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This paper gives a new representation of Pickands’ constants, which arise in the study of extremes for a
variety of Gaussian processes. Using this representation, we resolve the long-standing problem of devising
a reliable algorithm for estimating these constants. A detailed error analysis illustrates the strength of our
approach.
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1. Introduction

Gaussian processes and fields have emerged as a versatile yet relatively tractable class of models
for random phenomena. Gaussian processes have been applied fruitfully to risk theory, statis-
tics, machine learning, and biology, while Gaussian fields have been applied to neuroimaging,
astrophysics, oceanography, as well as to other fields. Extremes and level sets are particularly
important in these applications (Azaïs and Wschebor [7]). New applications and theoretical de-
velopments continually revive the interest in Gaussian processes, see, for instance, Meka [27].

Although the understanding of Gaussian processes and fields has advanced steadily over the
past decades, a variety of results related to extremes (tail asymptotics, extreme value theorems,
laws of iterated logarithm) are only “explicit” up to certain constants. These constants are re-
ferred to as Pickands’ constants after their discoverer (Pickands, III [29]). It is believed that these
constants may never be calculated (Adler [1]).

These constants have remained so elusive that devising an estimation algorithm with certain
performance guarantees has remained outside the scope of current methodology (Dȩbicki and
Mandjes [18]). The current paper resolves this open problem for the classical Pickands’ con-
stants. Our main tool is a new representation for Pickands’ constant, which expresses the constant
as the expected value of a random variable with low variance and therefore it is suitable for sim-
ulation. Our approach also gives rise to a number of new questions, which could lead to further
improvement of our simulation algorithm or its underlying theoretical foundation. We expect that
our methodology carries through for all of Pickands’ constants, not only for the classical ones
discussed here.

Several different representations of Pickands’ constants are known, typically arising from var-
ious methodologies for studying extremes of Gaussian processes. Hüsler [23] uses triangular
arrays to interpret Pickands’ constant as a clustering index. Albin and Choi [3] have recently
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rediscovered Hüsler’s representation. For sufficiently smooth Gaussian processes, various level-
crossing tools can be exploited (Azaïs and Wschebor [6], Kobelkov [25]). Yet another repre-
sentation is found when a sojourn approach is taken (Berman [9]). Aldous [4] explains various
connections heuristically and also gives intuition behind other fundamental results in extreme-
value theory. We also mention Chapter 12 in Leadbetter et al. [26], who use methods different
from those of Pickands but arrive at the same representation.

The approach advocated in the current paper is inspired by a method which has been applied
successfully in various statistical settings, see Siegmund et al. [33] and references therein. This
method relies on a certain change-of-measure argument, which results in asymptotic expressions
with a term of the form E(M/S), where M and S are supremum-type and sum-type (or integral-
type) functionals, respectively. This methodology can also be applied directly to study extremes
of Gaussian processes, in which case it yields a new method for establishing tail asymptotics.
This will be pursued elsewhere.

Throughout this paper, we let B = {Bt : t ∈R} be a standard fractional Brownian motion with
Hurst index α/2 ∈ (0,1], that is, a centered Gaussian process for which

Cov(Bs,Bt ) = 1
2

[|s|α + |t |α − |t − s|α]
.

Note that has stationary increments and variance function Var(Bt ) = |t |α . The process {Zt } de-
fined through Zt = √

2Bt − |t |α plays a key role in this paper. This stochastic process plays
a fundamental role in the stochastic calculus for fractional Brownian motion (Bender and Par-
czewski [8]). The “classical” definition of Pickands’ constant Hα is

Hα = lim
T →∞

1

T
E

[
sup

t∈[0,T ]
eZt

]
. (1)

Current understanding of Hα and related constants is quite limited. It is known that H1 = 1
and that H2 = 1/

√
π (Bickel and Rosenblatt [10], Piterbarg [30]), and that Hα is continuous as

a function of α (Dȩbicki [16]). Most existing work focuses on obtaining sharp bounds for these
constants (Aldous [4], Dȩbicki [15], Dȩbicki and Kisowski [17], Dȩbicki et al. [21], Shao [32],
Harper [22]). Previous work on estimating Pickands’ constant through simulation has yielded
contradictory results (Burnecki and Michna [13], Michna [28]).

The next theorem forms the basis for our approach to estimate Hα . Note that the theorem
expresses Hα in the form E(M/S). A different but related representation is given in Proposition 2
below, and we give yet another representation in Proposition 4.

Theorem 1. We have

Hα = E

[
supt∈R eZt∫ ∞
−∞ eZt dt

]
.

The representation E(M/S) is well-suited for estimating Pickands’ constant by simulation.
Although both M and S are finite random variables with infinite mean, we provide theoretical
evidence that their ratio has low variance and our empirical results show that this representation
is suitable for simulation.



1602 A.B. Dieker and B. Yakir

This paper is organized as follows. Section 2 establishes two results which together yield
Theorem 1. In Section 3, we state an auxiliary result that plays a key role in several of the
proofs in this paper. Section 4 gives an error analysis when E(M/S) is approximated by a related
quantity that can be simulated on a computer. In Section 5, we carry out simulation experiments
to estimate Pickands’ constant. Some proofs are deferred to Appendix A, and a table with our
simulation results is included as Appendix B.

2. Representations

This section is devoted to connections between Pickands’ classical representation and our new
representation, thus establishing Theorem 1. We also informally argue why our new representa-
tion is superior from the point of view of estimation. This is explored further in the next section.

The following well-known change-of-measure lemma forms the basis for our results.

Lemma 1. Fix t ∈ R, and set Z(t) = {√2Bs − |s − t |2H : s ∈ R}. For an arbitrary measurable
functional F on RR, we have

EeZt F (Z) = EF
(|t |2H + Z(t)

)
.

When the functional F is moreover translation-invariant (invariant under addition of a constant
function), we have

EeZt F (Z) = EF(θtZ),

where the shift θt is defined through (θtZ)s = Zs−t .

Proof. Set Q(A) = E[eZt 1A], and write EQ for the expectation operator with respect to Q. Se-
lect an integer k and s1 < s2 < · · · < sk . We show that (Zs1 , . . . ,Zsk ) under Q has the same

distribution as (|t |2H + Z
(t)
s1 , . . . , |t |2H + Z

(t)
sk ) under P, by comparing generating functions: for

any β1, . . . , βk ∈R,

logEQ exp

(∑
i

βiZsi

)
= −|t |2H −

∑
i

βi |si |2H +Var

[
Bt +

∑
i

βiBsi

]

=
∑

i

2βi Cov(Bt ,Bsi ) −
∑

i

βi |si |2H +Var

[∑
i

βiBsi

]

=
∑

i

βi

[|t |2H − |si − t |2H
] +Var

[∑
i

βiBsi

]

=
∑

i

βi |t |2H +E

[∑
i

βiZ
(t)
si

]
+ 1

2
Var

[∑
i

βiZ
(t)
si

]

= E

[∑
i

βi

(|t |2H + Z(t)
si

)] + 1

2
Var

[∑
i

βi

(|t |2H + Z(t)
si

)]
.
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The first claim of the lemma then immediately follows from the Cramér–Wold device.
Alternatively, one could carefully define a space on which the distribution of Z becomes a

Gaussian measure and then note that the claim follows from the Cameron–Martin formula; see
Bogachev [12], Proposition 2.4.2 and Dieker [19] for key ingredients for this approach.

When the functional F is translation-invariant, we conclude that

EQF(Z) = EF
(|t |2H + Z(t)

) = EF
(
Z(t) − √

2Bt

) = EF(θtZ),

and this proves the second claim in the lemma. �

The next corollary readily implies subadditivity of E[sup0≤t≤T eZt ] as a function of T , a well-
known fact that immediately yields the existence of the limit in (1). Evidently, we must work
under the usual separability conditions, which ensure that the supremum functional is measur-
able.

Corollary 1. For any a < b, we have

E

[
sup

a≤t≤b

eZt

]
= E

[
sup

0≤t≤b−a

eZt

]
, E

[∫ b

a

eZt dt

]
= E

[∫ b−a

0
eZt dt

]
.

Proof. Applying Lemma 1 for t = a to the translation-invariant functionals F given by F(z) =
supa≤s≤b ezs−za and F(z) = ∫ b

a
ezt−za dt yields the claims. (The second claim is also immediate

from EeZt = 1.) �

Corollary 2. For T > 0, we have

1

T
E

[
sup

0≤t≤T

eZt

]
=

∫ 1

0
E

[
sup−uT ≤s≤(1−u)T eZs∫ (1−u)T

−uT
eZs ds

]
du. (2)

Proof. Applying Lemma 1 to the translation-invariant functional F given by

F(z) = supt∈[0,T ] ezt∫ T

0 ezu du

yields that, for any T > 0,

1

T
E

[
sup

0≤t≤T

eZt

]
= 1

T

∫ T

0
E

[
eZt × sup0≤s≤T eZs∫ T

0 eZs ds

]
dt

= 1

T

∫ T

0
E

[
sup−t≤s≤T −t eZs∫ T −t

−t
eZs ds

]
dt,

and the statement of the lemma follows after a change of variable. �



1604 A.B. Dieker and B. Yakir

The left-hand side of the identity (2) converges to Hα by definition. The next proposition
shows that the right-hand side of (2) converges to our new representation, thereby proving The-
orem 1. The proof of the proposition itself is deferred to Appendix A.

Proposition 1. For any u ∈ (0,1), we have

lim
T →∞E

[
sup−uT ≤s≤(1−u)T eZs∫ (1−u)T

−uT
eZs ds

]
= E

[
supt∈R eZt∫ ∞
−∞ eZt dt

]
< ∞.

Moreover,

Hα = lim
T →∞

∫ 1

0
E

[
sup−uT ≤s≤(1−u)T eZs∫ (1−u)T

−uT
eZs ds

]
du = E

[
supt∈R eZt∫ ∞
−∞ eZt dt

]
.

Apart from establishing Theorem 1, this proposition gives two ways of approximating Hα .
The speed at which the prelimits tend to Hα is different for these two representations. For the
second “integral” representation, which is the classical representation in view of Corollary 2,
the speed of convergence to Hα can be expected to be slow. Indeed, it is known to be of order
1/

√
T in the Brownian motion case (e.g., Dȩbicki and Kisowski [17]). This is in stark contrast

with the speed of convergence in the first representation (e.g., for u = 1/2), as analyzed in the
next section. Our study shows that the slow convergence speed in the classical definition is due
to values of u close to the endpoints of the integration interval [0,1] in the right-hand side of (2).

It is instructive to compare our new representation of Hα with the classical representa-
tion of Pickands’ constant through a discussion of variances. Note that EeZs = 1, Var eZs =
eVar(Zs) − e−Var(Zs), so that the variance blows up as s grows large. As a result, one can expect
that sup0≤t≤T eZt has high variance for large T . Moreover, significant contributions to its expec-
tation come from values of t close to T . These two observations explain why it is hard to reliably
estimate Pickands’ constant from the classical definition.

Our new representation does not have these drawbacks. Let us focus on the special case α = 2,
for which it is known that H2 = 1/

√
π. Writing N for a standard normal random variable, we

obtain that

H2 = E

[
supt∈R e

√
2tN−t2∫

t∈R e
√

2tN−t2 dt

]
= E

[
supt∈R e−(t−N/

√
2)2∫

t∈R e−(t−N/
√

2)2 dt

]
= 1∫

R
e−t2 dt

= 1√
π

.

It follows from this calculation that M/S has zero variance for α = 2, so we can expect it to have
very low variance for values of α close to 2.

We next present an alternative representation for Hα in the spirit of Theorem 1. The proof of
Corollary 2 shows that for any locally finite measure μ,

1

T
E

[
sup

0≤t≤T

eZt

]
=

∫ 1

0
E

[
sup−uT ≤s≤(1−u)T eZs∫ (1−u)T

−uT
eZs μ(ds)

]
μ(T )(du), (3)

where μ(T )(du) = μ(T du)/T . Of particular interest is the case where μ is the counting measure
on ηZ. Then μ(T ) converges weakly to Leb/η, where Leb stands for Lebesgue measure. In
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view of this observation, the following analog of Proposition 1 is natural. The proof is given in
Appendix A.

Proposition 2. For any η > 0, we have

Hα = E

[
supt∈R eZt

η
∑

k∈Z eZkη

]
.

This identity is particularly noteworthy since the integral in the denominator in the representa-
tion of Theorem 1 can apparently be replaced with an approximating sum. For α = 2, this means
that for any η > 0, ∫

R

dy∑
k∈Z ekyη2−k2η2 = 2.

We have not been able to verify this intriguing equality directly, but numerical experiments sug-
gest that this identity indeed holds.

We conclude this section with two further related results. For η > 0, define the “discretized”
Pickands constant through

Hη
α = lim

T →∞
1

T
E

[
sup

k∈Z:0≤kη≤T

eZkη

]
.

The proof of the next proposition requires discrete analogs of Corollary 2 and Proposition 1,
with suprema taken over a grid and integrals replaced by sums (for the first equality). The proof
is omitted since it follows the proofs of these results verbatim.

Proposition 3. For any η > 0, we have

Hη
α = E

[
supk∈Z eZkη

η
∑

k∈Z eZkη

]
= E

[
supk∈Z eZkη∫ ∞

−∞ eZt dt

]
.

The second representation for Hη
α in this proposition immediately shows that Hα = limη↓0 Hη

α

by the monotone convergence theorem and sample path continuity.
A different application of Lemma 1 yields further representations for Hα and Hη

α . Let Ft be
the indicator of the event that the supremum of its (sample path) argument occurs at t . Since
E[Ft(Z)Fs(Z)] = 0 for all s �= t , we have

E

[
sup

k∈Z:0≤kη≤T

eZkη

]
=

	T/η
∑
�=0

E
[
eZ�ηF�η(Z)

] =
	T/η
∑
�=0

P

(
sup

k∈Z:−�≤k≤T/η−�

Zkη = 0
)
,

where we use Lemma 1 to obtain the last equality. This can be written as

1

T
E

[
sup

k∈Z:0≤kη≤T

eZkη

]
=

∫ 1

0
P

(
sup

k∈Z:−uT ≤kη≤(1−u)T

Zkη = 0
)
μ(T )(du),
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where, as before, μ(T )(du) = μ(T du)/T and μ is the counting measure on ηZ. Note the simi-
larity with (3). Taking the limit as T → ∞ requires verifications similar to those in the proof of
Proposition 2; the details are given in Appendix A. The resulting representation is a two-sided
version of the Hüsler–Albin–Choi representation (Albin and Choi [3], Hüsler [23]), and appears
to be new.

Proposition 4. For η > 0, we have

Hη
α = η−1P

(
sup
k∈Z

Zkη = 0
)

and therefore

Hα = lim
η↓0

η−1P

(
sup
k∈Z

Zkη = 0
)
.

From the point of view of simulation, one difficulty with this representation is that one would
have to estimate small probabilities when η is small. Unless one develops special techniques, it
would require many simulation replications to reliably estimate these probabilities. As discussed
below, such a task is computationally extremely intensive.

3. An auxiliary bound

This section presents a simple auxiliary bound which plays a key role in the next section. To
formulate it, let Z

η
t be the following approximation of Zt on a grid with mesh η > 0:

Z
η
t =

{
Zη	t/η
, for t > 0,

Zη�t/η�, otherwise,

and define B
η
t similarly in terms of Bt .

Let J be a fixed compact closed interval, assumed to be fixed throughout this section. We write

�(η) = sup
t∈J

(
Zt − Z

η
t

)
, δ(η) = √

2 sup
t∈J

(
Bt − B

η
t

)
.

Define MJ = supu∈J eZu and S
η
J = ∫

J
eZ

η
u du. Note that

MJ

S
η
J

≤ e�(η) M
η
J

S
η
J

≤ 1

η
e�(η).

Given an event E, we have for τ > eE�(η),

E
(
MJ /S

η
J ;E)

≤ E
(
MJ /S

η
J ;MJ /S

η
J > τ/η

) + τ

η
P(E)
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= 1

η

∫ ∞

τ

P
(
MJ /S

η
J > y/η

)
dy + τ

η
P
(
MJ /S

η
J > τ/η

) + τ

η
P(E)

≤ 1

η

∫ ∞

τ

P
(
e�(η) > y

)
dy + τ

η
P
(
e�(η) > τ

) + τ

η
P(E)

≤ 1

η

∫ ∞

τ

exp

(
− (log(y) −E�(η))2

4ηα

)
dy + τ

η
exp

(
− (log(τ ) −E�(η))2

4ηα

)
+ τ

η
P(E),

where the last inequality uses Borell’s inequality, for example, Adler and Taylor [2], Theo-
rem 2.1.1. We can bound this further by bounding E�(η). After setting

κ(η) = sup
t∈J

(
Var(Zt ) −Var

(
Z

η
t

))
,

we obtain that �(η) ≤ κ(η) + δ(η). We next want to apply Theorem 1.3.3 of Adler and Tay-
lor [2] to bound Eδ(η), but the statement of this theorem contains an unspecified constant. Our
numerical experiments require that all constants be explicit, and therefore we directly work with
the bound derived in the proof of this theorem. Choose r = 1/(2ηα/2), and set Nj = |J |rj/H .
The proof of this theorem shows that

Eδ(η) ≤
√

2π

log(2)

∞∑
j=2

23/2r−j+1
√

log
(
2j+1N2

j

) =: E(η),

which is readily evaluated numerically.
As a result, whenever τ > eE(η)+κ(η), we have

E
(
MJ /S

η
J ;E) ≤ 1

η

∫ ∞

τ

exp

(
− (log(y) − κ(η) − E(η))2

4ηα

)
dy

+ τ

η
exp

(
− (log(τ ) − κ(η) − E(η))2

4ηα

)
+ τ

η
P(E).

To apply this bound, one needs to select τ appropriately. Note that we may let τ depend on the
interval J .

4. Estimation

This section studies the effect of truncation and discretization of Z on Hα . The bounds we de-
velop are used in the next section, where we perform a simulation study in order to estimate Hα .

In addition to Hα and Hη
α , the following quantities play a key role throughout the remainder

of this paper:

Hα(T ) = E

[
sup−T ≤t≤T eZt∫ T

−T
eZt dt

]
, Hη

α(T ) = E

[
sup−T/η≤k≤T/η eZkη

η
∑

−T/η≤k≤T/η eZkη

]
,
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where it is implicit that t is a continuous-time parameter and k only takes integer values.
Throughout, we assume that the truncation horizon T > 0 and mesh size η are fixed. We also
assume for convenience that T is an integer multiple of η.

We now introduce some convenient abbreviations. For fixed 0 < a1 < a2 < · · ·, we write J0 =
(−a1, a1) and Jj = J+

j = [aj , aj+1), J−j = J−
j = (−aj+1,−aj ] with j ≥ 1. Throughout this

section, we use a1 = T . Write Mj = supt∈Jj
eZt , Sj = ∫

Jj
eZt dt , M

η
j = supk:kη∈Jj

eZkη , and

S
η
j = η

∑
k:kη∈Jj

eZkη , and set M = supj∈Z Mj , S = ∑
j∈Z Sj , and Sη = ∑

j∈Z S
η
j . The length of

an interval Jj is denoted by |Jj |.
The first step in our error analysis is a detailed comparison of Hα = E(M/Sη) and E(M0/S

η
0 ),

which entails truncation of the horizon over which the supremum and sum are taken. As a second
step, we compare E(M0/S

η
0 ) to Hη

α(T ) = E(M
η
0 /S

η
0 ), which entails approximating the maximum

on a discrete mesh.

4.1. Truncation

This subsection derives upper and lower bounds on E(M/Sη) in terms of E(M0/S
η
0 ). For conve-

nience we derive our error bounds for aj = T (1 + γ )j−1 for j ≥ 1, for some γ > 0. Presumably
sharper error bounds can be given when the choice of the aj is optimized.

4.1.1. An upper bound

We derive an upper bound on E(M/Sη) in terms of E(M0/S
η
0 ). Since S ≥ Sj for any j ∈ Z, we

have

E
(
M/Sη

) = E

[
M0

Sη
;M = M0

]
+

∑
j �=0

E

[
Mj

Sη
;M = Mj

]

≤ E
(
M0/S

η
0

) +
∑
j �=0

E

[
Mj

S
η
j

;Mj > 1

]
(4)

≤ E
(
M0/S

η
0

) + 2
∑
j≥1

E

[
Mj

S
η
j

;√2 sup
s∈Jj

Bs > min
s∈Jj

|s|α
]
.

Set Ej = {√2 maxs∈Jj
Bs > mins∈Jj

|s|α}. To further bound (4), we use the bounds developed
in Section 3. Thus, the next step is to bound P(Ej ) from above. We write τj for τ used in the
j th term. Using the facts that B has stationary increments and is self-similar, we find that by
Theorem 2.8 in Adler [1],

E

(
max
s∈Jj

Bs

)
= E

(
max

0≤s≤|Jj |
Bs

)
= |Jj |α/2E

(
max

0≤s≤1
Bs

)
(5)

≤ 2|Jj |α/2E

(
max

0≤s≤1
sN

)
= |Jj |α/2,
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where N stands for a standard normal random variable. We derive a bound on P(Ej ) in a slightly
more general form for later use. It follows from Borell’s inequality that, for 0 < a < b, c ∈ R,

P

(√
2 max

s∈[a,b]Bs > c + aα
)

≤ exp

(
−[c + aα − √

2(b − a)α/2]2

4bα

)
, (6)

provided c + aα >
√

2(b − a)α/2. Specialized to P(Ej ), we obtain that for j ≥ 1, aα
j >√

2(aj+1 − aj )
α/2,

P(Ej ) ≤ exp

{
−[aα

j − √
2(aj+1 − aj )

α/2]2

4aα
j+1

}
= exp

{
− (a

α/2
j − γ α/2

√
2)2

4(1 + γ )α

}
,

provided T > γ 21/α .
Thus, the error is upper bounded by exp(−c′T α) for some constant c′ as T → ∞. As a result,

the error decreases to zero much faster than any polynomial, unlike the classical representation
for which the error can be expected to be polynomial as previously discussed. This is one of the
key advantages of our new representation.

4.1.2. A lower bound

We derive a lower bound on E(M/Sη) in terms of E(M0/S
η
0 ) as follows:

E
(
M/Sη

) ≥ E

[
M0

S
η
0

· S
η
0

S
η
0 + ∑

j �=0 S
η
j

; εSη

0 ≥
∑
j �=0

S
η
j

]

≥ 1

1 + ε
E

[
M0

S
η
0

; εSη
0 ≥

∑
j �=0

S
η
j

]

= 1

1 + ε
E

(
M0/S

η
0

) − 1

1 + ε
E

[
M0

S
η
0

; εSη
0 <

∑
j �=0

S
η
j

]
.

Set E = {εSη

0 <
∑

j �=0 S
η
j }. To apply the technique from Section 3, we seek an upper bound

on P(E). Let 0 < δ < T , to be determined later. Since S
η
0 ≥ η, we obtain

P(E) ≤ P

(∑
j �=0

S
η
j > εη

)
≤ 2

∑
j≥1

P
(
S

η
j > εηqj

)

for any probability distribution {qj : j �= 0}. We find it convenient to take qj = ψ(1 + ψ)−|j |/2
for some ψ > 0 and j �= 0. An upper bound on S

η
j for j ≥ 1 is

S
η
j ≤ (aj+1 − aj )e

−aα
j e

√
2 maxs∈Jj

Bs = γ aj e−aα
j e

√
2 maxs∈Jj

Bs .
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For j ≥ 1, we therefore have

P
(
S

η
j > εηqj

) ≤ P
(
e
√

2 maxs∈Jj
Bs > εηeaα

j qj /(γ aj )
)

= P

(√
2 max

s∈Jj

Bs > aα
j + log

[
εηqj /(γ aj )

])

≤ exp

(
− (log[εηqj /(γ aj )] + aα

j − √
2γ α/2a

α/2
j )2

4(1 + γ )αaα
j

)
,

provided T is large enough so that the expression inside the square is nonnegative. The last
inequality follows from (6).

4.2. Approximating the supremum on a mesh

We now find upper and lower bounds on E(M0/S
η
0 ) in terms of E(M

η
0 /S

η
0 ).

For the upper bound, we note that

E
(
M0/S

η
0

) ≤ eεE
(
M

η
0 /S

η
0

) +E
(
M0/S

η
0 ;�0(η) > ε

)
.

We use the technique from Section 3 to bound E(M
η
0 /S

η
0 ;�0(η) > ε), which requires a bound

on P(�0(η) > ε). Writing κ0(η) = max(ηα,T α − (T − η)α), we use the self-similarity in con-
junction with Borell’s inequality and (5) to deduce that

P
(
�0(η) > ε

) ≤ P

(
sup

t∈(−T ,T )

√
2
(
Bt − B

η
t

)
> ε − κ0(η)

)

≤ 2T

η
P

(√
2 sup

t∈(0,1)

ηα/2Bt > ε − κ0(η)
)

≤ 2T

η
P

(
sup

t∈[0,1]
Bt >

ε − κ0(η)√
2ηα/2

)

≤ 2T

η
exp

(
−1

2

[
ε − κ0(η)√

2ηα/2
− 1

]2)
,

provided ε > κ0(η).
A lower bound on E(M0/S

η
0 ) in terms of E(M

η
0 /S

η
0 ) follows trivially:

E
(
M0/S

η
0

) ≥ E
(
M

η
0 /S

η
0

)
.
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4.3. Conclusions

We summarize the bounds we have obtained. For any ε > 0, we have derived the following upper
bound:

Hα ≤ eεE
(
M

η
0 /S

η
0

) +E

[
M0

S
η

0

;�0(η) > ε

]
+ 2

∑
j≥1

E

[
Mj

S
η
j

;√2 sup
s∈Jj

Bs > min
s∈Jj

|s|α
]
, (7)

where the second and third terms are bounded further using Section 3. Note that this requires
selecting a τ for each of the terms; we will come back to this in the next section.

For any ε > 0, we have derived the following lower bound:

Hα ≥ 1

1 + ε
E

(
M

η
0 /S

η
0

) − 1

1 + ε
E

[
M0

S
η
0

; εSη
0 <

∑
j �=0

S
η
j

]
, (8)

and we again use Section 3. We note that we may choose a different ε for the upper bound and
the lower bound, which we find useful in the next section.

5. Numerical experiments

This section consists of two parts. The first part studies Hη
α(T ) for suitable choices of the simu-

lation horizon T and the discretization mesh η, and uses the previous section to estimate bounds
on Hα . In the second part of this section, we present a heuristic method for obtaining sharper
estimates for Hα .

Simulation of fractional Brownian motion is highly nontrivial, but there exists a vast body of
literature on the topic. The fastest available algorithms simulate the process on an equispaced
grid, by simulation of the (stationary) increment process, which often called fractional Gaussian
noise. We use the method of Davies and Harte [14] for simulating n points of a fractional Gaus-
sian noise. This method requires that n be a power of two. In this approach, the covariance matrix
is embedded in a so-called circulant matrix, for which the eigenvalues can easily be computed.
The algorithm relies on the Fast Fourier Transform (FFT) for maximum efficiency; the compu-
tational effort is of order n logn for a sample size of length n. For more details on simulation of
fractional Brownian motion, we refer to Dieker [20].

5.1. Confidence intervals

Our next aim is to give a point estimate for Hη
α(T ) and use the upper and lower bounds from the

previous section to obtain an interval estimate for Pickands’ constant Hα .
The truncation and discretization errors both critically depend on α, but we choose T and η

to be fixed throughout our experiments in order to use a simulation technique known as common
random numbers. This means that the same stream of (pseudo)random numbers is used for all
values of α. By choosing T and η independent of α, the realizations of fractional Brownian
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motion in the nth simulation replication are perfectly dependent for different values of α. As a
result, our estimate of Hα as a function of α is smoothened without any statistical sacrifice.

Since T and η are fixed, our estimates for Hα are likely to be far off from Hη
α(T ) for small α.

In that regime our algorithm becomes unreliable, since the truncation horizon would have to
grow so large that it requires ever more computing power to produce an estimate. Any method
that relies on truncating the simulation horizon suffers from this problem, and it seems unlikely
that truncation can be avoided. There is some understanding of the asymptotic behavior of Hα as
α ↓ 0 (Shao [32], Harper [22]) so this regime is arguably less interesting from a simulation point
of view. Since we cannot trust the simulation output for small α, we focus our experiments on
α ≥ 7/10.

Somewhat arbitrarily, we chose to calibrate errors using α = 1, so that our estimates of Hα(T )

are close to Hα for α ≥ 1. The closer one sets the calibration point to 0, the higher one has to
choose T (and thus more computing power). We estimate Hη

α(T ) using 1500 simulation repli-
cations, which takes about three days on a modern computer for each value of α. We carry out
the simulation for α = 14/20,15/20, . . . ,40/20, and interpolate linearly between the simulated
points. A high-performance computing environment is used to run the experiments in parallel.

We choose the parameters so that the simulated error bounds from the previous section yield
an error of approximately 3% for α = 1. The most crucial parameter in the error analysis is ε. We
note that a different ε can be used for the lower and upper bound, and that ε may depend on α, so
we take advantage of this extra flexibility to carefully select ε. For the upper bound in (7) we use
ε = 0.005+0.025 ·(2−α), and for the lower bound in (8) we use ε = (0.005+0.025 ·(2−α))/3.
We use T = 128 and η = 1/218.

We next discuss how we have chosen the other parameters in the error analysis from Section 4.
These have been somewhat optimized. Equations (7) and (8) produce bounds on Hα in terms of
Hη

α(T ) in view of Section 3, but this requires selecting some τ for each term for which Section 3
is applied. We use τj = 1.3 · (1.005)j−1 for the j -term in the infinite sum, and τ = 1.4 for any
of the other terms. We set γ = 0.025 for the growth rate of aj , and we use ψ = 0.3 for the decay
rate of qj . For these parameter values, all event-independent terms in Section 3 are negligible.
Finally, we replace Hη

α(T ) in the resulting bounds with its estimate.
In Figure 1, we plot our estimates of Hη

α(T ) as a function of α (blue, solid), along with their
95% confidence interval (green, dotted) and our bounds for Hα (red, dash-dotted). The numer-
ical values are given in Appendix B. Note that the errors we find for α < 1 are so large that
our error bounds are essentially useless. We do believe that the simulated values are reliable
approximations to Hα , but the bounds from our error analysis are too loose.

A well-known conjecture states that Hα = 1/�(1/α) (Dȩbicki and Mandjes [18]), but (to
our knowledge) it lacks any foundation other than that limα↓0 Hα = limα↓0 1/�(1/α) = 0,
H1 = 1/�(1), and H2 = 1/�(1/2). A referee communicated to us that this conjecture is due
to K. Breitung. Our simulation gives strong evidence that this conjecture is not correct: the func-
tion 1/�(1/α) is the magenta, dashed curve in Figure 1, and we see that the confidence interval
and error bounds are well above the curve for α in the range 1.6–1.8. Note that we cannot ex-
clude that this conjecture holds, since our error bounds are based on Monte Carlo experiments.
However, this formula arguably serves as a reasonable approximation for α ≥ 1.
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Figure 1. Point estimates (blue, solid) and interval estimates (green, dotted) for Hη
α(T ) as a function of α.

Our error analysis shows that |Hη
α(T ) − Hα | is at most 0.03 for α ≥ 1 (red, dash-dotted). We also plot

1/�(1/α) (magenta, dashed).

5.2. A regression-based approach

In the previous subsection, we approximated Hα by Hη
α(T ). The main contribution to the error

is the discretization step, so we now focus on a refined approximation based on the behavior of
Hη

α(T ) as η ↓ 0.
This approach relies on the rate at which Hη

α(T ) converges to Hα(T ). We state this as a
conjecture, it is outside the scope of the current paper to (attempt to) prove it.

Conjecture 1. For fixed T > 0, we have limη↓0 η−α/2[Hα(T ) −Hη
α(T )] ∈ (0,∞). We also have

limη↓0 η−α/2[Hα −Hη
α] ∈ (0,∞).

We motivate this conjecture as follows. We focus on the last part of the conjecture for brevity.
Since Hα = E[M/Sη] by Proposition 2, we obtain that

η−α/2[Hα −Hη
α

] = E

[
η−α/2(em−mη − 1

) × Mη

Sη

]
,

where mη = logMη and m = logM . The right-hand side equals approximately

E

[
η−α/2(m − mη

) × Mη

Sη

]
.
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This expectation involves a product of two random variables. The random variable Mη/Sη con-
verges almost surely to the finite random variable M/S as η ↓ 0. Although we are not aware of
any existing results on the behavior of η−α/2(m − mη) or its expectation, we expect that the ran-
dom variable η−α/2(m − mη) converges in distribution. Indeed, this is suggested by prior work
on related problems, see Asmussen et al. [5] for the case α = 1 and Hüsler et al. [24], Selezn-
jev [31] for general results on interpolation approximations for Gaussian processes (which is
different but related). The rate of convergence of mη to m (or for finite-horizon analogs) seems
to be of general fundamental interest, but falls outside the scope of this paper.

Conjecture 1 implies that for some c = c(T ) > 0, for small η, we have approximately

Hη
α(T ) =Hα(T ) − cηα/2.

This allows us to perform an ordinary linear regression to simultaneously estimate c and Hα(T )

from (noisy) estimates of Hη
α(T ) for different (small) values of η and fixed α. One could use

the same simulated fractional Brownian motion trace for different values of η, but it is also
possible to use independent simulation experiments for different values of η. The latter approach
is computationally less efficient, but it has the advantage that classical regression theory becomes
available for constructing confidence intervals of Hα(T ).

Even though we do not have a formal justification for this approach, we have carried out
regressions with the same simulated trace for different values of η. The results are reported in
Figure 2. The simulation experiments are exactly the same as those underlying Figure 1, and
in particular we have used the same parameter values. The red, dashed curves are estimates for
Hη

α(T ) for η = 2−14,2−13,2−12,2−11. Using the regression approach, we estimate Hη
α(T ) for

η = 2−18 and compare it with our simulation estimates for the same value of η (blue, solid). The
two resulting curves are indistinguishable in Figure 2, and the difference is of order 10−3. We
have also plotted our regression-based estimate of Hα(T ) (green, dash-dotted).

It is instructive to look at the resulting estimate for H1(T ), since we know that H1 = 1. Our
estimate for H1(T ) is 0.9962650, which is indeed closer to its true value. As the number of
simulation replications increases, we expect much more improvement.

Appendix A: Proofs

Proof of Proposition 1. Our proof of (9) uses several ideas that are similar to those in Sections 3
and 4, so our exposition here is concise. We fix some η for which 1/η is a (large) integer; its
exact value is irrelevant. Recall that the quantities Jj ,Mj ,Sj ,M

η
j , S

η
j from Section 4 have been

introduced with respect to parameters 0 < a1 < a2 < · · ·. Here we use different choices: a1 =
�21/(2α)�, aj = aj−1 + 1 for j ≥ 2.

Abusing notation slightly, we write M[−uT ,(1−u)T ] = sups∈[−uT ,(1−u)T ] eZs and

S[−uT ,(1−u)T ] = ∫ (1−u)T

−uT
eZs ds. Since M[−uT ,(1−u)T ] → M and S[−uT ,(1−u)T ] → S almost surely

as T → ∞ for u ∈ (0,1), both claims follow after showing that

lim
A→∞ sup

T >0
sup

u∈(0,1)

E

[
M[−uT ,(1−u)T ]
S[−uT ,(1−u)T ]

; M[−uT ,(1−u)T ]
S[−uT ,(1−u)T ]

> A

]
= 0. (9)



On asymptotic constants in the theory of extremes for Gaussian processes 1615

Figure 2. Estimation of Hη
α(T ) for different values of η.

Write κj = κj (η) = supt∈Jj
[Var(Zt )−Var(Zη

t )]. First, suppose that −uT and (1 −u)T lie in
{. . . ,−a2,−a1, a1, a2, . . .}. On the event {M[−uT ,(1−u)T ] = Mj } for some j ∈ Z, we have

M[−uT ,(1−u)T ]
S[−uT ,(1−u)T ]

≤ Mj

Sj

≤ e
2
√

2 sups∈Jj
|Bs−B

η
s |+κj

M
η
j

S
η
j

(10)

≤ 1

η
e

2
√

2 sups∈Jj
|Bs−B

η
s |+κj

.

Note that this bound remains valid if −uT and (1 −u)T fail to lie in {. . . ,−a2,−a1, a1, a2, . . .}.
Since E[e2

√
2 sups∈J0

|Bs−B
η
s |] < ∞ by Borell’s inequality, (9) follows after we establish that

lim
A→∞

∞∑
j=1

E
[
e

2
√

2 sups∈Jj
|Bs−B

η
s |+κj ; e

2
√

2 sups∈Jj
|Bs−B

η
s |+κj

> A,Mj > 1
] = 0.



1616 A.B. Dieker and B. Yakir

To this end, we observe that for j ≥ 1

E
[
e

2
√

2 sups∈Jj
|Bs−B

η
s |+κj ;Mj > 1

]
≤

√
E

[
e

4
√

2 sups∈Jj
|Bs−B

η
s |+2κj

]
P(Mj > 1)

≤
√

e2κjE
[
e4

√
2 sups∈[0,1] |Bs−B

η
s |]P(

sup
t∈Jj

√
2Bt > aα

j

)

≤ Ceκj exp

(
− (aα

j − √
2E[supt∈Jj

Bt ])2

8(aj + 1)α

)

≤ Ceκj exp

(
− (aα

j − √
2])2

8(aj + 1)α

)
,

where C denotes some constant and we have used (5) to obtain the last inequality. Note that
aα
j >

√
2 for our choice of aj . The resulting expression is summable, which establishes the

required inequality by the monotone convergence theorem. �

Proof of Proposition 2. Our starting point is (3) and the accompanying remarks. By Theo-
rem 1.5.5 in Billingsley [11], it suffices to show that Leb(E) = 0, where E consists of all
u ∈ [0,1] for which

lim
T →∞E

[
M[−uT T ,(1−uT )T ]
S

η

[−uT T ,(1−uT )T ]

]
= E

[
M

Sη

]

fails to hold for some {uT } with uT → u. With minor modifications to the bound (10) since, we
work with Sη instead of S, the proof of Proposition 1 shows that

lim
A→∞ sup

T >0
sup

u∈(0,1)

E

[
M[−uT ,(1−u)T ]
S

η

[−uT ,(1−u)T ]
; M[−uT ,(1−u)T ]

S
η

[−uT ,(1−u)T ]
> A

]
= 0.

This implies that E ⊆ {0,1}, so its Lebesgue measure is zero. �

Proof of Proposition 4. As in the proof of Proposition 2, it suffices to show that, whenever
uT → u ∈ (0,1),

lim
T →∞P

(
sup

k∈Z:−uT T ≤kη≤(1−uT )T

Zkη = 0
)

= P

(
sup
k∈Z

Zkη = 0
)
.

A sandwich argument readily establishes that

lim
T →∞ sup

k∈Z:−uT T ≤kη≤(1−uT )T

Zkη = sup
k∈Z

Zkη.

The claim follows since almost sure convergence implies convergence in distribution. �
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Appendix B: Simulated values

This appendix lists our estimates for Hη
α(T ) in tabular form for η = 1/218 and T = 128, along

with the sample standard deviation. We also list the lower and upper bounds on Hα , where we
note that these are estimated values since they depend on Hη

α(T ). We cannot report these bounds
for α < 1, since our choice of parameter values causes the methodology to break down. Our
methods can be applied with different parameter values to obtain bounds in this regime, but
this requires more computing time and is not pursued in this paper. These numerical results are
summarized in Table B.1.

Table B.1. Our numerical results

α Estimate Hη
α(T ) Sample stddev M0/S

η
0 Lower bound Hα Upper bound Hα

0.700 1.1888337 0.5998979 – –
0.750 1.1543904 0.5614484 – –
0.800 1.1184290 0.5257466 – –
0.850 1.0855732 0.4919238 – –
0.900 1.0539127 0.4625016 – –
0.950 1.0235620 0.4360272 – –
1.000 0.9946978 0.4116689 0.9837218 1.0250320
1.050 0.9674279 0.3892142 0.9582444 0.9956451
1.100 0.9424383 0.3665194 0.9338777 0.9687150
1.150 0.9191131 0.3442997 0.9111406 0.9435593
1.200 0.8963231 0.3239746 0.8889154 0.9190136
1.250 0.8743162 0.3048379 0.8674489 0.8953298
1.300 0.8532731 0.2864521 0.8469212 0.8726894
1.350 0.8322652 0.2698805 0.8264114 0.8501401
1.400 0.8121016 0.2540026 0.8067235 0.8285072
1.450 0.7922732 0.2390896 0.7873523 0.8072685
1.500 0.7727308 0.2248372 0.7682494 0.7863726
1.550 0.7531251 0.2112524 0.7490677 0.7654634
1.600 0.7342039 0.1970492 0.7305511 0.7453000
1.650 0.7155531 0.1821118 0.7122884 0.7254599
1.700 0.6970209 0.1665167 0.6941287 0.7057883
1.750 0.6782065 0.1503939 0.6756727 0.6858794
1.800 0.6585134 0.1339708 0.6563256 0.6651316
1.850 0.6384329 0.1156335 0.6365762 0.6440437
1.900 0.6176244 0.0953090 0.6160842 0.6222740
1.950 0.5944161 0.0698590 0.5931803 0.5981428
1.998 0.5663460 0.0146697 0.5653943 0.5692133
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