1∑

i W
i
n−1gn−1(ζ

i
n−1))

2

N−1
∑

i (W
i
n−1gn−1(ζ

i
n−1))

2
< τ ,

Id, otherwise,

(13)

where τ ∈ (0,1] is a threshold value. Lemma 4 in the Appendix shows by an inductive argument
that the adaptation rule (13) satisfies (A2). The ARPF is traditionally expressed in terms of the
random times at which resampling occurs. For completeness, the Appendix contains derivations

Algorithm 3 Bootstrap particle filter
For n = 0,

Set W 1
0 = 1

For i = 1, . . . ,N ,
Sample ζ i

0 ∼ μ0
For n ≥ 1,

Set W 1
n = W 1

n−1 · 1
N

∑
i gn−1(ζ

i
n−1)

For i = 1, . . . ,N ,

Sample ζ i
n|Fn−1 ∼

∑
j gn−1(ζ

j
n−1)f (ζ

j
n−1,·)∑

j gn−1(ζ
j
n−1)
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of expressions for πN
n and ZN

n in terms of such times and similar manipulations can be used to
write out the form of αSMC in this case.

Looking back to the expression for EN
n in (7), we find:

αn−1 = 11/N ⇒ EN
n = 1, (14)

αn−1 = Id ⇒ EN
n = (N−1∑

i W
i
n−1gn−1(ζ

i
n−1))

2

N−1
∑

i (W
i
n−1gn−1(ζ

i
n−1))

2
. (15)

We then adopt the point of view that according to (13)–(15), the ARPF enforces the condition:
infn≥0 EN

n ≥ τ > 0, or equivalently

inf
n≥0

Neff
n ≥ Nτ > 0,

by construction. This seemingly trivial observation turns out to be crucial when we address time-
uniform convergence of the ARPF in Section 4, and the condition infn≥0 EN

n > 0 will appear
repeatedly in discussions which lead to the formulation of new, provably stable algorithms in
Section 5.

To give some flavour of the kind of algorithms we have in mind, let (B

L)
=1,...,L be a partition

of the set [N ] into L clusters, and suppose the matrix αn−1 is defined by α
ij

n−1 = 1/|B

L| if both

i, j ∈ B

L and 0 otherwise. Then for any 
 = 1, . . . ,L and any i ∈ B


L the new weight Wi
n and

the distribution from which the new particle ζ i
n is sampled, say mi

n (both of which depend on 


only), are given by

Wi
n = 1

|B

L|
∑
j∈B


L

W
j

n−1gn−1
(
ζ

j

n−1

)
, mi

n =
∑

j∈B

L
W

j

n−1gn−1(ζ
j

n−1)f (ζ
j

n−1, ·)∑
j∈B


L
W

j

n−1gn−1(ζ
j

n−1)
. (16)

Furthermore, in this situation we have

EN
n = (N−1∑

i W
i
n−1gn−1(ζ

i
n−1))

2∑L

=1 |B


L|/N(|B

L|−1

∑
j∈B


L
W

j

n−1gn−1(ζ
j

n−1))
2
.

It is then clear that a parallel implementation could be possible, say on L processors, one devoted
to each cluster and it remains to design an efficient partition of (B


L)
=1,...,L of the set [N ].
Comments on other algorithms

In the engineering literature, a variety of algorithmic procedures involving distributed com-
puting have been suggested [3], including partitioning ideas like (16). “Local” particle approx-
imations of Rao–Blackwellized filters have been devised in [6] and [14]. Vergé et al. [21] have
recently suggested an “island” particle algorithm, designed for parallel implementation, in which
there are two levels of resampling and the total population size N = N1N2 is defined in terms
of the number of particles per island, N1, and the number of islands, N2. Interaction at both lev-
els occurs by resampling, at the island level this means entire blocks of particles are replicated
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and/or discarded. They investigate the trade-off between N1 and N2 and provide asymptotic re-
sults which validate their algorithms. In the present work, we provide some asymptotic results in
Section 3 but it is really the non-asymptotic results in Section 4 which lead us to suggest specific
novel instances of αSMC in Section 5. Moreover, in general αSMC is distinct from all these
algorithms and, other than in some uninteresting special cases, none of them coincide with the
adaptive procedures we suggest in Section 5.3.

3. Convergence

In this section, our main objective is to investigate, for general αSMC (Algorithm 1), conditions
for convergence

ZN
n − Zn → 0 and πN

n (ϕ) − πn(ϕ) → 0, (17)

at least in probability, as N → ∞.
In the case of SIS, that is, AN = {Id}, it is easy to establish (17), since the processes {ζ i

n;n ≥
0}i∈[N ] are independent Markov chains, of identical law. On the other hand, for the bootstrap
filter, that is, AN = {11/N }, the convergence πN

n (ϕ)−πn(ϕ) → 0, can be proved under very mild
conditions, by decomposing πN

n (ϕ) − πn(ϕ) in terms of “local” sampling errors, see amongst
others [8,12] for this type of approach. For instance, for A ∈X we may write

πN
1 (A) − π1(A) = 1

N

∑
i

δζ i
1
(A) −

∑
i g0(ζ

i
0)f (ζ i

0,A)∑
i g0(ζ

i
0)

(18)

+
∑

i g0(ζ
i
0)f (ζ i

0,A)∑
i g0(ζ

i
0)

− π1(A). (19)

Heuristically, the term on the r.h.s. of (18) converges to zero because given F0, the samples

{ζ i
1}i∈[N ] are conditionally i.i.d. according

∑
i g0(ζ

i
0)f (ζ i

0,·)∑
i g0(ζ

i
0)

, and the term in (19) converges to zero

because the samples {ζ i
0}i∈[N ] are i.i.d. according to μ0. A similar argument ensures that πN

n (ϕ)−
πn(ϕ) → 0, for any n ≥ 0 and therefore by the continuous mapping theorem ZN

n −Zn → 0, since

Zn =
n−1∏
p=0

πp(gp) and ZN
n =

n−1∏
p=0

πN
p (gp).

In the case of αSMC, {ζ i
n}i∈[N ] are conditionally independent given Fn−1, but we do not nec-

essarily have either the unconditional independence structure of SIS, or the conditionally i.i.d.
structure of the BPF to work with.

Douc and Moulines [12] have established a CLT for the ARPF using an inductive approach
w.r.t. deterministic time periods. Arnaud and Le Gland [2] have obtained a CLT for the ARPF
based on an alternative multiplicative functional representation of the algorithm. Convergence of
the ARPF was studied in [11] by coupling the adaptive algorithm to a reference particle system,
for which resampling occurs at deterministic times. One of the benefits of their approach is that
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existing asymptotic results for non-adaptive algorithms, such as central limit theorems (CLT), can
then be transferred to the adaptive algorithm with little further work. Their analysis involves a
technical assumption [11], Section 5.2, to deal with the situation where the threshold parameters
coincide with the adaptive criteria. Our analysis of αSMC does not rest on any such technical
assumption, and in some ways is more direct, but we do not obtain concentration estimates or a
CLT. Some more detailed remarks on this matter are given after the statement of Theorem 1.

Crisan and Obanubi [7] studied convergence and obtained a CLT for an adaptive resampling
particle filter in continuous time under conditions which they verify for the case of ESS-triggered
resampling, without needing the type of technical assumption of [11]. Their study focuses, in
part, on the random times at which resampling occurs and dealing with the subtleties of the
convergence in continuous time. Our asymptotic N → ∞ analysis is in some ways less refined,
but in comparison to this and the other existing works, we analyze a more general algorithm, and
it is this generality which allows us to suggest new adaptive algorithms in Section 5, informed
by the time-uniform non-asymptotic error bounds in our Theorem 2.

To proceed, we need some further notation involving α. Let us define the matrices: αn,n := Id
for n ≥ 0, and recursively

α
ij
p,n :=

∑
k

αik
p+1,nα

kj
p , (i, j) ∈ [N ]2,0 ≤ p < n, (20)

and the vectors:

βi
n,n := N−1, n ≥ 0, i ∈ [N ], (21)

and recursively

βi
p,n :=

∑
j

β
j

p+1,nα
ji
p , i ∈ [N ],0 ≤ p < n. (22)

Note that since each αn is a random Markov transition matrix, so is each αp,n, and each
{βi

p,n}i∈[N ] defines a random probability distribution on [N ]. Moreover, from these definitions
we immediately have the identity

βi
p,n = N−1

∑
j

α
ji
p,n, i ∈ [N ],0 ≤ p ≤ n. (23)

Assumption. (B) – for all 0 ≤ p ≤ n and i ∈ [N ], βi
p,n is measurable w.r.t. the trivial σ -algebra

F−1.
(B+) – assumption (B) holds and, for all 0 ≤ p ≤ n, limN→∞ maxi∈[N ] βi

p,n = 0.
(B++) – every member of AN admits the uniform distribution on [N ] as an invariant distribu-

tion

We note the following:

• Intuitively, (B) ensures that even though α is a sequence of random Markov transition matri-
ces, the elements of the probability vector {βi

p,n}i∈[N ] are all constants. (B) holds, trivially,



504 N. Whiteley, A. Lee and K. Heine

when every element of every αn is measurable w.r.t. F−1, that is, the sequence α is com-
pletely pre-determined. This is true, for example, when the set AN consists of only a single
element, as is the case for SIS and the BPF.

• The limN→∞ maxi∈[N ] βi
p,n = 0 part of (B+) is an asymptotic negligibility condition. In

Section 5.2, we describe what can go wrong when this assumption does not hold.
• (B++) does not require the members of AN to be irreducible, for example, it is satisfied

with AN = {Id}.
• (B++) ⇒ (B+). To see this, observe that when (B++) holds, every random matrix αp,n,

defined in (20), also admits the uniform distribution on [N ] as invariant, then using (23) we
have βi

p,n = N−1∑
j α

ji
p,n = N−1 for all i ∈ [N ]. The reverse implication is clearly not true

in general.
• (B++) holds when every member of AN is doubly-stochastic, because such matrices always

leave the uniform distribution invariant. (B++) therefore holds for the ARPF, which has
AN = {Id,11/N }.

To get some feel for why (B++) is a natural condition for convergence, note that plugging the par-
ticle approximation πn−1 ≈ πN

n−1 =∑
i W

i
n−1δζ i

n−1
/
∑

i W
i
n−1into equation (2) for the predictor

yields a finite mixture approximation of πn

πn ≈
∑

i W
i
n−1gn−1(ζ

i
n−1)f (ζn−1, ·)∑

i W
i
n−1gn−1(ζ

i
n−1)

.

Under condition (B++) the stochastic matrix αn−1 ∈AN is doubly stochastic, hence∑
j W

j

n−1g
j

n−1(ζ
j

n−1)f (ζ
j

n−1, ·)∑
j W

j

n−1g
j

n−1(ζ
j

n−1)
=
∑

i

∑
j α

ij

n−1W
j

n−1g
j

n−1(ζ
j

n−1)f (ζ
j

n−1, ·)∑
i

∑
j α

ij

n−1W
j

n−1g
j

n−1(ζ
j

n−1)
=
∑

i W
i
nm

i
n∑

i W
i
n

,

where mi
n is the distribution from which the new particle ζ i

n is sampled, as in (16), justifying the
particle approximation

πn ≈ πN
n =

∑
i W

i
nδζ i

n∑
i W

i
n

.

The main result of this section is:

Theorem 1. Assume (A2). For any n ≥ 0, ϕ ∈ L and r ≥ 1,

(1) if (B) holds, then E[ZN
n ] = Zn for any N ≥ 1,

(2) if (B+) holds, then

lim
N→∞E

[∣∣ZN
n − Zn

∣∣r] = 0, (24)

lim
N→∞E

[∣∣πN
n (ϕ) − πn(ϕ)

∣∣r] = 0, (25)

and therefore ZN
n → Zn and πN

n (ϕ) → πn(ϕ) in probability as N → ∞,
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(3) if (B++) holds, then

sup
N≥1

√
NE

[∣∣ZN
n − Zn

∣∣r]1/r
< +∞, (26)

sup
N≥1

√
NE

[∣∣πN
n (ϕ) − πn(ϕ)

∣∣r]1/r
< +∞, (27)

and therefore ZN
n → Zn and πN

n (ϕ) → πn(ϕ) almost surely, as N → ∞.

Remark 1. The lack-of-bias property E[ZN
n ] = Zn is desirable since it could be used to validate

the use of αSMC within composite SMC/MCMC algorithms such as those of [1].

Remark 2. Theorem 1 holds without any sort of requirement that the entries of each αn converge
as N → ∞. For example, (B++) holds if for N odd we choose AN = {Id} and for N even we
choose AN = {11/N }. As a reflection of this, and as is apparent upon inspection of the proof,
without further assumption we cannot in general replace supN≥1 in (26)–(27) with limN→∞,
because such limits may not exist.

The following notation is used throughout the remainder of the paper. Introduce the non-
negative kernels

Qn : X ×X → R+, Qn

(
x,dx′) := gn−1(x)f

(
x,dx′), n ≥ 1, (28)

the corresponding operators on functions and measures:

Qn(ϕ)(x) :=
∫

X
Qn

(
x,dx′)ϕ(x′), ϕ ∈ L, (29)

μQn(·) :=
∫

X
μ(dx)Qn(x, ·), μ ∈ M, (30)

and for n ≥ 1 and 0 ≤ p < n,

Qp,p := Id, Qp,n := Qp+1 · · ·Qn. (31)

We shall also consider the following scaled versions of these operators:

Qn := Qn

πn−1(gn−1)
, Qp,p := Id, Qp,n := Qp+1 · · ·Qn. (32)

Then define the non-negative measures

γn := μ0Q0,n(·), n ≥ 0,

under (A1) we are assured that γn(1) > 0. Due to the conditional independence structure of the
HMM, it can easily be checked that

πn = γn

γn(1)
, Zn = γn(1), n ≥ 0
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and

Qp,n = Qp,n

πpQp,n(1)
.

For i ∈ [N ] and 0 ≤ p ≤ n, introduce the random measures


N
p,n :=

∑
i

βi
p,nW

i
pδζ i

p
, 


N

p,n := 
N
p,n

γp(1)
, (33)

where Wi
p is as in (5). For simplicity of notation, we shall write 
N

n := 
N
n,n,


N

n := 

N

n,n. If we
define

W
i

n := Wi
n

γn(1)
, n ≥ 0, (34)

then we have from (33),



N

p,n =
∑

i

βi
p,nW

i

pδζ i
p
.

Finally, we observe from (21) that


N
n =

∑
i

βi
n,nW

i
nδζ i

n
= N−1

∑
i

W i
nδζ i

n
.

Error decomposition

Throughout this section, let ϕ ∈ L, n ≥ 0 and N ≥ 1 be arbitrarily chosen, but then fixed. Define,
for 1 ≤ p ≤ n and i ∈ [N ],

�i
p,n := Qp,n(ϕ)

(
ζ i
p

)− ∑
j α

ij

p−1W
j

p−1Qp−1,n(ϕ)(ζ
j

p−1)∑
j α

ij

p−1W
j

p−1Qp(1)(ζ
j

p−1)
,

and �i
0,n := Q0,n(ϕ)(ζ i

0)−μ0Q0,n(ϕ), so that E[�i
p,n|Fp−1] = 0 for any i ∈ [N ] and 0 ≤ p ≤ n.

Then for 0 ≤ p ≤ n and i ∈ [N ] set k := pN + i, and

ξN
k := √

Nβi
p,nW

i

p�i
p,n,

so as to define a sequence {ξN
k ; k = 1, . . . , (n + 1)N}. For k = 1, . . . , (n + 1)N , let F (k) be the

σ -algebra generated by {ζ i
p;pN + i ≤ k, i ∈ [N ],0 ≤ p ≤ n}. Set F (−1) := {X,∅}.

The following proposition is the main result underlying Theorem 1. The proof is given in the
Appendix.



On the role of interaction in SMC algorithms 507

Proposition 1. Assume (A2) and (B). We have the decomposition

√
N
[



N

n (ϕ) − πn(ϕ)
]=

(n+1)N∑
k=1

ξN
k , (35)

where for k = 1, . . . , (n + 1)N , the increment ξN
k is measurable w.r.t. F (k) and satisfies

E
[
ξN
k |F (k−1)

]= E
[
ξN
k |Fp−1

]= 0 with p := ⌊(k − 1)/N
⌋
. (36)

For each r ≥ 1 there exists a universal constant B(r) such that

E
[∣∣
N

n (ϕ) − πn(ϕ)
∣∣r]1/r

(37)

≤ B(r)1/r

n∑
p=0

osc
(
Qp,n(ϕ)

)
E

[∣∣∣∣∑
i

(
βi

p,nW
i

p

)2∣∣∣∣r/2]1/r

.

The proof of Theorem 1, which is mostly technical, is given in the Appendix. Here we briefly
discuss our assumptions and sketch some of the main arguments. Part (1) of Theorem 1 follows
immediately from (35) and (36) applied with ϕ = 1. In turn, the martingale structure of (35) and
(36) is underpinned by the measurability conditions (A2) and (B). The proofs of parts (2) and (3)
of Theorem 1, involve applying Proposition 1 in conjunction with the identities

ZN
n − Zn = 
N

n (1) − γn(1),
(38)

πN
n (ϕ) − πn(ϕ) = 
N

n (ϕ)


N
n (1)

− γn(ϕ)

γn(1)
.

In order to prove that these errors convergence to zero in probability, we show that the quadratic
variation term in (37) converges to zero. In general, we cannot hope for the latter convergence

without some sort of negligibility hypothesis on the product terms {osc(Qp,n(ϕ))βi
p,nW

i

p; i ∈
[N ]}. Assumption (A1) allows us to crudely upper-bound osc(Qp,n(ϕ)) and W

i

p; the measura-
bility condition (B) allows us to dispose of the expectation in (37); then via Markov’s inequality
and the classical equivalence:

lim
N→∞ max

i∈[N ]β
i
p,n = 0 ⇔ lim

N→∞
∑

i

(
βi

p,n

)2 = 0,

which holds since (maxi∈[N ] βi
p,n)

2 ≤∑i (β
i
p,n)

2 ≤ maxi∈[N ] βi
p,n, the negligibility part of (B+)

guarantees that |
N
n (ϕ) − γn(ϕ)| converges to zero in probability. The stronger condition (B++)

buys us the
√

N scaling displayed in part (3). In Section 5.2, we discuss what can go wrong when
(B+) does not hold.
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4. Stability

In this section, we study the stability of approximation errors under the following regularity
condition.

Assumption. (C) There exists (δ, ε) ∈ [1,∞)2 such that

sup
n≥0

sup
x,y

gn(x)

gn(y)
≤ δ, f (x, ·) ≤ εf (y, ·), (x, y) ∈ X2.

(C) is a standard hypothesis in studies of non-asymptotic stability properties of SMC al-
gorithms. Similar conditions have been adopted in [8], Chapter 7, and [18], amongst others.
(C) guarantees that Qp,n, and related objects, obey a variety of regularity conditions. In particu-
lar, we immediately obtain

sup
p,n

sup
x

Qp,n(1)(x) ≤ sup
p,n

sup
x,y

Qp,n(1)(x)

Qp,n(1)(y)
≤ δε < +∞. (39)

Furthermore, if we introduce the following operators on probability measures:

�n :μ ∈ P �→ μQn

μ(gn−1)
∈P, n ≥ 1, (40)

�p,n := �n ◦ · · · ◦ �p+1, 0 ≤ p < n. (41)

It is well-known that under (C), �p,n is uniformly exponentially stable, in the sense of the some-
what crude estimate in the following lemma.

Lemma 2. Assume (C). Then there exists a finite constant C and ρ ∈ [0,1) such that

sup
μ,μ′∈P

∥∥�p,n(μ) − �p,n

(
μ′)∥∥

tv ≤ Cρn−p.

For a proof see, for example, [8], Proposition 4.3.6. It follows from (2), (40) and (41) that

πn+1 = �n+1(πn) = �p,n+1(πp) = �0,n+1(μ0), 0 ≤ p ≤ n,

so Lemma 2 can be used to describe the forgetting of the initial distribution of the non-linear
filter. Properties similar to (39) and the exponential stability in Lemma 2 can be obtained un-
der conditions weaker and more realistic than (C), see, for example, [22] but the developments
involved are substantially more technical, lengthy and complicated to present. Our aim is to ex-
pedite the presentation of stability properties of αSMC, and (C) allows this to be achieved while
retaining some of the essence of more realistic hypotheses on gn and f .

The main result of this section is the following theorem, whose proof we briefly postpone.
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Theorem 2. Assume (A2), (B++) and (C). Then there exist finite constants, c1 and for each
r ≥ 1, c2(r), such that for any τ ∈ (0,1], N ≥ 1, and ϕ ∈ L,

inf
n≥0

EN
n ≥ τ ⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩
sup
n≥1

E

[(
ZN

n

Zn

)2]1/n

≤ 1 + c1

Nτ
and

supn≥0 E
[∣∣πN

n (ϕ) − πn(ϕ)
∣∣r]1/r ≤ ‖ϕ‖ c2(r)√

Nτ
.

(42)

Remark 3. It follows quite immediately from the first inequality of (42) that

inf
n≥0

EN
n ≥ τ

and
Nτ ≥ nc1

⎫⎪⎬⎪⎭ ⇒ E

[(
ZN

n

Zn

− 1

)2]
≤ 2nc1

Nτ
,

see Lemma 6 in the Appendix.

Remark 4. It follows immediately from the second inequality in (42) that when infn≥0 EN
n ≥ τ

for all N ≥ 1, the prediction filter errors are time-uniformly convergent in the sense

lim
N→∞ sup

n≥0
E
[∣∣πN

n (ϕ) − πn(ϕ)
∣∣r]1/r = 0.

Remark 5. Further to the discussion of Section 2.2, in the case of the BPF we have EN
n = 1 and

hence infn≥0 EN
n ≥ τ always, and for the ARPF we also have infn≥0 EN

n ≥ τ always, by virtue
of the ESS rule for selection of αn. In Section 5, we shall introduce new algorithms designed to
guarantee infn≥0 EN

n ≥ τ .

Remark 6. It is possible to deduce estimates for the constants c1 and c2(r) using the statements
and proofs of Propositions 2 and 3, which are the main ingredients in the proof of Theorem 2.
We omit such expressions only for simplicity of presentation.

The proofs of Propositions 2 and 3 are given in the Appendix.

Proposition 2. Assume (A2), (B++) and (C). If for some sequence of constants {τn;n ≥ 0} ∈
(0,1]N and N ≥ 1,

EN
n ≥ τn,

then for any n ≥ 1,

E

[(
ZN

n

Zn

− 1

)2]
≤

n−1∑
p=0

osc(Qp,n(1))2

Nτp

(
E

[(
ZN

p

Zp

− 1

)2]
+ 1

)
.
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Proposition 3. Consider the constants and Markov kernels:

δp,n := sup
x,y

Qp,n(1)(x)

Qp,n(1)(y)
, Pp,n(x,A) := Qp,n(IA)(x)

Qp,n(1)(x)
, x ∈ X,A ∈ X ,0 ≤ p ≤ n.

Assume (A2), (B) and (C). Then for any r ≥ 1 there exists a finite constant B(r) such that for
any N ≥ 1, n ≥ 0, and ϕ ∈ L,

E
[∣∣πN

n (ϕ) − πn(ϕ)
∣∣r]1/r ≤ 4B(r)1/r

n∑
p=0

δp,n

∥∥Pp,n(ϕ̄)
∥∥E[∣∣CN

p,n

∣∣r]1/r
. (43)

where ϕ̄ := ϕ − πn(ϕ) and

CN
p,n :=

√∑
i (β

i
p,nW

i
p)2∑

i β
i
p,nW

i
p

.

Proof of Theorem 2. For the first bound on the right of (42) under the conditions of the theorem,
we apply Proposition 2 to give the following recursive bound:

vn ≤
n−1∑
p=0

C

Nτ
(vp + 1), (44)

where vn := E[(ZN
n /Zn − 1)2] and

C := sup
p,n

osc
(
Qp,n(1)

)2 ≤ 4 sup
p,n

∥∥Qp,n(1)
∥∥2

< +∞,

under (C); see (39). We shall now prove

vn ≤
(

1 + C

Nτ

)n

− 1 ∀n ≥ 0, (45)

which holds trivially if C = 0, since in that case vn = 0 by (44). Therefore suppose C > 0. The
argument is inductive. To initialize, note that since by definition ZN

0 = Z0 = 1, we have v0 = 0.
Now assume (45) holds at all ranks strictly less than some fixed n ≥ 1. Using (44), we then have
at rank n,

vn ≤ C

Nτ

n−1∑
p=0

(vp + 1) ≤ C

Nτ

n−1∑
p=0

(
1 + C

Nτ

)p

= C

Nτ

(1 + C/Nτ)n − 1

(1 + C/Nτ) − 1

=
(

1 + C

Nτ

)n

− 1.
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This completes the proof of (45), from which the first inequality on the right of (42) follows
immediately upon noting that by Theorem 1, E[ZN

n ] = Zn.
For the second bound on the right of (42), first note that by Lemma 2, under (C) we have∥∥Pp,n(ϕ̄)

∥∥ = sup
x

∣∣Pp,n(ϕ)(x) − πn(ϕ)
∣∣

= sup
x

∣∣�p,n(δx)(ϕ) − �p,n(πp)(ϕ)
∣∣

≤ sup
μ,ν∈P

∥∥�p,n(μ) − �p,n(ν)
∥∥

tv‖ϕ‖ ≤ ‖ϕ‖Cρn−p,

and by (39),

sup
n≥0

sup
p≤n

δp,n < +∞.

Using these upper bounds, the fact that under (B++) we have βi
p,n = 1/N , and Proposition 3, we

find that there exists a finite constant B̃(r) such that for any N ≥ 1, n ≥ 0, ϕ ∈ L,

E
[∣∣πN

n (ϕ) − πn(ϕ)
∣∣r]1/r ≤ ‖ϕ‖ B̃(r)√

N

n∑
p=0

ρn−p
E
[∣∣EN

p

∣∣−r/2]1/r
,

where

EN
n = (N−1∑

i W
i
n)

2

N−1
∑

i (W
i
n)

2
. �

5. Discussion

5.1. Why not just run independent particle filters and average?

One obvious approach to parallelization of SMC is to run a number of independent copies of a
standard algorithm, such as the BPF, and then in some sense simply average their outputs. Let us
explain possible shortcomings of this approach.

Suppose we want to run s ≥ 1 independent copies of Algorithm 3, each with q ≥ 1 particles.
For purposes of exposition, it is helpful to express this collection of independent algorithms as
a particular instance of αSMC: for the remainder of Section 5.1, we set N = sq and consider
Algorithm 1 with AN chosen to consist only of the block diagonal matrix:⎡⎢⎢⎢⎣

q−1 0 · · · 0
0 q−1 · · · 0
...

...
. . .

...

0 0 · · · q−1

⎤⎥⎥⎥⎦ , (46)
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where q−1 is a q × q submatrix with every entry equal to q−1 and 0 is a submatrix of zeros, of
the same size. In this situation, a simple application of Lemma 1 shows that for any n ≥ 1 and

 ∈ [s], if we define B(
) := {(
 − 1)q + 1, (
 − 1)q + 2, . . . , 
q}, then

for all in ∈ B(
), Win
n =

n−1∏
p=0

(
N−1

∑
ip∈B(
)

gp

(
ζ

ip
p

))=:W

n, (47)

cf. (11)–(12), and furthermore upon inspection of Algorithm 1, we find

for all 
 ∈ [s] and i ∈ B(
) P
(
ζ i
n ∈ A|Fn−1

)=
∑

j∈B(
) gn−1(ζ
j

n−1)f (ζ
j

n−1,A)∑
j∈B(
) gn−1(ζ

j

n−1)
, (48)

for any A ∈ X . It follows that the blocks of particles

ζ̂ k
n := {ζ i

n

}
i∈B(
)

, 
 ∈ [s],

are independent, and for each 
 ∈ [s], the sequence {ζ̂ 

n ;n ≥ 0} evolves under the same law as a

BPF, with q particles. Furthermore, we notice

πN
n = π

sq
n =

∑
i W

i
nδζ i

n∑
i W

i
n

=
∑


∈[s]
∑

i∈B(
) W
i
nδζ i

n∑

∈[s]

∑
i∈B(
) W

i
n

=
∑


∈[s]W

n(q

−1∑
i∈B(
) δζ i

n
)∑


∈[s]W

n

,

where q−1∑
i∈B(
) δζ i

n
may be regarded as the approximation of πn obtained from the 
th block

of particles. Since we have assumed that AN consists only of the matrix (46), (A2) and (B++)
hold, and by Theorem 1 we are assured of the a.s. convergence π

sq
n (ϕ) → πn(ϕ) when q is fixed

and s → ∞. In words, we have convergence as the total number of bootstrap algorithms tends to
infinity, even though the number of particles within each algorithm is fixed. On the other hand,
simple averaging of the output from the s independent algorithms would entail reporting:

1

sq

∑
i∈[sq]

δζ i
n

(49)

as an approximation of πn; the problem is that (49) is biased, in the sense that in general it is
not true that, with q fixed, (sq)−1∑

i∈[sq] ϕ(ζ i
n) → πn(ϕ) as s → ∞ (although obviously we do

have convergence if q → ∞). In summary, simple averages across independent particle filters do
not, in general, converge as the number of algorithms grows.

We can also discuss the quality of an approximation of Zn obtained by simple averaging across
the s independent algorithms; let us consider the quantities

Z
(q,
)
n := 1




∑
j∈[
]

W
j
n, 
 ∈ [s].
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Comparing (47) with (12), and noting (48) and the independence properties described above, we
have

E
[
Z

(q,s)
n

]= Zn, E

[(
Z

(q,s)
n

Zn

− 1

)2]
= 1

s
E

[(
Z

(q,1)
n

Zn

− 1

)2]
, (50)

where the first equality holds due to the first part of Theorem 1: in this context the well
known lack-of-bias property of the BPF. Under certain ergodicity and regularity conditions
E[(Z(q,1)

n /Zn)
2] can grow exponentially fast along observation sample paths when q is fixed

and n → ∞ [23]. When that occurs, it is clear from (49) that s must be scaled up exponentially
fast with n in order to control the relative variance of Z(q,s)

n . On the other hand, by Theorem 2 and
Remark 3, it is apparent that if we design an instance of αSMC so as to enforce infn≥0 EN

n > 0,
then we can control E[(ZN

n /Zn)
2] at a more modest computational cost. When AN consists only

of the matrix (46) we do not have a guarantee that infn≥0 EN
n > 0, but in Section 5.3 we shall

suggest some novel algorithms which do guarantee this lower bound and therefore enjoy the
time-uniform convergence and linear-in-time variance properties of Theorem 2. Before address-
ing these stability issues, we discuss the conditions under which the αSMC algorithm converges.

5.2. Ensuring convergence

Throughout Section 5.2, we consider the generic Algorithm 1. We describe what can go wrong
if the conditions (B+) and (B++) of Theorem 1 do not hold: suppose that AN consists only of
the transition matrix of a simple random walk on the star graph with N vertices, call it SN . That
is, for N > 2, SN is an undirected tree with one internal vertex and N − 1 leaves, and for N ≤ 2,
all vertices are leaves. Examples of SN are illustrated in Figure 1. It is elementary that a simple
random walk on SN has unique invariant distribution given by

di
N∑

j d
j
N

, i ∈ [N ], where di
N := degree of vertex i in SN,

so that (B++) does not hold for N > 2. Assuming that for every N > 2, the internal vertex of SN

is labelled vertex 1, then elementary calculations show that

max
i∈[N ]β

i
p,n = β1

p,n =

⎧⎪⎨⎪⎩
N − 1

N
, if (n − p) is even,

1

N
, if (n − p) is odd,

Figure 1. Star graphs.
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so (B+) also does not hold, and thus part (2) of Theorem 1 does not hold.
As a more explicit example of convergence failure, suppose that AN consists only of the matrix

which has 1 for every entry in its first column, and zeros for all other entries. This is the transition
matrix of a random walk on a directed graph of which all edges lead to vertex 1. It follows that
for all 0 ≤ p < n, we have β1

p,n = 1 and βi
p,n = 0 for all i ∈ [N ] \ {1}, so (B+) clearly does not

hold. If additionally f (x, ·) = δx(·), then by inspection of Algorithm 1 we have P({ζ i
n = ζ 1

0 }) = 1
for all i ∈ [N ] and all n ≥ 1. We then also have P({πN

n = δζ 1
0
}) = 1, so that we obtain a generally

poor and non-convergent approximation of πn.
In both these situations vertex 1 is, in graph theoretic terms, a hub and an intuitive explanation

of the convergence failure is that the contribution of particle 1 to πN
n does not become negligible

as N → ∞, so that no “averaging” takes place. Assumption (B+) ensures enough negligibility
to prove the weak laws of large numbers in Theorem 1. Assumption (B++) may be viewed as
ensuring negligibility, and in such a way as to ensure the

√
N rate of convergence and strong law

in the final part of Theorem 1. As a practical summary, we recommend verifying (B++), or at
least avoid using graphs with hubs, since otherwise αSMC may not converge.

5.3. Provably stable algorithms with adaptive interaction

There are of course many choices of AN which do satisfy (B++). In this section, we provide
some guidance and suggestions on this matter. In order to focus our attention, we consider in
addition to (B++), the following criteria against which to assess candidates for AN and whatever
functional is used at line (�) of Algorithm 1:

(a) the condition infn≥0 EN
n > 0 should be enforced, so as to ensure stability,

(b) the computational complexity of associated sampling, weight and ESS calculations should
not be prohibitively high.

The motivation for (a) is the theoretical assurance given by Theorem 2. The motivation for (b) is
simply that we do not want an algorithm which is much more expensive than any of the standard
SMC methods, Algorithms 2–3 and the ARPF. It is easily checked that the complexity of SIS is
O(N) per unit time step, which is the same as the complexity of the BPF [4] and the ARPF.

Throughout the remainder of Section 5.3, we shall assume that AN consists only of transition
matrices of simple random walks on regular undirected graphs. We impose a little structure in
addition to this as per the following definition, which identifies an object related to the standard
notion of a block-diagonal matrix.

Definition. A B-matrix is a Markov transition matrix which specifies a simple random walk on a
regular undirected graph which has a self-loop at every vertex and whose connected components
are all complete subgraphs.

Note that due to the graph regularity appearing in this definition, if AN consists only of B-
matrices, then (B++) is immediately satisfied. This regularity is also convenient for purposes
of interpretation: it seems natural to use graph degree to give a precise meaning to “degree of
interaction”. Indeed Id and 11/N are both B-matrices, respectively, specifying simple random
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walks on 1-regular and N -regular graphs, and recall for the ARPF, AN = {Id,11/N }; the main
idea behind the new algorithms below is to consider an instance of αSMC in which AN is defined
to consist of B-matrices of various degrees d ∈ [N ], and define adaptive algorithms which select
the value of αn−1 by searching through AN to find the graph with the smallest d which achieves
EN

n ≥ τ > 0 and hence satisfies criterion (a). In this way, we ensure provable stability whilst
trying to avoid the complete interaction which occurs when αn−1 = 11/N .

Another appealing property of B-matrices is formalized in the following lemma; see crite-
rion (b) above. The proof is given in the Appendix.

Lemma 3. Suppose that A = (Aij ) is a B-matrix of size N . Then given the quantities
{Wi

n−1}i∈[N ] and {gn−1(ζ
i
n−1)}i∈[N ], the computational complexity of calculating {Wi

n}i∈[N ] and
simulating {ζ i

n}i∈[N ] as per Algorithm 1, using αn−1 = A, is O(N).

When calculating the overall complexity of Algorithm 1 we must also consider the complexity
of line (�), which in general depends on AN and the particular functional used to choose αn. We
resume this complexity discussion after describing the specifics of some adaptive algorithms.

Adaptive interaction.
Throughout this section, we set m ∈ N and then N = 2m. Consider Algorithm 1 with AN

chosen to be the set of B-matrices of size N . We suggest three adaptation rules at line (�) of
Algorithm 1: Simple, Random, and Greedy, all implemented via Algorithm 4 (note that depen-
dence of some quantities on n is suppressed from the notation there), but differing in the way
they select the index list Ik which appears in the “while” loop of that procedure. The methods for
selecting Ik are summarised in Table 1: the Simple rule needs little explanation, the Random rule
implements an independent random shuffling of indices and the Greedy rule is intended, heuris-
tically, to pair large weights, Wi

k , with small weights in order to terminate the “while” loop with
as small a value of k as possible. Note that, formally, in order for our results for αSMC to apply
when the Random rule is used, the underlying probability space must be appropriately extended,
but the details are trivial so we omit them.

Following the termination of the “while” loop, Algorithm 4 outputs an integer Kn−1 and a
partition {B(Kn−1, i)}i∈[N/2Kn−1 ] of [N ] into N/2Kn−1 subsets, each of cardinality 2Kn−1 ; this

partition specifies αn−1 as a B-matrix and 2Kn−1 is the degree of the corresponding graph (we
keep track of Kn−1 for purposes of monitoring algorithm performance in Section 5.4). Proposi-
tion 4 is a formal statement of its operation and completes our complexity considerations. The
proof is given in the Appendix. It can be checked by an inductive argument similar to the proof
of Lemma 4, also in the Appendix, that when αn is chosen according to Algorithm 4 combined
with any of the adaptation rules in Table 1, (A2) is satisfied.

Proposition 4. The weights {Wi
k}i∈[N/2k] calculated in Algorithm 4 obey the expression

W
i
k = 2−k

∑
j∈B(k,i)

W
j

n−1gn−1
(
ζ

j

n−1

)
. (51)
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Algorithm 4 Adaptive selection of αn−1

At iteration n and line (�) of Algorithm 1
For i = 1, . . . ,N ,

Set B(0, i) = {i}, Wi
0 = Wi

n−1gn−1(ζ
i
n−1),

Set k = 0,

Set W0 = N−1∑
i W

i
0 , E = (W0)

2

N−1
∑

i (W
i
0)

2 ,

While E < τ

Set Ik according to the Simple, Random or Greedy scheme of Table 1
For i = 1, . . . ,N/2k+1

Set B(k + 1, i) = B(k,Ik(2i − 1)) ∪ B(k,Ik(2i))

Set Wi
k+1 =W

Ik(2i−1)
k /2 +W

Ik(2i)
k /2

Set k = k + 1
Set E = (W0)

2

N−12k
∑

i∈[N/2k ](W
i
k)

2

Set Kn−1 = k

Set α
ij

n−1 =
{

1/2Kn−1, if i ∼ j according to {B(Kn−1, i)}i∈[N/2Kn−1 ],
0, otherwise.

Moreover, αn−1 delivered by Algorithm 4 is a B-matrix and when this procedure is used at line
(�) of Algorithm 1, the weights calculated in Algorithm 1 are given, for any i ∈ [N/2Kn−1], by

W
j
n =W

i
Kn−1

for all j ∈ B(Kn−1, i) (52)

and EN
n ≥ τ always. The overall worst-case complexity of Algorithm 1 is, for the three adaptation

rules in Table 1, Simple: O(N), Random: O(N), and Greedy: O(N log2 N).

5.4. Numerical illustrations

We consider a stochastic volatility HMM:

X0 ∼ N (0,1), Xn = aXn−1 + σVn,

Yn = εWn exp(Xn/2),

Table 1. Adaptation rules for choosing Ik

Simple set Ik = (1, . . . ,N/2k)

Random if k = 0, set Ik to a random permutation of [N/2k], otherwise Ik = (1, . . . , ,N/2k)

Greedy set Ik such that WIk(1)
k

≥ W
Ik(3)
k

≥ · · · ≥ W
Ik(N/2k−1)
k

≥ W
Ik(N/2k)
k

≥ · · · ≥ W
Ik(4)
k

≥
W

Ik(2)
k
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Figure 2. Snapshots of ESS and degree of interaction. Top: Neff
n vs. n (solid) and threshold τN (dashed).

Bottom: Kn vs. n (stems) and the base two logarithm of the time-average of 2Kn (dashed). Recall from
Section 5.3 that 2Kn is the degree of the graph corresponding to the matrix αn selected by Algorithm 4, and
returned to line (�) of Algorithm 1.

where {Vn}n∈N and {Wn}n∈N are sequences of mutually i.i.d. N (0,1) random variables, |a| < 1,
and σ, ε > 0. To study the behaviour of the different adaptation rules in terms of effective sample
size, a sequence of 3 · 104 observations were generated from the model with a = 0.9, σ = 0.25,
and ε = 0.1. This model obviously does not satisfy (C), but (A1) is satisfied as long as the
observation record does not include the value zero.

The ARPF and αSMC with the Simple, Random and Greedy adaptation procedures specified
in Section 5.3 were run on this data with N = 210 and threshold τ = 0.6. To give some impression
of ESS and interaction behaviour, Figure 2 shows snapshots of Neff

n and Kn versus n, for 575 ≤
n ≤ 825. The sample path of Neff

n for ARPF displays a familiar saw-tooth pattern, jumping back
up to N = 210 when resampling, that is, when Kn = 10. The Simple adaptation scheme keeps
Neff

n just above the threshold τN = 0.6 × 210, whereas the Greedy strategy is often able to
keep Neff

n well above this threshold, with smaller values of Kn, that is, with a lower degree of
interaction. The results for the Random adaptation rule, not shown in this plot, where qualitatively
similar to those of the Greedy algorithm but slightly closer to the Simple adaptation.

In order to examine the stationarity of the particle processes as well as the statistical behavior
of the degree of interaction over time, Figure 3 shows two histograms of Kn for each of the
adaptation rules. One histogram is based on the sample of Kn where 100 < n ≤ 15 050, and the
other is based on Kn where 15 050 < n ≤ 30 000. For each algorithm, the similarity between the
histograms for the two time intervals suggests that the process {Kn}n≥0 is stationary. As expected,
the distribution of Kn for ARPF is dichotomous taking only values equal to Kn = 0 when there is
no interaction, that is, the resampling is skipped or Kn = 10 for the complete interaction, that is,
resampling. It is apparent that the Simple, Random and Greedy algorithms move the distribution
of Kn toward smaller values and almost always manage to avoid the complete interaction. For
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Figure 3. Left: Histograms of Kn for the ARPF and the three adaptation rules of Table 1. The light bars
were obtained from {Kn;n = 101, . . . ,15 050} and the dark bars from {Kn;n = 15 051, . . . ,30 000} Right:
Growth of E vs. k for the Simple (solid), Random (dash-dot) and Greedy (dashed).

the Random and Greedy algorithms, Kn rarely exceeds 1, that is, in order to guarantee EN
n it is

rarely necessary to consider anything more than pair-wise interaction.
The plot on the right of Figure 3 shows, for each of the Simple, Random and Greedy adaptation

rules, the relationship between the intermediate variables E and k appearing in the “while” loop
of Algorithm 4. In order to obtain equal sample sizes for plotting purposes, Algorithm 4 was
modified slightly so as to evaluate E for every value k ∈ {0, . . . ,m}, whilst still outputting Kn−1
as the smallest value of k achieving E ≥ τ . The plotted data were then obtained, for each k, by
averaging the corresponding values of E over the time steps of the algorithm. It is apparent that,
for small values of k, the Random and Greedy strategies achieve a faster increase in E than the
Simple strategy, and this explains the shape of the histograms on the left of Figure 3.

Figure 4 shows a comparison of the mean squared errors (MSE) of approximating the condi-
tional expectation of φ(Xp) with respect to the underlying stochastic volatility HMM given the
observations {yn;0 ≤ n ≤ p + 
}, where 
 ∈ {−5,0,1} and φ is some test function. The cases,

 = −5, 
 = 0, and 
 = 1 correspond to the lag 5 smoother, filter and one step predictor, respec-
tively. The lag 5 smoother results were obtained by tracing back ancestral lineages. In order to
estimate the approximation error, a reference value for the conditional expectation was evaluated
by running a BPF with a large sample size N = 217. Approximation errors were evaluated for
NMC = 1000 Monte Carlo runs of 1000 time steps each with N = 29, and MSE was obtained by
averaging over the time steps and the Monte Carlo runs. First 30 time steps were excluded in the
calculations to avoid any non-stationary effects due to initialization. The results show that the
Random and Greedy algorithms produce consistently smaller errors than the Simple algorithm
and for large values of τ the Greedy algorithm appears to consistently outperform ARPF.

5.5. Concluding remarks

• The martingale decomposition presented in Proposition 1 may also be exploited to pursue
central limit theorems. A study of this will be conducted elsewhere, but we believe, further
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Figure 4. MSE vs. τ for the lag 5 smoother, filter, and one step predictor using the four algorithms ARPF
(solid), Simple (�), Random (◦), and Greedy (×) and three test functions φ.

to Remark 2, that it will in general involve some further hypotheses in order to ensure
convergence of the covariance of this martingale and thus prove the existence of a well-
defined asymptotic variance.

• It is worth pointing out that there are also SMC algorithms other than those listed in Sec-
tion 2.2 that can be formulated as instances of αSMC, for example, the stratified resampling
algorithm of Kitagawa [15] and the auxiliary particle filter of Pitt and Shephard [20]. It
should be kept in mind, however, that the successful formulation of any algorithm as an in-
stance of αSMC does not necessarily imply that the assumptions (B), (B+) or (B++) hold,
and the validity of Theorems 1 and 2 is in that sense, of course, not automatic.

Appendix

Lemma 4. If for every n ≥ 0, αn is chosen according to the ESS thresholding rule (13), then (A2)
is satisfied.

Proof. The proof is by induction. To initialize, we have at rank n = 0,

α0 :=
⎧⎨⎩11/N , if

(N−1∑
i W

i
0g0(ζ

i
0))

2

N−1
∑

i (W
i
0g0(ζ

i
0))

2
< τ ,

Id, otherwise,

(53)
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noting that by definition Wi
0 = 1, we find that the entries of α0 are measurable w.r.t. F0. For the

induction hypothesis, suppose that for some n ≥ 0 and all p ≤ n, the entries of αp are measur-
able w.r.t. Fn. It follows immediately from Lemma 1, equation (10), that {Wi

n+1}i∈[N ] are all
measurable w.r.t. Fn+1, and it follows from (13) applied at rank n+ 1 that the entries of αn+1 are
measurable w.r.t. Fn+1, and hence the induction hypothesis holds at rank n + 1. This completes
the proof. �

Resampling times description of the ARPF. In order to derive expressions for πN
n and ZN

n in
the case of the ARPF, define a family of random sets {σn;n ≥ 1}, and random times {Tn;n ≥ 1}
as follows

σn := {m;1 ≤ m ≤ n and αm−1 = 11/N },
(54)

Tn := max(σn),

with Tn := 0 on the event {σn = ∅}. Intuitively, Tn can be thought of as the last resampling time
before n. Then by construction, using the recursive definition of Wi

n in (5), and (54), we have on
the event {σn �=∅},

Wi
Tn

=
∑
j

α
ij

Tn−1W
j

Tn−1gTn−1
(
ζ

j

Tn−1

)
(55)

= 1

N

∑
j

W
j

Tn−1gTn−1
(
ζ

j

Tn−1

)=: W̃n, n ≥ 1,

which is independent of i. On the event {σn =∅}, define W̃n := 1.
On the event {σn �= ∅} ∩ {Tn = n}, we trivially have Wi

n = Wi
Tn

= W̃n, by (55). On the event
{σn �=∅} ∩ {Tn < n}, applying equation (9) of Lemma 1 with p = Tn, and (55), yields

Win
n =

∑
(iTn ,...,in−1)∈[N ]n−Tn

W
iTn

Tn

n−1∏
q=Tn

gq

(
ζ

iq
q

)
α

iq+1iq
q

= W̃n

∑
(iTn ,...,in−1)∈[N ]n−Tn

n−1∏
q=Tn

gq

(
ζ

iq
q

)
I[iq+1 = iq ] = W̃n

n−1∏
p=Tn

gp

(
ζ in
p

)
.

Collecting the above definitions and substituting into (6) gives

πN
n =

∑
i δζ i

n

∏n−1
p=Tn

gp(ζ i
p)∑

i

∏n−1
p=Tn

gp(ζ i
p)

, ZN
n = W̃n · 1

N

∑
i

n−1∏
p=Tn

gp

(
ζ i
p

)
,

with the convention
∏n−1

p=n gp(ζ i
p) = 1. Similar elementary calculations can be used to derive

expressions for the sampling steps of the ARPF, in the interests of brevity we leave it to the
reader to write out the details.
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Proofs and auxiliary results for Section 3

The proof of the main result of Section 3, Theorem 1, hinges on a martingale decomposition
of errors associated with ZN

n and πN
n (ϕ). This is the subject of Proposition 1, which we prove

below. Our overall approach is inspired by some of the ideas of [8], Chapters 7 and 9, but the
path we take and the details are necessarily different since the analysis of [8] does not apply to
αSMC in general. The following well-known lemma has been used extensively in the study of
sequential Monte Carlo methods and we shall apply it in the proof of Proposition 1.

Lemma 5 ([8], Lemma 7.3.3). Let (μi)i≥1 and (hi)i≥1 be, respectively, a sequence of probabil-
ity measures and a sequence of R-valued, measurable functions with finite oscillations on a given
measurable space (E,E). Assume that μi(hi) = 0 for all i ≥ 1 and let (Xi)i≥1 be a sequence of
independent random variables with respective distributions (μi)i≥1. Then for any r ≥ 1,

√
NE

[∣∣∣∣∣N−1
N∑

i=1

hi(Xi)

∣∣∣∣∣
r]1/r

≤ d(r)1/r

√√√√N−1
N∑

i=1

[
osc(hi)

]2
,

where for r ≥ 1,

d(2r) = 2−r (2r)!
r! , d(2r − 1) = 2−(r−1/2)

(r − 1/2)1/2

(2r − 1)!
(r − 1)! .

Proof of Proposition 1. Applying the identities β
ip−1
p−1,n = ∑

ip
β

ip
p,nα

ipip−1
p−1 , see (22), and

W
ip
p = ∑

ip−1
α

ipip−1
p−1 W

ip−1
p−1Qp(1)(ζ

ip−1
p−1 ), see (5), (32), (34); with the conventions α−1 := Id,

and 

N

−1Q−1,n(ϕ) = W
i

−1Q−1,n(ϕ)(ζ i
−1) := μ0Q0,n(ϕ) = πn(ϕ), we have



N

n (ϕ) − πn(ϕ)

=
n∑

p=0

[



N

p,nQp,n(ϕ) − 

N

p−1,nQp−1,n(ϕ)
]

=
n∑

p=0

[∑
ip

β
ip
p,nW

ip
p Qp,n(ϕ)

(
ζ

ip
p

)−∑
ip−1

∑
ip

β
ip
p,nα

ipip−1
p−1 W

ip−1
p−1Qp−1,n(ϕ)

(
ζ

ip−1
p−1

)]
(56)

=
n∑

p=0

∑
ip

β
ip
p,nW

ip
p

[
Qp,n(ϕ)

(
ζ

ip
p

)− ∑
ip−1

α
ipip−1
p−1 W

ip−1
p−1Qp−1,n(ϕ)(ζ

ip−1
p−1 )

W
ip
p

]

=
n∑

p=0

∑
ip

β
ip
p,nW

ip
p �

ip
p,n = N−1/2

(n+1)N∑
k=1

ξN
k .
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Each ξN
k is measurable w.r.t. F (k) because, using Corollary 1, (A2) and (B) we have that for

any k = 1, . . . , (n + 1)N , if we set p := �(k − 1)/N� and i := k − pN , the quantity �i
p,n is

measurable w.r.t. F (k) and β
ip
p,nW

ip
p is measurable w.r.t. Fp−1.

To verify (36), again use the fact that for any i ∈ [N ] and 0 ≤ p ≤ n, βi
p,nW

i

p is measurable

w.r.t. Fp−1, and note that given Fp−1, the particles {ζ i
p}Ni=1 are conditionally independent, and

distributed as specified in Algorithm 1. Hence for any k = 1, . . . , (n+1)N and p := �(k−1)/N�
and i := k − pN , we have E[ξN

k |F (k−1)] = √
Nβi

p,nW
i

pE[�i
p,n|Fp−1] = 0.

For the inequality (37), by Minkowski’s inequality and (56),

E
[∣∣
N

n (ϕ) − πn(ϕ)
∣∣r]1/r ≤

n∑
p=0

E
[∣∣
N

p,nQp,n(ϕ) − 

N

p−1Qp−1,n(ϕ)
∣∣r]1/r

. (57)

For each term in (57), using the above stated conditional independence and measurability prop-
erties, we may apply Lemma 5 to establish the existence of an independent constant B(r), de-
pending only on r and such that

E
[∣∣
N

p,nQp,n(ϕ) − 

N

p−1Qp−1,n(ϕ)
∣∣r |Fp−1

]
= E

[∣∣∣∣∑
i

βi
p,nW

i

p�i
p,n

∣∣∣∣r ∣∣∣Fp−1

]
(58)

≤ B(r)osc
(
Qp,n(ϕ)

)r(∑
i

(
βi

p,nW
i

p

)2)r/2

,

almost surely. The proof is completed upon combining this estimate with (57). �

Proof of Theorem 1. For part (1), note



N

n (1) − πn(1) = ZN
n

Zn

− 1,

then applying Proposition 1 with ϕ = 1 and using (35)–(36) gives

E
[
ZN

n

]= Zn.

Moving to the proof of part (2), let us assume for now, only (A1), (A2) and (B), but not
necessarily (B+). Define cn := supx gn(x)/πn(gn). Under (A1), we have

osc
(
Qp,n(ϕ)

)≤ 2‖ϕ‖ sup
x

Qp,n(1)(x) ≤ 2‖ϕ‖
n−1∏
q=p

cq < +∞
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and also using Lemma 1, (34) and the fact that each αp is a Markov transition matrix, we obtain

0 < W
ip
p ≤

∑
(i0,...,ip−1)∈[N ]p

p−1∏
q=0

cqα
iq+1iq
q =

p−1∏
q=0

cq < +∞.

From (37), we then obtain

E
[∣∣
N

n (ϕ) − πn(ϕ)
∣∣r]1/r

≤ 2‖ϕ‖B(r)1/r

(
n−1∏
p=0

cp

)
n∑

p=0

∣∣∣∣∑
i

(
βi

p,n

)2∣∣∣∣1/2

(59)

≤ 2‖ϕ‖B(r)1/r

(
n−1∏
p=0

cp

)
n∑

p=0

∣∣∣max
i∈[N ]β

i
p,n

∣∣∣1/2
,

where the final inequality holds because {βi
p,n}i∈[N ] is a probability vector. Then invoking (B+),

the convergence in (24) follows from (59) applied with ϕ = 1. For (25), we apply Minkowski’s
inequality, the fact |
N

n (ϕ)/
N
n (1)| ≤ ‖ϕ‖ and (59) twice to obtain

E
[∣∣πN

n (ϕ) − πn(ϕ)
∣∣r]1/r ≤ E

[∣∣
N

n (ϕ) − πn(ϕ)
∣∣r]1/r

+E

[∣∣∣∣
N
n (ϕ)


N
n (1)

∣∣∣∣r ∣∣
N

n (1) − 1
∣∣r]1/r

(60)

≤ 4‖ϕ‖[B(r)
]1/r

(
n−1∏
p=0

cp

)
n∑

p=0

∣∣∣max
i∈[N ]β

i
p,n

∣∣∣1/2
.

The convergence in probability then follows from Markov’s inequality, completing the proof of
part (2).

For part (3), under (B++) we have βi
p,n = 1/N , and therefore |maxi∈[N ] βi

p,n|1/2 = N−1/2.
Substituting this into (59) with ϕ = 1, and into (60), gives (26)–(27). The almost sure conver-
gence follows from the Borel–Cantelli lemma. �

Proofs and auxiliary results for Section 4

Proof of Proposition 2. The proof follows a similar line of argument to [9], Proof of Theo-
rem 16.4.1, but applies to a more general algorithm than considered there. To start, we apply
Proposition 1, equation (35) with ϕ = 1 and (36), we obtain

E

[(
ZN

n

Zn

− 1

)2]
=

n∑
p=0

∑
ip

E
[(

β
ip
p,nW

ip
p �

ip
p,n

)2]
.
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Under (B++) we have β
ip
p,n = 1/N , then using the other hypotheses of the proposition and noting

osc(Qn,n(1)) = osc(1) = 0, we have for n ≥ 1,

E

[(
ZN

n

Zn

− 1

)2]
=

n∑
p=0

∑
i

E

[
1

N2

(
W

i

p

)2(
�i

p,n

)2]

≤
n−1∑
p=0

osc
(
Qp,n(1)

)2
E

[
1

N2

∑
i

(
W

i

p

)2]

=
n−1∑
p=0

osc
(
Qp,n(1)

)2 1

N
E

[
1

EN
p

(
1

N

∑
i

W
i

p

)2]

≤
n−1∑
p=0

osc(Qp,n(1))2

Nτp

E

[(
1

N

∑
i

W
i

p − 1

)2

+ 1

]

=
n−1∑
p=0

osc(Qp,n(1))2

Nτp

(
E

[(
ZN

p

Zp

− 1

)2]
+ 1

)
,

where last two lines use N−1∑
i W

i

p = ZN
p /Zp and by Theorem 1, E[ZN

p ] = Zp . �

Proof of Proposition 3. First, note that by the same arguments as in the proof of Proposition 1,
equation (58), we have for any φ ∈ L, 0 ≤ p ≤ n,

E
[∣∣
N

p,nQp,n(φ) − 
N
p−1Qp−1,n(φ)

∣∣r |Fp−1
]

(61)

≤ B(r)osc
(
Qp,n(φ)

)r(∑
i

(
βi

p,nW
i
p

)2)r/2

,

with the convention 
N
−1Q−1,n(φ) = γn(φ).

For the remainder of the proof, fix ϕ ∈ L arbitrarily, and set ϕ̄ := ϕ − πn(ϕ). Defining

DN
p,n := 
N

p,nQp,n(ϕ̄)


N
p,nQp,n(1)

, 0 ≤ p ≤ n,

and then noting

DN
n,n = 
N

n (ϕ̄)


N
n (1)

= πN
n (ϕ) − πn(ϕ),

we shall focus on the decomposition:

πN
n (ϕ) − πn(ϕ) = DN

0,n +
n∑

p=1

DN
p,n − DN

p−1,n, (62)
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with the convention that the summation is zero when n = 0.
For 1 ≤ p ≤ n, write

DN
p,n − DN

p−1,n = T (N,1)
p,n + T (N,2)

p,n ,

where

T (N,1)
p,n := 1


N
p,nQp,n(1)

[

N

p,nQp,n(ϕ̄) − 
N
p−1,nQp−1,n(ϕ̄)

]
,

T (N,2)
p,n := 
N

p−1,nQp−1,n(ϕ̄)


N
p−1,nQp−1,n(1)

[
N
p−1,nQp−1,n(1) − 
N

p,nQp,n(1)]

N

p,nQp,n(1)
.

We have the estimates

osc(Qp,n(φ))

infx Qp,n(1)(x)
≤ 2δp,n

∥∥Pp,n(φ)
∥∥ (63)

(which is finite under assumption (C) – see also (39)), and∣∣∣∣
N
p−1,nQp−1,n(φ)


N
p−1,nQp−1,n(1)

∣∣∣∣≤ ∥∥Pp−1,n(φ)
∥∥. (64)

Applying (61) with φ = ϕ̄, using (63) and noting that 
N
p,n(1) is measurable w.r.t. Fp−1, we

obtain

E
[∣∣T (N,1)

p,n

∣∣r |Fp−1
]1/r ≤ B(r)1/r2δp,n

‖Pp,n(ϕ̄)‖

N

p,n(1)

(∑
i

(
βi

p,nW
i
p

)2)1/2

.

Applying (61) with φ = 1, using (64) and the same measurability condition, we obtain

E
[∣∣T (N,2)

p,n

∣∣r |Fp−1
]1/r ≤ B(r)1/r2δp,n

‖Pp−1,n(ϕ̄)‖

N

p,n(1)

(∑
i

(
βi

p,nW
i
p

)2)1/2

.

Therefore, via Minkowski’s inequality and using∥∥Pp−1,n(ϕ̄)
∥∥= ∥∥Qp−1,n(ϕ̄)/Qp−1,n(1)

∥∥= ∥∥QpQp,n(ϕ̄)/Qp−1,n(1)
∥∥≤ ∥∥Pp,n(ϕ̄)

∥∥,
we have

E
[∣∣DN

p,n − DN
p−1,n

∣∣r]1/r ≤ B(r)1/r4δp,n

∥∥Pp,n(ϕ̄)
∥∥E[∣∣CN

p,n

∣∣r]1/r
. (65)

For the remaining term, DN
0,n, we have

DN
0,n = 1


N
0,nQ0,n(1)

(

N

0,nQ0,n(ϕ̄) − γn(ϕ̄)
)
,
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where the final equality holds since γn(ϕ̄) = γn(ϕ) − γn(1)πn(ϕ) = 0. Using (61) and (63) in a
similar fashion to above, we obtain

E
[∣∣DN

0,n

∣∣r]1/r ≤ B(r)1/r2δ0,n

∥∥P0,n(ϕ̄)
∥∥E[∣∣CN

0,n

∣∣r]1/r
. (66)

The proof is complete upon using Minkowski’s inequality to bound the moments of (62) using
(65) and (66). �

Lemma 6 ([5], Corollary 5.2). Suppose that assumptions (A2) and (B) hold. If

sup
n≥1

E

[(
ZN

n

Zn

)2]1/n

≤ 1 + c1

Nτ
, (67)

then

Nτ ≥ nc1 �⇒ E

[(
ZN

n

Zn

− 1

)2]
≤ 2c1n

Nτ
.

Proof. Under (A2) and (B), we have by Theorem 1 that E[ZN
n ] = Zn. The hypothesis (67) can

then be stated equivalently as

E

[(
ZN

n

Zn

− 1

)2]
≤
(

1 + c1

Nτ

)n

− 1 ∀n ≥ 1.

Using the fact that log(1 + x) ≤ x for any x ≥ 0 and ex ≤ 1 + 2x for any x ∈ [0,1], we conclude
that (

1 + c1n

Nτ

)n

− 1 = exp

[
n log

(
1 + c1

Nτ

)]
− 1 ≤ exp

(
c1n

Nτ

)
− 1 ≤ 2c1n

Nτ

for any Nτ ≥ c1n. �

Proofs for Section 5

Proof of Lemma 3. Label the vertices of the graph corresponding to A arbitrarily with the
integers [N ]. Let s ≥ 1 be the number of connected components of this graph. Then for each

 ∈ [s] let B(
) be the set of labels of the 
th connected component. Since A is a B-matrix, each
connected component is complete, so we have for any 
 ∈ [s] and i ∈ B(
),

Wi
n =

∑
j

α
ij

n−1W
j

n−1gn−1
(
ζ

j

n−1

)= ∣∣B(
)
∣∣−1 ∑

j∈B(
)

W
j

n−1gn−1
(
ζ

j

n−1

)
. (68)

The complexity of calculating Wi
n is thus O(|B(
)|), and since Wi

n = W
j
n for all i, j ∈ B(
),

the complexity of calculating {Wi
n}i∈[N ] is O(

∑

∈[s] |B(
)|) = O(N). Arguing similarly to (68),
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with αn−1 = A we find that under Algorithm 1, for each 
 ∈ [s], the {ζ i
n}i∈B(
) are conditionally

i.i.d. according to ∑
j∈B(
) W

j

n−1gn−1(ζ
j

n−1)f (ζ
j

n−1, ·)∑
j∈B(
) W

j

n−1gn−1(ζ
j

n−1)
. (69)

By the same arguments used in [4] to address the BPF, drawing |B(
)| samples from (69) can
be achieved at O(|B(
)|) complexity, and thus the overall complexity of the sampling part of
Algorithm 1 is O(

∑

∈[s] |B(
)|) = O(N). �

Proof of Proposition 4. We prove (51) by induction. We have

W
i
0 = Wi

n−1gn−1
(
ζ i
n−1

)=
∑

j∈B(0,i)

W
j

n−1gn−1
(
ζ

j

n−1

)
and, when (51) holds at rank k, we have at rank k + 1,

W
i
k+1 = W

Ik(2i−1)
k /2 +W

Ik(2i)
k /2

= 2−(k+1)
∑

j∈B(k,Ik(2i−1))

W
j

n−1gn−1
(
ζ

j

n−1

)
+ 2−(k+1)

∑
j∈B(k,Ik(2i))

W
j

n−1gn−1
(
ζ

j

n−1

)
= 2−(k+1)

∑
j∈B(k,Ik(2i−1))∪B(k,Ik(2i))

W
j

n−1gn−1
(
ζ

j

n−1

)
= 2−(k+1)

∑
j∈B(k+1,i)

W
j

n−1gn−1
(
ζ

j

n−1

)
.

Finally, for any i ∈ [N/2k] and j ∈ B(k, i)

W
j
n =

∑



αi

n−1W



n−1gn−1

(
ζ 

n−1

)= 2−k
∑


∈B(k,i)

W

n−1gn−1

(
ζ 

n−1

)=W
i
k,

which establishes (51)–(52).
No matter what adaptation rule of Table 1 is used, each quantity {B(k, i)}i∈[N/2k] obtained by

Algorithm 4 is, by construction, a partition of [N ] and thus the αn−1 output by Algorithm 4 is a B-
matrix. Noting that a B-matrix always admits the uniform distribution on [N ] as an invariant dis-
tribution, we have for any B-matrix, say A, the identity W0 = N−1∑

i

∑
j AijWi

n−1gn−1(ζ
i
n−1)

and so upon termination of the “while” loop in Algorithm 4, E = EN
n and hence EN

n ≥ τ always.
For the Simple and Random adaptation rules, the worst case complexity of Algorithm 4 is

as follows. The part of the algorithm preceding the “while” loop is O(N). The complexity of
iteration k of the “while” loop is O(N/2k), the worst case is when the loop terminates with



528 N. Whiteley, A. Lee and K. Heine

k = m, in which case the complexity of the “while” loop is O(
∑m

k=0 N/2k), thus the overall
complexity is no more than O(N).

For the Greedy procedure, the sort operation required to obtain Ik is of complexity
O(N/2k log2(N/2k)), and so in the worst case, the complexity of the “while” loop is of the
order

t (N) :=
m∑

k=0

N

2k
log2

(
N

2k

)
,

or expressed recursively, t (N) = t (N/2) + N log2 N , and t (2) = 2. A simple induction shows
that this recursion has solution t (N) = 2[1 + N(log2 N − 1)], hence the overall worst case com-
plexity of the “while” loop is O(N log2 N). The proof is complete since by Lemma 3, the com-
plexity of operations in Algorithm 1 other than line (�) is O(N). �
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