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The maximum likelihood method offers a standard way to estimate the three parameters of a generalized
extreme value (GEV) distribution. Combined with the block maxima method, it is often used in practice to
assess the extreme value index and normalization constants of a distribution satisfying a first order extreme
value condition, assuming implicitly that the block maxima are exactly GEV distributed. This is unsatisfac-
tory since the GEV distribution is a good approximation of the block maxima distribution only for blocks
of large size. The purpose of this paper is to provide a theoretical basis for this methodology. Under a first
order extreme value condition only, we prove the existence and consistency of the maximum likelihood esti-
mators for the extreme value index and normalization constants within the framework of the block maxima
method.
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1. Introduction and results

Estimation of the extreme value index is a central problem in extreme value theory. A variety of
estimators are available in the literature, for example among others, the Hill estimator [9], the
Pickand’s estimator [14], the probability weighted moment estimator introduced by Hosking et
al. [11] or the moment estimator suggested by Dekkers et al. [6]. The monographs by Embrechts
et al. [8], Beirlant et al. [2] or de Haan and Ferreira [5] provide good reviews on this estimation
problem. All the above mentioned estimators are explicitly defined and usually, consistency is
shown under the domain of attraction condition only while asymptotic normality is more com-
plicated and requires some second order condition. In this paper, we are interested on estimators
based on the maximum likelihood method. Let us stress that MLEs are implicitly defined as solu-
tions of the likelihood equations, making existence and consistency a sensible problem, possibly
even more difficult than asymptotic normality where the second order condition may ease the
proof of existence.

Two different types of maximum likelihood estimators (MLEs) have been introduced, based
on the peak over threshold (POT) method and block maxima method respectively. The POT
method relies on the fact that, under the extreme value condition, exceedances over high threshold
converge to a generalized Pareto distribution (GPD) (see Balkema and de Haan [1]). A MLE
within the GPD model has been proposed by Smith [19]. Its theoretical properties under the
extreme value condition are quite difficult to analyze due to the absence of an explicit expression
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of the likelihood equations: existence and consistency have been proven by Zhou [22], asymptotic
normality by Drees et al. [7]. The block maxima method relies on the approximation of the
maxima distribution by a generalized extreme value (GEV) distribution. Computational issues
for ML estimation within the GEV model have been considered by Prescott and Walden [15,
16], Hosking [10] and Macleod [12]. Since the support of the GEV distribution depends on
the unknown extreme value index γ , the usual regularity conditions ensuring good asymptotic
properties are not satisfied. This problem is studied by Smith [18]: asymptotic normality is proven
for γ > −1/2 and consistency for γ > −1.

It should be stressed that the block maxima method is based on the assumption that the ob-
servations come from a distribution satisfying the extreme value condition so that the maximum
of a large number of observations follows approximatively a generalized extreme value (GEV)
distribution. On the contrary, the properties of the maximum likelihood relies implicitly on the as-
sumption that the block maxima have exactly a GEV distribution. In many situations, this strong
assumption is unsatisfactory and we shall only suppose that the underlying distribution is in the
max-domain of attraction of an extreme value distribution. This is the purpose of the present
paper to justify the maximum likelihood method for the block maxima method under an extreme
value condition only.

Let us mention that the POT method is often considered as more powerful since it uses all
relevant high observations while the block maxima method may retain less high observations but
also some lower observations. In the POT method, Zhou [22], Theorem 2.2, has proved that the
number n of peaks to be used within a data set of size N must satisfy n/N → 0 in order to ensure
consistency. In the block maxima method, for a data set of size N = nm divided into n blocks
of size m, only the n block maxima are used. Theorem 2 below states that consistency holds
as soon as m/ log(n) → +∞, or equivalently n log(n)/N → 0. This extra logarithmic factor
explains why the number of observations used for the block maxima is in general of a lower
order than for the POT method.

We now recall some basic notions of univariate extreme value theory. The extreme value dis-
tribution function with index γ is denoted by Gγ ,

Gγ (x) = exp
(−(1 + γ x)−1/γ

)
, 1 + γ x > 0.

We say that a distribution function F satisfies the extreme value condition with index γ , or
equivalently that F belongs to the max-domain of attraction of Gγ if there exist constants am > 0
and bm such that

lim
m→+∞Fm(amx + bm) = Gγ (x), x ∈R. (1)

That is commonly denoted by F ∈ D(Gγ ). The necessary and sufficient conditions for F ∈
D(Gγ ) can be presented in different ways, see, for example, de Haan [4] or de Haan and Ferreira
[5], Chapter 1. We remind the following simple criterion and choice of normalization constants.

Theorem 1. Let U = ( 1
1−F

)← be the left continuous inverse function of 1/(1 − F). Then F ∈
D(Gγ ) if and only if there exists a function a(t) > 0 such that

lim
t→+∞

U(tx) − U(t)

a(t)
= xγ − 1

γ
, for all x > 0.
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Then, a possible choice for the function a(t) is given by

a(t) =

⎧⎪⎪⎨
⎪⎪⎩

γU(t), γ > 0,

−γ
(
U(∞) − U(t)

)
, γ < 0,

U(t) − t−1
∫ t

0
U(s)ds, γ = 0,

and a possible choice for the normalization constants in (1) is

am = a(m) and bm = U(m).

In the sequel, we will always use the normalization constants (am) and (bm) given in Theo-
rem 1. According to the convergence of types theorem (see, e.g., Theorem 14.2 in Billingsley
[3]), the normalization constants are unique up to asymptotic equivalence in the following sense:
if (a′

m) and (b′
m) are such that Fm(a′

mx + b′
m) → Gγ (x) for all x ∈ R, then

lim
m→+∞

a′
m

am

= 1 and lim
m→+∞

b′
m − bm

am

= 0. (2)

The log-likelihood of the extreme value distribution Gγ is given by

gγ (x) = −(1 + 1/γ ) log(1 + γ x) − (1 + γ x)−1/γ ,

if 1 + γ x > 0 and −∞ otherwise. For γ = 0, the formula is interpreted as g0(x) = −x −
exp(−x). The three parameter extreme value distribution with shape γ , location μ and scale
σ > 0 has distribution function x �→ Gγ (

x−μ
σ

). The corresponding log-likelihood is

�(γ,μ,σ )(x) = gγ

(
x − μ

σ

)
− logσ.

The set-up of the block maxima method is the following. We consider independent and
identically distributed (i.i.d.) random variables (Xi)i≥1 with common distribution function
F ∈ D(Gγ0) and corresponding normalization sequences (am) and (bm) as in Theorem 1. We
divide the sequence (Xi)i≥1 into blocks of length m ≥ 1 and define the kth block maximum by

Mk,m = max(X(k−1)m+1, . . . ,Xkm).

Clearly, the normalized block maximum (Mk,m − bm)/am has distribution function Fm(amx +
bm) and equation (1) suggests that the distribution of Mk,m is approximately a GEV distribution
with parameters (γ0, bm, am) and this is standard to estimate these parameters by the maximum
likelihood method. The log-likelihood of the n-sample (M1,m, . . . ,Mn,m) is

Ln(γ,μ,σ ) = 1

n

n∑
k=1

�(γ,μ,σ )(Mk,m).

In general, Ln has no global maximum, leading us to the following weak notion: we say that
(γ̂n, μ̂n, σ̂n) is a MLE if Ln has a local maximum at (γ̂n, μ̂n, σ̂n). One sometimes uses the
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more precise term pseudo-MLE to emphasize the fact that the maximum is local and not global.
Clearly, a MLE solves the likelihood equations

∇Ln = 0 with ∇Ln =
(

∂Ln

∂γ
,
∂Ln

∂μ
,
∂Ln

∂σ

)
. (3)

Conversely, any solution of the likelihood equations with a negative definite Hessian matrix is a
MLE.

For the purpose of asymptotics, we let the length of the blocks m = m(n) depend on the sample
size n. Our main result is the following theorem, stating the existence of consistent MLEs.

Theorem 2. Suppose F ∈ D(Gγ0) with γ0 > −1 and assume that

lim
n→+∞

m(n)

logn
= +∞. (4)

Then there exists a sequence of estimators (γ̂n, μ̂n, σ̂n) and a random integer N ≥ 1 such that

P
[
(γ̂n, μ̂n, σ̂n) is a MLE for all n ≥ N

] = 1 (5)

and

γ̂n
a.s.−→ γ0,

μ̂n − bm

am

a.s.−→ 0 and
σ̂n

am

a.s.−→ 1 as n → +∞. (6)

The condition γ0 > −1 is natural and agrees with Smith [18]: it is easy to see that the likeli-
hood equation (3) has no solution with γ ≤ −1 so that no consistent MLE exists when γ0 < −1
(see Remark 4 below). Condition (4) states that the block length m(n) grows faster than logarith-
mically in the sample size n, which is not very restrictive. Let us mention a few further remarks
on this condition.

Remark 1. A control of the block size is needed, as the following observations show. The log-
likelihood Ln(γ,μ,σ ) is finite if and only if

min
1≤k≤n

(
1 + γ

Mk,m − μ

σ

)
> 0,

so that any MLE (γ̂n, μ̂n, σ̂n) must satisfy

min
1≤k≤n

(
1 + γ̂n

Mk,m − μ̂n

σ̂n

)
> 0 a.s.

Hence, for a consistent MLE satisfying equation (6), one gets

lim inf
n→+∞ min

1≤k≤n

(
1 + γ0

Mk,m − bm

am

)
≥ 0 a.s.,
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so that

lim
n→+∞P

[
min

1≤k≤n

(
1 + γ0

Mk,m − bm

am

)
> −ε

]
= 1 for all ε > 0. (7)

Equation (7) is thus a necessary condition for consistency. It is trivial in the case γ0 ≤ 0. If γ0 > 0,
it holds

P

[
min

1≤k≤n

(
1 + γ0

Mk,m − bm

am

)
> −ε

]
= (

1 − Fm(−εbm)
)n

so that equation (7) is equivalent to

lim
n→+∞nFm(−εbm) = 0 for all ε > 0. (8)

This necessary condition compares the growth rates of n and m(n), taking the left tail of F

into account. Using this, one can easily construct an example violating (8) so that no consistent
MLE exists: take for instance γ0 > 0, F ∈ D(Gγ0) such that limx→−∞ F(x) log |x| = 1 and
m(n) = (logn)p with p ∈ (0,1).

Remark 2. The preceding remark raises the question whether condition (4) is sharp or not. To
this aim, we compare (in the case γ0 > 0) the sufficient condition (4) and the necessary condi-
tion (8). One can show that for any γ0 > 0 and any sequence m(n) satisfying

lim
n→+∞m(n) = +∞ and lim

n→+∞
m(n)

logn
= 0,

there exists F ∈ D(Gγ0) (with F(x) → 0 slowly enough as x → −∞) such that condition (8)
fails and hence no consistent MLE exists. The intermediate case

lim
n→+∞

m(n)

logn
= c ∈ (0,+∞)

remains open, as well as the case γ0 ≤ 0 where no simple necessary condition is available.

Remark 3. It shall be stressed that condition (4) appears only in the proof of Lemma 4 below.
Under stronger assumptions on the distribution F ∈ D(Gγ0), Lemma 4 can be proved without
condition (4): this is for instance the case if F is a Pareto distribution function, then the proof of
Lemma 4 and Theorem 2 goes through under the minimal condition limn→+∞ m(n) = +∞. See
Remark 5 in the Appendix for more details.

The structure of the paper is as follows. We gather in Section 2 some preliminaries on proper-
ties of the GEV log-likelihood and of the empirical distribution associated to normalized block
maxima. Section 3 is devoted to the proof of Theorem 2, which relies on an adaptation of Wald’s
method for proving the consistency of M-estimators. Some technical computations (proof of
Lemma 4) involving regular variation theory are postponed to the Appendix.
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2. Preliminaries

2.1. Properties of the GEV log-likelihood

We gather in the following proposition some basic properties of the GEV log-likelihood. We note
x−
γ and x+

γ the left and right end point of the domain gγ , that is,(
x−
γ , x+

γ

) = {x ∈R;1 + γ x > 0}.
Clearly, it is equal to (−∞,−1/γ ), R and (−1/γ,+∞) when γ < 0, γ = 0 and γ > 0, respec-
tively.

Proposition 1. The function gγ is infinitely differentiable on its domain.

1. If γ ≤ −1, gγ is strictly increasing on its domain and

lim
x→x−

γ

gγ (x) = −∞, lim
x→x+

γ

gγ (x) =
{+∞ if γ < −1,

0 if γ = −1.

2. If γ > −1, gγ is increasing on (x−
γ , x∗

γ ] and decreasing on [x∗
γ , x+

γ ), where

x∗
γ = (1 + γ )−γ − 1

γ
.

Furthermore,

lim
x→x−

γ

gγ (x) = lim
x→x+

γ

gγ (x) = −∞

and gγ reaches its maximum gγ (x∗
γ ) = (1 + γ )(log(1 + γ ) − 1) uniquely.

Remark 4. According to Proposition 1, for γ ≤ −1, the function gγ is strictly increasing with a
positive derivative g′

γ on its domain. On the other hand, the partial derivative of the log-likelihood
Ln with respect to μ is given by

∂Ln

∂μ
(γ,μ,σ ) = − 1

σ

n∑
k=1

g′
γ

(
Mk,m − μ

σ

)
.

This entails that ∂Ln

∂μ
< 0 when γ ≤ −1 and that equation (3) has no solution in (−∞,−1] ×

R× (0,+∞). Hence any MLE (γ̂n, μ̂n, σ̂n) satisfies γ̂n > −1 and no consistent MLE does exist
if γ0 < −1. The limit case γ0 = −1 is more difficult to analyze and is disregarded in this paper.

2.2. Normalized block maxima

In view of equation (1), we define the normalized block maxima

M̃k,m = Mk,m − bm

am

, k ≥ 1,
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and the corresponding likelihood

L̃n(γ,μ,σ ) = 1

n

n∑
k=1

�(γ,μ,σ )(M̃k,m).

It should be stressed that the normalization sequences (am) and (bm) are unknown so that the
normalized block maxima M̃k,m and the likelihood L̃n cannot be computed from the data only.
However, they will be useful in our theoretical analysis since they have good asymptotic proper-
ties. The following simple lemma will be useful.

Lemma 1. (γ̂n, μ̂n, σ̂n) is a MLE if and only if L̃n has a local maximum at (γ̂n, (μ̂n −
bm)/am, σ̂n/am).

Proof. The GEV likelihood satisfies the scaling property

�(γ,μ,σ )

(
(x − b)/a

) = �(γ,aμ+b,aσ )(x) + loga

so that

Ln(γ,μ,σ ) = L̃n

(
γ,

μ − bm

am

,
σ

am

)
− logam.

Hence the local maximizers of Ln and L̃n are in direct correspondence and the lemma
follows. �

2.3. Empirical distributions

The likelihood function L̃n can be seen as a functional of the empirical distribution defined by

Pn = 1

n

n∑
k=1

δM̃k,m
,

where δx denotes the Dirac mass at point x ∈ R. For any measurable f :R → [−∞,+∞), we
note Pn[f ] the integral with respect to Pn, that is,

Pn[f ] = 1

n

n∑
k=1

f (M̃k,m).

With these notations, it holds

L̃n(γ,μ,σ ) = Pn[�(γ,μ,σ )].
The empirical process is defined by

Fn(t) = Pn

(
(−∞, t]) = 1

n

n∑
k=1

1{M̃k,m≤t}, t ∈R.
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In the case of an i.i.d. sequence, the Glivenko–Cantelli theorem states that the empirical process
converges almost surely uniformly to the sample distribution function. According to the general
theory of empirical processes (see, e.g., Shorack and Wellner [17], Theorem 1, page 106), this
result can be extended to triangular arrays of i.i.d. random variables. Equation (1) entails the
following result.

Lemma 2. Suppose F ∈ D(Gγ0) and limn→+∞ m(n) = +∞. Then,

sup
t∈R

∣∣Fn(t) − Gγ0(t)
∣∣ a.s.−→ 0 as n → +∞.

This entails that Pn ⇒ Gγ0 almost surely, where ⇒ denotes weak convergence, that is,

Pn[f ] a.s.−→ Gγ0 [f ] :=
∫
R

f (t)dGγ0(t) as n → +∞

for all bounded and continuous functions f :R → R. The following lemma dealing with more
general functions will be useful.

Lemma 3. Suppose F ∈ D(Gγ0) and limn→+∞ m(n) = +∞. Then, for all upper semi-
continuous functions f :R → [−∞,+∞) bounded from above,

lim sup
n→+∞

Pn[f ] ≤ Gγ0 [f ] a.s.

Proof. Let M be an upper bound for f . The function f̃ = M − f is non-negative and lower
semicontinuous. Clearly,

Pn[f ] = M − Pn[f̃ ] and Gγ0[f ] = M − Gγ0 [f̃ ],
whence it is enough to prove that

lim inf
n→+∞Pn[f̃ ] ≥ Gγ0 [f̃ ] a.s.

To see this, we use the relation Pn[f̃ ] = ∫ 1
0 f̃ (F←

n (u))du where F←
n is the left-continuous inverse

function

F
←
n = inf

{
t ∈R;Fn(t) ≥ u

}
, u ∈ (0,1).

Lemma 2 together with the continuity of the distribution function Gγ0 entail that almost surely,
F

←
n (u) → G←

γ0
(u) for all u ∈ (0,1) as n → +∞. Using the fact that f̃ is lower semi-continuous,

we obtain

lim inf
n→+∞ f̃

(
F

←
n (u)

) ≥ f̃
(
G←

γ0
(u)

)
, u ∈ (0,1).

On the other hand, according to Fatou’s lemma,

lim inf
n→+∞

∫ 1

0
f̃

(
F

←
n (u)

)
du ≥

∫ 1

0
lim inf
n→+∞ f̃

(
F

←
n (u)

)
du.
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Combining the two inequalities,

lim inf
n→+∞Pn[f̃ ] ≥ Gγ0 [f̃ ] a.s. �

The next lemma plays a crucial role in our proof of Theorem 2. Its proof is quite technical and
is postponed to the Appendix.

Lemma 4. Suppose F ∈ D(Gγ0) with γ0 > −1 and assume condition (4) is satisfied. Then,

lim
n→+∞Pn[gγ0 ] = Gγ0[gγ0 ] a.s. (9)

It shall be stressed that Lemma 4 is the only part in the proof of Theorem 2 where condition
(4) is needed (see Remarks 3 and 5).

3. Proof of Theorem 2

We introduce the short notation � = (−1,+∞)×R× (0,+∞). A generic point of � is denoted
by θ = (γ,μ,σ ).

The restriction L̃n :� → [−∞,+∞) is continuous, so that for any compact K ⊂ �, L̃n is
bounded and reaches its maximum on K . We can thus define θ̃K

n = (γ̃ K
n , μ̃K

n , σ̃K
n ) such that

θ̃K
n = arg max

θ∈K

L̃n(θ). (10)

By convention, if the argmax is not unique, the smallest one with respect to the lexicographic
order is chosen. The following proposition is the key in the proof of Theorem 2.

Proposition 2. Let θ0 = (γ0,0,1) and K ⊂ � be a compact neighborhood of θ0. Under the
assumptions of Theorem 2,

lim
n→+∞ θ̃K

n = θ0 a.s.

The proof of Proposition 2 relies on an adaptation of Wald’s method for proving the consis-
tency of M-estimators (see Wald [21] or van der Vaart [20], Theorem 5.14). The standard theory
of M-estimation is designed for i.i.d. samples, while we have to deal with the triangular array
{(M̃k,m)1≤k≤n, n ≥ 1}. We first state two lemmas.

Lemma 5. For all θ ∈ �, Gγ0 [�θ ] ≤ Gγ0 [�θ0 ] and the equality holds if and only if θ = θ0.

Proof. The quantity Gγ0 [�θ0 − �θ ] is the Kullback–Leibler divergence of the GEV distributions
with parameters θ0 and θ and is known to be non-negative (see van der Vaart [20], Section 5.5).
It vanishes if and only if the two distributions agree. This occurs if and only if θ = θ0 because
the GEV model is identifiable. �
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Lemma 6. For B ⊂ �, define

�B(x) = sup
θ∈B

�θ (x), x ∈ R.

Let θ ∈ � and B(θ, ε) be the open ball in � with center θ and radius ε > 0. Then,

lim
ε→0

Gγ0 [�B(θ,ε)] = Gγ0[�θ ].

Proof. Proposition 1 implies

�θ (x) = gγ

(
(x − μ)/σ

) − logσ ≤ gγ

(
x∗
γ

) − logσ.

One can deduce that if B is contained in (−1, γ̄ ] × [σ̄ ,+∞) ×R for some γ̄ > −1 and σ̄ > 0 ,
then there exists M(γ̄ , σ̄ ) such that

�θ (x) ≤ M(γ̄ , σ̄ ) for all θ ∈ B,x ∈R.

Hence, there exists M > 0 such that the function M − �B(θ,ε) is non-negative for ε small enough.
The continuity of θ �→ �θ (x) on � implies

lim
ε→0

�B(θ,ε)(x) = �θ (x) for all x ∈R.

Then, Fatou’s lemma entails

Gγ0

[
lim inf
ε→0

(M − �B(θ,ε))
]

≤ lim inf
ε→0

Gγ0 [M − �B(θ,ε)],

whence we obtain

lim sup
ε→0

Gγ0[�B(θ,ε)] ≤ Gγ0[�θ ].

On the other hand, θ ∈ B(θ, ε) implies Gγ0[�B(θ,ε)] ≥ Gγ0[�θ ]. We deduce

lim
ε→0

Gγ0 [�B(θ,ε)] = Gγ0[�θ ]. �

Proof of Proposition 2. In view of Lemmas 5 and 6, for each θ ∈ K such that θ �= θ0, there
exists εθ > 0 such that

Gγ0 [�B(θ,εθ )] < Gγ0 [�θ0].
Fix δ > 0. The set 
 = {θ ∈ K; ‖θ − θ0‖ ≥ δ} is compact and is covered by the open balls
{B(θ, εθ ), θ ∈ 
}. Let Bi = B(θi, εθi

), 1 ≤ i ≤ p, be a finite subcover. Using the relation L̃n(θ) =
Pn[�θ ], we see that

sup
θ∈


L̃n(θ) ≤ max
1≤i≤p

Pn[�Bi
].
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The function �Bi
is upper semi-continuous and bounded from above, so that Lemma 3 entails

lim sup
n→+∞

Pn[�Bi
] ≤ Gγ0[�Bi

] a.s.,

whence

lim sup
n→+∞

sup
θ∈


L̃n(θ) ≤ max
1≤i≤p

Gγ0 [�Bi
] < Gγ0[�θ0 ] a.s. (11)

According to Lemma 4, Pn[�θ0 ] a.s.−→ Gγ0[gγ0 ], so that

lim inf
n→+∞ sup

θ∈K

L̃n(θ) ≥ Gγ0[�θ0 ] a.s. (12)

Since θ̃K
n realizes the maximum of L̃n over K , equations (11) and (12) together entail that θ̃K

n ∈
K \ 
 for large n. Equivalently, ‖θ̃K

n − θ0‖ < δ for large n. Since δ is arbitrary, this proves the

convergence θ̃K
n

a.s.−→ θ0 as n → +∞. �

Proof of Theorem 2. Let K ⊂ � be a compact neighborhood of θ0 as in Proposition 2 and
define θ̃K

n by equation (10). We prove that Theorem 2 holds true with the sequence of estimators

(γ̂n, μ̂n, σ̂n) = (
γ̃ K
n , amμ̃K

n + bm,amσ̃K
n

)
, n ≥ 1.

According to Lemma 1, (γ̂n, μ̂n, σ̂n) is a MLE if and only if L̃n has a local maximum at
θ̃K
n = (γ̃ K

n , μ̃K
n , σ̃K

n ). Since θ̃K
n = arg maxθ∈K L̃n(θ), this is the case as soon as θ̃K

n lies in the

interior set int(K) of K . Proposition 2 implies the almost surely convergence θ̃K
n

a.s.−→ θ0 which
is equivalent to equation (6). Furthermore, since θ0 ∈ int(K), this implies θ̃K

n ∈ int(K) for large
n so that (γ̂n, μ̂n, σ̂n) is a MLE for large n. This proves equation (5). �

Appendix: Proof of Lemma 4

We will use the following criterion to prove equation (9).

Lemma 7. Suppose F ∈ D(Gγ0) and limn→+∞ m(n) = +∞. We note Ym = gγ0(a
−1
m (M1,m −

bm)). If there exists a sequence (αn)n≥1 and p > 2 such that∑
n≥1

nP
(|Ym| > αn

)
< +∞ and sup

n≥1
E

[|Ym|p1{|Ym|≤αn}
]
< +∞,

then equation (9) holds true.

Proof. We note μ = Gγ0 [gγ0] and we define

Yk,m = gγ0

(
a−1
m (Mk,m − bm)

)
and Sn =

n∑
k=1

Yk,m.
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With these notations, (9) is equivalent to n−1Sn
a.s.→ μ. We introduce the truncated variables

Ỹk,m = Yk,m1{|Yk,m|≤αn} and S̃n =
n∑

k=1

Ỹk,m.

Clearly,

P[S̃n �= Sn] ≤ P
[
Ỹk,m �= Yk,m for some k ∈ {1, . . . , n}]

≤ nP
[|Ym| > αn

]
,

so that
∑

n≥1 nP[|Ym| > αn] < +∞ entails
∑

n≥1 P[S̃n �= Sn] < +∞. By the Borel–Cantelli
lemma, this implies that the sequences (S̃n)n≥1 and (Sn)n≥1 coincide eventually, whence

n−1Sn
a.s.→ μ if and only if n−1S̃n

a.s.→ μ. We now prove this last convergence.
We first prove that E[Ỹ1,m] → μ. Indeed, by the continuous mapping theorem, the conver-

gence (1) implies Y1,m ⇒ gγ0(Z) with Z ∼ Gγ0 , where ⇒ stands for weak convergence. Since
P[Ỹ1,m �= Y1,m] converges to 0 as n → +∞, it also holds Ỹ1,m ⇒ gγ0(Z). Together with the
condition supn≥1 E[|Ỹ1,m|p] < ∞, this entails E[Ỹ1,m] → E[gγ0(Z)] = μ.

Next, Theorem 2.10 in Petrov [13] provides the upper bound

E
[∣∣S̃n −E[S̃n]

∣∣p] ≤ C(p)np/2
E

[∣∣Ỹ1,m −E[Ỹ1,m]∣∣p]
for some constant C(p) > 0 depending only on p. Equivalently,

E
[∣∣n−1S̃n − μn

∣∣p] ≤ C(p)n−p/2
E

[|Ỹ1,m − μn|p
]

with μn = E[Ỹ1,m]. Furthermore,

E
[|Ỹ1,m − μn|p

] ≤ 2p−1(
E

[|Ỹ1,m|p] + |μn|p
)

is uniformly bounded by some constant C > 0. By the Markov inequality, for all ε > 0,

P
[∣∣n−1S̃n − μn

∣∣ ≥ ε
] ≤ ε−p

E
[∣∣n−1S̃n − μn

∣∣p] ≤ ε−pC(p)Cn−p/2.

Since p > 2, we get that ∑
n≥1

P
[∣∣n−1S̃n − μn

∣∣ ≥ ε
]
< +∞

and the Borel–Cantelli lemma entails n−1S̃n − μn
a.s.→ 0. Since μn → μ, we deduce n−1S̃n

a.s.→ μ

which proves the lemma. �

Proof of Lemma 4. We prove that there exists a sequence (αn) and p > 2 satisfying∑
n≥1

nα
−p
n < +∞ (13)
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and

sup
n≥1

E
[(|Ym| ∧ αn

)p]
< +∞. (14)

The Markov inequality yields

P
[|Ym| ≥ αn

] ≤ α
−p
n E

[(|Ym| ∧ αn

)p]
so that equations (13) and (14) together entail∑

n≥1

nP
(|Ym| > αn

)
< +∞ and sup

n≥1
E

[|Ym|p1{|Ym|≤αn}
]
< +∞.

This shows that equations (13) and (14) together imply the assumptions of Lemma 7 and prove
Lemma 4.

We first evaluate the quantity E[(|Ym| ∧ αn)
p] from equation (14). Recall that Ym =

gγ0((M1,m − bm)/am). It is well known that the random variable Xi with distribution function
F has the same distribution as the random variable F←(V ), with V a uniform random vari-
able on (0,1). We deduce that the random variable M1,m = ∨m

i=1 Xi has the same distribution as
F←(Vm), with Vm a random variable with distribution mvm−11(0,1)(v)dv (this is the distribution
of the maximum of m i.i.d. uniform random variables on [0,1]). Hence,

E
[(|Ym| ∧ αn

)p] =
∫ 1

0

(∣∣gγ0

((
F←(v) − bm

)
/am

)∣∣ ∧ αn

)p
mvm−1 dv.

The relations U(x) = F←(1 − 1/x) and bm = U(m) together with the change of variable v =
1 − 1/(mx) yield

E
[(|Ym| ∧ αn

)p] =
∫ ∞

1/m

(∣∣gγ0

(
Ũm(x)

)∣∣ ∧ αn

)p
(

1 − 1

mx

)m−1

x−2 dx,

where

Ũm(x) = U(mx) − U(m)

am

.

We now provide an upper bound for the integral and we use the following estimates. There exists
a constant c > 0 such that for 1 + γ0y > 0

∣∣gγ0(y)
∣∣ ≤

{
c(1 + γ0y)−1/γ0 , y < 0,

(1 + 1/γ0) log(1 + γ0y) + 1, y ≥ 0.

Note that Ũm(x) is positive for x > 1 and negative for x < 1. Furthermore, for all x ≥ 1/m and
m ≥ 2, (

1 − 1

mx

)m−1

≤ exp
(−(m − 1)/(mx)

) ≤ exp
(−1/(2x)

)
.
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Using these estimates, we obtain the following upper bound: for m ≥ m0 (m0 to be precised
later),

E
[(|Ym| ∧ αn

)p] ≤ I1 + I2 + I3 (15)

with

I1 =
∫ m0/m

1/m

α
p
n exp

(−(m − 1)/(mx)
)
x−2 dx,

I2 =
∫ 1

m0/m

cp
(
1 + γ0Ũm(x)

)−p/γ0 exp
(−1/(2x)

)
x−2 dx,

I3 =
∫ ∞

1

(
(1 + 1/γ0) log

(
1 + γ0Ũm(x)

) + 1
)p exp

(−1/(2x)
)
x−2 dx.

The integral I1 can be computed explicitly and, for m ≥ 2,

I1 ≤ 2α
p
n exp

(−(m − 1)/m0
)
. (16)

To estimate I2 and I3, we need upper and lower bounds for Ũm(x) and we have to distinguish
between the three cases γ0 > 0, γ0 ∈ (−1,0) and γ0 = 0.
Case γ0 > 0: According to Theorem 1, the function U is regularly varying at infinity with index
γ0 > 0 and

1 + γ0Ũm(x) = 1 + γ0
U(mx) − U(m)

am

= U(mx)

U(m)
.

We use then Potter’s bounds (see, e.g., Proposition B.1.9 in [5]): for all ε > 0, there exists m0 ≥ 1
such that for m ≥ m0 and mx ≥ m0

(1 − ε)xγ0 min
(
xε, x−ε

) ≤ U(mx)

U(m)
≤ (1 + ε)xγ0 max

(
xε, x−ε

)
. (17)

We fix ε ∈ (0, γ0) and choose m0 accordingly. Using the lower Potter’s bound to bound I2 and
the upper Potter’s bound to bound I3, we get

I2 ≤
∫ 1

m0/m

cp
(
(1 − ε)xγ0+ε

)−p/γ0 exp
(−1/(2x)

)
x−2 dx

≤ cp(1 − ε)−p/γ0

∫ 1

0
x−2−p−pε/γ0 exp

(−1/(2x)
)

dx

and

I3 ≤
∫ ∞

1

(
(1 + 1/γ0) log

(
(1 + ε)xγ0+ε

) + 1
)p exp

(−1/(2x)
)
x−2 dx.
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These integrals are finite and this implies that I2 and I3 are uniformly bounded for m ≥ m0. From
equations (15) and (16), we obtain

E
[(|Ym| ∧ αn

)p] ≤ 4α
p
n exp

(−m/(2m0)
) + C,

for some constant C > 0. Finally, we set α
p
n exp(−(m − 1)/m0) = 1, i.e., αn = exp((m −

1)/(pm0)). Equation (14) is clearly satisfied and

nα
−p
n = exp

[−(
(m − 1)/(m0 logn) − 1

)
logn

]
. (18)

We check easily that the condition limn→+∞ m(n)
logn

= +∞ implies equation (13).
Case γ0 < 0: It follows from Theorem 1 that the function t �→ U(∞)−U(t) is regularly varying
at infinity with index γ0 < 0 and that

1 + γ0Ũm(x) = 1 + γ0
U(mx) − U(m)

am

= U(∞) − U(mx)

U(∞) − U(m)
.

Then, the Potter’s bounds become: for all ε > 0, there exists m0 ≥ 1 such that for m ≥ m0 and
mx ≥ m0

(1 − ε)xγ0 min
(
xε, x−ε

) ≤ U(∞) − U(mx)

U(∞) − U(m)
≤ (1 + ε)xγ0 max

(
xε, x−ε

)
.

Using this, the proof is completed in the same way as in the case γ0 > 0 with straightforward
modifications.
Case γ0 = 0: In this case, Theorem B.2.18 in [5] implies that for all ε > 0, there exists m0 ≥ 1
such that for m ≥ m0 and mx ≥ m0,∣∣∣∣U(mx) − U(m)

am

− logx

∣∣∣∣ ≤ ε max
(
xε, x−ε

)
.

Equivalently, for m ≥ m0 and mx ≥ m0,

logx − ε max
(
xε, x−ε

) ≤ Ũm(x) ≤ logx + ε max
(
xε, x−ε

)
.

Using the lower bound to estimate I2 and the upper bound to estimate I3, we obtain

I2 =
∫ 1

m0/m

cp exp
(−pŨm(x)

)
exp

(−1/(2x)
)
x−2 dx

≤ cp

∫ 1

0
exp

(−p logx + pεx−ε − 1/(2x)
)
x−2 dx

and

I3 =
∫ ∞

1

(
Ũm(x) + 1

)p exp
(−1/(2x)

)
x−2 dx

≤
∫ ∞

1

(
logx + εxε + 1

)p exp
(−1/(2x)

)
x−2 dx.
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For ε ∈ (0,1/p), the integrals appearing in the upper bounds are finite and independent of m.
This shows that I2 and I3 are uniformly bounded for m ≥ m0. The proof is then completed as in
the case γ0 > 0. �

Remark 5. In view of equation (18), one can easily check that the conclusion of the proof re-
quires only the weaker condition

lim inf
n→+∞

m(n)

logn
> 2m0

with m0 given by Potter’s bounds (17). Furthermore, if m0 = 1, the integral I1 vanishes while I2
and I3 remain bounded and one can check that the conclusion of the proof requires only

lim
n→+∞m(n) = +∞.

This last case occurs for instance with the Pareto distribution function

F(t) = 1 −
(

t

t0

)−1/γ0

, t ≥ t0.

Then F ∈ D(Gγ0) and U(x) = t0x
γ0 , x ≥ 1, so that the Potter’s bounds (17) is trivially satisfied

with m0 = 1. The same comments hold true in the cases γ0 < 0 or γ0 = 0.
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