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We study discrete nonlinear parabolic stochastic heat equations of the form, un+1(x)−un(x) = (Lun)(x)+
σ(un(x))ξn(x), for n ∈ Z+ and x ∈ Zd , where ξ := {ξn(x)}n≥0,x∈Zd denotes random forcing and L the

generator of a random walk on Zd . Under mild conditions, we prove that the preceding stochastic PDE has
a unique solution that grows at most exponentially in time. And that, under natural conditions, it is “weakly
intermittent.” Along the way, we establish a comparison principle as well as a finite support property.
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1. Introduction

Let us consider a prototypical stochastic heat equation of the following type:∣∣∣∣∣∣
∂u(t, x)

∂t
= (Lu)(t, x) + σ(u(t, x))ξt (x) for t > 0 and x ∈ R,

u(0, x) = u0(x),

(1.1)

where u0 and σ are known non-random functions: u0 is bounded and measurable; σ : R → R is
Lipschitz continuous; ξ := {ξt }t≥0 is an infinite-dimensional white noise; and L is an operator
acting on the variable x. It is well known that (1.1) has a unique “mild solution” under natural
conditions on ξ and L [13,14,20,32–34,41,42,49]; we can think of ξ as the “forcing term” as
well as the “noise.”

Let us observe that, in (1.1), the operator L and the noise term compete with one another: L
tends to flatten/smooth the solution u, whereas the noise term tends to make u more irregular.
This competition was studied in [19] in the case that σ := 1 and L := the L2-generator of a Lévy
process.

The [parabolic] “Anderson model” is an important special case of (1.1). In that case one con-
siders L := κ∂xx and σ(z) := νz for fixed ν, κ > 0, and interprets u(t, x) as the average number
of particles – at site x and time t – when the particles perform independent Brownian motions;
every particle splits into two at rate ξt (x) – when ξt (x) > 0 – and is extinguished at rate −ξt (x) –
when ξt (x) < 0. See Carmona and Molchanov [10], Chapter 1, for this, together with a ground-
breaking analysis of the ensuing model. The Anderson model also has important connections
to stochastic analysis, statistical physics, random media, cosmology, etc. [3–7,9–12,17,20–25,
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28–31,35,37,38,44,45,47,51,52]. We note that many of the mentioned papers are concerned with
time-independent noise only.

A majority of the sizable literature on the Anderson model is concerned with establishing a
property called “intermittency” [36,37,40,51,52]. Recall that the pth moment Lyapounov expo-
nent γ (p) is defined as

γ (p) := lim
t→∞

1

t
ln E[u(t, x)p], (1.2)

provided that the limit exists. The solution u := {u(t, x)}t≥0,x∈Rd to the parabolic Anderson
model is said to be intermittent if γ (p) exists for all p ≥ 1 and p �→ (γ (p)/p) is strictly in-
creasing on [1,∞). This mathematical definition describes a “separation of scales” phenomena
and is believed to capture many of the salient features of its physical counterpart in statistical
physics and turbulence [2,36,40,48,52]. For more information see the Introductions of Bertini
and Cancrini [3] and Carmona and Molchanov [10].

Recently [18] we considered (1.1) in a fully nonlinear setting with space–time white noise ξ

and L := the L2-generator of a Lévy process. We showed that if σ is “asymptotically linear” and
u0 is “sufficiently large,” then p �→ γ̃ (p)/p is strictly increasing on [2,∞), where

γ̃ (p) := lim sup
t→∞

1

t
ln E(|ut (x)|p). (1.3)

This gives evidence of intermittency for solutions of stochastic PDEs. Moreover, bounds on γ̃

were given in terms of the Lipschitz constant of σ and the function

ϒ̃(β) := 1

2π

∫ ∞

−∞
dξ

β + 2 Re
(ξ)
, defined for all β > 0, (1.4)

where 
 denotes the characteristic exponent of the Lévy process generated by the L. It is pre-
cisely this connection between ϒ̃ and σ that allows us to describe a relationship between the
smoothing effects of L and the roughening effect of the underlying forcing terms.

There are two physically relevant classes of bounded initial data u0 that arise naturally in
the literature [3,6,37]: (a) Where u0 is bounded below, away from zero; and (b) Where u0 has
compact support. Our earlier analysis [18] studies fairly completely Case (a) but fails to say
anything about Case (b). We do not know much about (b), in fact. Our present goal is to consider
instead a discrete setting in which we are able to analyze Case (b).

There is a large literature on [discrete] partial difference equations of the heat type; see Agar-
wal [1] and its many chapter bibliographies. Except for the work by Zeldovich et al. [52], Sec-
tion 5, we have found little on fully-discrete stochastic heat equations (1.1). We will see soon
that the discrete setup treated here yields many of the interesting mathematical features that one
might wish for, and at low technical cost. For instance, we do not presuppose a knowledge of
PDEs and/or stochastic calculus in this paper.

An outline of the paper follows: In Section 2, we state the main results of the paper; they
are proved in Section 5, after we establish some auxiliary results in Section 3 and Section 4.
In Section 6 we compute a version of the second-moment [upper] Lyapounov exponent of the
solution u to the parabolic Anderson model with temporal noise. From a physics point of view,
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that model is only modestly interesting, but it provides a setting in which we can rigorously
verify many of the predictions of the replica method [28]. The replica method itself will not be
used, however.

Throughout the paper, we define

‖X‖p := {E(|X|p)}1/p for all X ∈ Lp(P), (1.5)

for every p ∈ [1,∞).

2. Main results

Throughout, we study the following discrete version of (1.1):

un+1(x) − un(x) = (Lun)(x) + σ(un(x))ξn(x) for n ≥ 0 and x ∈ Zd , (2.1)

with [known] bounded initial function u0 : Zd → R and diffusion coefficient σ : R → R. The
operator L acts on functions of x and is the generator of a random walk on Zd .

Let I denote the identity operator and P := L + I the transition operator for L. Then (2.1) is
equivalent to the following recursive relation:

un+1(x) = (P un)(x) + σ(un(x))ξn(x). (2.2)

Our first contribution is an analysis of (2.1) in the case that the ξ ’s are i.i.d. with common
mean 0 and variance 1 [discrete white noise]. The following function ϒ : (1,∞) → R+ is the
present analogue of ϒ̃ [see (1.4)]:

ϒ(λ) := 1

(2π)d

∫
(−π,π)d

dξ

λ − |φ(ξ)|2 for all λ > 1, (2.3)

where φ denotes the characteristic exponent of the increments of the walk that corresponds to L;
that is,

φ(ξ) :=
∑
x∈Zd

eix·ξP0,x , (2.4)

and P0,• is the transition function of the random walk. Because ϒ is continuous, strictly positive,
and strictly decreasing on (1,∞), it has a continuous strictly decreasing inverse on (0,ϒ(1−)).
We extend the definition of that inverse by setting

ϒ−1(x) := sup{λ > 1 :ϒ(λ) > x}, (2.5)

where sup ∅ := 1. Also, let

Lipσ := sup
x �=y

|σ(x) − σ(y)|
|x − y| (2.6)

denote the Lipschitz constant of the function σ [Lipσ can be infinite]. The following is a discrete
counterpart of Theorems 2.1 and 2.7 of [18], and is our first main result.
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Theorem 2.1. Suppose ξ are i.i.d. with mean 0 and variance 1. If u0 is bounded and σ is Lip-
schitz continuous, then (2.1) has an a.s.-unique solution u which satisfies the following: For all
p ∈ [2,∞),

lim sup
n→∞

1

n
sup
x∈Zd

ln‖un(x)‖p ≤ 1

2
lnϒ−1((cp Lipσ )−2), (2.7)

where ϒ−1(1/0) := 0 and cp := the optimal constant in Burkholder’s inequality for discrete-
parameter martingales. Conversely, if infx∈Zd u0(x) > 0 and Lσ := infz∈R |σ(z)/z| > 0, then

inf
x∈Zd

lim sup
n→∞

1

n
ln‖un(x)‖p ≥ 1

2
lnϒ−1(L−2

σ ). (2.8)

To avoid confusion, we emphasize that the norm in the above inequalities is the Lp(P) norm
that was defined in (1.5).

The exact value of cp is not known [50]. Burkholder’s method itself produces cp ≤ 18pq1/2

[26], Theorem 2.10, page 23, where q := p/(p − 1) denotes the conjugate to p. It is likely that
better bounds are known, but we are not aware of them.

Theorem 2.1 has a continuous counterpart in [18]. Next we point out that “u0 is bounded
below” in Theorem 2.1 can sometimes be replaced by “u0 has finite support.” As far as we know,
this does not seem to have a continuous analogue [18]. But first we recall the following standard
definition:

Definition 2.2. L is local if there exists R > 0 such that P0,x = 0 if |x| > R.1

Theorem 2.3. Suppose L is local, and the ξ s are i.i.d. with mean 0 and variance 1. In addition,
u0 �≡ 0 has finite support, σ is Lipschitz continuous with σ(0) = 0, and Lσ := infz∈R |σ(z)/z| >

0. Then, for all p ∈ [2,∞), Mn := supx∈Zd |un(x)| satisfies

1

2
lnϒ−1(L−2

σ ) ≤ lim sup
n→∞

1

n
sup
x∈Zd

ln‖un(x)‖p

(2.9)

≤ lim sup
n→∞

1

n
ln‖Mn‖p ≤ 1

2
lnϒ−1((cp Lipσ )−2).

Under the assumption that u := {un(x)}n>0,x∈Zd is non-negative, we define the upper pth-
moment Lyapounov exponent γ̄ (p) as follows:

γ̄ (p) := lim sup
n→∞

1

n
sup
x∈Zd

ln E[un(x)p]. (2.10)

Definition 2.4. We say that u := {un(x)}n>0,x∈Zd is weakly intermittent if γ̄ (p) < ∞ for all
positive and finite p, and p �→ (γ̄ (p)/p) is strictly increasing on [2,∞).

1As is sometimes customary, we identify the Fredholm operator P n with its kernel, which is merely the n-step transition

probability: Pn
x,y = Pn

0,y−x
at (x, y) ∈ Zd × Zd .
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Our next result is a consequence of the previous theorem, and assumes – among other things
– that σ(0) = 0. This condition ensures that the solution has finite support.

Corollary 2.5. Suppose, in addition to the conditions of Theorem 2.3, that

Cξ := sup
n≥0

sup
x∈Zd

|ξn(x)|

is finite and

P0,0 ≥ Cξ Lipσ . (2.11)

Then (2.1) has a weakly intermittent solution.

We emphasize that γ̄ (p) is not an exact discrete version of γ̃ (p), as it is missing absolute
values. Condition (2.11) allows γ̄ (p) to be well defined for our solution.

Our next result concerns the Anderson model with temporal noise. In other words we consider
(2.1) with σ(z) = z, ξn(x) = ξn for all x ∈ Zd , and ξ := {ξn}∞n=0 = i.i.d. random variables. The
present model is motivated by Mandelbrot’s analysis of random cascades in turbulence [36] and
is designed to showcase a family of examples where the predictions of the replica method of
Kardar [28] can be shown rigorously. We make the following assumptions:

Assumptions 2.6. Suppose:

(a) L is local;
(b) supn≥0 |ξn| ≤ P0,0 < 1 [lazy, non-degenerate random walk]; and
(c) u0(x) ≥ 0 for all x ∈ Zd , and 0 <

∑
z∈Zd u0(z) < ∞.

Then we offer the following.

Theorem 2.7. Under Assumptions 2.6, the Anderson model [(2.1) with σ(z) = z] has a unique
a.s.-nonnegative solution u, and Mn := supx∈Zd un(x) satisfies

lim
n→∞

1

n
ln E(M

p
n ) = (p) for all p ∈ [0,∞) and

(2.12)

lim
n→∞

1

n
lnMn = lim

n→∞
1

n
E(lnMn) = ′(0+) almost surely,

where (p) := ln E[(1 + ξ1)
p] for all p ≥ 0.

3. Some auxiliary results

Let us start with a simple existence/growth lemma. Note that σ is not assumed to be Lipschitz
continuous, and the ξ s need not be random. The proof is not demanding, but the result itself is
unimprovable (Remark 3.2).
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Lemma 3.1. Suppose there exist finite Cσ and C̃σ such that |σ(z)| ≤ Cσ |z| + C̃σ for all z ∈ R.
Suppose also that u0 is bounded and Cξ := supn≥0 supx∈Zd |ξn(x)| is finite. Then (2.1) has a
unique solution u that satisfies

lim sup
n→∞

1

n
sup
x∈Zd

ln|un(x)| ≤ ln(1 + Cσ Cξ ). (3.1)

Proof. Clearly, ‖P h‖∞ ≤ ‖h‖∞, where ‖h‖∞ denotes the supremum norm of a function
h : Zd → R. Consequently, (2.2) implies that

‖un+1‖∞ ≤ ‖un‖∞(1 + Cσ Cξ ) + C̃σ Cξ . (3.2)

We iterate this and apply (2.2) to conclude the proof. �

Remark 3.2. Consider (2.1) with u0(x) ≡ 1, σ(z) = z, and ξn(x) ≡ 1. Then un(x) = 2n for all
n ≥ 0 and x ∈ Zd , and (3.1) is manifestly an identity. The results of the Introduction show that
when the ξ ’s are mean-zero and independent, then the worst-case rate in (3.1) can be improved
upon; this is another evidence of intermittency.

The following covers the case when ξ ’s are random variables. This existence/growth result is
proved in the same manner as Lemma 3.1; we omit the elementary proof, and also mention that
the following cannot be improved upon.

Lemma 3.3. Suppose there exist finite Cσ and C̃σ such that |σ(z)| ≤ Cσ |z| + C̃σ for all z ∈ R.
Suppose also that u0(x) and ‖ξn(x)‖p are bounded uniformly in x ∈ Zd , and n ≥ 0, for some
p ∈ [1,∞]. Then (2.1) has an a.s.-unique solution u that satisfies

lim sup
n→∞

1

n
sup
x∈Zd

ln‖un(x)‖p ≤ ln(1 + Cσ Kp,ξ ), (3.3)

where Kp,ξ := supn≥0 supx∈Zd ‖ξn(x)‖p .

3.1. A finite-support property

Next we demonstrate that the solution to (2.1) has a finite-support property. A remarkable result
of Mueller [38] asserts that Theorem 3.4 below does not have a naive continuum-limit analogue.
The present work is closer in spirit to the compact-support theorem of Mueller and Perkins [39].

Let us consider the heat equation (2.1) and suppose that it has a unique solution u :=
{un(x)}n≥0,x∈Zd . We say that a function f : Zd → R has finite support if {x ∈ Zd :f (x) �= 0}
is finite. Define

Rn := inf{r > 0 :un(x) = 0 for all x ∈ Zd such that |x| > r}, (3.4)

and let R denote the radius of support of P ; that is,

R := inf{r > 0 :P0,x = 0 for all x ∈ Zd with |x| > r}. (3.5)
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Theorem 3.4. Suppose σ(0) = 0, and L is local. If, in addition, u0 has finite support, then so
does un for all n ≥ 1. In fact,

#{x ∈ Zd : un+1(x) �= 0} ≤ 2d [(n + 1)R + R0]d for all n ≥ 0. (3.6)

Proof. Suppose there exists n ≥ 0 such that un(x) = 0 for all but a finite number of points
x ∈ Zd . We propose to prove that un+1 enjoys the same finite-support property. This clearly
suffices to prove the theorem. Because un(x) = 0 for all but a finite number of xs, (2.2) tells us
that for all but a finite number of points x ∈ Zd , un+1(x) = ∑

y∈Zd :|y−x|≤R Px,yun(y). Thus if
un has finite support, then so does un+1, and Rn+1 ≤ R + Rn. Equation (3.6) also follows from
this. �

The locality of L cannot be dropped altogether. This general phenomenon appears earlier. For
instance, Iscoe [27] showed that the super Brownian motion has a finite-support property, and
Evans and Perkins [16] proved that there Iscoe’s theorem does not hold if the underlying motion
is non-local.

3.2. A comparison principle

The result of this subsection is a discrete analogue of Mueller’s well-known and deep comparison
principle [38]; but the proof uses very simple ideas. Throughout we assume that there exist unique
solutions v and u to (2.1) with respective initial data v0 and u0 and that σ : R → R is globally
Lipschitz with optimal Lipschitz constant Lipσ .

Theorem 3.5. Suppose Cξ := supn≥0 supx∈Zd |ξn(x)| is finite and satisfies

P0,0 ≥ Cξ Lipσ . (3.7)

Then u0 ≥ v0 implies that un ≥ vn for all n ≥ 0.

In the continuous setting, one usually appeals to Mueller’s comparison principle, using a con-
dition such as “σ(0) = 0,” in order to establish positivity of the solution. Therefore, it might be
worth noting that the preceding does not require that σ(0) = 0.

Proof of Theorem 3.5. We propose to prove that if un ≥ vn, then un+1 ≥ vn+1. Let us write
fk := uk − vk for all k ≥ 0. By (2.2) and (3.7),

fn+1(x) = (P fn)(x) + [σ(un(x)) − σ(vn(x))]ξn(x)

≥ (P fn)(x) − Lipσ ·|fn(x)ξn(x)| (3.8)

≥ (P fn)(x) − P0,0 · |fn(x)|.
But (P h)(x) = ∑

y∈Zd Px,yh(y) ≥ P0,0 ·h(x) for all x ∈ Zd , as long as h ≥ 0. By the induction
hypothesis, fn is a non-negative function, and hence so is fn+1. This gives the desired result. �

The following “positivity principle” follows readily from Theorem 3.5.
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Corollary 3.6. If u0 ≥ 0 in Theorem 3.5, then un ≥ 0 for all n ≥ 0.

4. A priori estimates

In this section we develop some tools needed for the proof of Theorems 2.1 and 2.3. It might help
to emphasize that we are considering the case where the random field ξ := {ξn(x)}n≥0,x∈Zd is
[discrete] white noise. That is, the ξ ’s are mutually independent and have mean 0 and variance 1.
[In fact, they will not be assumed to be identically distributed.] Note, in particular, that K1,ξ = 0
and K2,ξ = 1, where K1,ξ and K2,ξ were defined in Lemma 3.3.

Here, and throughout, let G := {Gn}∞n=0 denote the filtration generated by the infinite-
dimensional “white-noise” {ξn}∞n=0. Recall that a random field f := {fn(x)}n≥0,x∈Zd is G -
predictable if the random function fn is measurable with respect to Gn−1 for all n ≥ 1, and
f0 is non-random.

Given a G -predictable random field f and λ > 1, we define

‖f‖λ,p := sup
n≥0

sup
x∈Zd

λ−n‖fn(x)‖p. (4.1)

Define for all G -predictable random fields f,

(Af)n(x) :=
n∑

j=0

∑
y∈Zd

P
n−j
x,y σ (fj (y))ξj (y). (4.2)

We begin by developing an a priori estimate for the operator norm of A. This estimate is a
discrete Lp-counterpart of Lemma 3.3 in [18], while the continuity estimates given by Proposi-
tion 4.4 is a discrete version of Lemma 3.4 in [18].

Proposition 4.1. For all G -predictable random fields f and all λ > 1,

‖Af‖λ,p ≤ cp

(|σ(0)| + Lipσ ‖f‖λ,p

) ·
√

λ2ϒ(λ2). (4.3)

The proof requires a simple arithmetic result [18], Lemma 3.2:

Lemma 4.2. (a + b)2 ≤ (1 + ε)a2 + (1 + ε−1)b2 for all a, b ∈ R and ε > 0.

Hereforth, define

qk :=
∑
z∈Zd

|P k
0,z|2 for all k ≥ 0. (4.4)

The proof of Proposition 4.1 also requires the following Fourier-analytic interpretation of the
function ϒ .

Lemma 4.3. λϒ(λ) = ∑∞
n=0 λ−nqn for all λ > 1.
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Proof. By the Plancherel theorem [43], page 26,

qn = 1

(2π)d

∫
(−π,π)d

|φ(ξ)|2n dξ. (4.5)

Multiply the preceding by λ−n and add over all n ≥ 0 to finish. �

Proof of Proposition 4.1. According to Burkholder’s inequality,

E(|(Af)n(x)|p) ≤ c
p
pE

(∣∣∣∣∣
n∑

j=0

∑
y∈Zd

|P n−j
x,y |2 · |σ(fj (y))|2

∣∣∣∣∣
p/2)

. (4.6)

Since p/2 is a positive integer, the generalized Hölder inequality yields the following: For all
j = 0, . . . , n and y1, . . . , yp/2 ∈ Zd ,

E

(
p/2∏
i=1

|σ(fj (yi))|2
)

≤
p/2∏
i=1

‖σ(fj (yi))‖2
p. (4.7)

After a little algebra, the preceding and (4.6) together imply that

‖(Af)n(x)‖2
p ≤ c2

p

n∑
j=0

∑
y∈Zd

|P n−j
x,y |2 · ‖σ(fj (y))‖2

p. (4.8)

Because σ is Lipschitz, |σ(x)| ≤ |σ(0)| + Lipσ |x| for all x ∈ R. Consequently, by Lemma 4.2
and Minkowski’s inequality,

‖(Af)n(x)‖2
p ≤ c2

p(1 + ε)|σ(0)|2
n∑

k=0

qk

(4.9)

+ c2
p(1 + ε−1)Lip2

σ

n∑
j=0

∑
y∈Zd

|P n−j
x,y |2 · ‖fj (y)‖2

p.

In accord with Lemma 4.3,

n∑
k=0

qk ≤ λ2n+2ϒ(λ2) for all n ≥ 0 (4.10)

and also

sup
y∈Zd

‖fj (y)‖2
p ≤ λ2j‖f‖2

λ,p for all j ≥ 0. (4.11)
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It follows that λ−2n‖(Af)n(x)‖2
p is bounded above by

c2
p(1 + ε)|σ(0)|2λ2ϒ(λ2)

(4.12)

+ c2
p(1 + ε−1)Lip2

σ

n∑
j=0

∑
y∈Zd

|P n−j
x,y |2λ−2(n−j)‖f‖2

λ,p.

We now take supremum over all n ≥ 1 and x ∈ Zd , and obtain

‖Af‖2
λ,p ≤ c2

pλ2ϒ(λ2) · {(1 + ε)|σ(0)|2 + (1 + ε−1)Lip2
σ ‖f‖2

λ,p}. (4.13)

We obtain the result upon optimizing the right-hand side over ε > 0. �

Next we present an a priori estimate of the degree to which A is continuous.

Proposition 4.4. For all predictable random fields f and g, and all λ > 1,

‖Af − Ag‖λ,p ≤ cpLipσ ‖f − g‖λ,p ·
√

λ2ϒ(λ2). (4.14)

Proof. We can, and will, assume without loss of generality that ‖f − g‖λ,p < ∞; else, there is
nothing to prove. By using Burkholder’s inequality and arguing as in the previous lemma, we
find that

‖(Af)n(x) − (Ag)n(x)‖2
p ≤ c2

p Lip2
σ ·

n∑
j=0

∑
y∈Zd

|P n−j
x,y |2 · ‖fj (y) − gj (y)‖2

p. (4.15)

We can apply (4.11), but with f − g in place of f, and follow the proof of Lemma 4.3 to finish the
proof. �

5. Proof of main results

Before we prove the main results we provide a version of Duhamel’s principle for discrete equa-
tions.

Proposition 5.1 (Duhamel’s principle). Suppose that there exists a unique solution to (2.1);
then for all n ≥ 0 and x ∈ Zd ,

un+1(x) = (P n+1u0)(x) +
n∑

j=0

∑
y∈Zd

P
n−j
x,y σ (uj (y))ξj (y) a.s. (5.1)

Remark 5.2. Among other things, Proposition 5.1 implies that {un}∞n=0 is an infinite-dimensional
Markov chain with values in (Zd)Z+ and that un+1 is measurable with respect to {ξk(•)}nk=0 for
all n ≥ 0.
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Proof of Proposition 5.1. One checks directly that (2.2) implies that (P un)(x) can be written as
(P 2un−1)(x) + ∑

y∈Zd Px,yσ (un−1(y))ξn−1(y), and the proposition follows a simple induction
scheme. �

5.1. Remaining proofs

Proof of Theorem 2.1. We proceed in two steps: First we prove uniqueness and (2.7), and then
we establish (2.8).

Step 1: Let f
(0)
n (x) := u0(x) for all n ≥ 0 and x ∈ Zd . We recall the operator A from (4.2), and

define iteratively a predictable random field f(�+1) as follows: f
(�+1)
0 (x) := u0(x) for all x ∈ Zd ,

and

f
(�+1)
n+1 (x) := (P n+1u0)(x) + (

Af(�)
)
n
(x), (5.2)

for integers n, � ≥ 0 and x ∈ Zd . Proposition 4.1 and induction together imply that ‖Af(�)‖λ,p <

∞ for all λ > 1 and � ≥ 0. And therefore, ‖f(m)‖λ,p < ∞ for all m ≥ 0 and λ > 1, as well. We

multiply (5.2) by λ−n and use the fact that f
(m)
0 ≡ u0 to obtain

∥∥f(�+1) − f(�)
∥∥

λ,p
= 1

λ

∥∥Af(�) − Af(�−1)
∥∥

λ,p
. (5.3)

Thus, Proposition 4.4 implies∥∥f(�+1) − f(�)
∥∥

λ,p
≤ cp Lipσ

√
ϒ(λ2) · ∥∥f(�) − f(�−1)

∥∥
λ,p

. (5.4)

This and iteration together yield∥∥f(�+1) − f(�)
∥∥

λ,p
≤ (

cp Lipσ

√
ϒ(λ2)

)� · ∥∥f(1) − f(0)
∥∥

λ,p
. (5.5)

In order to estimate the final (λ,p)-norm we use (5.2) [� := 0] and Minkowski’s inequality to
find that ∥∥f

(1)
n+1 − f

(0)
n+1

∥∥
p

≤ 2‖u0(x)‖p + ∥∥(
Af(0)

)
n

∥∥
p
. (5.6)

We argue as before and use Proposition 4.1 to deduce that ‖f(1) − f(0)‖λ,p is bounded above by

2‖u0‖λ,p + cp(|σ(0)| + Lipσ ‖u0‖λ,p)
√

ϒ(λ2). Thus, by (5.5),∥∥f(�+1) − f(�)
∥∥

λ,p
(5.7)

≤ (
cp Lipσ

√
ϒ(λ2)

)� · {cp

(|σ(0)| + Lipσ ‖u0‖λ,p

)√
ϒ(λ2) + 2‖u0‖λ,p

}
.

Consequently, if ϒ(λ2) < (cp Lipσ )−2, then ‖f (�+1) −f (�)‖λ,p is summable in �. Whence there
exists a predictable f such that ‖f(�) − f‖λ,p tends to zero as � tends to infinity, and f solves
(2.1). Proposition 5.1 implies that fn(x) = un(x) a.s., for all n ≥ 0 and x ∈ Zd . It follows that
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‖u‖λ,p < ∞ provided that ϒ(λ2) < (cp Lipσ )−2. The first part of the theorem – that is, existence,
uniqueness, and (2.7) – all follow from this finding. We now turn our attention to the second step
of the proof.

Step 2: Hereforth, we assume that α := infx∈Zd u0(x) > 0 and |σ(z)| ≥ Lσ |z| for all z ∈ R. It
follows readily from Proposition 5.1 that

E(|un+1(x)|2) = |(P n+1u0)(x)|2 +
n∑

j=0

∑
y∈Zd

|P n−j
x,y |2E(|σ(uj (y)|2)

(5.8)

≥ α2 + L2
σ ·

n∑
j=0

∑
y∈Zd

|P n−j

0,y−x |2E(|uj (y)|2).

In order to solve this we define for all λ > 1 and z ∈ Zd ,

Fλ(z) :=
∞∑

j=0

λ−j |P j

0,z|2 and Gλ(z) :=
∞∑

j=0

λ−j E(|uj (z)|2). (5.9)

We can multiply the extreme quantities in (5.8) by λ−(n+1) and add [n ≥ 0] to find that

Gλ(x) ≥ α2λ

λ − 1
+ L2

σ

λ
· (Fλ ∗ Gλ)(x), (5.10)

where the left-hand side is obtained after adding the initial term. This is a renewal inequality
[8]; we prove that (5.10) does not have a finite solution when ϒ(λ) ≥ L−2

σ . If 1(x) := 1 for all
x ∈ Zd , then (Fλ ∗ 1)(x) = λϒ(λ) for all x ∈ Zd [Lemma 4.3]. Therefore, (5.10) yields

Gλ(x) ≥ α2λ

λ − 1
+ L2

σ

λ
·
(

α2λ

λ − 1
(Fλ ∗ 1)(x) + L2

σ

λ
· (Fλ ∗ Fλ ∗ Gλ)(x)

)
(5.11)

= α2λ

λ − 1
{1 + ϒ(λ)L2

σ } +
(

L2
σ

λ

)2

· (Fλ ∗ Fλ ∗ Gλ)(x).

We now use (5.10) and the above to obtain an improved lower estimate on Gλ(x). This procedure
is repeated ad infinitum to obtain

Gλ(x) ≥ α2λ

λ − 1

∞∑
n=0

(ϒ(λ)L2
σ )n. (5.12)

Consequently, ϒ(λ) ≥ L−2
σ implies that Gλ(x) = ∞ for all x ∈ Zd . If there exists a λ0 > 1 such

that ϒ(λ0) > L−2
σ , then the preceding tells us that Gλ0 ≡ ∞. Now suppose, in addition, that there

exists z ∈ Zd such that

E(|un(z)|2) = O(λn
0). (5.13)
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Then by the continuity of ϒ we can choose a finite λ > λ0 such that ϒ(λ) ≥ L−2
σ , whence Gλ ≡

∞. This yields a contradiction, since (5.13) implies that Gλ(z) ≤ const × ∑∞
n=0(λ0/λ)n < ∞.

We have verified (2.8) when p = 2. An application of Hölder’s inequality proves (2.8) for all
p ≥ 2, whence the theorem. �

Proof of Theorem 2.3. Because u0 has finite support, it is bounded. Therefore, Theorem 2.1
ensures the existence of an a.s.-unique solution u to (2.1).

Choose and fix p ∈ [2,∞), and let Lp(Zd) denote the usual space of p-times summable
functions f : Zd → R, normed via

‖f ‖p

Lp(Zd )
:=

∑
x∈Zd

|f (x)|p. (5.14)

We also define m to be the counting measure on Zd and consider the Banach space B := Lp(m×
P), all the time noting that for all random functions g ∈ B,

‖g‖B =
∣∣∣∣E( ∑

x∈Zd

|g(x)|p
)∣∣∣∣1/p

. (5.15)

Evidently, u0 ∈ Lp(Zd); we claim that

1

2
lnϒ−1(L−2

σ ) ≤ lim sup
n→∞

1

n
ln‖un‖B ≤ 1

2
lnϒ−1((cp Lipσ )−2). (5.16)

For every λ > 1 we define B(λ) to be the Banach space of all G -predictable processes f with
‖f‖B(λ) < ∞, where

‖f‖B(λ) := sup
n≥0

λ−n‖fn‖B. (5.17)

Note that ‖f‖λ,p ≤ ‖f‖B(λ).
Since u0 has finite support, we can use Theorem 3.4 to write

‖un‖B = O(nd/p) × sup
x∈Zd

‖un(x)‖p. (5.18)

Therefore, the following is valid for all λ ∈ (0,∞):

‖u‖B(λ) ≤ const · sup
n≥0

(
nd/pλ−n sup

x∈Zd

‖un(x)‖p

)
. (5.19)

As a result, if we select λ > λ0 > 1
2ϒ−1((cp Lipσ )−2)), then

‖u‖λ,p ≤ const × ‖u‖B(λ0) < ∞, (5.20)

thanks to the upper bound of Theorem 2.1. It follows immediately from this that

lim sup
n→∞

n−1ln‖un‖B ≤ λ0
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for all finite λ0 > 1
2ϒ−1((cp Lipσ )−2). The second inequality in (5.16) is thus proved. Next we

derive the first inequality in (5.16).
Thanks to Jensen’s inequality, it suffices to consider only the case p = 2. According to (2.2),

E(|un+1(x)|2) ≥ |(P n+1u0)(x)|2 + L2
σ ·

n∑
j=0

∑
y∈Zd

|P n−j
x,y |2E(|uj (y)|2). (5.21)

Consequently,

‖un+1‖2
B ≥ ‖u0‖2

L2(Zd )
+ L2

σ ·
n∑

j=0

qn−j‖uj‖2
B. (5.22)

We multiply both sides by λ−(n+1), then sum from n = 0 to n = ∞ and finally apply Lemma 4.3,
in order to obtain the following:

∞∑
n=1

λ−n‖un‖2
B ≥ 1

λ − 1
· ‖u0‖2

L2(Zd )
+ L2

σ ϒ(λ) ·
∞∑

k=0

λ−k‖uk‖2
B. (5.23)

Because u0 �≡ 0, we have (λ − 1)−1 · ‖u0‖2
L2(Zd )

> 0, and this shows that
∑∞

n=1 λ−n‖un‖2
B = ∞

whenever L2
σ ϒ(λ) ≥ 1. In particular, it must follow that lim supn→∞ ρ−n‖un‖2

B = ∞ whenever
ρ ∈ (1, λ]. This implies the first inequality in (5.16).

Now we can conclude the proof from (5.16). According to Theorem 3.4,

sup
x∈Zd

‖un(x)‖2 ≤ ‖un‖B ≤ O(nd/2) × sup
x∈Zd

‖Mn‖2. (5.24)

Therefore, (5.16) implies the theorem. �

Before we prove Corollary 2.5 we state and prove an elementary convexity lemma that is due
essentially to Carmona and Molchanov [6], Theorem III.1.2, page 55.

Lemma 5.3. Suppose un(x) ≥ 0 for all n ≥ 0, and x ∈ Zd , γ̄ (p) < ∞ for all p < ∞ and
γ̄ (2) > 0. Then u is weakly intermittent.

Proof. Because u is non-negative,

γ̄ (α) = lim sup
n→∞

1

n
ln E[un(x)α] for all α ≥ 0. (5.25)

Thanks to Proposition 5.1, E[un(x)] = (P nu0)(x) is bounded above uniformly by supx u0(x),
which is finite. Consequently,

γ̄ (1) = 0 < γ̄ (2). (5.26)
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Next we claim that γ̄ is convex on R+. Indeed, for all a, b ≥ 0, and λ ∈ (0,1), Hölder’s inequality
yields the following: For all s ∈ (1,∞) with t := s/(s − 1),

E
[
un(x)λa+(1−λ)b

] ≤ {E[un(x)sλa]}1/s
{
E
[
un(x)t (1−λ)b

]}1/t
. (5.27)

Choose s := 1/λ to deduce the convexity of γ̄ from (5.25).
Now we complete the proof: By (5.26) and convexity, γ̄ (p) > 0 for all p ≥ 2. If p′ > p ≥ 2,

then we write p = λp′ + (1 −λ) – with λ := (p − 1)/(p′ − 1) – and apply convexity to conclude
that

γ̄ (p) ≤ λγ̄ (p′) + (1 − λ)γ̄ (1) = p − 1

p′ − 1
γ̄ (p′). (5.28)

Since (5.28) holds, in particular, with p ≡ 2, it implies that γ̄ (p′) > 0. And the lemma follows
from (5.28) and the inequality (p − 1)/(p′ − 1) < p/p′. �

Proof of Corollary 2.5. Condition 3.7 and Theorem 3.5 imply that un(x) ≥ 0, and hence
(5.25) holds. Now “γ̄ (2) > 0” and “γ̄ (p) < ∞ for p > 2” both follow from Theorem 2.3, and
Lemma 5.3 completes the proof. �

Proof of Theorem 2.7. The assertion about the existence and uniqueness of the solution to the
Anderson model (2.1) with σ(z) := z follows from Lemma 3.1. The solution is non-negative by
Lemma 3.6. Now we prove the claims about the growth of the solution u.

It is possible to check that Un := ∑
x∈Zd un(x) can be written out explicitly as Un = U0 ×∏n

j=1(1+ξj ). Since 0 < U0 < ∞, Kolmogorov’s strong law of large numbers implies that almost
surely,

lim
n→∞

1

n
lnUn = lim

n→∞
1

n
E[lnUn] = E[ln(1 + ξ1)] = ′(0+). (5.29)

Also, limn→∞ n−1 ln E(U
p
n ) = (p) for all p ≥ 0. Because Mn ≤ Un, we have

lim sup
n→∞

1

n
lnMn ≤ ′(0+) a.s.,

lim sup
n→∞

1

n
E(lnMn) ≤ ′(0+) and (5.30)

lim sup
n→∞

1

n
ln E(M

p
n ) ≤ (p) for all p ∈ [0,∞).

Next we strive to establish the complementary inequalities to these.
In order to derive the second, and final, half of the theorem, we choose and fix some x0 ∈ Zd

such that u0(x0) > 0. Let v := {vn(x)}n≥0,x∈Zd solve (2.1) with σ(z) = z, subject to v0(x) =
u0(x0) if x = x0 and v0(x) = 0 otherwise. The existence and uniqueness of v follows from
Lemma 3.1. By Corollary 3.6,

0 ≤ vn(x) ≤ un(x) for all n ≥ 0 and x ∈ Zd . (5.31)
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Let Vn := ∑
x∈Zd vn(x). Then

lim
n→∞

1

n
lnVn = lim

n→∞
1

n
E[lnVn] = E[ln(1 + ξ1)] = ′(0+). (5.32)

Also, limn→∞ n−1 ln E(V
p
n ) = (p) for all p ∈ [0,∞). Recall R from (3.5). Because v0 = 0

off of {x0}, (3.6) implies that Vn ≤ 2d{nR + 1}d × supx∈Zd vn(x). Owing to Theorem 3.5,
supx∈Zd vn(x) ≤ Mn. Therefore,

lim inf
n→∞

1

n
lnMn ≥ ′(0+), lim inf

n→∞
1

n
E(lnMn) ≥ ′(0+) and

(5.33)

lim inf
n→∞

1

n
ln E(M

p
n ) ≥ (p) for all p ∈ [0,∞).

Together with (5.30), these bounds prove Theorem 2.7. �

6. An example

Let us consider (2.1) in the special case that: (i) ξ s are independent mean-zero variance-one
random variables; (ii) σ(z) = νz for a fixed ν > 0; (iii) u0 has finite support; and (iv) L is the
generator of a simple symmetric random walk on Z. That is,

(Lh)(x) = h(x + 1) + h(x − 1) − 2h(x)

2
, (6.1)

for every function h : Z → R and all x ∈ Z. The operator 2L is called the graph Laplacian on Z,
and the resulting form,

un+1(x) − un(x) = (Lun)(x) + νun(x)ξn(x), (6.2)

of (2.1) is an Anderson model of a parabolic type [6,37]. Theorems 2.1 and 2.3 together imply that
the upper Lyapounov exponent of the solution to (2.1) is lnϒ−1(ν−2) in this case. We compute
the quantity ϒ−1(ν−2) next. The following might suggest that one cannot hope to compute upper
Lyapounov exponents explicitly in general.

Proposition 6.1. If ν > 0, then

ϒ−1(ν−2) = inf

{
λ > 1: 1F1

(
1

2
;1; 1

λ

)
<

λ

ν2

}
. (6.3)

Proof. Recall the qks from (4.4). According to Plancherel’s theorem and symmetry,

qn = 1

π

∫ π

0

(
1 + cos(2ξ)

2

)n

dξ. (6.4)
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We may apply the half-angle formula for cosines, and then Wallis’s formula (Davis [15], equation
(6.1.49), page 258), in order to find that if n ≥ 1, then

qn = (2n − 1)!!
(2n)!! , (6.5)

where “!!” denotes the double factorial. Therefore, 1F1(1/2;1; •) is the generating function of
the sequence {qn}∞n=0; confer with Slater [46], equation (13.1.2), page 504. This and Lemma 4.3
together prove that

λϒ(λ) = 1F1

(
1

2
;1; 1

λ

)
, (6.6)

and the lemma follows since ϒ is a continuous and strictly decreasing function on (0,∞). �
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