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Consider a Gaussian stationary sequence with unit variance X = {Xk;k ∈N∪ {0}}. Assume that the central
limit theorem holds for a weighted sum of the form Vn = n−1/2 ∑n−1

k=0 f (Xk), where f designates a finite
sum of Hermite polynomials. Then we prove that the uniform convergence of the density of Vn towards
the standard Gaussian density also holds true, under a mild additional assumption involving the causal
representation of X.

Keywords: Breuer–Major theorem; density convergence; Gaussian stationary sequences; Malliavin
calculus; moving average representation

1. Introduction

Let X = {Xk; k ∈ N ∪ {0}} be a centered Gaussian stationary sequence with unit variance. For
all v ∈ Z, we set ρ(v) = E[X0X|v|]. Therefore, ρ(0) = 1 and |ρ(v)| ≤ 1 for all v. Let γ be the
standard Gaussian probability measure and f ∈ L2(γ ) be a fixed deterministic function such
that E[f (X1)] = 0. We expand f in the orthonormal basis of Hermite polynomials {Hk; k ≥ 0},
which are more specifically defined in Section 2.2. In particular, if f has Hermite rank d ≥ 1, it
admits the following Hermite expansion:

f (x) =
∞∑

j=d

ajHj (x),

with ad �= 0. Define Vn = 1√
n

∑n−1
k=0 f (Xk). Then the celebrated Breuer–Major theorem (see [3]

or Theorem 7.2.4 in [14]) can be written as follows:

Theorem 1.1. Suppose that
∑

v∈Z |ρ(v)|d < ∞ and set σ 2 = ∑∞
j=d j !a2

j

∑
v∈Z ρ(v)j , which is

assumed to be in (0,∞). Then the convergence

Vn
Law−→ N

(
0, σ 2) (1)

holds true as n tends to infinity.
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We shall be in fact interested in a particular case of Theorem 1.1 for finite linear combinations
of Hermite polynomials, which is stated here for convenience.

Corollary 1.2. Consider 2 ≤ d ≤ q < ∞ and a family of real numbers {aj ; j = d, . . . , q}.
Let Hj be the j th order Hermite polynomial, and assume that σ 2 ∈ (0,∞), where σ 2 ≡∑q

j=d j !a2
j

∑
v∈Z ρ(v)j . Set

V
d,q
n = 1√

n

n−1∑
k=0

q∑
j=d

ajHj (Xk). (2)

Then V
d,q
n

Law−→N (0, σ 2) as n tends to infinity. In particular, we have

lim
n→0

E
[(

V
d,q
n

)4] = 3σ 4. (3)

Remark 1.3. The relation between Gaussian convergence in law for sequences in a fixed Wiener
chaos and behavior of the fourth moment has been extensively studied since the seminal pa-
per [18]. We will need only a small part of the information available on the topic, such as rela-
tion (3).

Due to its importance, Breuer–Major theorem has been extended and refined in several direc-
tions. Important generalizations can be found in Arcones [1] (multidimensional case), Chambers
and Slud [6] and Giraitis and Surgailis [7]. A proof of Theorem 1.1 using a combination of Stein’s
method with Malliavin calculus was given by Nourdin, Peccati and Podolskij in [15], where one
can find explicit bounds in the total variation and Wasserstein distances. We refer the reader to
the monograph by Nourdin and Peccati [13] for a more detailed account on this topic.

We shall mainly be concerned here by convergences of densities, and here again the relation-
ship between fourth moment behavior and various type of convergences of random variables in
a fixed Wiener chaos have been thoroughly studied in the recent past. The interested reader is
referred to [14] for further details, but we will use here the following recent criterion (see [12],
Corollary 1.2, and [11], Corollary 4.6).

Theorem 1.4. Let {Fn;n ∈ N} be a sequence of random variables belonging to a fixed chaos
Hq with q ≥ 2. Suppose E[F 2

n ] = 1 and limn→∞ E[F 4
n ] = 3. Let pFn be the density of the ran-

dom variable Fn and let φ(x) = (2π)−1/2 exp(−|x|2/2) be the density of the standard Gaussian
distribution on R.

(i) Suppose that for some ε > 0,

sup
n

E
[‖DFn‖−4−ε

]
< ∞.

Then, there exists a constant c such that for all n ≥ 1,

sup
x∈R

∣∣pFn(x) − φ(x)
∣∣ ≤ c

√
E

[
F 4

n

] − 3.
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(ii) Suppose that for all p ≥ 1,

sup
n

E
[‖DFn‖−p

]
< ∞.

Then, for any m ≥ 0, there exists a constant cm such that for all n ≥ 1,

sup
x∈R

∣∣p(m)
Fn

(x) − φ(m)(x)
∣∣ ≤ cm

√
E

[
F 4

n

] − 3.

The goal of the current paper is to apply the criterion given by Theorem 1.4 in order to get
convergence of density in the landmark of Breuer–Major theorem. In order to do this, we need a
uniform estimate on the negative moments of the Malliavin derivative of the sequence, and this
is the contents of our main result.

Theorem 1.5. Let X be a Gaussian stationary sequence whose spectral density fρ satisfies

log(fρ) ∈ L1([−π,π]) (see Hypothesis 2.1 and the examples in the next section). Let V
d,q
n be

the random variable defined by (2), and assume the hypothesis of Corollary 1.2 to be satisfied.
Then for any p ≥ 1, there exists n0 such that

sup
n≥n0

E
[∥∥DV

d,q
n

∥∥−p]
< ∞. (4)

In the case of a fixed Wiener chaos, we can obtain the following consequence.

Corollary 1.6. Under the conditions of Theorem 1.5, if q = d , and we define Fn = V
d,d
n /σn,

where σ 2
n = E[(V d,d

n )2], then, for all m ≥ 0 there exists an n0 (depending on m) such that

sup
n≥n0

sup
x∈R

∣∣p(m)
Fn

(x) − φ(m)(x)
∣∣ ≤ cm

√
E

[
F 4

n

] − 3.

In the case q �= d , Theorem 1.4 cannot be applied. In the reference [11] one can find results
on the uniform convergence of density for general random variables similar to those stated in
Theorem 1.4, but they require a uniform lower bound for the negative moments of the random
variable |〈DFn,−DL−1Fn〉H|, and our approach does not seem to work in this case because it
is not clear how to express 〈DFn,−DL−1Fn〉H as a sum of squares. Nevertheless, condition (4)
allows us to derive the uniform convergence of the densities and their derivatives from a general
result proved below (see Proposition 2.6) although in this case we have no information about the
rate of convergence.

Corollary 1.7. Under the conditions of Theorem 1.5, if we define Fn = V
d,q
n /σn, where σ 2

n =
E[(V d,q

n )2], then, for all m ≥ 0 we have

lim
n→∞ sup

x∈R

∣∣p(m)
Fn

(x) − φ(m)(x)
∣∣ = 0.
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Notice that a particular case of Theorem 1.5 has been established in [12], for q = 2 and Xk =
Bk+1 − Bk for a fractional Brownian motion B with Hurst parameter H ∈ (0,1). The proof
of the existence of negative moments for ‖DFn‖ there is based on the Volterra representation
of B , which leads to long computations. In comparison our current Theorem 1.5 is more general,
since it is valid for a wide class of Gaussian stationary sequences. Its proof is also significantly
simplified. These are achieved by the introduction of two new ingredients in the proof, namely:

• A general formula to compute conditional expectations for random variables of the form
Hq(Xk).

• Related to the previous item, we heavily resort to the causal representation of Xk , which is
particularly convenient in order to compute conditional expectations.

Here is how our paper is structured: we give some preliminary results concerning Gaussian
stationary sequences and related Malliavin calculus in Section 2. We then prove our main Theo-
rem 1.5 in Section 3.

2. Preliminaries

This section is devoted to some preliminaries on causal or moving average representations for
Gaussian stationary sequences, as well as Malliavin calculus tools which will be used in the
sequel.

2.1. Moving average representation

The classical results on time series presented here are borrowed from [2,4], to which we refer for
further details. Start from our Gaussian stationary sequence {Xk; k ∈ N ∪ {0}} with covariance
function ρ. We will work under the following assumptions:

Hypothesis 2.1. We suppose that ρ admits a spectral density fρ such that log(fρ) ∈
L1([−π,π]).

Condition log(fρ) ∈ L1([−π,π]) is referred to as purely nondeterministic property in the
literature. The interest of dealing with purely nondeterministic sequences is that they admit a
so-called causal representation which is particularly convenient for conditional expectation com-
putations. Let us state a result in this direction, which is taken from [4], Chapter 5.

Proposition 2.2. Let X be a Gaussian stationary sequence satisfying Hypothesis 2.1. Then for
each k ∈N∪ {0} the random variable Xk can be decomposed as

Xk =
∑
j≥0

ψjwk−j , (5)

where (wk)k∈Z is a discrete Gaussian white noise and the coefficients ψj are deterministic. We
can always choose the white noise and the coefficients in such a way that ψ0 > 0.
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Proof. The existence of the causal moving average representation is a classical result that can be
found, for instance, in [4], Theorem 7.5.2. �

Notice that from the expansion (5) we easily obtain:

ρ(k1 − k2) =
k1∧k2∑
l=−∞

ψk1−lψk2−l , for all k1, k2 ∈ N, (6)

and this relation will be used in the proof of our main theorem.
Let us now turn to examples for which our standing assumptions of Hypothesis 2.1 are met.

The following proposition provides two typical and classical cases for which a spectral density
exists and satisfies some integrability properties.

Proposition 2.3. Let ρ be the covariance function of X. We have the following statements.

(i) If ρ ∈ �1, then the spectral density fρ exists and is a nonnegative bounded function defined
on [−π,π].

(ii) Suppose that {ρ(k)kα, k > 0} is positive and it is normalized slowly varying at infinity for
some α ∈ (0,1). That is, for every δ > 0, for sufficiently large k, ρ(k)kα+δ is increasing and
ρ(k)kα−δ is decreasing. Then the spectral density exists and satisfies limλ→0 |λ|1−αfρ(λ) = cf

for some constant cf > 0 (see [9]).

We now give two specific and important examples which satisfy Hypothesis 2.1.

Example 2.4. The so-called autoregressive fractionally integrated moving-average (ARFIMA)
processes are introduced in [8] and [10]. Denote by B the one lag backward operator (BXk =
Xk−1). Let φ(z) and θ(z) be two polynomials which have no common zeros and such that the
zeros of φ lie outside the closed unit disk {z, |z| ≤ 1}. Suppose that Xk is given by

φ(B)Xk = (Id−B)−dθ(B)wk, (7)

where −1 < d < 1/2, and where the operator (Id−B)−d is defined by:

(Id−B)−d =
∞∑

j=1

ηjB
j with ηj = �(d + j)

�(j + 1)�(d)
.

Also notice that in (7) the sequence (wk)k∈Z is a discrete Gaussian white noise. It is well-known
(see [19], Theorem 3.4 and equation (3.19)) that under the above conditions, {Xk, k ∈ N} admits
a spectral density whose exact expression is:

f (λ) = 1

2π

[
2 sin

λ

2

]−2d |θ(e−iλ)|2
|φ(e−iλ)|2 .

It is thus readily checked that Hypothesis 2.1 is satisfied, and hence Xk has a causal representa-
tion.
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Example 2.5. Our second example is the fractional Gaussian noise. Let {Bt , t ≥ 0} be a frac-
tional Brownian motion of Hurst parameter H ∈ (0,1). Then {Xk = Bk+1 − Bk, k ∈ N ∪ {0}} is
a stationary Gaussian process with correlation

ρ(k) = 1

2

[
(k + 1)2H − 2k2H + (k − 1)2H

]
.

Its spectral density (see, e.g., [2], equation (2.17)) is:

f (λ) = 1

2π

∞∑
k=−∞

ρ
(|k|)eikλ = 2cf

(
1 − cos(λ)

) ∞∑
j=−∞

|2πj + λ|−2H−1, λ ∈ [−π,π],

where cf = (2π)−1 sin(πH)�(2H + 1). If H ≤ 1/2, it is clear that
∑∞

k=−∞ |ρ(|k|)| < ∞. This
implies

sup
λ∈[−π,π]

∣∣f (λ)
∣∣ < ∞.

If 1/2 < H < 1, then

0 ≤ f (λ) ≤ 2cf

(
1 − cos(λ)

)|λ|−2H−1 + 2cf

∑
j �=0

|2πj + λ|−2H−1, λ ∈ [−π,π].

The first term is in L1 since H < 1. When j �= 0,
∫ π
−π |2πj + λ|−2H−1 dλ ≤ Cj−2H for some

positive constant C. Thus
∫ π
−π

∑
j �=0 |2πj + λ|−2H−1 dλ < ∞, owing to the fact that H > 1/2.

Therefore, we have f ∈ L1. Summarizing we have f ∈ L1 for all H ∈ (0,1). This also implies
log+ f (λ) ∈ L1. To see log− f (λ) ∈ L1, we notice that

f (λ) ≥ 2cf

(
1 − cos(λ)

)|λ|−2H−1.

So log− f (λ) ≤ C + | log[(1 − cos(λ))|λ|−2H−1]| which is in L1. In conclusion, the sequence X

satisfies Hypothesis 2.1.

2.2. Malliavin calculus

We start by briefly recalling some basic notation and results connected to Gaussian analysis and
Malliavin calculus. The reader is referred to [14,17] for details or missing proofs.

2.2.1. Wiener space and generalities

Let H be a real separable Hilbert space with inner product 〈·, ·〉H. The norm of H will be de-
noted by ‖ · ‖ = ‖ · ‖H. Recall that we call isonormal Gaussian process over H any centered
Gaussian family W = {W(h) : h ∈ H}, defined on a probability space (�,F ,P) and such that
E[W(h)W(g)] = 〈h,g〉H for every h,g ∈ H.

In our application the underlying Gaussian family will be a discrete Gaussian white noise
(wk)k∈Z. The space H is given here by H = �2(Z) (the space of square integrable sequences
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indexed by Z) equipped with its natural inner product. Set {εj ; j ∈ Z} for the canonical basis
of �2(Z), that is ε

j
k = δj (k). We thus identify wj with W(εj ). Assume from now on that our

underlying σ -algebra F is generated by W .
For any integer q ∈ N ∪ {0}, we denote by Hq the qth Wiener chaos of W . We recall that H0

is simply R whereas, for any q ≥ 1, Hq is the closed linear subspace of L2(�) generated by the
family of random variables {Hq(W(h)),h ∈H,‖h‖H = 1}, with Hq the qth Hermite polynomial
given by

Hq(x) = (−1)qex2/2 dq

dxq

(
e−x2/2). (8)

Let S be the set of all cylindrical random variables of the form

F = g
(
W(h1), . . . ,W(hn)

)
,

where n ≥ 1, hi ∈ H, and g is infinitely differentiable such that all its partial derivatives have
polynomial growth. The Malliavin derivative of F is the element of L2(�;H) defined by

DF =
n∑

i=1

∂g

∂xi

(
W(h1), . . . ,W(hn)

)
hi.

By iteration, for every m ≥ 2, we define the mth derivative DmF . This is an element of
L2(�;H�m), where H�m designates the symmetric mth tensor product of H. For m ≥ 1 and
p ≥ 1, Dm,p denote the closure of S with respect to the norm ‖ · ‖m,p defined by

‖F‖p
m,p = E

[|F |p] +
m∑

j=1

E
[∥∥DjF

∥∥p

H⊗j

]
.

Set D∞ = ⋂
m,p D

m,p . One can then extend the definition of Dm to D
m,p . When m = 1, one sim-

ply write D instead of D1. As a consequence of the hypercontractivity property of the Ornstein–
Uhlenbeck semigroup (see, e.g., [14], Theorem 2.7.2), all the ‖ · ‖m,p-norms are equivalent in
any finite sum of Wiener chaoses.

Finally, let us recall that the Malliavin derivative D satisfies the following chain rule: if
ϕ :Rn → R is in C1

b (i.e., belongs to the set of continuously differentiable functions with a
bounded derivative) and if {Fi}i=1,...,n is a vector of elements of D1,2, then ϕ(F1, . . . ,Fn) ∈ D

1,2

and

Dϕ(F1, . . . ,Fn) =
n∑

i=1

∂ϕ

∂xi

(F1, . . . ,Fn)DFi. (9)

2.3. Convergence of densities

Suppose that F is a random variable in D
∞ such that E[‖DF‖−p] < ∞ for all p ≥ 1. Then, we

know that F has an infinitely differentiable density and there are explicit formulas for the density
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and its derivatives (see [17], Proposition 2.1.5). Using this result, we can establish the following
criteria for convergence of densities for random variables in a finite sum of Wiener chaoses.

Proposition 2.6. Let {Fn;n ∈ N} be a sequence of random variables belonging to a finite sum of
Wiener chaoses

⊕M
k=1 Hk , which converges in law to a nonzero random variable F∞. Suppose

that, for all p ≥ 1

sup
n

E
[‖DFn‖−p

]
< ∞. (10)

Then, for all m ≥ 0 the derivative p
(m)
n of the density of Fn, converges uniformly and in Lp(R)

for all p ≥ 1 to the corresponding derivative of the density of F∞.

Proof. First, notice that by condition (10), the random variable Fn has an infinitely differentiable
density pn, whose derivatives can be expressed by

p(m)
n (x) = E

[
1{F>x}G(m)

n

]
, (11)

where the random variables G
(m)
n are defined recursively by G

(0)
n = δ( DFn

‖DFn‖2
H

) and

G(m)
n = −δ

(
G

(m−1)
n DFn

‖DFn‖2
H

)
,

for any m ≥ 1. From this formula, it follows that the derivatives p
(m)
n are uniformly bounded

and also uniformly bounded in Lp(R) for all p ≥ 1. Indeed, by [16], Lemma 2.4, we have
supn E[|Fn|r ] < ∞ for all r ≥ 1. This uniform bound on the moments, together with the equiv-
alence of the ‖ · ‖m,p norms in any finite sum of Wiener chaoses and condition (10) imply that

supn ‖G(m)
n ‖Lp(�) = cm,p < ∞ for all m ≥ 0. Then, we can write from (11)

sup
n

sup
x

∣∣p(m)
n (x)

∣∣ ≤ sup
n

E
[∣∣G(m)

n

∣∣] = cm,1 < ∞, (12)

and, using the fact that E[G(m)
n ] = 0, we get:

sup
n

∣∣p(m)
n (x)

∣∣ ≤ sup
n

(
P
(|Fn| > |x|)E

[∣∣G(m)
n

∣∣2])1/2

≤ cm,2 sup
n

√
P
(|Fn| > |x|) (13)

≤ cm,2 sup
n

E
[|Fn|q

]1/2|x|−q/2 ≤ c|x|−q/2,

for all q ≥ 1 and for some constant c depending on q and m.
By [16], Theorem 3.1, the sequence Fn converges in total variation to F∞, that is, the densities

pn converge in L1(R) to the density p∞ of F∞. The boundedness in Lp(R) and the uniform
bound of pn imply that this convergence holds in Lp(R) for any p ≥ 1.
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On the other hand, the estimates (12) and (13) imply that for any m ≥ 1 and any p ≥ 1,
the sequence p

(m)
n is uniformly bounded in Lp(R). Therefore, for any m ≥ 1 and any p ≥ 1

the sequence p
(m)
n is relatively compact in Lp(R). Suppose that a subsequence {p(m)

nk
, k ≥ 1}

converges in Lp(R) to some limit p̃
(m)∞ . This limit must coincide with the mth derivative (in the

distribution sense) of p∞, and, therefore, it is unique. This implies that for any m ≥ 1 and any
p ≥ 1 the sequence p

(m)
n converges in Lp(R) to the mth derivative of p∞.

Finally, the uniform convergence is also easy to establish from the convergence of the densities
in Lp(R) for all p ≥ 1. �

2.4. A key lemma

Our future computations will heavily rely on an efficient way to compute conditional expecta-
tions. Towards this aim, we state here some general results. Let us start with a decomposition for
Hermite polynomials.

Lemma 2.7. For any q ≥ 1, let Hq be the polynomial defined by relation (8). Consider y, z ∈ R

and two real parameters a, b with a2 + b2 = 1. Then the following relation holds true:

Hq(ay + bz) =
q∑

�=0

(
q

�

)
aq−�b�Hq−�(y)H�(z). (14)

Proof. By the definition of the Hermite polynomials, we have

eaty−(at)2/2 =
∞∑
i=0

(at)i

i! Hi(y) and etbz−(bt)2/2 =
∞∑

j=0

(bt)j

j ! Hj(z). (15)

In the same way, we also obtain

et (ay+bz)−t2/2 =
∞∑

q=0

tq

q!Hq(ay + bz). (16)

Since a2 +b2 = 1, we obviously have eaty−(at)2/2etbz−(bt)2/2 = et (ay+bz)−t2/2. Thus, multiply-
ing the right-hand sides of both identities in (15) we recover the right-hand side of (16), namely:

∞∑
q=0

tq

q!Hq(ay + bz) =
∞∑
i=0

(at)i

i! Hi(y)

∞∑
j=0

(bt)j

j ! Hj(z),

which easily yields the desired identity (14). �

With this preliminary result in hand, we are ready to state our result on conditional expecta-
tions.
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Proposition 2.8. Let Y and Z be two centered Gaussian random variables such that Y is
measurable with respect to a σ -algebra G ⊂ F and Z is independent of G. Assume that
E[Y 2] = E[Z2] = 1. Then for any q ≥ 1, and real parameters a, b such that a2 + b2 = 1, we
have:

E
[
Hq(aY + bZ)|G] = aqHq(Y ). (17)

Proof. Apply identity (14) in order to decompose Hq(aY + bZ). Then identity (17) follows
easily from the fact that Y is G-measurable, Z is independent from G and Hermite polynomials
have 0 mean under a centered Gaussian measure except for H0 ≡ 1. �

2.5. Carbery–Wright inequality

In the proof of Theorem 1.5, we will make use of the following inequality due to Carbery and
Wright [5], Theorem 8, which is recalled here for convenience.

Proposition 2.9. Let X = (X1, . . . ,Xn) be a Gaussian random vector in R
n and Q :Rn → R a

polynomial of degree at most m. Then there is a universal constant c > 0 such that:

E
[∣∣Q(X1, . . . ,Xn)

∣∣]1/mP
(∣∣Q(X1, . . . ,Xn)

∣∣ ≤ x
) ≤ cmx1/m, for all x > 0. (18)

3. Proof of Theorem 1.5

In this section, we will prove our main result, which amounts to show the inequality (4). This
will be done into several steps.

Step 1: Computation of the Malliavin norm. Recall that V
d,q
n is defined by relation (2), and

set for the moment f = ∑q
j=d ajHj . Invoking relation (9), plus the fact that Dwj = εj with the

notation of Section 2.2.1, we get:

DV
d,q
n = 1√

n

n−1∑
k=0

f ′(Xk)

(∑
j≥0

ψjε
k−j

)
= 1√

n

n−1∑
l=−∞

(
n−1∑
k=l+

ψk−lf
′(Xk)

)
εl, (19)

where l+ = max{l,0}. Invoking relation (6), it is thus readily checked that:

〈
DV

d,q
n ,DV

d,q
n

〉
H

= 1

n

n−1∑
k1,k2=0

f ′(Xk1)ρ(k1 − k2)f
′(Xk2),

where we recall that ρ is the covariance function of the Gaussian stationary sequence {Xk; k ≥ 0}.
This is consistent with the expression found in [14], Chapter 5. However, in order to write the
above expression as sum of some squares, we will start directly from expression (19). Since
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{εl; l ∈ Z} is an orthonormal basis of �2(Z) we obtain:

〈
DV

d,q
n ,DV

d,q
n

〉
H

= 1

n

n−1∑
�=−∞

(
n−1∑
k=�+

ψk−�f
′(Xk)

)2

.

Rearranging terms (namely, change k − � to k and then n − � − 1 to m), we end up with:

〈
DV

d,q
n ,DV

d,q
n

〉
H

≥ 1

n

n−1∑
�=0

(
n−�−1∑
k=0

f ′(X�+k)ψk

)2

= 1

n

n−1∑
m=0

(
m∑

k=0

f ′(Xn−1−(m−k))ψk

)2

≡ An.

As a last preliminary step we resort to the fact that X = {Xk; k ∈N∪{0}} is a Gaussian stationary
sequence, which allows to assert that An is identical in law to Bn with

Bn := 1

n

n−1∑
m=0

(
m∑

k=0

f ′(Xm−k)ψk

)2

= 1

n

n−1∑
m=0

(
m∑

k=0

f ′(Xk)ψm−k

)2

.

We will now bound the negative moments of Bn.
Step 2: Block decomposition. We now wish to apply the Carbery–Wright inequality (18) in

order to get bounds for negative moments of Bn. However, relation (18) only applies to moments
of small order, and this is why we proceed to a decomposition of Bn into smaller blocks.

Fix thus an integer N ≥ 1 and let M = [n/N] be the integer part of n/N . Then n ≥ NM and
as a consequence,

Bn = 1

n

n−1∑
m=0

(
m∑

k=0

f ′(Xk)ψm−k

)2

≥ 1

n

N−1∑
i=0

(i+1)M−1∑
m=iM

(
m∑

k=0

f ′(Xk)ψm−k

)2

.

For i = 0, . . . ,N − 1, define

Bi
n = 1

n

(i+1)M−1∑
m=iM

(
m∑

k=0

f ′(Xk)ψm−k

)2

so that Bn ≥ ∑N−1
i=0 Bi

n. Then it is readily checked that:

(Bn)
−p/2 ≤

N−1∏
i=0

(
Bi

n

)−p/(2N)
. (20)
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Recall once again the representation of the sequence X in (5), and denote by Fk the filtration
generated by {w� : � < k}. Then starting from (20) we obtain:

E
[
(Bn)

−p/2] ≤ E

[
N−1∏
i=0

(
Bi

n

)−p/(2N)

]
(21)

= E

[
E

[(
BN−1

n

)−p/(2N)|F(N−1)M

]N−2∏
i=0

(
Bi

n

)−p/(2N)

]
.

Step 3: Application of Carbery–Wright. Let us go back to the particular situation of f =∑q
j=d ajHj , which means in particular that f ′ = ∑q

j=d jajHj−1. We are now in a position

to apply a conditional version of inequality (18) to the block (BN−1
n )−p/(2N) in (21). First, we

notice

E
[(

BN−1
n

)−p/(2N)|F(N−1)M

] ≤ 1 + p

2N

∫ 1

0
P
(
BN−1

n ≤ x|F(N−1)M

)
x−p/(2N)−1 dx. (22)

Since BN−1
n is a polynomial of order m = 2(q − 1), Carbery–Wright’s inequality (18) yields:

P
(
BN−1

n ≤ x|F(N−1)M

) ≤ cx1/(2(q−1))

[E(BN−1
n |F(N−1)M)]1/(2(q−1))

. (23)

Step 4: Estimates for the conditional expectation. We now estimate the conditional expectation
E[BN−1

n |F(N−1)M ]. We have:

E
[
BN−1

n |F(N−1)M

] = 1

n

NM−1∑
m=(N−1)M

E

[(
m∑

k=0

f ′(Xk)ψm−k

)2∣∣∣F(N−1)M

]
(24)

≥ 1

n

NM−1∑
m=(N−1)M

Am,

where we have set

Am = Var

(
m∑

k=(N−1)M

f ′(Xk)ψm−k

∣∣∣F(N−1)M

)
.

Furthermore, notice that

f ′(Xk) = f ′
(

k∑
�=−∞

ψk−iwi

)
= f ′(Yk + Zk),

where Yk = ∑(N−1)M−1
i=−∞ ψk−iwi is F(N−1)M -measurable and Zk = ∑k

i=(N−1)M ψk−iwi is in-
dependent of F(N−1)M . Recalling that f ′ = ∑q

j=d jajHj−1, we can thus resort to Lemmas 2.7
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and 2.8. This gives:

f ′(Xk) − E
[
f ′(Xk)|F(N−1)M

] =
q∑

j=d

j−1∑
�=1

jaj

(
j − 1

�

)
σ

j−1−�
Yk

Hj−1−�(Ỹk)σ
�
Zk

H�(Z̃k),

where σYk
= [Var(Yk)]1/2, σZk

= [Var(Zk)]1/2, Ỹk = Yk/σYk
and Z̃k = Zk/σZk

. Therefore,

Am = E

[(
m∑

k=(N−1)M

q∑
j=d

j−1∑
�=1

aj,�,kHj−1−�(Ỹk)H�(Z̃k)ψm−k

)2∣∣∣F(N−1)M

]

= E

[(
q−1∑
�=1

m∑
k=(N−1)M

q∑
j=(�+1)∨d

aj,�,kHj−1−�(Ỹk)H�(Z̃k)ψm−k

)2∣∣∣F(N−1)M

]
,

where we have set aj,�,k = jaj

(
j−1

�

)
σ

j−1−�
Yk

σ �
Zk

.

Recall that the random variables Ỹk are F(N−1)M -measurable while the random variables Z̃k

are independent of F(N−1)M . By decorrelation properties of Hermite polynomials we thus get:

Am =
q−1∑
�=1

E

[(
m∑

k=(N−1)M

q∑
j=(�+1)∨d

aj,�,kHj−1−�(Ỹk)H�(Z̃k)ψm−k

)2∣∣∣F(N−1)M

]

and we trivially lower bound this quantity by taking the term corresponding to � = q − 1. In
this situation, the sum

∑q

j=(�+1)∨d is reduced to the term corresponding to j = q , and since

aq,q−1,k = qaqσ
q−1
Zk

we obtain:

Am ≥ E

[(
m∑

k=(N−1)M

qaqσ
q−1
Zk

Hq−1(Z̃k)ψm−k

)2∣∣∣F(N−1)M

]

= q2a2
qE

[(
m∑

k=(N−1)M

σ
q−1
Zk

Hq−1(Z̃k)ψm−k

)2]
.

We now invoke the identity E[Hp(Z̃k1)Hp(Z̃k2)] = p!(E[Z̃k1Z̃k2 ])p in order to obtain

Am ≥ qq!a2
q

m∑
k1,k2=(N−1)M

σ
q−1
Zk1

σ
q−1
Zk2

E[Z̃k1Z̃k2 ]q−1ψm−k1ψm−k2 .

Furthermore, similarly to (6), it is readily checked that:

E[Z̃k1Z̃k2 ] = 1

σZk1
σZk2

k1∧k2∑
i=(N−1)M

ψk1−iψk2−i ,



Limit theorems for Gaussian stationary sequences 2349

and thus

Am ≥ qq!a2
q

m∑
k1,k2=(N−1)M

(
k1∧k2∑

i=(N−1)M

ψk1−iψk2−i

)q−1

ψm−k1ψm−k2

= qq!a2
q

m∑
i1,...,iq−1=(N−1)M

m∑
k1,k2=max(i1,...,iq−1)

ψm−k1ψm−k2

q−1∏
j=1

ψk1−ij ψk2−ij

= qq!a2
q

m∑
i1,...,iq−1=(N−1)M

(
m∑

k=max(i1,...,iq−1)

ψm−k

q−1∏
j=1

ψk−ij

)2

.

Here again, this sum of squares is trivially lower bounded by taking the term corresponding to
i1 = · · · = iq−1 = m, which yields:

Am ≥ ca,q,ψ with ca,q,ψ ≡ qq!a2
qψ

2q

0 > 0. (25)

Step 5: Conclusion. In the remainder of the proof the constants ca,q,ψ,N and so can change
from line to line without further mention. Plugging relation (25) into (25) and recalling that N is
a given integer whose exact value will be fixed below, we get:

E
[
BN−1

n |F(N−1)M

] ≥ Mca,q,ψ

n
≥ ca,q,ψ,N > 0,

as long as N stays bounded. We then insert back this inequality into (22) and (23) in order to get:

P
(
BN−1

n ≤ x|F(N−1)M

) ≤ 1 + pca,q,ψ,N

2N

∫ 1

0
x1/(2(q−1))−p/(2N)−1 dx = ca,q,ψ,N,p < ∞,

where we have chosen N such that p
2N

< 1
2(q−1)

. Iterating this bound into (21), we have thus
obtained:

E
[
(Bn)

−p/2] ≤ cN
a,q,ψ,N,p,

which is a finite quantity. Finally, recall from Step 1 that E[(Bn)
−p/2] ≥ E[‖DV

d,q
n ‖−p

H
], which

finishes the proof.
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