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Recent discussion of the success of feature selection methods has argued that focusing on a relatively small
number of features has been counterproductive. Instead, it is suggested, the number of significant features
can be in the thousands or tens of thousands, rather than (as is commonly supposed at present) approx-
imately in the range from five to fifty. This change, in orders of magnitude, in the number of influential
features, necessitates alterations to the way in which we choose features and to the manner in which the
success of feature selection is assessed. In this paper, we suggest a general approach that is suited to cases
where the number of relevant features is very large, and we consider particular versions of the approach in
detail. We propose ways of measuring performance, and we study both theoretical and numerical properties
of the proposed methodology.

Keywords: change-point analysis; classification; dimension reduction; feature selection; logit model;
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1. Introduction

1.1. Motivation and summary

In this paper, we develop statistical methods for determining features that enable effective
discrimination between two populations of very high dimensional data, when the number of
component-wise differences that provide leverage for discrimination is relatively large but the
sizes of those differences are potentially small. By way of contrast, conventional approaches to
solving this problem tend to rely on relatively large differences and relatively small numbers of
components where differences occur.

In such problems, it is generally going to be of substantial practical interest to identify, with
reasonable accuracy, the components that have greatest leverage for correct discrimination. Sim-
ply constructing a classifier, which might depend in a difficult-to-determine way on differences
between two populations, is generally not going to provide all the information that is sought.
However, particularly when the number of such components is large, we may not be able to
identify the components without error. How accurate can we be, and in what circumstances is
accuracy high? In this paper we shall endeavour to answer these questions.
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Achieving reasonable accuracy can involve relatively computer-intensive methods, for exam-
ple, algorithms that need O(p2) rather than O(p) time if the problem is p-dimensional. How-
ever, if we use an initial, deterministic dimension reduction step, which decreases dimension
to q where q � p, then O(p2) calculations can be reduced to O(p logp + q2), where p logp

is the computational cost of ordering the initial p components. In many cases, we expect q to
be a rather crude upper bound to the true number, r say, of components that impact on perfor-
mance of the classifier. The four-stage algorithm that we shall introduce in Section 2 enables
us to reduce computational expense from O(p logp + q2) to O(p logp + r2). (These order-of-
magnitude calculations ignore the effects of training sample size, n say, since in the problems we
are considering n is typically much less than p, q or r and so has relatively little impact on the
final result.)

Support for the conjecture that r can be quite large, for example, in genomics problems, has
been given by Goldstein [29], who, in the words of J.N. Hirschhorn in the same issue of the New
England Journal of Medicine, “builds a speculative mathematical model and infers that there will
be tens of thousands of common variants influencing each disease and trait” (Hirschhorn [35]).
Goldstein’s [29] calculations are also consistent with r being in the thousands, not just the tens
of thousands:

. . . the genetic burden of common diseases must be mostly carried by large numbers of rare variants. In this
theory, schizophrenia, say, would be caused by combinations of 1000 rare genetic variants, not of 10 common
genetic variants.

(See Wade [43].) Kraft and Hunter [37] argue that “many, rather than few, variant risk alleles
are responsible for the majority of the inherited risk of each common disease.” Again, r is large
rather than small.

In the discussion above one might interpret p and r as representing numbers of single nu-
cleotide polymorphisms (SNPs), alleles, or perhaps genes. There are believed to be between
10 and 30 million SNPs on a human chromosome, and some 25,000 genes. However, genomic
analyses based on decoding the full DNA of individuals who suffer from specific conditions
(Wade [43]) increase the values of both p and r by orders of magnitude. (In practice r will be
chosen empirically, and so will actually be a function of the data, but at the level of the discussion
in the present section there is little to be gained by making this distinction.)

1.2. Example

We do not have to look beyond datasets well covered in the statistical literature to see evidence
of a very large number of influential components being present in a dataset. We have taken three
popular microarray datasets, described in more detail in Section 5.4, pertaining to colon cancer,
leukemia and prostate cancer. In each case, there are many thousands of genes, each with a
continuum of expression levels, as well as a binary response variable, indicating whether or not
a patient carries the condition. For each dataset we performed a Wilcoxon rank sum test for each
gene, using the response to divide observations, so as to test nonparametrically for a change in
mean. The kernel estimates of the densities of p-values from these experiments are displayed in
Figure 1 in solid red lines. The peak at the left for each dataset suggests a significant number of
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Figure 1. Distribution of p-values of Wilcoxon tests applied to the components of microarray datasets. The
red solid line represents the actual data, while the dashed blue line is when the response is randomly per-
muted and so there is no genuine signal. The shaded regions give estimates of the proportion of components
genuinely related to the response.

low p-values, more than would be expected if only a few genes contributed to the understanding
of the response.

To extend the experiment further, we randomly permuted the response amongst the observa-
tions 50 times and repeated the Wilcoxon tests, recovering the distributions denoted by the blue
dashed lines. These can be thought of as the expected distributions of p-values were each gene
independently varying with respect to the response. They asymptotically approximate the uni-
form distribution. The shaded region in each plot then provides a rough estimate of the fraction
of components related to the response. These fractions are 16%, 30% and 8.5% of all genes con-
sidered (or equivalently, 320, 2140 and 510 genes, resp.), for the colon, leukemia and prostate
datasets, respectively. We have also done a similar experiment for a SNP data on multiple scle-
rosis to be introduced in Section 5.5, where the fraction is 3.9% out of 300,900 SNPs. It should
also be noted that these observations are genuine; the statistic measured (difference between
estimated densities) is many standard deviations above what would be expected by chance.

1.3. Comments on the literature

Methods for feature selection based on the linear model are generally considered only in cases
where the number of features is relatively small. Otherwise, the value of the response variable
can be unreasonably insensitive to changes in a single feature. Examples of approaches founded
on the linear model include the nonnegative garrotte (e.g., Breiman [6,7]; Gao [27]), the lasso
(Tibshirani [40]), the Dantzig selector (Candes and Tao [8]), and related techniques (e.g., Donoho
and Huo [17]; Fan and Li [22,23]; Donoho and Elad [16]; Tropp [42]; Donoho [14,15]; Fan and
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Ren [25]; Fan and Fan [21]). The feature-ranking approach that we consider is more closely
related to correlation-based approaches of Fan and Lv [24] and Hall and Miller [31], but it is
does not assume the existence of a response variable. Instead it utilises class labels via a logistic
model. Monograph-length treatments of classifiers and related methodology include those of
Duda et al. [20], Hastie et al. [34] and Shakhnarovich et al. [38].

2. Methodology

2.1. Data and algorithm

Denote the two populations of interest by �0 and �1. Training data from each are acquired as
p-vectors Xi = (Xi1, . . . ,Xip), for 1 ≤ i ≤ n. We also record the value of a label Ii , for each i;
it equals 0 or 1, indicating the index of the population from which Xi came.

One potential algorithm for identifying indices j , of vector components Xij which capture
differences between �0 and �1, has four stages, (1)–(4) below. The goal of the algorithm is to
determine empirically a set {ĵ1, . . . , ĵr} of indices, a subset of {1, . . . , p}, such that the features
with indices ĵ1, . . . , ĵr have significant influence on whether Xi comes from �0 or �1. Those
features can then be combined into a classifier, for example, the support vector machine or a
centroid-based method, to effect discrimination.

(1) Component ranking. Using a method such as that suggested in Section 2.2, rank all com-
ponents in terms of their individual influence on Ii , interpreted as a zero–one response variable.
This stage takes O(p logp) time to run, and produces a permutation ĵ1, . . . , ĵp , say, of 1, . . . , p,
where the order of the sequence ĵ1, . . . , ĵp is of major importance and signifies that, for each k,
the component with rank ĵk has greater leverage than the component with rank ĵk+1 on a measure
of our ability to predict Ii from Xi .

(2) Deterministic dimension reduction. Truncate at q (where 1 ≤ q ≤ p) the sequence we
derived in step (1). From this point, we work only with q-vectors comprised of the components
with indices ĵ1, . . . , ĵq . The value of q is determined largely by our computational resources,
bearing in mind that the computational expense of constructing the classifier could be as high as
O(q2).

(3) Adaptive dimension reduction. In this stage, we use an empirical method to reduce dimen-
sion from q , chosen in stage (3), to r , so that the final choice of feature indices is ĵ1, . . . , ĵr .
Potential approaches are discussed in Section 2.3, and include methods based on: (3a) threshold-
ing, (3b) change-point methods, or (3c) application of classifiers to blocks of components.

(4) Backing and filling. In practice, it can be advantageous to rerun stage (3) of the algorithm
using several of the values of j chosen early in stage (2), or early in the implementation of
stage (3), bearing in mind that there is potential for noise in the choice of ĵ1, for example, to
throw the algorithm off course for a period. At this point we could, for example, experiment with
different choices of block size in method (3c).
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2.2. Method for ranking components

Given an index j between 1 and p, and scalar parameters α and β , we capture the relationship
between Ii and Xij by assuming a logit model:

P(Ii = 0|Xij ) = {
1 + exp(α + βXij )

}−1
, P (Ii = 1|Xij ) = 1 − P(Ii = 0|Xij ).

The likelihood of Ii , given Xij , is

Lij (Ii |α,β;Xij ) =
(

tij

1 + tij

)Ii
(

1

1 + tij

)1−Ii

= t
Ii

ij

1 + tij
,

where tij = exp(α + βXij ). Therefore, the negative log-likelihood is

�ij (α,β) = − logLij (Ii |α,β;Xij ) = −Ii(α + βXij ) + log
{
1 + exp(α + βXij )

}
, (2.1)

and its counterpart for X1j , . . . ,Xnj is

�j (α,β) = 1

n

n∑
i=1

�ij (α,β). (2.2)

Define (α̂j , β̂j ) to be the value of (α,β) that minimises �j (α,β), and put

�̂j = �j (α̂j , β̂j ). (2.3)

The ordering ĵ1, . . . , ĵp mentioned in step (1) of the algorithm in Section 2.1 is determined by
the values of �̂j . Specifically, �̂ĵ1 ≤ · · · ≤ �̂ĵp

.

2.3. Methods for adaptive dimension reduction

Several approaches are feasible, including: (3a) Thresholding. Here we compute, from the data,
a subsidiary criterion �̃j , for 1 ≤ j ≤ p (we might simply choose �̃j ≡ 0) and a threshold t ; we
take k0 ≥ 0 to be an integer; and we define r ∈ [k0 + 1, q], a function of the data, to be the least
integer in that range such that �̂ĵr+k

− �̃ĵr+k
> t for 1 ≤ k ≤ k0. See Section 4 for an example.

(3b) Change-point methods. Here we look for a change-point in the sequence �̂ĵ1 , . . . , �̂ĵp
, and

we take ĵr to be the location of that point. (There is a vast literature on methodology and theory
for change-point detection. It includes book-length accounts by Carlstein et al. [9], Csörgő and
Horváth [12], Chen and Gupta [11] and Wu [44].) (3c) Application of classifiers. For k ≥ 1, let
Bk = {ĵ(k−1)b+1, . . . , ĵkb} denote the kth block of feature indices; here, b denotes block length.
(Theoretical considerations suggest that taking b ∼ const. n is appropriate.) In step s of stage (3c)
we construct the classifier that is based on the training data vectors where all but the components
with indices in

⋃
1≤k≤s Bk have been stripped away. We use cross-validation to measure classifier

performance, and in this way we determine whether progressing from step s to step s + 1 gives
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an improvement. If it does not then, subject to the “jiggling” suggested in stage (4), we stop at
step s. If performance is improved by passing to the (s + 1)st block then we proceed to step
s + 1, where we again assess performance. However, this approach can be biased in favour of
low apparent error rate, without having the same impact on actual error rate; see Section 5.3 for
discussion.

2.4. Duration of algorithm

Stage (3) of the algorithm takes O(r2) time to complete, where r , in the range 1 ≤ r ≤ q ,
denotes the final number of components on which we determine that the classifier should de-
pend. In particular, the algorithm concludes with a list of r components, say ĵ�1, . . . , ĵ�r where
{ĵ�1, . . . , ĵ�r } = ⋃

k≤ŝ Bk ⊆ {ĵ1, . . . , ĵq}, on which the final classifier is based. The O(r2) figure
is derived as follows: Constructing the classifier from s batches takes O(sb) time, so the total
time needed is O(

∑
1≤s≤ŝ sb) = O(ŝ2b) = O(r2). Here, since b is generally of order n (see Sec-

tion 5) and ŝ2b = O(r2b), we have replaced r2b by r2 since, in the problems we are treating, n

is generally so much less than r that it can be treated as fixed. Provided the number of reruns in
stage (4) is only O(1), the order of magnitude of the time taken to run the algorithm to completion
is O(p logp + r2).

2.5. Discussion

The procedures above are intended to reflect methodologies already used in practice. Our main
aim is to show that such techniques can be used to address not just contemporary problems where
there is believed to be considerable sparsity and only a small number of significant features (e.g.,
five or ten genes out of thousands or tens of thousands), but also reduced sparsity and a larger
total number of features (e.g., thousands or tens of thousands of DNA sequences out of tens
or hundreds of thousands of possibilities). Additionally we show that the methods continue to
work well under minimal distributional assumptions (e.g., normality is not needed), and mini-
mal conditions about relationships among features. In all these senses, procedures such as those
described above are particularly versatile.

The proposed approach belongs to the class of marginal methods for that it only uses marginal
information for feature selection. Marginal methods are feasible when different features are in-
dependent or weakly dependent. When this is not the case, a natural problem is how to incor-
porate dependence among different features for feature ranking and classification. One possible
approach is to first estimate the correlations and then include them in the classifier. However,
without rather narrow assumptions this can introduce substantial noise into the process of infer-
ence for high-dimensional data, and in fact one can be better off simply ignoring the correlations;
see, for example, Tibshirani et al. [41], Bickel and Levina [5] and Fan and Fan [21].

The feature ranking problem can also be re-cast in terms of logistic regression, where the
design matrix {Xij }{1≤i≤n,1≤j≤p} is randomly generated and perhaps non-Gaussian. Hence, there
is a natural connection between the component-by-component, or marginal, approach suggested
in the present paper, and existing techniques for feature selection, such as the lasso (e.g., Chen
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et al. [10]; Tibshirani [40]). Genovese et al. [28] compared marginal methods with the lasso and
showed that the two approaches have comparable performance over a wide range of parameter
values, both theoretically and empirically, but that marginal methods are computationally more
efficient, especially when both n and p are large.

Our work is connected to that of Fan and Lv [24] in that it is founded on component-wise
analysis of high-dimensional data. Fan and Lv’s ingenious technique was based on correlation,
and is related to likelihood through its connections to least-squares in the setting of Gaussian ex-
perimental errors. In contrast, we use a logistic model to define a likelihood for each component,
and we rank those component-wise likelihoods. Fan and Lv’s [24] aim is “to reduce dimension-
ality from high to a moderate scale that is below the sample size” (to quote from their paper), and
then to use relatively conventional methods to select features. However, our goal is inherently
different, since a basis for our argument is the concern that, as Goldstein [29] argued, the number
of important features might be relatively large, and in particular much larger than sample size.

Our paper is connected to those of Fan and Lv [24] and Fan and Song [26], and in particular
our methodology, minus the “adaptive dimension reduction” and “backing and filling” steps, is
Fan and Song’s [26] SIS approach when the model in question is logistic. However, the parameter
settings that we treat, both in our numerical work and our theory, are quite different from theirs.
In particular, we focus on regimes where the useful features are very weak and only moderately
sparse. In contrast, Fan and Lv [24] and Fan and Song [26] address cases where the signals are
relatively strong or very sparse. Secondly, we evaluate our approach using the new criterion of
misranking, introduced below, which is particularly appropriate to problems where many influen-
tial features are present and, for at least this reason, different from criteria employed by Fan and
Lv [24] and Fan and Song [26]. It is also different from the FDR approach adopted by Benjamini
and Hochberg [4] and many other authors.

In broad terms the methodology that we suggest could be used in conjunction with existing
approaches to feature selection, but those generally do not conclude with a ranking of features,
and that would limit their usefulness to us. More particularly, as discussed above, our approach
differs from those of Fan and Lv [24] and others, in that our aim is not to dramatically reduce
the number of features to a handful, but to address a much larger number of features. Never-
theless some methods, for example, random forests (which produce a feature importance list)
and shrunken centroids do create an ordering for the portion of predictors that are given nonzero
weight, and would be candidates for implementing part of our methodology.

3. Properties of feature ranking

3.1. Main result on ranking

Let π = E(Ii) denote the proportion of data that come from population �1. We assume below
that 0 < π < 1, and that when the training data are drawn randomly from the union of �0 and �1,
the prior probability that any given datum Xi is from �1 equals π . Therefore, the corresponding
probability for �0 is 1 − π . We take n, representing the total size of the training sample, to be
the key asymptotic parameter, and interpret the dimension, p, of Xi as a function of n.
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Next, we describe our model. Write Xi = (Xi1, . . . ,Xip), and, when Xi comes from �1, take

Xij = μj + Zij , (3.1)

where μj ≥ 0 are constants and, for simplicity, we assume that the variables Zij are identically
distributed as Z, say. (This condition can be relaxed; see (3.5) below.) Take Xij = Zij when Xi

is drawn from �0. The vectors (Zi1, . . . ,Zip) and variables Ii , for 1 ≤ i ≤ n, are assumed to be
totally independent. We allow the μj ’s to be functions of n.

Write α̂j and β̂j for the values of α and β that jointly minimise �̂j (α,β) within radius n−c of
(α0,0), where α0 = log{π/(1 − π)}, for any given c ∈ (0, 1

2 ). (A separate argument can be used

to prove that if α̂j and β̂j are chosen without constraint then, under the conditions of Theorem 1
below, they satisfy α̂j = α0 + Op(n−c) and β̂j = Op(n−c) uniformly in 1 ≤ j ≤ p, for some
c ∈ (0, 1

2 ).) Define

Sj =
∑

i (Ii − π)Xij

nπ(1 − π)
, (3.2)

and note that E(Sj ) = 0. Put λ = (n−1 logn)1/2.

Theorem 1. Assume that for each n, |μj | ≤ const. λ for 1 ≤ j ≤ p; that p = p(n) → ∞ and,
for constants B1 > 0 and B2 > 2 max(B1 + 3,2B1), p = O(nB1) and 0 < E|Z|B2 < ∞; and that
E(Z) = 0. Then, uniformly in 1 ≤ j ≤ p,

�̂j = �j (α̂j , β̂j ) = R − 1
2π(3 − 2π)

(
EZ2)−1

(Sj + μj )
2 + Op

(
λ3), (3.3)

where the random variable R = R(n) does not depend on j . More particularly, the Op(λ3) term
in (3.3) can be written as 	jλ

3, where, for a constant B3 depending on B1 and B2, and with
B4 = 1

4 {B2 − 2 max(B1 + 3,2B1)} − ε for any ε > 0, the random variables 	j , for 1 ≤ j ≤ p,
satisfy:

p∑
j=1

P
(|	j | > B3

) = O
(
n−B4

)
(3.4)

as n → ∞.

The statistic Sj is, up to normalisation, the well-known z-score statistic for testing whether the
j th feature is significant or not; see, for example, Donoho and Jin [18,19] and Jin [36]. In (3.3),
since the first term, R, does not depend on j then the second term is the one that reflects the
strengths of individual features. As a result, ranking features according to �̂j gives close, but not
necessarily the same, results as ranking features according to |Sj + μj |.

Next, we interpret the assumptions imposed in Theorem 1. The condition |μj | ≤ const. λ, for
1 ≤ j ≤ p, is imposed so as to make the contribution of μj difficult to identify. In particular,
if |μj | is of larger order than λ then it can be shown from large deviation properties that the
contribution of the “signal” μj will be easily visible above the noise, and so the contribution of
the gene corresponding to the index j will be very easy to identify. This would exemplify the
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classical setting, where a relatively small number of genes describe adequately the link to disease,
and we are not addressing that case in this paper. The conditions p = O(nB1) and 0 < E|Z|B2 <

∞ imply that the number of dimensions can be polynomially large as a function of sample
size, and that only a polynomial number of moments needs to be assumed. The assumption
B2 > 2 max(B1 + 3,2B1) implies that the number of moments required increases no faster than
linearly as a function of the rate of growth of p, expressed in terms of sample size.

The assumption that each Zij has the same distribution is made to simplify discussion and
notation, and is readily relaxed. For example, it suffices to assume that each Zij , for 1 ≤ i ≤ n,
is distributed as Zj , say, where, instead of the assumptions imposed on Z in the theorem, we ask
that:

E(Zj ) = 0, E
(
Z2

j

)
is bounded away from zero and infinity uniformly

in j , and P(|Zj | > x) ≤ P(|Z| > x) for all x > 0 and some random
variable Z, where E|Z|B2 < ∞.

(3.5)

In this case, the moment E(Z2) in (3.3) would be replaced by E(Z2
j ). The conclusions that we

draw, below, from Theorem 1 are unchanged, provided we interpret μj as μj/(EZ2
j )

1/2 during
discussion.

Although we ask that the vectors Xi be independent, we make no assumption about the re-
lationships among their components. For example, the values of Zi1, . . . ,Zip can be highly de-
pendent (indeed, in an extreme case, equal to one another) or completely independent. The latter
instance is actually the most difficult, in terms of rigorously establishing that (3.3) and (3.4) hold.
At the other end of the spectrum, the case where Zi1 = · · · = Zip with probability 1 is trivial,
since there effectively only a single component index, with different candidate values for the
mean, has to be treated.

3.2. Expected number of misrankings

Assume that some of the μj ’s are zero and all the others are strictly positive. Ideally, we would
like the criterion �̂j to be a good indicator of the positivity of μj , in particular to take a lesser
(or larger negative) value if μj is positive than it does when μj = 0. Reflecting this aspiration,
if there exist component indices j1 and j2 such that μj1 > 0 and μj2 = 0, but �̂j2 < �̂j1 , then we
shall say that a misranking has occurred. The expected total number of misrankings,

νmisrank =
∑

j1: μj1>0

∑
j2: μj2=0

P(�̂j2 < �̂j1),

is a measure of the performance of �̂j as a criterion for distinguishing between positive and zero
values of μj ; lower values of νmisrank correspond to higher performance.

Since the random variable Sj in (3.2) and (3.3) has standard deviation of size n−1/2 then, if
the positive μj ’s are of smaller order than n−1/2, with probability converging to 1

2 any attempt

to rank any pair of means μj using the values of �̂j will produce the wrong result about half the
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time. The following theorem makes this clear. Let p1 denote the number of indices j for which
μj > 0, and put

σ 2
j1j2,± = π(1 − π)var(Z1j1 ± Z1j2) (3.6)

for respective choices of the plus and minus signs.
To avoid degeneracy, where the problem of identifying genes is relatively simple, we assume

below that the quantities σ 2
j1j2,± are bounded away from zero, and of course, since we are endeav-

ouring to capture cases where the signals μj are so weak that the corresponding genes cannot be
identified, we ask that the μj ’s be uniformly of smaller order than n−1/2.

Theorem 2. Assume the conditions of Theorem 1, that supj≤p μj = o(n−1/2), and that σ 2
j1,j2,±

is bounded away from zero uniformly in j1, j2 and choices of the ± signs. Then P(�̂j2 < �̂j1) → 1
2

uniformly in 1 ≤ j1, j2 ≤ p, in particular uniformly in pairs j1, j2 such that μj1 > 0 and μj2 = 0.
Moreover, νmisrank = 1

2p1(p − p1) + o{p1(p − p1)} as n → ∞.

Likewise, if the positive μj ’s are of size n−1/2 then the probability of incorrectly ranking the
j1th component lower than the j2th component, even though μj1 > 0 and μj2 = 0, does not
converge to zero. The next theorem quantifies this property. There we define 
 to be the standard
normal distribution function.

Theorem 3. Assume the conditions of Theorem 1, and that each nonzero μj equals cn−1/2 where
c > 0. Then

P(�̂j2 < �̂j1) = 
(−c/σj1j2,+)
(c/σj1j2,−) + 
(c/σj1j2,+)
(−c/σj1j2,−) + o(1),

uniformly in j1, j2 such that μj1 > 0 and μj2 = 0. Furthermore,

νmisrank =
∑

j1: μj1>0

∑
j2: μj2=0

{

(−c/σj1j2,+)
(c/σj1j2,−) + 
(c/σj1j2,+)
(−c/σj1j2,−)

}

+ o
{
p1(p − p1)

}
as n → ∞.

Here, by default, 
(−∞) = 0 and 
(∞) = 1. This is relevant when σj1j2,± = 0.
If the number of components where the mean is positive is large, for example if it equals a non-

negligible proportion of the total number, p, of components, then the number of misrankings can
generally not be reduced to low levels unless we take the nonzero means to be a little larger than
n−1/2 in order of magnitude terms. It is enough to take the positive mean to be a logarithmic fac-
tor larger; specifically, the mean should equal cλ where, as before, c > 0 and λ = (n−1 logn)1/2.
Theorem 4, below, shows that in this case the expected number of misrankings can be reduced to
a quantity of smaller order than p, or even to a number that converges to zero polynomially fast,
depending on how large we choose c.
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As a prelude to stating Theorem 4, we introduce an assumption which asks that the random
variables Zj satisfy a pairwise Cramér continuity condition. Here it is convenient to assume that
there exists an infinite stochastic process Z1,Z2, . . . such that:

(a) Each Zj has the distribution of Z (in this sense the pro-
cess Z1,Z2, . . . is weakly stationary), (b) if Xi = (Xi1, . . . ,Xip) is
drawn from �0 then Xi1, . . . ,Xip has the same joint distribution as
Z1, . . . ,Zp, and (c) if Xi is drawn from �1 then Xi1, . . . ,Xip has the
same joint distribution as Z1 + μ1, . . . ,Zp + μp, where the μj ’s are
the nonnegative constants introduced prior to Theorem 1.

(3.7)

The Cramér continuity condition we impose is the following:

lim sup
t→∞

sup
|t1|+|t2|>t

sup
1≤j1<j2<∞

∣∣E{
exp(it1Zj1 + it2Zj2)

}∣∣ < 1, (3.8)

where on this occasion i = √−1. For example, (3.8) would hold if the process Zj were strictly
stationary and each pair (Zj1 ,Zj2) had a joint density fj1j2 that satisfied supj1,j2

∫ ∫ |f̈j1j2 | <

∞, where f̈j1j2(x1, x2) = (∂2/∂x1∂x2)fj1j2(x1, x2). It would also hold if the variables Zj were
independent with a common nonsingular distribution.

Recall that p1 equals the number of indices j such that μj > 0, and that B4 = B4(ε) = 1
4 {B2 −

2 max(B1 + 3,2B1)} − ε where ε > 0. Define σj1j2,± by (3.6) and put κn = (logn)1/2.

Theorem 4. Assume the conditions of Theorem 1, that (3.7) and (3.8) hold, and that B2, in the
moment condition E|Z|B2 < ∞, is so large that for some ε > 0, p1(p −p1) = o(nB4). Take each
nonzero μj to equal c(n−1 logn)1/2, where c > 0. Then

νmisrank = {
1 + o(1)

} ∑
j1: μj1>0

∑
j2: μj2=0

{

(−cκn/σj1j2,+) + 
(−cκn/σj1j2,−)

}
(3.9)

+ o(1)

as n → ∞.

Elucidation of (3.9) requires information about the covariance of the process Zj , in (3.7).
For simplicity let us assume that the variables Zj are uncorrelated. Then by (3.6), σ 2

j1j2,± =
2π(1 − π)E(Z2) ≡ (2c0)

−1, say, for either choice of the ± signs. Hence, (3.9) implies that

νmisrank = {
1 + o(1)

}
p1(p − p1)

{
2πc(2c0 logn)1/2}−1

n−c0c
2 + o(1).

Therefore, if c is chosen so large that p1(p − p1)(logn)−1/2n−c0c
2 → 0 then the expected num-

ber of misranks will converge to zero. For smaller positive values of c the expected number will
be of smaller order than the potential number of misranks, p1(p −p1), but it will not necessarily
be negligible itself.
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The results in Theorems 2–4 have benefited from a simplification afforded by the assumption
that the variables Zij all have the same distribution, and in particular have the same variance. As
noted below Theorem 1, that condition can be relaxed and the assumption (3.5) imposed instead.
In practice, however, one could standardise, in a componentwise fashion, the values of Xij for
scale, and in that case it is possible to state versions of Theorems 2–4 in settings where E(Z2

ij )

varies with j . The model that we have been using, that is, Xij = Zij + c(n−1 logn)1/2Ii where
the Zij ’s are independent, is (for moderate n) a good approximation to the standardised form
X′

ij = Z′
ij + c(n−1 logn)1/2Ii , where the Z′

ij s satisfy (3.5). Detailed arguments here are similar
to those given by Hall and Wang [32].

3.3. Effects of dependence of the process Zj on interpretations of (3.3)

The expected value of the number of misrankings, which we treated in Section 3.3, is not as
much affected by dependence among components of the Zj process as are other aspects of the
distribution of the number of misrankings. For example, if the Zj ’s (in the stochastic process
Z1,Z2, . . . introduced in (3.7)) are all independent then the quantities Sj , defined at (3.2) and on
which the values of �̂j predominantly depend (see (3.3)), are also independent, and so decisions
based on the respective values of �̂j are made virtually independently of one another. In this case
the variance of the total number of misrankings is relatively low. However, if the Zj ’s are highly
dependent then the variance can be higher, although it depends on how the positive means are
distributed among the components of Xi . In the present section we briefly discuss these issues.

Let the process Z1,Z2, . . . in (3.7) be ζ -dependent, meaning that any subsequence Zj1, . . . ,Zjk

such that j�+1 − j� > ζ , for each �, is comprised entirely of independent random variables. We
permit ζ to diverge with n, and we suppose that p1, the number of nonzero values of μj , can also
increase with n and that lim supn→∞ p1/p < 1. One approach to arranging the nonzero means is
to distribute them randomly, for example, taking μj = Jjμ for 1 ≤ j ≤ p, where J1, . . . , Jp is a
random permutation of p1 ones and p − p1 zeros and is independent of the Zj ’s in (3.7). In this
setting, the clustering that arises through dependence is often negligible, even if the dependence
in the process Z1, . . . ,Zp is quite strong.

To appreciate why, note that the expected number of nonzero means in each string of ζ consec-
utive components of Xi , when Xi is drawn from �1, equals ζ ×p−1p1; and that if (ζp1)

2 = o(p)

then the probability that none of the approximately p/ζ strings (placed end to end) of ζ consec-
utive components that contain one or more nonzero means are adjacent, and the probability that
none of the strings contains more than one component, both converge to zero. Therefore, in view
of the assumption of ζ -dependence, if we treat the Zj ’s as independent and identically distributed
when making a statement about properties of rankings deduced from (3.3), the probability that
we commit an error in the statement converges to zero as n → ∞. It can then be deduced that, in
cases where the positive means are randomly distributed and (ζp1)

2 = o(p), the variance of the
number of misrankings is relatively low.

Alternatively, rather than scatter the nonzero means μj randomly throughout the vector
(Z1, . . . ,Zp), we could place them all down one end. This makes the distribution of those quan-
tities just about as “clumpy” as possible, by exploiting the ζ -dependence property. For example,
if p1 ≤ ζ then all of the nonzero means are attributed to the first p1 variables in the sequence
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Xi1, . . . ,Xip , when Xi is drawn from population �1. The assumption of ζ -dependence permits
Xi1 = · · · = Xip1 with probability 1, whenever Xi comes from either �0 or �1. This reduces the
amount of available information, since all the components that contain information for discrim-
inating between �0 and �1 are simply copies of one another; there are no independent sources
of corroborating information. Moreover, the values of Sj in (3.3) are identical for 1 ≤ j ≤ p1,
and so the values of �̂j are the same too, up to remainders of order λ3, which implies that the
total number of misranks is approximately equal to p1 times the number of times that a specific
component with a positive mean is misranked.

Of course, this increases the variance of the number of misranks. The setting p1 ≤ ζ can
encompass instances where (ζp1)

2 = o(p), which was shown two paragraphs above to result
in a relatively high amount of information about the differences between �0 and �1 when the
nonzero means are scattered randomly in the data vector. These examples illustrate the more
general rule that, in cases where the positive means are distributed consecutively in relatively
long-range dependent vectors Xi , the variance of the number of misranks tends to be higher than
in cases where those means are distributed at random.

We conclude this section by comparing the notion of misranking with that of (feature)
False Discovery Rate (FDR); for the latter, see for example Benjamini and Hochberg [4] and
Abramovich et al. [1]. For any set of selected features, FDR equals the fraction of falsely se-
lected features. This concept and that of misranking both provide informative measures of how
well important features are ranked, but they are nevertheless different in important respects. To
appreciate why, let us focus on a specific feature. If we adhere to the notion of FDR then all that
matters is whether the feature is selected or not. If we instead we use the concept of misranking
then the order or rank of the feature being selected also matters. Technically there are also impor-
tant differences. For instance, misrankings are defined quite simply in terms of pairwise compar-
isons of individual features, while FDR can involve higher-order relationships among different
features. If we consider the influence, on these measures, of dependence among features, then
misranking depends only on pairwise dependence, but FDR may depend on high-order relation-
ships. As a result, FDR can be significantly more difficult to characterise than misranking, and
requires much more heavily constrained assumptions about dependence than are necessary using
the misranking measure. Therefore, since the central problem is how well important features are
ranked, it is more appropriate to assess performance here using misranking, rather than FDR.

The number of misrankings bears a close relationship to both the Wilcoxon rank-sum test and
the area under curve (AUC) of the ROC plot (see Hanley and McNeil [33]). In this case, the ROC
is constructed with respect to whether each feature is correctly classified as having nonzero mean
on not. In fact, it is possible to show that

AUC = 1 − {
p1(p − p1)

}−1
(#misrankings). (3.10)

Thus, we may interpret properties of νmisrank in Theorems 2–4 in the context of AUC. For in-
stance, under the assumptions of Theorem 2 the AUC score decays to 0.5, this being the score
for the random guessing model.
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4. Thresholding for adaptive dimension reduction

Recall that in Theorem 1 we showed that �̂j equals −Uj1, where

Uj1 = 1
2π(3 − 2π)

(
EZ2)−1

(Sj + μj )
2, (4.1)

plus a quantity that does not depend on j , plus a remainder term that is uniformly smaller in
size. The feature-ranking step (stage (1) in the algorithm in Section 2.1) aspires to re-order the
indices j such that the indices for which μj 
= 0 are ranked first, and those for which μj = 0 are
listed together at the end of the sequence. If this objective is largely achieved, then the main task
that remains is to choose the point in the ranking where the change occurs; this is stage (3) of the
algorithm in Section 2.1. In the present section we explore method (3a), based on thresholding;
see Section 2.3.

Observe that if Uj1 is as at (4.1) then Uj1 = Uj2 + Uj3, where

Uj2 = 1
2π(3 − 2π)

(
EZ2)−1

S2
j , Uj3 = 1

2π(3 − 2π)
(
EZ2)−1(

μ2
j + 2μjSj

)
. (4.2)

If we can construct a good approximation, Ûj2 say, to Uj2 then we can subtract it from �̂j ,
leaving only Uj3 plus a small remainder. The value of Uj3 is exactly zero if μj = 0, and is
strictly positive with high probability if μj > 0. The quantity �̃j = −Ûj2 is referred to in that
notation in method (3a) in Section 2.3. If we choose an appropriate threshold, t say, then we can
implement (3a) as follows:

define r ∈ [k0 + 1, q], a random variable, to be the least integer in that
range such that �̂ĵr+k

− �̃ĵr+k
> t for 1 ≤ k ≤ k0,

(4.3)

where k0 ≥ 0 is a fixed integer. Then, subject to the jiggling step in stage (4) of the algorithm,
we determine that the features with indices ĵ1, . . . , ĵr are the ones that have greatest influence on
whether a data value Xi came from �0 or �1.

To define Ûj2, put π̂ = n−1 ∑
i Ii and X̄j = n−1 ∑

i Xij , define our estimator of τ 2 = E(Z2)

by τ̂ 2 = (np)−1 ∑
i

∑
j (Xij − X̄j )

2, and let Ŝj = {nπ̂(1 − π̂ )}−1 ∑
i (Ii − π̂ )(Xij − X̄j ); com-

pare the definition of Sj at (3.2). Then, motivated by the definition of Uj2 at (4.2), put

−�̃j = Ûj2 ≡ 1
2 π̂(3 − 2π̂)τ̂−1/2Ŝ2

j .

Theorem 5, below, shows in effect that this is a good approximation to Uj2. Let B4 be as in
Theorem 1.

Theorem 5. Under the conditions of Theorem 1, we can write

�̂j − �̃j = R − Uj3 + �jλ
3, (4.4)

where R is as in (3.3) and, for a constant B > 0, the random variables �j satisfy

p∑
j=1

P
(|�j | > B

) = O
(
n−B4

)
. (4.5)
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Finally, we describe implementation of method (3a) in stage (3) in Section 2.3. We shall as-
sume we are in the context of Theorem 4, where the nonzero μj ’s equal c(n−1 logn)1/2. Here it
is appropriate to take the threshold t = t (n) to be a sequence of negative numbers such that |t | is
of strictly larger order than λ3 and of strictly smaller order than λ2; that is, such that

|t | = o
(
λ2) and λ3 = o

(|t |). (4.6)

Let k1 denote the number of nonzero means added to the components of Xi when Xi is drawn
from �1. To simplify discussion, we assume that k1 is nonrandom, although of course it may
depend on n. Below Theorem 4 we discussed a case where the expected number of misrankings
converged to zero, and hence the probability of a misranking occurring also tended to zero. In
this setting,

with probability converging to 1, μĵk
> 0 for k ≤ k1 and μĵk

= 0 for
k > k1,

(4.7)

and it can be shown that if t < 0 satisfies (4.6) then the definition of r at (4.3) produces a random
variable which, with probability converging to 1 as n → ∞, equals k0 + k1. Therefore, taking
k0 = 0 in the rule at (4.3) ensures that, with probability converging to 1, r is exactly equal to k1.
Cases where the nonzero means are of size c(n−1 logn)1/2, but c is not sufficiently large to ensure
that (4.7) holds, can be treated satisfactorily by choosing t < 0 to satisfy (4.6) but taking k0 ≥ 1.
Depending on the strength of dependence between components of the vector X it is possible
to choose a fixed k0 such that, with probability converging to 1, r is within Cρk1 of k1, where
C > 0 and ρ equals the expected proportion of feature indices that have positive means when Xi

is drawn from �1, but are incorrectly ranked at a low level.

5. Numerical properties

Our numerical studies involve three parts. First, in Sections 5.1–5.2, we use simulated data to in-
vestigate several aspects of misranking, including misranking stability, influence of dependence
on misranking, and prediction with large simulated examples. Second, in Section 5.4, we com-
pare our methods with several popular classifiers (including SVM and Random Forest) with the
three aforementioned gene microarray data sets. Last, in Section 5.5, we further compare our
method with SVM and Random Forest with a multiple sclerosis SNP data set.

5.1. Stability of misranking totals

Here we simulate under the model at (3.1), where the signals are represented by μj and the noise
by Zij . If we measure performance in terms of the total number of misrankings, or equivalently
in terms of AUC (see (3.10)), and if the μj ’s decrease at rate n−1/2, then Theorem 3 implies that
performance should be stable as a function of sample size, n. That is, it should depend very little
on n. To explore this property numerically we consider the cases n = 20, 50, 100 and 200, with
p = 0.4 × n2. We take 90% of the μj ’s to equal zero and the others to equal c0(20/n)1/2, where
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Figure 2. AUC scores in simulation study with μj = c0(20/n)1/2, in the example of Section 5.1.

c0 = 0.4,0.8, . . . ,0.16. The noise variables Zij are independent and identically distributed as
N(0,1).

Figure 2 shows how the expected value of AUC varies with n. The dashed lines on either
side of each curve are 95% pointwise confidence bands for the AUC estimate, and quantify the
uncertainty of the simulation study. The key feature is that, as predicted by Theorem 3, AUC
changes very little with n, even when n is small. As expected, and as predicted by Theorems 2–
4, AUC increases with increasing c0.

We also explored cases where the nonzero μj ’s took random values, in particular where they
were drawn randomly and uniformly from the interval [0, c0(20/n)1/2]. This case is more chal-
lenging, since the genuine signals are now strictly smaller than in the previous situation. There-
fore, it comes as no surprise to learn that the AUC levels for each c0 are reduced. However, the
overall pattern of stability with respect to n is still evident, with very slightly more variation than
in the case of fixed μj ’s.

5.2. Influence of dependence on misranking performance

Next, we discuss the effects of dependent noise Zij in the model at (3.1). We take the noise to
be a moving average of order 1, that is, Zij = ρZi,j−1 + (1 − ρ2)1/2εi,j , where the εi,j ’s are
independent and normal N(0,1). Thus, Zij and Zik are correlated for all pairs (j, k), with the
coefficient of correlation decaying exponentially fast in |j − k|. The value of c0 is fixed at 1.2,
and nonzero μj ’s are chosen uniformly in [0, c0(20/n)1/2]. The values of n, p and the number
of true signals are as in Section 5.1.

Table 1 gives values of Monte Carlo approximations to the means and standard deviations of
AUC scores when the features for which μj is nonzero are grouped together among the lowest
values of j , as in the discussion following Theorem 4. The main observation is that while mean
AUC remains stable across the table, the variability of AUC is much greater when strong depen-
dence exists. For instance, if n = 200 then when ρ = 0.99 the standard deviation of AUC scores
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Table 1. Mean and standard deviation of AUC scores for simulation with correlated noise and grouped
effects

AUC means AUC std dev.

ρ n = 20 n = 50 n = 100 n = 200 n = 20 n = 50 n = 100 n = 200

−0.99 0.725 0.698 0.706 0.709 0.136 0.078 0.039 0.018
−0.75 0.704 0.717 0.715 0.712 0.064 0.022 0.012 0.006
−0.50 0.650 0.705 0.718 0.711 0.070 0.024 0.011 0.006
−0.25 0.702 0.725 0.706 0.716 0.062 0.025 0.012 0.007

0.00 0.699 0.707 0.711 0.714 0.070 0.027 0.012 0.006
0.25 0.687 0.714 0.707 0.712 0.080 0.032 0.015 0.007
0.50 0.666 0.682 0.713 0.713 0.094 0.037 0.017 0.009
0.75 0.715 0.710 0.718 0.719 0.101 0.047 0.025 0.013
0.99 0.662 0.725 0.708 0.704 0.259 0.157 0.107 0.065

is ten times larger than when ρ = 0. The presence of dependence makes the problem signifi-
cantly more difficult; it effectively inserts an element of randomness into the process of correctly
ranking important features.

Table 2 shows results in the same setting, except that the indices of features where μj is
nonzero are distributed randomly between 1 and p. There is again a high degree of stability, but
variability is comparatively less than that in Table 1, consistent with the discussion in Section 3.3.
In particular, by randomly distributing the indices of the nonzero μj ’s we effectively reduce
dependence among the features that are important, and so, reflecting the results in Table 1, the
problem becomes less statistically challenging.

Table 2. Mean and standard deviation of AUC scores for simulation with correlated noise and randomised
effects

AUC means AUC std dev.

ρ n = 20 n = 50 n = 100 n = 200 n = 20 n = 50 n = 100 n = 200

−0.99 0.712 0.712 0.713 0.715 0.139 0.058 0.032 0.016
−0.75 0.702 0.710 0.713 0.714 0.078 0.030 0.014 0.008
−0.50 0.705 0.710 0.711 0.714 0.076 0.032 0.015 0.008
−0.25 0.706 0.705 0.713 0.714 0.078 0.032 0.015 0.007

0.00 0.696 0.709 0.714 0.712 0.077 0.030 0.015 0.007
0.25 0.698 0.712 0.710 0.714 0.078 0.034 0.016 0.008
0.50 0.703 0.713 0.714 0.714 0.081 0.030 0.016 0.007
0.75 0.698 0.712 0.711 0.714 0.088 0.034 0.016 0.008
0.99 0.741 0.721 0.712 0.710 0.195 0.091 0.053 0.024
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Figure 3. Ideal prediction success for the example of Section 5.3.

5.3. Prediction in a large simulated problem

Here we present the analysis of a single simulated dataset, demonstrating how our approach per-
forms when the centroid classifier is used. We take p = 10, 000 and n = 100 (50 for each class).
Ten percent of the variables Xij (in the model at (3.1)) include a nonzero signal. These μj ’s are
drawn from the uniform distribution on [0,0.35], and the noise variables Zij are independent
N(0,1). This is a particularly difficult problem, since the signals are very weak compared to the
noise, and sample size is quite small.

Figure 3 shows the prediction performance of the centroid classifier on a test set of 1000
replicates in the case of “ideal feature selection,” where the 1000 features with nonzero signals
are selected first, in decreasing order of signal strength, followed by the 9000 features where the
signal is not present. In particular, the order is not chosen empirically. The minimum of the graph
occurs at 449 features (out of a maximum of 1000), and corresponds to a misclassification rate of
only 0.5%. The decrease in predictive performance caused by less useful, or redundant, features
is apparent from the figure; the weaker genuine features actually hurt prediction performance
because they contain more noise than signal. Also of note is the fact that a large number of
features is needed to obtain good prediction. For example, if attention is confined only to the
strongest 50 features then the misclassification rate increases to 16%.

For the same dataset, we undertook feature ranking based on the values of �̂j , defined
at (2.3). The result was the ROC chart in Figure 4. There the value of k in the ranking
ĵ1, . . . , ĵk, ĵk+1, . . . , ĵp , defined in the sentence below (2.3), is represented as k/p on the hor-
izontal axis, and the vertical axis depicts the value of �̂ĵk

/�̂ĵ1 , a ratio of two negative num-
bers. The area under the empirical curve, that is, AUC, equals 0.626, meaning that a fraction
1 − 0.626 ≈ 37% of the paired scores correspond to a misranking. The ROC curve is indexed
by model size, with bottom left denoting an empty model and the top right a full model. For a
given model size, we can read off the chart the corresponding sensitivity, or proportion of true
important features included, and the false positive rate, or proportion of redundant features in
the model. Ideally a model should have high sensitivity and low false positive rate, and the chart
indicates the tradeoff between the two for various model sizes.
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Figure 4. ROC plot for feature ranking in the example of Section 5.3.

Figure 5 shows how prediction accuracy varies with model size. Performance is now clearly a
long way from that represented in Figure 3, where the 1000 features with nonzero signals were
listed first in decreasing order of strength. The minimum misclassified rate is now 13.7%, and
requires the use of 3258 of the 10,000 features. As discussed in the previous paragraph, every
model size corresponds to a position on the ROC plot in Figure 4, in this case (0.31,0.51). Hence
the optimal model found here contains 51% of the genuine features, and 31% of the redundant
ones.

We next explore stage (3) of the four-stage algorithm suggested in Section 2.1, addressing
in turn each of the approaches (3a)–(3c) discussed in Section 2.3. We implement the threshold
method, (3a), by comparison with a randomised model where the observed classes Ii are scram-
bled and likelihoods recalculated, and employ the approach suggested in the second paragraph of
Section 4; see (4.3). In particular, the threshold is chosen by computing the 100αth percentile of
scores for the scrambled data. Doing this for α = 0.2 corresponds to seeking a false positive rate
of 0.2. In the numerical example that we are considering here, this recovers a model with 2159

Figure 5. Performance using feature ranking and centroid classifier for the example of Section 5.3.
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Figure 6. Comparison of actual and randomised log-likelihoods in the example of Section 5.3.

predictors and produces a test set misclassification rate of 16.8%. A model this size corresponds
to the point (0.196, 0.40) on the ROC chart. Notice that we have effectively targeted the false
positive rate of α = 0.2 via this approach.

To provide an example of the change-point method, (3b), suggested in Section 2.3 for choos-
ing model size, we consider the ratio of the sorted likelihoods from the original and scrambled
rankings. These are plotted in Figure 6, along with a 45◦ line. Starting with the weakest features,
we expect the ratio to remain near 1 until a sizeable number of features that genuinely contain
a positive signal cause the ratio to shrink. For this purpose we can use the simple change-point
statistic for detecting a change in the mean (see Chapter 2 of Csörgő and Horváth [12]),

T (t) = n−1/2{S(nt) − tS(n)
}
,

where S(k) equals the cumulative sum of the first k ratios, and t ∈ (0,1) denotes the examined
proportion of the dataset. This leads to a model with 1760 features and a misclassification rate
of 16.2%, comparable to that when using method (3a). This model size corresponds to the point
(0.16, 0.36) on the ROC plot.

Finally, in reference to the classifier-based approach (3c) suggested in Section 2.3, we note that
the apparent error rate can be driven quickly to zero without the actual error rate being reduced
as much as it is if we employ methods (3a) or (3b). For example, when using (3c) in conjunction
with the centroid classifier the “best” model, with apparent error rate equal to zero, occurs when
just 39 features are selected; but the misclassification rate on the test set is 32.5%, almost twice
that obtained for either of methods (3a) and (3b).

5.4. Results for microarray data examples

A challenge when using our methodology to analyse previously considered real datasets is that
the latter were possibly considered because they illustrate cases where only a very small number
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Table 3. Percentage misclassification rate of different methods on mi-
croarray datasets

Method Leukemia Colon Prostate

Bagboo 4.08 16.10 7.53
Boost 5.67 19.14 8.71
RanFor 1.92 14.86 9.00
SVM 1.83 15.05 7.88
DLDA 2.92 12.86 14.18
KNN 3.83 16.38 10.59
PAM 3.55 13.53 8.87
HCT 2.86 13.77 9.47

of features determine the class label. In particular, contrary to the concerns raised by Gold-
stein [29], the number of influential components is quite small. To simplify matters, we demon-
strate here that likelihood based ranking is a powerful tool for improving a wide variety of clas-
sifiers. We make use of three well-known sets of microarray data. These relate, respectively, to
leukemia (Golub et al. [30]), colon cancer (Alon et al. [2]) and prostate cancer (Singh et al. [39])
and have 7129, 2000 and 6033 components, respectively. Dettling [13] and Donoho and Jin [18]
discuss the performance of a variety of classifiers on these datasets, using a two-thirds/one-third
split of the data into training and test samples. Their results are reported in Table 3. Readers may
refer to the above papers for details on specific methods.

To test the effectiveness of likelihood-based ranking, we chose the best classification method
and the random forest classifier (a consistent performer) for each of the datasets. An extra step
was added to each cross-validation fold; the two-thirds training data was used to rank features
based on the likelihood score, and then only a proportion of the top-ranked features were used
to estimate the final model. The results are presented in Table 4. The last row of the table shows
results for the full dataset; they should in theory match those in Table 3, with differences at-
tributable to tuning approaches. We could not reproduce the accuracy reported for DLDA on the
colon dataset, and so used the next best method (PAM).

In each case, accuracy can be improved by reducing the model size. For the best classifiers on
each dataset, this effect was small but noticeable; for the leukemia data, dimension was reduced
by 25% and error by 5%; for the colon dataset, dimension was reduced by 62.5% and error by
1%; and for the prostate dataset, dimension was reduced by 62.5% and error by 3%. For the
random forest models, the results were even more pronounced, with marked improvement in
prediction and significant dimension reduction. For the prostate dataset, the error was reduced
by 25%, using just 0.005 of the available features in each fold. This suggests that the likelihood
based ranking method can effectively control the sparsity of a model and potentially improve
model performance.

While firm conclusions are difficult here, we argue that this analysis presents evidence for a
large number of relatively weak effects contributing to a model. Indeed, in all but one case we
would prefer a model size larger than the dozens, or fewer, used in many conventional approaches
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Table 4. Performance of best methods on reduced datasets, using likelihood based ranking

Leukemia Colon Prostate

Prop. SVM RanFor RDA RanFor PAM RanFor

0.0025 34.72 4.58 14.29 16.58 8.82 8.00
0.005 34.61 3.78 13.00 15.71 8.37 7.67
0.01 6.86 3.36 13.13 15.77 7.84 7.73
0.025 1.89 2.97 13.10 15.74 7.16 8.20
0.05 1.67 2.58 13.26 15.16 7.29 8.55
0.10 1.58 2.50 13.19 14.94 7.02 8.90
0.15 1.67 2.22 13.16 14.94 7.10 9.14
0.25 1.64 2.36 12.90 15.03 7.06 9.49
0.375 1.61 2.11 12.87 15.52 6.82 9.67
0.50 1.58 2.22 13.00 15.58 6.82 9.90
0.75 1.53 2.36 12.97 16.13 7.02 9.80
1.00 1.61 2.31 13.00 16.32 7.04 10.24

to feature selection. Furthermore, our feature ranking appears to be a useful means of determining
the effective model size.

5.5. Results for analysis of SNP data

We applied our methodology to SNP data collected to study multiple sclerosis (ANZgene [3];
Wade [43]). The original dataset consisted of 5031 subjects, which were collected by two or-
ganisations: the Australian and New Zealand multiple sclerosis genetic consortium (ANZgene)
and the Wellcome Trust Multiple Sclerosis Genetic Consortium 2. For data permission reasons,
we restrict our analysis to 3606 collected by ANZgene. This part consists of 1618 case subjects
(positive response) and 1988 control subjects (zero response).

For each of the subjects, we have 300,900 corresponding SNP measurements, collected from
different locations on the genome of each patient. Each of these variables takes the values 0,
1 or 2, which we treat as numeric. There were a small number of missing values, which we
addressed by setting them equal to the median value for that SNP.

The dataset was randomly divided into two-thirds training data and one-third test data. Likeli-
hood scores were calculated, and SNPs ranked, based on their improvement over AIC. We then
built three sets of models:

• The centroid classifier using the top ranked 1,2, . . . ,30,099 variables. Note that this means
that the final model was fitted using 10% of the total variables;

• A tuned SVM classifier using the top ranked 20,40,60, . . . ,4000 variables; and
• A random forest classifier using the top ranked 20,40,60, . . . ,4000 variables.

The SVM and random forest models were not fitted beyond 4000 variables because these were
infeasible on desktop computers. For each model, the classification error rate was measured on
the test dataset. These results are presented in Figure 7.
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Figure 7. Comparison of error rates on the multiple sclerosis SNP data.

We make two comments regarding these results. First, the trend in the centroid classifier gives
strong evidence of a large number of weak effects; the performance continues to improve as more
variables are added, suggesting that there is useful information in the full top 10% of the ranked
variables. Second, the SVM and random forest approaches performed better using a smaller
number of SNPs, but worse when compared to the large centroid models, again supporting the
idea of many weak effects. We would expect that adaptations of approaches like SVM to large
numbers of variables could also offer good performance.
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