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We investigate the accuracy of two general non-parametric methods for estimating optimal block lengths
for block bootstraps with time series – the first proposed in the seminal paper of Hall, Horowitz and Jing
(Biometrika 82 (1995) 561–574) and the second from Lahiri et al. (Stat. Methodol. 4 (2007) 292–321).
The relative performances of these general methods have been unknown and, to provide a comparison,
we focus on rates of convergence for these block length selectors for the moving block bootstrap (MBB)
with variance estimation problems under the smooth function model. It is shown that, with suitable choice
of tuning parameters, the optimal convergence rate of the first method is Op(n−1/6) where n denotes
the sample size. The optimal convergence rate of the second method, with the same number of tuning
parameters, is shown to be Op(n−2/7), suggesting that the second method may generally have better large-
sample properties for block selection in block bootstrap applications beyond variance estimation. We also
compare the two general methods with other plug-in methods specifically designed for block selection in
variance estimation, where the best possible convergence rate is shown to be Op(n−1/3) and achieved by a
method from Politis and White (Econometric Rev. 23 (2004) 53–70).

Keywords: jackknife-after-bootstrap; moving block bootstrap; optimal block size; plug-in methods;
subsampling

1. Introduction

Performance of block bootstrap methods critically depends on the choice of block lengths.
A common approach to the problem is to choose a block length that minimizes the Mean Squared
Error (MSE) function of block bootstrap estimators as a function of the block length. For many
important functionals, expansions for the MSE-optimal block lengths are known. If θ̂n denotes
an estimator of a parameter of interest θ ∈ R based on a stationary stretch X1, . . . ,Xn, exam-
ples of relevant functionals ϕn of the distribution of θ̂n include the bias ϕ1n = E(θ̂n − θ), vari-
ance ϕ2n = Var(θ̂n), and the distribution function ϕ3n(x0) = P(

√
n(θ̂n − θ)/τn ≤ x0) (i.e., given

x0 ∈ R and where τ 2
n represents either the variance of

√
n(θ̂n −θ) or an estimator of this, cf. [11]).

If ϕ̂n(�) denotes a block bootstrap estimator of ϕn based on block length �, then as n → ∞ the
bias and variance of ϕ̂n(�) often admit expansions of the form

n2a Var
(
ϕ̂n(�)

) = V0
�r

n

(
1 + o(1)

)
, na Bias

(
ϕ̂n(�)

) = −B0

�

(
1 + o(1)

)
(1.1)

for some known constants a, r > 0 depending on ϕn (e.g., a = r = 1 for functionals ϕn =
ϕ1n,ϕ2n, while r = 2, a = 1/2 for the distribution function ϕn = ϕ3n(x0) when |x0| �= 1) and
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lead to a large sample approximation of MSE-optimal block size given by

�0
n ≡ �0

n(ϕ) = C0n
1/(r+2)

(
1 + o(1)

)
, C0 ≡

(
2B2

0

rV0

)1/(r+2)

, (1.2)

involving population quantities B0 = B0(ϕn),V0 = V0(ϕn) ∈ R that depend on the functional ϕn,
the bootstrap method, and various parameters of the underlying process. For smooth function
model statistics θ̂n (described below), these expansions (1.1) have been established for the mov-
ing block and non-overlapping block methods [5,7,8,11] and, in particular, are also known for
the variance functional ϕ2n with other block bootstraps, such as the circular block bootstrap [18]
and stationary bootstrap [13,19]; see [10] and references therein. However, as the theoretical
approximations (1.2) for the optimal block lengths typically depend on different unknown pop-
ulation parameters of the underlying process in an intricate manner, these are not directly usable
in practice.

Different data-based methods for the selection of optimal block lengths have been proposed
in the literature. One of the most popular general methods is proposed by Hall, Horowitz and
Jing [5] (hereafter referred to as HHJ) which employs a subsampling method (cf. [19]) to con-
struct an empirical version of the MSE function and minimizes this to produce an estimator of
the optimal block length. We will refer to this approach as the HHJ method. A second general
method for selecting the optimal block length is put forward by Lahiri et al. [11]. This method
is based on the jackknife-after-bootstrap method of Efron [3] and its extension to block boot-
strap by Lahiri [9]. For reasons explained in [11] (see also Section 2 below), we will refer to
this method as the non-parametric plug-in method (or the NPPI method, in short). Both the HHJ
and NPPI methods are called “general” because these can be used in the same manner across
different functionals (e.g., bias, variance, distribution function, quantiles, etc.) to find the optimal
block size for bootstrap estimation, without requiring exact analytical expressions for the cor-
responding optimal block length approximation (1.2) (i.e., without requiring explicit forms for
quantities B0,V0). In particular, for a given functional, the HHJ method aims to directly estimate
the constant C0 in the optimal block approximation (1.2) while the NPPI method separately and
non-parametrically estimates the bias B0 and variance V0 quantities in (1.2) without structural
knowledge of these. Our major objective here is to investigate the convergence rates of these two
general methods. For instance, despite the popularity of the HHJ method, little is theoretically
known about its properties for block selection or how this compares to the NPPI method. As a
context to compare the methods, we focus on their performance for block selections in variance
estimation problems with the block bootstrap. In the literature, a few other block length selection
methods also exist. These are primarily plug-in estimators which necessarily require an explicit
expression for the optimal block approximation (1.2) for each specific functional and for each
block bootstrap method (i.e., requiring exact forms for B0,V0) and are not the focus of this pa-
per. However, two popular plug-in methods for the variance functional in the latter category are
given by Bühlmann and Künsch [2] and Politis and White [21] (and its corrected version Patton,
Politis and White [16]). For completeness, we later compare the performance of the two general
methods with these plug-in methods for block selection in variance estimation.

For concreteness, we shall restrict attention to the moving block bootstrap (MBB) method [7,
12], which was the original focus of the HHJ method [5] and the plug-in method of Bühlmann
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and Künsch [2] and shares close large-sample connections to other block bootstrap methods (e.g.,
circular block bootstrap, non-overlapping block bootstrap, untapered version of the tapered block
bootstrap) [8,13,15,21]. Further, we shall work under the smooth function model of Hall [4] (see
Section 2.1 below) which provides a convenient theoretical framework but, at the same time,
is general enough to cover many commonly used estimators in the time series context ([10];
Chapter 4). Accordingly, let θ̂n be an estimator of a parameter of interest θ under the smooth
function model and suppose that the MBB is used for estimating σ 2

n ≡ nVar(θ̂n) or its limiting
form

σ 2∞ ≡ lim
n→∞nVar(θ̂n). (1.3)

Let

MSEn(�) ≡ E
{
σ̂ 2

n (�) − σ 2∞
}2 (1.4)

denote the MSE of the MBB variance estimator σ̂ 2
n (�) based on blocks of length � and a sample

of size n. (Defining the MSE with σ 2
n or σ 2∞ makes no difference in the following and, for clarity,

it is helpful to fix a target σ 2∞ in defining (1.4) throughout.)
The theoretical MSE-optimal block size is given by

�
opt
n = argmin

{
MSEn(�): � ∈ Jn

}
, (1.5)

where Jn is a suitable set of block lengths including the optimal block length. As alluded to
above (1.1), under some standard regularity conditions, it can be shown that

MSEn(�) ≈ fn(�) ≡ B2
0�−2 + V0n

−1�, � ∈ Jn,

where B0 and V0 are population parameters arising, respectively, from the bias and variance of
the MBB variance estimator σ̂ 2

n (�). Let �0
n ≡ argmin{fn(�): � > 0} = C0n

1/3 denote the min-
imizer of the asymptotic approximation fn(·) to the MSE function, where C0 = [2B2

0/V0]1/3

(cf. (1.2)). As a first step towards investigating the accuracy of different empirical block rule
selection methods, we consider the relative error of this theoretical approximation and show that

�
opt
n − �0

n

�0
n

= O
(
n−1/3)

as n → ∞. Thus, the true optimal block size and the optimal block size determined by the
asymptotic approximation to the MSE curve of the block bootstrap estimator differ by a margin
of O(n−1/3) on the relative scale. In general, this rate cannot be improved further. As a result, for
empirical block length selection rules involving estimation steps that target �0

n (which all existing
methods do), the upper bound on their accuracy for estimating the true optimal block length �

opt
n

is Op(n−1/3).
Next, we consider the convergence rates of the two general methods. Let �̂

opt
n,HHJ and �̂

opt
n,NPPI,

respectively, denote the estimators of the optimal block length based on the HHJ and NPPI meth-
ods. We show that under some mild conditions and with a suitable choice of the tuning parame-
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ters,

�̂
opt
n,HHJ − �

opt
n

�
opt
n

= Op

(
n−1/6)

as n → ∞. Thus, the (relative) rate of convergence of the HHJ estimator of the optimal block
length is Op(n−1/6). The block length in block bootstrap methodology plays a role similar to
a smoothing parameter in non-parametric functional estimation. It is well known (cf. [6]) that
non-parametric data based rules for bandwidth estimation often have an “excruciatingly slow”
(relative) rate of convergence (e.g., of the order of Op(n−1/10)). The convergence rate of the
HHJ method turns out to be relatively better. It is worth noting that the HHJ block estimator,
based on the overlapping version of the subsampling method, has the same rate of convergence
irrespective of the dependence structure of the underlying time series {Xt }. Additionally, in the
process of determining this convergence rate, we also provide the theoretical guidance on op-
timally choosing two tuning parameters required in implementing the HHJ method, which has
been an unresolved aspect of the method.

Next, we consider the NPPI method and compare its relative performance with the HHJ
method. The rate of convergence of the NPPI method is determined by two factors, which arise
from estimating the variance and the bias of a block bootstrap estimator (i.e., quantities V0 and B0
appearing in �0

n = C0n
1/3, C0 = [2B2

0/V0]1/3). The factor due to the variance part is based on the
(block) jackknife-after-bootstrap method [3,9], and it attains an optimal rate of Op(n−2/7), with
a suitable choice of the tuning parameters. On the other hand, the second factor is determined by
a non-standard bias estimator that turns out to be adaptive to the strength of dependence of {Xt }.
Let r(k) denote the autocovariance function of (a suitable linear function of) the Xt ’s. When
r(k) ∼ Ck−a as k → ∞ for a suitably large a > 1, the rate of convergence of the second term
can be as small as Op(n−1/2+ε), for a given ε > 0, with a suitable choice of the tuning param-
eters. Thus, combining the two, the optimal rate of convergence of the NPPI method becomes
Op(n−2/7), which is better than optimal rate Op(n−1/6) for the HHJ method. For this to hold,
the user needs to specify two tuning parameters, the same number as with the HHJ method. Also,
the convergence rate Op(n−2/7) is interesting in the variance estimation problem because this
matches the best rate obtained by the plug-in block selection method of Bühlmann and Kün-
sch [2]. Their method is a four-step algorithm which uses lag weight estimators of the spectral
density at zero and again requires explicit forms for quantities appearing in the bias and variance
(e.g., B0,V0) of the MBB variance estimator. Hence, while the NPPI method for block selection
applies more generally to other functionals, its convergent rate matches the optimal one for a
plug-in method specifically tailored to the variance estimation problem. This provides some ev-
idence supporting the use of the NPPI method in block selection with other functionals outside
of variance estimation.

The rest of the paper is organized as follows. In Section 2, we briefly describe the smooth
function model, the MBB and the empirical block length selectors proposed by HHJ [5] and
Lahiri et al. [11]. In Section 3, we present the conditions and derive a general result on uniform
approximation of the MSE of a block bootstrap estimator which may be of independent interest.
We describe main results on the HHJ and the NPPI methods in Sections 4 and 5, respectively.
In Section 6, we compare the general HJJ/NPPI methods with other plug-in block selection ap-
proaches for the MBB in the variance estimation problem. In particular, a plug-in method of
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Politis and White [21] (see also [16]) is shown to achieve the best possible convergence rate for
block selection with variance functionals. Section 7 sketches proofs of the main results, where
full proofs are deferred to a supplementary material appendix [14].

2. Preliminaries

2.1. MBB variance estimator and optimal block length

Let Xn = (X1, . . . ,Xn) be a stationary stretch of Rd -valued random vectors with mean EXt =
μ ∈ Rd . We shall consider the problem of estimating the variance of a statistic framed in the
“smooth function” model [4]. Using some function H : Rd → R and the sample mean X̄n =∑n

i=1 Xi/n, suppose that a statistic can be expressed as θ̂n = H(X̄n) for purposes of estimating
a process parameter θ = H(μ). The “smooth function” model covers a wide range of parameters
and their estimators, including sample mean, sample autocovariances, Yule–Walker estimators,
among others; see Chapter 4, [10] for more examples. Recall the target variance of interest is
σ 2

n ≡ nVar(θ̂n) or its limit (1.3).
We next describe the MBB variance estimator. Let � < n ∈ N (set of positive integers) denote

the block length and create overlapping length � blocks from Xn as {Xi,�: i = 1, . . . , n − � + 1},
where Xi,� = (Xi, . . . ,Xi+�−1) for any integer i, � ≥ 1. We independently resample �n/�
 blocks
by letting I1, . . . , I�n/�
 denote i.i.d. random variables with a uniform distribution over block
indices {1, . . . , n − � + 1} and then define a MBB sample X∗

1, . . . ,X∗
n1

of size n1 = ��n/�
 as
(XI1,�, . . . , XI�n/�
,�), where �x
 denotes the integer part of a real number x. The MBB analog

of θ̂n is given by θ̂∗
n = H(X̄∗

n) using the MBB sample mean X̄∗
n = ∑n1

i=1 X∗
i /n1 and the MBB

variance estimator is then defined as

σ̂ 2
n (�) ≡ n1 Var∗

(
θ̂∗
n

)
,

where Var∗(·) denotes the variance with respect to the bootstrap distribution conditional on the
data Xn.

For variance estimation, we briefly consolidate notation from Section 1 on optimal block
lengths. The performance of the MBB again depends on the block choice �. Under certain de-
pendence conditions and block assumptions (�−1 + �/n → 0), the asymptotic bias and variance
of the MBB estimator are

Eσ̂ 2
n (�) − σ 2∞ = −B0

�

(
1 + o(1)

)
, Var

[
σ̂ 2

n (�)
] = V0

�

n

(
1 + o(1)

)
(2.1)

as n → ∞, for some population parameters B0,V0 depending on the covariance structure of
the underlying process (cf. [5,7] and Condition S of Section 3.1). Thus, the main component in
MSE (1.4) of the MBB follows as

MSEn(�) ≈ fn(�) ≡ B2
0

�2
+ V0

�

n
(2.2)
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as n → ∞. The minimizer of fn(�) is given by

�0
n ≡ C0n

1/3, (2.3)

where C0 = [2B2
0/V0]1/3. From (2.2) and (2.3), the optimal block minimizing MSEn(�) behaves

as �
opt
n ≈ �0

n = C0n
1/3 in large samples [5,7,10]. As a result, to examine properties of the block

length selection methods, we shall create a collection of block lengths Jn ≡ {� ∈ N: K−1n1/3 ≤
� ≤ Kn1/3}, for a suitably large constant K > 0 such that K−1 < C0 < K , and formally define
the optimal block size �

opt
n as in (1.5).

2.2. The Hall–Horowitz–Jing (HHJ) block estimation method

The HHJ [5] method seeks to estimate the optimal block size �
opt
n by minimizing an empirical

version of the MSE (1.4) created by subsampling (data blocking). Let m ≡ mn ∈ N denote a
sequence satisfying m−1 +m/n → 0 as n → ∞, which serves to define the length of subsamples

Xi,m = (Xi, . . . ,Xi+m−1), i = 1, . . . , n−m+1. For each subsample, let σ̂ 2
i,m(b) denote the MBB

variance estimator resulting from resampling length b blocks from observations Xi,m. For clarity,
note that MBB block lengths on size m subsamples are denoted by “b,” while “�” denotes MBB
block lengths applied to the original data Xn. To approximate the error MSEm(b) ≡ E{σ̂ 2

m(b) −
σ 2∞}2 in MBB variance estimation incurred by using length b blocks in samples of size m, we
form a subsampling estimator

M̂SEm(b) = 1

n − m + 1

n−m+1∑
i=1

[
σ̂ 2

i,m(b) − σ̂ 2
n (�̃n)

]2
, (2.4)

where the initializing MBB estimator σ̂ 2
n (�̃n) of σ 2∞ is based on the entire sample Xn and on a

plausible pilot block size �̃n. By minimizing M̂SEm(b) over Jm, we formulate

b̂
opt
m,HHJ = argmin

{
M̂SEm(b): b ∈ Jm

}
(2.5)

as an estimator of the theoretically optimal MBB block length b
opt
m for a size m sample, with

b
opt
m = argmin

{
MSEm(b): b ∈ Jm

}
. (2.6)

Next, is a rescaling step that involves approximating true optimal block length �
opt
n with the

minimizer �0
n of MSE-approximation (2.2). That is, as b

opt
m is the “size m sample version” of �

opt
n

in (1.5), one uses the large-sample block approximation b
opt
m ≈ b0

m = C0m
1/3 and �

opt
n ≈ �0

n =
C0n

1/3 from (2.3) to re-scale b̂
opt
m,HHJ and subsequently define the HHJ estimator of �

opt
n as

�̂
opt
n,HHJ = (n/m)1/3b̂

opt
m,HHJ. (2.7)

Hence, the HHJ method requires specifying both a subsample size m and a pilot MBB block
size �̃n, which impact the performance of the block estimator �̂

opt
n,HHJ.
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2.2.1. An oracle-like subsampling MSE

For purposes of comparison with the HHJ method, we also define a second subsampling MSE
given as

M̂SE
∞
m (b) = 1

n − m + 1

n−m+1∑
i=1

[
σ̂ 2

i,m(b) − σ 2∞
]2

, (2.8)

which resembles the empirical MSE (2.4) after replacing the variance estimator σ̂ 2
n (�̃n) with its

target σ 2∞ from (1.3). This subsampling MSE serves to remove one tuning parameter �̃n in the
original HHJ method by unrealistically assuming σ 2∞ is known. However, we may parallel the
performance of the HHJ block estimators b̂

opt
m,HHJ and �̂

opt
n,HHJ to their oracle-like counterparts

b̂
opt,∞
m,HHJ = argmin

{
M̂SE

∞
m (b): b ∈ Jm

}
(2.9)

based on (2.8) and the resulting estimator of the optimal block length �
opt
n given by

�̂
opt,∞
n,HHJ = (n/m)1/3b̂

opt,∞
m,HHJ. (2.10)

Both �̂
opt
n,HHJ and �̂

opt,∞
n,HHJ estimate the same optimal block size �

opt
n , but the estimator �̂

opt,∞
n,HHJ is

based on an unbiased subsampling criterion through knowledge of σ 2∞, that is, E[M̂SE
∞
m (b)] =

MSEm(b) for all b ∈ Jm.

2.3. The non-parametric plug-in (NPPI) method

The NPPI method is based on the non-parametric plug-in principle [11] which yields estimators
of MSE optimal smoothing parameters in general non-parametric function estimation problems.
Here we describe the method for estimating the optimal block length for the variance functional
using the MBB. Like any plug-in method, the target quantity for the NPPI method is the min-
imizer �0

n of the MSE-approximation fn(�) of (2.2), which again is of the form �0
n = C0n

1/3

from (2.3) with population parameters B0 and V0 in C0 = [2B2
0/V0]1/3 determined by the bias

and variance expansion (2.1) of the MBB variance estimator. The NPPI method estimates the
bias and the variance of the MBB estimator non-parametrically, and then estimates B0 and V0 by
inverting (2.1). Specifically, the method constructs estimators B̂IAS and V̂AR satisfying

V̂AR

Var(σ̂ 2
n (�1))

p→ 1,
B̂IAS

Bias(σ̂ 2
n (�2))

p→ 1 as n → ∞

for some block lengths �1 and �2 and defines V̂0 = [n�−1
1 ]V̂AR and B̂0 = �2B̂IAS. Then, the

NPPI estimator of the optimal block length is given by

�̂0
NPPI = [

2B̂2
0/V̂0

]1/3
n1/3. (2.11)
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The bias estimator for the NPPI method is

B̂IAS = 2
[
σ̂ 2

n (�2) − σ̂ 2
n (2�2)

]
and the variance estimator is constructed using the jackknife-after-bootstrap (JAB) method [3,9],
due to its computational advantages. For completeness, we next briefly describe the details of the
JAB variance estimator.

Remark 1. Politis and Romano [20] considered an estimator related to B̂IAS above for bias-
correcting the Bartlett spectral estimator (e.g., at the zero frequency, this Bartlett estimator is
asymptotically equivalent to σ̂ 2

n (�2) and their corrected estimator is equivalent to 2σ̂ 2
n (2�2) −

σ̂ 2
n (�2)). It is also important to re-iterate that, while the NPPI block estimator is based on general

forms (cf. (1.1), (2.1)) for the asymptotic bias and variance of a bootstrap estimator, the HHJ
block estimator requires only the optimal block order (cf. (1.2), (2.3)) for minimizing the asymp-
totic MSE of a bootstrap estimator; in this sense, the HHJ method requires less large-sample
information and could potentially be more general. At the same time, as the MSE-optimal block
order is typically derived from asymptotic bias/variance quantities, both NPPI and HHJ methods
are generally intended to apply for block selection with the same problems, particularly under
the smooth function model.

2.3.1. The jackknife-after-bootstrap variance estimator

The JAB method was initially proposed by [3] to assess accuracy of bootstrap estimators for
independent data, and was extended to the dependent case by [9]. A key advantage of the JAB
method is that it does not require a second level of resampling; the JAB method produces a
variance estimate of a block bootstrap estimator by merely regrouping the resampled blocks
used in computing the original block bootstrap estimator [9].

Suppose that the goal is to estimate the variance of an MBB estimator ϕ̂n(�) based on blocks
of length �. (For notational simplicity here, consider � = �1 and ϕ̂n(�) = σ̂ 2

n (�).) Let m ≡ mn be
an integer such that m → ∞ and m/n → 0 as n → ∞. Here, m denotes the number of bootstrap
blocks to be deleted for the JAB. Set N = n − � + 1, M = N − m + 1 and for i = 1, . . . ,M , let
Ii = {1, . . . ,N}\ {i, . . . , i +m−1}. Also, let Xi,� = (Xi, . . . ,Xi+�−1), i = 1, . . . ,N be the MBB
blocks of size �. The first step of the JAB is to define a jackknife version ϕ̂

(i)
n ≡ ϕ̂

(i)
n (�) of ϕ̂n(�)

for each i ∈ {1, . . . ,M}. Then, the ith block-deleted jackknife point value ϕ̂
(i)
n is obtained by

resampling �n/�
 blocks randomly, with replacement from the reduced collection {Xi,�: j ∈ Ii}
and then by computing the corresponding block bootstrap variance estimator using the resulting
resample.

Then, the JAB estimator of the variance of ϕ̂n ≡ ϕ̂n(�) is given by

V̂ARJAB(ϕ̂n) = m

(N − m)

1

M

M∑
i=1

(
ϕ̃(i)

n − ϕ̂n

)2
, (2.12)

where ϕ̃
(i)
n = m−1[Nϕ̂n − (N − m)ϕ̂

(i)
n ] is the ith block-deleted jackknife pseudo-value of ϕ̂n,

i = 1, . . . ,M .
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3. Results on uniform expansion of the MSE

3.1. Assumptions

To develop MSE and other probabilistic expansions, we require conditions on the dependence
structure of the stationary Rd -valued process {Xt }t∈Z and the smooth function H , described
below. Condition D prescribes differentiability assumptions on the smooth function H , Condi-
tion Mr describes mixing/moment assumptions as a function of positive integer r , and Condi-
tion S entails certain covariance sums are non-zero. In particular, the sums in Condition S define
the constant C0 = [2B2

0/V0]1/3 in the large-sample optimal block approximation �0
n = C0n

1/3

from (2.3). For ν = (ν1, . . . , νd) ∈ (N ∪ {0})d , write ‖ν‖1 = ∑d
i=1 νi in the following.

Condition D. The function H : Rd → R is 3-times continuously differentiable and
max{|∂νH(x)/(∂x1 · · · ∂xd)|: ‖ν‖1 = 3} ≤ C(1+‖x‖a0), x = (x1, . . . , xd)′ ∈ Rd for some C > 0
and integer a0 ≥ 0.

Condition Mr . For some δ > 0, E‖X1‖2r+δ < ∞ and
∑∞

k=1 k2r−1α(k)δ/(2r+δ) < ∞, where α(·)
denotes the strong mixing coefficient of the process {Xt }t∈Z.

Condition S. B0 ≡ ∑∞
k=−∞ |k|r(k) �= 0 and V0 ≡ (4/3)σ 4∞ > 0 for σ 2∞ = ∑∞

k=−∞ r(k) in (1.3),
where r(k) = Cov(∇′X0,∇′Xk), k ∈ Z and ∇ = (∂H(μ)/∂x1, . . . , ∂H(μ)/∂xd)′ is the vector of
first order partial derivatives of H at EX1 = μ.

Mixing and moment assumptions as formulated in Condition Mr are standard in investigating
block resampling methods (cf. [10], Chapter 5). Typical expansions of the MSE of the MBB
variance estimator often require H to be 2-times differentiable in the smooth function model,
whereas Condition D requires slightly more in order to determine a finer expansion of this MSE.
The assumptions on the process quantities B0,V0 in Condition S are mild and standard for the
block bootstrap [5,7,8,11,13,15,19]; in particular, the assumption on B0 is needed to rule out
i.i.d. processes.

3.2. Main results

Recalling the MSE-approximation fn(�) ≡ �−2B2
0 + n−1�V0 for the MBB variance estimator

from (2.2) (with constants B0,V0 as in Condition S above), Theorem 1 below provides a more
refined expansion of this MSE over a collection of block lengths, Jn = {� ∈ N: K−1n1/3 ≤ � ≤
Kn1/3} as in (1.5) (cf. Section 2.1), of optimal order.

Theorem 1. Suppose that Conditions D, Mr with r = 6 + 2a0, and Condition S hold, where a0
is as specified by Condition D. Then, as n → ∞,

(i) for fn(·) defined in (2.2),

max
�∈Jn

∣∣∣∣MSEn(�) − 2B0σ
2∞

n
− fn(�)

∣∣∣∣ = O
(
n−4/3).
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(ii) |�opt
n − �0

n|/�0
n = O(n−1/3), for �0

n ≡ argminy>0 fn(y) = C0n
1/3 from (2.3).

Theorem 1(i) gives a close bound O(n−4/3) how the MSE-approximation fn(�) matches the
curve MSEn(�) − n−12B0σ

2∞ (not quite MSEn(�) but both having the same minimizer), uni-
formly in � ∈ Jn. For comparison, note fn(�), � ∈ Jn, has exact order O(n−2/3). In trying to
resolve �

opt
n , we then have a general bound on the differences n2/3{MSEn(�) − MSEn(�

opt
n ) −

[fn(�) − fn(�
opt
n )]} = O(n−2/3) between the two curves. One implication, stated in Theo-

rem 1(ii), is that O(n−1/3) becomes the general order on the discrepancy between the minimizer
�

opt
n of MSEn(·) and the minimizer �0

n of fn(·). Theorem 1 bounds cannot be generally improved
by further expanding MSEn(�) (i.e., under additional smoothness assumptions on H ) and, in fact
in Theorem 1(ii), �

opt
n is necessarily an integer while �0

n need not be.

4. Results on the HHJ method

To state the main result, recall �̂
opt
n,HHJ denotes the HHJ block estimator (2.7), depending on a

pilot block �̃n and subsample size m, and that �̂
opt,∞
n,HHJ from (2.10) denotes an oracle-like version

of �̂
opt
n,HHJ that requires m but not �̃n.

Theorem 2. Suppose that Conditions D, Mr with r = 14 + 4a0, and Condition S hold, with a0
as specified by Condition D. Assume that m−1 + m/n → 0 as n → ∞ with m5/3/n = O(1).

(i) Then, as n → ∞,∣∣∣∣ �̂opt,∞
n,HHJ − �

opt
n

�
opt
n

∣∣∣∣ = Op

(
max

{
m−1/3,m−1/12(m/n)1/4, (m/n)1/3}).

(ii) If additionally �̃−1
n + �̃2

n/n → 0 and m/�̃2
n + m2/n = O(1), then∣∣∣∣ �̂opt

n,HHJ − �
opt
n

�
opt
n

∣∣∣∣ = Op

(
max

{
m−1/3,

m1/3

�̃n

,
m1/6

n1/4
,

m1/3

(�̃nn)1/4
,
�̃

1/4
n

n1/4
,
m1/3�̃

1/2
n

n1/2

})
.

Remark 2. Theorem 2 also holds if, on the left-hand sides above, we replace (�̂
opt,∞
n,HHJ −�

opt
n )/�

opt
n

and (�̂
opt
n,HHJ − �

opt
n )/�

opt
n with their subsample counterparts (b̂

opt,∞
m,HHJ − b

opt
m )/b

opt
m and (b̂

opt
m,HHJ −

b
opt
m )/b

opt
m . This result helps to reinforce the notion that the quality of block estimation at the

subsample level determines the performance of HHJ method.

Theorem 2(i) indicates how the subsample size m affects the convergence rate of the oracle-
type block estimate. It follows from Theorem 1(i) that, with oracle knowledge of σ 2∞, the best
possible (fastest) rate of convergence for (�̂

opt,∞
n,HHJ − �

opt
n )/�

opt
n is Op(n−1/6) achieved when the

subsample size m ∝ n1/2. The choice m ∝ n1/2 balances the sizes of all three terms in the bound
from Theorem 2(i). Remark 3 below provides some explanation of the probabilistic bounds in
Theorem 2(i).
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In Theorem 2(ii), we impose some additional block growth conditions on the pilot block �̃n

and subsample size m in the HHJ method, which are mild and help to concisely express the
order of the main components contributing to the error rate. While the combined effects of the
tuning parameters are complicated and difficult to characterize in Theorem 2(ii), a block �̃n ∝
n1/3 of MSE-optimal order for the pilot MBB variance estimator σ̂ 2

n (�̃n) in the HHJ method
is an intuitive starting point. And with this choice, it follows that m ∝ n1/2 is then optimal for
minimizing the convergence rate of the HHJ block estimator, which becomes Op(n−1/6). In
fact, the selection m ∝ n1/2, �̃n ∝ n1/3 is overall optimal and simultaneously balances the order
Op(n−1/6) of all six error terms in Theorem 1(ii). So surprisingly, the HHJ block estimator �̂

opt
n,HHJ

achieves the best convergence rate that one could hope for by matching the optimal rate of the
oracle block estimator �̂

opt,∞
n,HHJ. We summarize our findings on tuning parameters in Corollary 1.

Corollary 1. Under the assumptions of Theorem 2, a subsample size m ∝ n1/2 and pilot block
�̃n ∝ n1/3 yield optimal convergence rates∣∣∣∣ �̂opt,∞

n,HHJ − �
opt
n

�
opt
n

∣∣∣∣ = Op

(
n−1/6), ∣∣∣∣ �̂opt

n,HHJ − �
opt
n

�
opt
n

∣∣∣∣ = Op

(
n−1/6)

as n → ∞, for the HHJ block estimator �̂
opt
n,HHJ and its oracle �̂

opt,∞
n,HHJ version.

An interpretation of Corollary 1 is that, at optimal tuning parameters, random fluctuations

in the HHJ block estimator |�̂opt
n,HHJ − �

opt
n | are of the order

√
�

opt
n . This behavior interestingly

resembles that of some other kernel bandwidth estimators based empirical MSE criteria (cf. [22]),
though M̂SEm(·) does not take its arguments from a continuum of real-values.

Remark 3. We provide a brief explanation of the probabilistic bounds in Theorem 2, and focus
mainly on the behavior of oracle block estimator b̂

opt,∞
m,HHJ from Section 2.2.1 at the subsample

level; more rigorous details are given in Section 7 and the supplementary material [14]. Recall

the block estimator b̂
opt,∞
m,HHJ minimizes the M̂SE

∞
m (b) from (2.8), while b

opt
m from (2.6) minimizes

MSEm(b) ≈ fm(b) ≡ b−1B2
0 + bm−1V0 (the subsample version of (2.2)). In part, the bound

O(m−1/3) in Theorem 2(i) is due to smoothness issues with MSEm(b) and its discrepancy from
fm(b) (cf. Theorem 1). The other bounds in Theorem 2 arise from the size of

�∞
m (b) = {

M̂SE
∞
m

(
b

opt
m

) − E
[
M̂SE

∞
m

(
b

opt
m

)]} − {
M̂SE

∞
m (b) − E

[
M̂SE

∞
m (b)

]}
, (4.1)

b ∈ Jm, where E[M̂SE
∞
m (b)] = MSEm(b); this quantity measures the discrepancy between two

differenced curves (which should ideally match at b = b̂
opt,∞
m,HHJ), where differences in MSEm(b)

serve to identify b
opt
m and similar differences in M̂SE

∞
m (b) identify b̂

opt,∞
m,HHJ. It can be shown that,

for any an → 0,

max
b∈Jm: |b−b

opt
m |≤anm1/3

a
−1/2
n m2/3(n/m)1/2

∣∣�∞
m (b)

∣∣



Empirical block length selectors 969

remains stochastically bounded on shrinking neighborhoods of block lengths around b
opt
m , while

at the same time b̂
opt,∞
m,HHJ/b

opt
m

p→ 1 (i.e., b̂
opt,∞
m,HHJ is consistent for b

opt
m ≈ b0

m = C0m
1/3); see the

auxiliary result, Theorem 6, of Section 7. This allows other order bounds on (b̂
opt,∞
m,HHJ −b

opt
m )/b

opt
m

to be determined by recursively “caging” b̂
opt,∞
m,HHJ in decreasing neighborhoods around b

opt
m with

high probability. The probabilistic bounds in Theorem 2(ii) are partly due to error contributions
from the MBB variance estimator σ̂ 2

n (�̃n) used through M̂SEm(b) in (2.4) to estimate MSEm(b)

at the subsample level.

5. Results on the NPPI method

Next, we consider the convergence rates of the optimal block length selector based on the NPPI
method. Recall that r(k) = Cov(Y1, Yk+1), k ≥ 1, where Yi = ∇′Xi , i ≥ 1.

Theorem 3. Suppose that Conditions D, Mr with r = 7 + 2a0, and Condition S hold, with a0
as specified by Condition D. Assume that �2n

−1/3 + �−1
1 + �1m

−1 +m/n → 0 as n → ∞. Then,
as n → ∞, ∣∣�̂opt

n,NPPI − �
opt
n

∣∣/�opt
n

(5.1)

= Op

([m/n]1/2 + [�1/m] + �−2
1

) + Op

(
�2

2�2−1∑
k=�2

∣∣r(k)
∣∣ + n−1/2�

3/2
2

)
.

As the NPPI method targets the block approximation �0 = [2B2
0/V0]1/3n1/3 (2.3), the first of

the two terms on the right side of (5.1) is from the estimation of V0 and the second is from the
estimation of B0. For the first term, with any given choice of m, the optimal choice of �1 satisfies
�1/m ∝ �−2

1 , that is, �1 ∝ m1/3. For this choice of �1, the optimal choice of m is determined
by the relation [m/n]1/2 ∝ m1/3/m, that is, m ∝ n3/7. Thus, the optimal rate of the first term is
Op(n−2/7) with m ∝ n3/7 and �1 ∝ n1/7.

To determine the optimal order of the second term, first note that the pilot block size �2 is
only required to satisfy the constraints stated in Theorem 3. In particular, �2 is not required to
go to ∞ with the sample size. From (5.1), it is also evident that the optimal choice of �2 (to
minimize the order of the second term alone) depends on the rate of decay of the autocovariance
function r(·). Since r(k) ≤ Ck−a−1 for some a ≥ 12 (implied by Condition Mr with r = 7 +
2a0), the second term can always be made to match the optimal order of the first term, that
is, Op(n−2/7), by choosing �2 = O(n1/7) (note n−1/2�

3/2
2 = n−2/7 in (5.1) when �2 ∝ n1/7).

However, for processes with an exponentially decaying r(k), a choice of �2 ∝ logn optimizes the
second term, with the attained rate of Op(n−1/2[logn]3/2), while for an m0-dependent sequence
{Xt } with a fixed m0 ≥ 1, a choice of �2 = m0 + 1 makes the second term Op(n−1/2). But, in the
end, the error rate Op(n−2/7) of first term dominates the second in (5.1).

Remark 4. In Lahiri et al. [11], the NPPI plug-in estimator was defined with a common choice
�1 = �2. In this case, under the conditions of Theorem 3, the optimal order of the common block
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size is determined by Op([m/n]1/2 + [�1/m] + �−2
1 + n−1/2�

3/2
1 ). For a fixed �1, the first two

factors are optimized for

m ∝ n1/3�
2/3
1 .

Interestingly, this order of m was also suggested by [11], purely on the basis of some heuristic
arguments. For this choice of m, one may choose �1 ∝ n1/7 to optimize the rate of convergence
of the NPPI method, yielding the same optimal rate Op(n−2/7) possible with three tuning pa-
rameters in the NPPI method. This supports the suggestion of Lahiri et al. [11] of a common
choice �1 = �2 and, with the same number of tuning parameters, the NPPI block selector has a
better optimal rate than Op(n−1/6) for the HHJ method.

We summarize our findings on the NPPI method in Corollary 2.

Corollary 2. Under the assumptions of Theorem 3, a JAB block deletion size m ∝ n3/7 and
tuning block lengths �1 ∝ n1/7, �2 = O(n1/7) as n → ∞ yield an optimal convergence rate for
the NPPI block estimator �̂

opt
n,NPPI as∣∣∣∣ �̂opt

n,NPPI − �
opt
n

�
opt
n

∣∣∣∣ = Op

(
n−2/7).

In particular, choosing m ∝ n3/7, �1 = �2 ∝ n1/7 achieves this optimal rate.

6. Comparison with plug-in methods and concluding remarks

In the problem choosing an appropriate block length for implementing block bootstraps in time
series, the HHJ and NPPI methods represent the two existing general block selection methods in
the literature. However, because convergence rates of these block estimators have been unknown,
our goal here was to provide some comparison of their relative performances, considering block
estimation for MBB variance estimation in particular. Both methods are again “general” in the
sense that one could consider block � estimation for a block bootstrap version ϕ̂n(�) of a general
functional ϕn (e.g., bias, variance, distribution function, quantiles, etc. as in Section 1) of the
sampling distribution of a time series estimator θ̂n, by replacing the MBB variance functional
ϕ̂n(�) = σ̂ 2

n (�) ≡ ��n/�
Var∗(θ̂∗
n ) with ϕ̂n(�) in the mechanics of the HHJ and NPPI methods

described in Sections 2.2–2.3. Both methods aim to estimate MSE-optimal block length through
its large sample approximation �0

n = C0n
1/(r+2), C0 = [2B2

0/(rV0)]1/(r+2) in (1.2) and neither
method requires explicit forms for population quantities B0 ≡ B0(ϕn),V0 ≡ V0(ϕn) (arising,
resp., from the bias and variance of a bootstrap functional ϕ̂n(�) in (1.1)) which can depend on the
functional ϕn and unknown process parameters in a complex way. The HHJ approach estimates
the constant C0 in �0

n directly through a subsampling technique, while the NPPI method non-
parametrically estimates both B0 and V0 in C0. Intuitively, because the general NPPI approach
separately targets the bootstrap bias/variance B0,V0 contributions to C0, one might anticipate this
approach to exhibit better convergence rates in block estimation compared to HHJ. In consider-
ing block estimation for MBB variance estimation with time series, we have shown that this is
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indeed the case. For the variance problem, NPPI achieves a better rate Op(n−2/7) than the HHJ
method Op(n−1/6) when both methods use two tuning parameters. While considering the MBB
among possible block bootstrap approaches, the same convergence rates and optimal tuning pa-
rameter selections should also hold for other block bootstraps, such as the non-overlapping block
bootstrap [7], the circular block bootstrap [18] and the stationary bootstrap [13,19] (though the
tapered block bootstrap [15] requires a different treatment as the bias expansion in (1.2) or (2.1)
needs to be replaced by a smaller bias term �−2B0 in variance estimation). And though we have
focused on variance estimation, we suspect that the NPPI method retains similar large-sample
superiority over the HHJ method for block selection in other inference problems.

As mentioned in the Introduction, in the particular setting of block bootstrap variance esti-
mation, other plug-in methods for block selection exist such as the proposals of Bühlmann and
Künsch (BK) [2] and Politis and White (PW) [21] (see also Patton, Politis and White [16]). These
use explicit expressions for the bias B0 and variance components V0 of the MBB variance es-
timator from (2.1) appearing the approximation �0

n = [2B2
0/V0]n1/3 of the MSE-optimal block

length �
opt
n (1.5), given in this case by

B0 =
∞∑

k=−∞
|k|r(k), V0 = 4

3

( ∞∑
k=−∞

r(k)

)4

(6.1)

for r(k) = Cov(∇′X1,∇′X1+k), k ≥ 1; see Condition S, Section 3.1. The BK and PW ap-
proaches estimate the covariance sums (6.1) with spectral lag window estimators which are then
plugged into the approximation �0

n (2.3) to estimate �
opt
n . The BK method is based on an iterative

plug-in algorithm from Bühlmann [1] for estimating the optimal bandwidth for lag window es-
timators of the spectral density at zero, which has equivalences to block length selection for the
MBB variance estimator. If �̂

opt
n,BK denotes the resulting block estimator, results in Bühlmann and

Künsch [2] show that

�̂
opt
n,BK − �

opt
n

�
opt
n

= Op

(
n−2/7)

for MBB variance estimation of smooth function model statistics. As mentioned earlier, interest-
ingly, the NPPI block selection method obtains the exact same optimal rate of convergence with-
out using the structural knowledge in (6.1). The plug-in estimator �̂

opt
n,PW of Politis and White [21]

is formulated by using a “flat-top” lag-window λ(t) = I(t ∈ [0,1/2]) + 2(1 − |t |)I(t ∈ (1/2,1]),
t ∈ [0,1], where I(·) denotes the indicator function; see [20]. Their method was originally studied
for block bootstrap variance estimation of time series sample means. Here we describe an exten-
sion of the methodology for smooth function model statistics θ̂n = H(X̄n). The corresponding
two unknown covariance sums (6.1) in �0

n are estimated, respectively, with

2M∑
k=−2M

λ
{
k/(2M)

}|k|∇̂ r̂(k)∇̂′,
2M∑

k=−2M

λ
{
k/(2M)

}∇̂ r̂(k)∇̂′, (6.2)
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where r̂(k) = n−1 ∑n−|k|
i=1 (Xi − X̄n)(Xi+|k| − X̄n)

′, ∇̂ = ∂H(X̄n)/∂x, and M is a positive integer
bandwidth. In which case, we may state a result on the convergence rate of the generalized PW
block estimator.

Theorem 4. Under the assumptions of Theorem 1, if M ∝ nτ as n → ∞ for some 10−1 ≤ τ ≤
3−1, Politis–White block estimator �̂

opt
n,PW satisfies∣∣∣∣ �̂opt

n,PW − �
opt
n

�
opt
n

∣∣∣∣ = Op

(
n−1/3).

This also holds for other rules for selecting M under Theorem 3.3 conditions of [21].

Remark 5. It should be noted that the rate in Theorem 4 differs from results in Politis
and White [21] who considered a different problem in block estimation. Namely, they con-
sidered convergence rates between �0

n = [2B2
0/V0]n1/3 and its plug-in counterpart �̂

opt
n,PW =

[2B̂2
0/V̂0]n1/3, where �0

n again represents the large-sample approximation (2.3) of the MSE-

optimal block length �
opt
n from (1.5). They showed that, depending on the underlying pro-

cess dependence (cf. their Theorem 3.3), the bandwidth M can be adaptively chosen so that
|�̂opt

n,PW − �0
n|/�0

n may exhibit a convergence rate as high as Op(n−1/2); see also Politis [17] for
a related discussion of rate adaptivity and empirical rules for selecting M . In these cases, there
is still a bound O(n−1/3) on the relative closeness of �0

n and �
opt
n from Theorem 1. Additionally,

while the PW and NPPI methods both involve plug-in estimation, the NPPI approach does not
require or use an explicit form for B0,V0 in the variance problem (6.1), and the discussion of
Section 5 indicates that this method can adaptively estimate B0 (with similar rates as high as
Op(n−1/2)) but does not adaptively estimate V0. That is, the JAB (i.e., block jackknife) variance
estimator for V0 is not rate adaptive in the NPPI method, but the PW flat-top kernel approach
is. These differences explain the superior performance of the PW method compared to NPPI for
block estimation in the variance estimation problem.

Table 1 provides a final summary of the convergence rates of both general and (6.1)-based
plug-in methods for block selection with the MBB variance estimator. The PW plug-in estimator
attains the highest convergence rate Op(n−1/3) possible under Theorem 1 for any estimator of
MSE-optimal block length �

opt
n which is based on its asymptotic approximation �0

n (2.3). That is,

Table 1. Optimal convergence rate |�̂opt
n − �

opt
n |/�opt

n for block estimators �̂
opt
n of the MSE-optimal block

length �
opt
n (1.5) for MBB variance estimation, based on the approximation �0

n (2.3)

Methods

General Form (6.1)-based plug-in

HHJ NPPI Bühlmann–Künsch (BK) Politis–White (PW) Best possible

Rate Op(n−1/6) Op(n−2/7) Op(n−2/7) Op(n−1/3) Op(n−1/3)
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the plug-in method of Politis and White [21] has the best large-sample properties of any existing
method for block selection in the variance estimation problem with mean-like or smooth function
model statistics. Of course, this advantage comes at the price in that the PW method is designed
for variance estimation (i.e., the forms (6.1) in this problem) and is therefore “non-general”
or not directly usable for block selection in other block bootstrap applications. In particular,
for other inference problems (e.g., distribution or quantile estimation), the forms of B0,V0 in
the large-sample block formulas (1.2) can become complicated, depending additionally sums of
higher order process cumulants in a more complex fashion than the variance estimation problem.
In these cases, where appropriate block selections for the block bootstrap are still needed, the
general HHJ and NPPI block estimation methods have their greatest appeal, and the convergence
rate results in variance estimation suggest that the NPPI may have better performance than HHJ
more generally.

7. Additional results and proofs

Theorem 5 below gives a bias and variance decomposition for the MBB variance estimator
σ̂ 2

m(b), uniformly in b ∈ Jm, which is used to establish Theorem 1. The proof of Theorem 5
appears in the supplementary material [14].

Theorem 5. Under the assumptions of Theorem 1, as m → ∞,

(i) max
b∈Jm

∣∣∣∣[Eσ̂ 2
m(b) − σ 2∞

] +
(

B0

b
+ b

m
σ 2∞

)∣∣∣∣ = O
(
m−1),

(ii) max
b∈Jm

∣∣∣∣Var
[
σ̂ 2

m(b)
] − V0

b

m

∣∣∣∣ = O
(
m−4/3).

Proof of Theorem 1. Part (i) follows directly from Theorem 5. Part (ii) follows by expanding
0 ≤ n2/3[MSEn(��0

n
)−MSEn(�
opt
n )] with Theorem 1(i), implying 0 ≤ n2/3[fn(�

opt
n )−fn(�

0
n)] ≤

Cn−2/3. Then, a second order Taylor expansion of fn(·) around �0
n = C0n

1/3 gives the result (as
dfn(�

0
n)/dy = 0). �

Theorem 6 next establishes the consistency of the HHJ block estimator (and its oracle-version)
at both sample and subsample levels, and provides tightness results for developing rates for the
HHJ block estimator (cf. Theorem 2); its proof is given in the supplementary material [14]. To
state the result, recall the difference �∞

m (b), b ∈ Jm, between empirical and true MSE curves

from (4.1) and define �m(b) by replacing M̂SE
∞
m (·) from (2.8) with M̂SEm(·) from (2.4) in (4.1)

(i.e., HHJ method uses M̂SEm). Then,

�m(b) = �∞
m (b) + �1,m(b) + �2,m(b), �1,m(b) ≡ �3,m(b) − E

[
�3,m(b)

]
(7.1)
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holds for b ∈ Jm, where �2,m(b) ≡ 2[σ̂ 2
n (�̃n) − Eσ̂ 2

n (�̃n)]E[σ̂ 2
1,m(b

opt
m ) − σ̂ 2

1,m(b)] and

�3,m(b) ≡ 2
σ̂ 2

n (�̃n) − σ 2∞
n − m + 1

n−m+1∑
i=1

{[
σ̂ 2

i,m(b) − σ̂ 2
i,m

(
b

opt
m

)] − E
[
σ̂ 2

i,m(b) − σ̂ 2
i,m

(
b

opt
m

)]}
.

Given any C > 0, define a block set J opt
m (C) = {b ∈ Jm: |bopt

m − b| ≤ Cm1/3}.

Theorem 6. Suppose that Conditions D, Mr with r = 14 + 4a0, and Condition S hold, with a0
as specified by Condition D. Assume that m−1 + m/n → 0 with m5/3/n = O(1) as n → ∞ and
that �̃n in the HJJ method satisfies �̃−1

n + �̃2
n/n → 0 and m(�̃−2

n + n−1�̃n) = O(1). Let �m(b),
b ∈ Jm denote either �∞

m (b) or �∞
m (b) + �1,m(b). Then,

(i) there exists an integer N0 ≥ 1 and constant A > 0 such that

P

(
a

−1/2
n m2/3

(
n

m

)1/2

max
b∈J opt

m (an)

∣∣�m(b)
∣∣ > λ

)
≤ A

λ
,

P

(
a−1
n m2/3

(
m1/3

�̃n

n

m

)1/2

max
b∈J opt

m (an)

∣∣�2,m(b)
∣∣ > λ

)
≤ A

λ
,

holds for any λ > 0, any n ≥ N0 and any positive an > 0.

(ii) b̂
opt
m,HHJ/b

opt
m

p→ 1 and b̂
opt,∞
m,HHJ/b

opt
m

p→ 1 as n → ∞.

(iii) �̂
opt
n,HHJ/�

opt
n

p→ 1 and �̂
opt,∞
n,HHJ/�

opt
n

p→ 1 as n → ∞.

Proof of Theorem 2. We establish Theorem 2(i) here and defer the proof of Theorem 2(ii) to the
supplementary material [14]. For the minimizer b

opt
m of MSEm(·) from (2.6) and the minimizer

b0
m = C0m

1/3 of fm(y), y > 0 (i.e., subsample version of (2.3) solving d[fm(b0
m)]/dy = 0),

Theorem 1(ii) gives m−1/3|b0
m − b

opt
m | = O(m−1/3), m2/3|fm(b0

m) − fm(b
opt
m )| = O(m−2/3) so

that

0 ≤ m2/3[fm

(
b̂

opt,∞
m,HHJ

) − fm

(
b0
m

)] ≤ Cm−2/3 + m2/3[MSEm

(
b̂

opt,∞
m,HHJ

) − MSEm

(
b

opt
m

)]
, (7.2)

by Theorem 1(i), for a constant C > 0 independent of m. Applying a Taylor expansion of
fm(b̂

opt,∞
m,HHJ) around b0

m and Theorem 1(ii), there exists a constant C0 > 0 for which

m−2/3(b̂opt,∞
m,HHJ − b

opt
m

)2 ≤ C0 max
{
m−2/3,m2/3[MSEm

(
b̂

opt,∞
m,HHJ

) − MSEm

(
b

opt
m

)]}
,

whenever |b̂opt,∞
m,HHJ/b

0
m − 1| < 1/2. Also, by definition we have

0 ≤ m2/3[MSEm

(
b̂

opt,∞
m,HHJ

) − MSEm

(
b

opt
m

)] ≤ m2/3�∞
m

(
b̂

opt,∞
m,HHJ

)
(7.3)

for �∞
m (·) defined in (4.1) where E[M̂SE

∞
m (b)] = MSEm(b), b ∈ Jm so that

m−2/3(b̂opt,∞
m,HHJ − b

opt
m

)2 ≤ C1 max
{
m−2/3,m2/3�∞

m

(
b̂

opt,∞
m,HHJ

)}
, (7.4)
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must hold for any C1 > C0 whenever |b̂opt,∞
m,HHJ/b

0
m − 1| < 1/2; since this last event has arbitrarily

large probability by Theorem 6(ii), we will always assume (7.4) to hold without loss of generality
along with J opt

m (C0) = Jm, defining a block set J opt
m (C) = {b ∈ Jm: |bopt

m − b| ≤ Cm1/3} for
any C > 0.

We next formulate a series of recursive events to coerce b̂
opt,∞
m,HHJ into shrinking neighborhoods

around b
opt
m with high probability. Fix C1 > C0 and define a0,n = C1, L ≡ �log logn� > 1, and

a2
i,n ≡ C2

1 max

{
m−2/3,2

∑i−1
k=0[(L−i+1)+k]4−k

(
m

n

)2−1 ∑i−1
k=0 4−k}

, i ≥ 1.

Define an integer J = min{i = 1, . . . ,L + 1: a2
i,n = C2

1m−2/3} and let J = L + 1 if this integer
set is empty. For i = 0, . . . , J − 1, let Ai be the event

max
b∈J opt

m (ai,n)

m2/3
∣∣�∞

m (b)
∣∣ ≤ a

1/2
i,n (m/n)1/2λi, λi ≡ C

1/2
1 2L−i

and let Bi , i ≥ 1, be the event

m−2/3(b̂opt,∞
m,HHJ − b

opt
m

)2 ≤ a2
i,n.

Since J opt
m (a0,n) = Jm, event A0 implies B1 by (7.4). Also, for J > 1, if Ai ∩ Bi holds for

some i = 1, . . . , J − 1, then so must Bi+1 by (7.4), which in turn implies b̂
opt,∞
m,HHJ in the block

neighborhood J opt
m (ai+1,n) for event Ai+1. Suppose now that AJ ∩ BJ holds for an event AJ

defined as

max
b∈J opt

m (aJ,n)

m2/3
∣∣�∞

m (b)
∣∣ ≤ a

1/2
n,J (m/n)1/2C

1/2
1 ;

the complement (AJ ∩ BJ )c has probability bounded by
∑J

i=0 P(Ac
i ) ≤ AC

−1/2
1 (1 +∑L

k=0 2−k) ≤ 3AC
−1/2
1 by Theorem 6(i), which can be made arbitrarily small by large C1.

When AJ ∩ BJ holds, then by construction (7.4) further implies that either

m−2/3(b̂opt,∞
m,HHJ − b

opt
m

)2 ≤ C2
1 max

{
m−2/3,m−1/6(m/n)1/2}

if a2
J,n = C2

1m−2/3, or the remaining possibility is aJ,n �= C2
1m−2/3 in event AJ and J = L + 1

so that

m−2/3(b̂opt,∞
m,HHJ − b

opt
m

)2 ≤ C2
1 max

{
m−2/3,2

∑L
k=0 k4−k

(
m

n

)2−1 ∑L
k=0 4−k}

≤ 23/2C2
1 max

{
m−2/3,

(
m

n

)2/3}
using that (m/n)2−1 ∑L

k=0 4−k−2/3 ≤ 2 and 2
∑L

k=1 k4−k ≤ √
2 for L = �log logn�. Hence,

m−2/3(b̂opt,∞
m,HHJ − b

opt
m

)2 ≤ 4C2
1 max

{
m−2/3,m−1/6(m/n)1/2, (m/n)2/3}
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holds with arbitrarily high probability (large C1). Because |bopt
m − b0

m|m−1/3 = O(m−1/3) and
|�opt

n − �0
n|n−1/3 = O(n−1/3) by Theorem 1(ii), where �0

n ≡ C0n
1/3 = b0

m(n/m)1/3 and �̂
opt,∞
n,HHJ =

b̂
opt,∞
m,HHJ(n/m)1/3 is formed by rescaling (2.10), Theorem 2(i) follows. �

Proof of Theorem 3. We sketch the proof, providing more technical detail in the supplementary
material [14]. Considering V̂0 and letting p = n/�1, it can be shown that∣∣V̂AR − Var

(
σ̂ 2

n (�1)
)∣∣ = Op

(
p−1[[m/n]1/2 + �/m

])
. (7.5)

Next using the arguments in the proof of Theorem 5(ii), one can show that

Var
(
σ̂ 2

n (�1)
) = V0

p
+ O

(
�−1

1 n−1). (7.6)

Hence, by (7.5) and (7.6), it follows that

|V̂0 − V0| = ∣∣n�−1
1 V̂AR − V0

∣∣
≤ ∣∣n�−1

1

(
V̂AR − Var

(
σ̂ 2

n (�1)
))∣∣ + ∣∣n�−1

1 Var
(
σ̂ 2

n (�1)
) − V0

∣∣
= Op

([m/n]1/2 + [�1/m] + �−2
1

)
.

Next consider B̂0. Using arguments in the proof of Theorem 5, one can show that

Eσ̂ 2
n (k) = kE[Ȳk]2 + O

(
n−1k

)
, Var

(
σ̂ 2

n (k)
) = O

(
n−1k

)
for k = �2,2�2, where Ȳk = k−1 ∑k

i=1 Yi and Yi = ∇′Xi , i ≥ 1. Hence, it follows that

B̂0 = 2�2
(
�2E[Ȳ�2 ]2 − 2�2E[Ȳ2�2 ]2) + Op

(
n−1/2�

3/2
2

)
= B0 + O

(2�2−1∑
k=�2

k
∣∣r(k)

∣∣ + �2

2�2−1∑
k=�2

∣∣r(k)
∣∣) + Op

(
n−1/2�

3/2
2

)
.

Combining the bounds on V̂0 and B̂0, the theorem follows. �

Proof of Theorem 4. From the assumed conditions, ∇̂ ≡ ∂H(X̄n)/∂x = ∇ + Op(n−1/2) holds
for ∇ ≡ ∂H(μ)/∂x. By (6.1)–(6.2), the PW block estimator for MBB variance estimation can
be written as n−1/3�̂

opt
n,PW = n−1/3�̃n,PW + Op(n−1/2) for

�̃n,PW = (3/2)1/3

(
2M∑

k=−2M

λ
{
k/(2M)

}|k|r̂Y (k)

)2/3( 2M∑
k=−2M

λ
{
k/(2M)

}
r̂Y (k)

)−4/3

n1/3

with r̂Y (k) = n−1 ∑n−|k|
i=1 (Yi − Ȳn)

2 with Yi = ∇′Xi , i ≥ 1. By Theorem 3.3(i) of [21] with

M ∝ nτ for some 10−1 ≤ τ ≤ 3−1 and the assumed mixing conditions here, |�̃opt
n,PW − �0

n|/�0 =
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Op(n−(1−τ)/2) = Op(n−1/3) follows for �0
n = [2B2

0/V0]1/3n1/3 with B0,V0 in (6.1). Hence, by

Theorem1(ii) and �0
n/�

opt
n → 1,

|�̂opt
n,PW − �

opt
n |

�
opt
n

≤ |�̂opt
n,PW − �̃n,PW|

�
opt
n

+ |�̃n,PW − �0
n|

�
opt
n

+ |�0
n − �

opt
n |

�
opt
n

= Op

(
n−1/2) + Op

(
n−1/3) + O

(
n−1/3) = Op

(
n−1/3). �
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proofs for the auxiliary results (Theorems 5–6) of Section 7.
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