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This paper studies �1 regularization with high-dimensional features for support vector machines with a built-
in reject option (meaning that the decision of classifying an observation can be withheld at a cost lower
than that of misclassification). The procedure can be conveniently implemented as a linear program and
computed using standard software. We prove that the minimizer of the penalized population risk favors
sparse solutions and show that the behavior of the empirical risk minimizer mimics that of the population
risk minimizer. We also introduce a notion of classification complexity and prove that our minimizers adapt
to the unknown complexity. Using a novel oracle inequality for the excess risk, we identify situations where
fast rates of convergence occur.
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1. Introduction

In this paper we further investigate the new classification rules introduced in [1,11] with a built-
in reject option in the standard binary classification setting, where we observe independent re-
alizations (Xi, Yi), i = 1, . . . , n, of a random pair (X,Y ) in X × {−1,+1} (here, X is an ar-
bitrary space). A discriminant function f : X → R classifies an observation x ∈ X into one of
two classes, labeled −1 or +1. Viewing f (x) as a proxy value of the conditional probability
η(x) = P{Y = 1|X = x}, we are less confident for small values of |f (x)|, corresponding to η(x)

near 1/2. Our strategy is to report sgn(f (x)) ∈ {−1,1} if |f (x)| exceeds some prescribed thresh-
old τ and withhold decision otherwise. Assuming that the cost of making a wrong decision is 1
and that of withholding a decision is d , the appropriate risk function is

R�(f ) = E[�(Yf (X))] = P{Yf (X) < −τ } + dP{|Yf (X)| ≤ τ }
with the discontinuous loss function

�(z) =
{1, if z < −τ ,

d, if |z| ≤ τ ,
0, otherwise.

Since we always reject if d = 0 and never reject if d ≥ 1/2 (see [5]), we take 0 < d ≤ 1/2 in
what follows without loss of generality. Although the minimizer of this risk is not unique, all such
minimizers correspond to the unique classification rule that assigns −1,+1 or withhold decision,
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depending on which of 1 − η, η or d is smallest. The smallest risk is E[min{η(X),1 − η(X), d}]
and we may interpret the cost d as the largest conditional probability of misclassification that is
considered tolerable.

In practice, minimization of the empirical counterpart R̂�(f ) = (1/n)
∑n

i=1 �(Yif (Xi)) of
R�(f ) over a large class of functions f is computationally not feasible. For this reason, we
could replace the loss function � by a convex surrogate loss function and consider discriminant
functions f of the form fλ(x) = ∑M

j=1 λjfj (x) based on a set of known functions fj : X → R

and coefficients λj ∈ R, 1 ≤ j ≤ M . Following [1], we will consider the generalized hinge loss

φ(z) =
{1 − az, if z < 0,

1 − z, if 0 ≤ z < 1,
0, otherwise

with slope a = (1 − d)/d > 1. Observe that φ(z) is piecewise linear, so that minimization of the
empirical risk

R̂φ(fλ) = 1

n

n∑
i=1

φ(Yi fλ(Xi)) (1.1)

can be solved by a tractable linear program. Crucial for the choice of φ(z) is that it is classifica-
tion calibrated: the unique minimizer

f0(x) =
{−1, if η(x) < d,

0, if d ≤ η(x) ≤ 1 − d,

+1, if η(x) > 1 − d

of Rφ(f ) = E[φ(Yf (X))] also minimizes the risk R�(f ) = E[�(Yf (X))] over all measurable
f : X → R for all τ < 1; see, for example, [1,12].

At this point it is important to note that truncating the minimizer sgn(2η−1) of the hinge-loss-
based risk E(1−Yf (X))+ does not yield the optimal rule for any positive threshold τ . This is the
reason why we generalize the hinge loss instead. In addition to the generalized hinge loss, there
are also other choices of the surrogate loss function and corresponding truncation value τ that are
classification calibrated. The treatment for the generalized hinge loss differs considerably from
that for other losses, such as the logistic, exponential and quadratic loss, which are smoother. We
refer to [12] for a detailed discussion.

Observe that φ(z) ≥ �(z) for all τ ≤ 1 − d and, subsequently, E[�(Yf (X))] ≤ E[φ(Yf (X))].
It is shown in [1] that a similar relationship remains true for the excess risks, that is, the inequality

E[�(Yf (X))] − E[�(Yf0(X))] ≤ E[φ(Yf (X))] − E[φ(Yf0(X))]
holds for all d ≤ τ ≤ 1 − d . This property is useful for deriving oracle inequalities in terms of
the �-risk since minimization of (1.1) produces oracle inequalities in terms of the φ-risk rather
than the �-risk directly.

Of particular interest here is the case where the number of basis functions, M , is large when
compared with the sample size n. Usually, the minimization of the empirical risk R̂φ(fλ) is com-
puted under a restriction on the quadratic term

∑M
j=1 λ2

j . Here, we opt instead for an �1-type



1370 M. Wegkamp and M. Yuan

restriction ‖λ‖�1 := ∑M
j=1 |λj | and estimate fλ by f

λ̂(r), where

λ̂(r) := arg min
λ∈RM

(
R̂φ(fλ) + r‖λ‖�1

)
(1.2)

and r > 0 is a tuning parameter. The choice of an �1 penalty reflects our preference for sparse
solutions, which is desirable when M is large.

In the remainder of this paper, we study the properties of λ̂(r) and its population counterpart,

λ(r) := arg min
λ∈RM

(
Rφ(fλ) + r‖λ‖�1

)
. (1.3)

We establish oracle inequalities for λ(r) and λ̂(r) in Sections 2 and 3, respectively. The results
that we obtain are similar in spirit to those from [6,8,11]. However, [8,11] do not discuss prop-
erties of λ(r), and our results in Section 2 obtained here extend those proved by [6] in the con-
text of twice differentiable loss functions. Furthermore, the oracle inequalities for the penalized
empirical risk minimizer λ̂(r) in Section 3 are much sharper than earlier results from [11] for
0 ≤ d ≤ 1/2 and [8] for d = 1/2. In particular, the new inequality reveals that the rate of conver-
gence of the excess risk of f

λ̂
can be even faster than 1/n if the optimal discriminant function f0

can be written as a linear combination of the fj ’s in the dictionary. Moreover, we relax the con-
dition on the dictionary and do not require that the parameter λ is bounded. We emphasize that
our results hold, in particular, for d = 1/2, the case of support vector machines without a reject
option, and generalize and extend the results obtained in [8]. In addition, novel empirical bounds
on the error and reject rate are given. To demonstrate the feasibility of the �1-regularized support
vector machine with a reject option, in Section 4 we formulate λ̂(r) as a solution of a linear pro-
gram and report some numerical experiments. Some technical lemmas and a maximal inequality
for a weighted empirical process are collected in the Appendix.

2. Properties of the theoretical solution

We begin by studying λ(r), the population version of λ̂(r). Recall that λ(r) is defined by

λ(r) = arg min
λ∈RM

{Rφ(fλ) + r‖λ‖�1}. (2.1)

In particular, λ(0) minimizes the risk Rφ(fλ) over λ ∈ R
M . By definition, we find that

Rφ

(
fλ(r)

) + r‖λ(r)‖�1 ≤ Rφ(fλ) + r‖λ‖�1 (2.2)

holds for all λ ∈ R
M . This inequality applied to λ = λ(0) has the following consequences.

Proposition 2.1. Let I0 = {i :λi(0) �= 0} be the support of λ(0).

(a) If ‖λ(0)‖�1 = o(1/r) as r → 0, then Rφ(λ(r)) → Rφ(λ(0)) as r → 0.
(b) ‖λ(r)‖�1 ≤ ‖λ(0)‖�1 for all r > 0.
(c)

∑
j /∈I0

|λj (r) − λj (0)| ≤ ∑
j∈I0

|λj (r) − λj (0)|.
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Proof. After applying inequality (2.2) to λ = λ(0) and using the fact that Rφ(fλ(0)) ≤ Rφ(fλ(r)),
we get

0 ≤ Rφ

(
fλ(r)

) − Rφ

(
fλ(0)

) ≤ r‖λ(0)‖�1 − r‖λ(r)‖�1 ≤ r‖λ(0)‖�1,

which implies (a). The second claim follows from

Rφ

(
fλ(r)

) + r‖λ(r)‖�1 ≤ Rφ

(
fλ(0)

) + r‖λ(0)‖�1 ≤ Rφ

(
fλ(r)

) + r‖λ(0)‖�1 .

For the proof of part (c), we first observe that ‖λ(r)‖�1 ≤ ‖λ(0)‖�1 is equivalent to∑
j /∈I0

|λj (r)| ≤
∑
j∈I0

|λj (0)| −
∑
j∈I0

|λj (r)|.

Next, we note that the term on the left equals
∑

j /∈I0
|λj (0) − λj (r)| and we bound the term on

the right by
∑

j∈I0
|λj (0) − λj (r)| using the triangle inequality. This proves part (c). �

This result gives a simple condition for Rφ(fλ(r)) → Rφ(fλ(0)) and shows that the �1 norm of
the solution λ(r) is always smaller than the �1 norm of λ(0). Similar properties are established
by [6] for minimizers of twice differentiable loss functions φ and �p norms for p > 1. In contrast,
we consider here a non-differentiable loss function φ and p = 1.

Our target is a sparse vector θ ∈ R
M with risk Rφ(fθ ) close to Rφ(fλ(0)). Before we make this

precise, we need to introduce a few concepts depending on the behavior of η(X) near d and
1 − d , and the set of functions fj .

Definition 2.2 (Classification complexity). The classification complexity is defined as the largest
number α ≥ 0 such that, for some A ≥ 1 and all t > 0,

P{|η(X) − d| ≤ t} ≤ Atα and P{|η(X) − (1 − d)| ≤ t} ≤ Atα.

This notion of complexity is a generalization of Tsybakov’s margin condition [9] for d = 1/2.
The behavior of η(X) is obviously not relevant in the interval (d,1 − d), only at the endpoints
d and 1 − d . The inequality always holds for α = 0 and A = 1. In contrast, α = +∞ describes
the easiest classification situation where we essentially require that η(X) stays away from d and
1 − d with probability one. If η(X) has a density in the neighborhood of d and 1 − d , then we
have that α = 1.

Definition 2.3 (Restricted eigenvalue condition). Let θ ∈ R
M , c ≥ 1 and 	 be the M × M

matrix with entries 	i,j = 4E[fi(X)fj (X)ω(X)] with ω(X) = η(X){1−η(X)}. For I = {i : θi �=
0}, the support of θ , we define

κ2(θ, c) = inf
λ�=θ∈RM : ‖(θ−λ)

IC ‖�1 ≤c‖(θ−λ)I ‖�1

(θ − λ)′	(θ − λ)

4‖(θ − λ)I‖2
�2

.

The condition κ(θ, c) > 0 is a restrictive eigenvalue condition on the Gram matrix 	 of the
type introduced in [2] in the context of linear regression. Using similar reasoning as in [2],
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page 1714, it is implied by the local mutual coherence condition used in [11]. We are now in
position to state an oracle inequality for the excess risk,

�Rφ

(
fλ(r)

) := Rφ

(
fλ(r)

) − Rφ(f0), (2.3)

of the regularized minimizer λ(r) and the �1-distance between the vectors λ(r) and θ .

Theorem 2.4. Let α be the classification complexity, and θ be such that R(fθ ) ≤ R(fλ(r)) and
κ = κ(θ,1) > 0. Then, for any

r ≤ (2CF )−(2+α)/α{4A(2d)α}−1/α(κ−2‖θ‖�0)
−(1+α)/α (2.4)

with CF = maxj‖fj‖∞ = maxj supx |fj (x)| and ‖θ‖�0 = ∑M
j=1 I {θj �= 0}, we have

�Rφ

(
fλ(r)

) + r‖λ(r) − θ‖�1
(2.5)

≤ 3�Rφ(fθ ) + 6{4A(2d)α}1/(2+α)‖fθ − f0‖∞(κ−2r2‖θ‖�0)
(1+α)/(2+α).

Proof. Set δ = λ(r) − θ . Let I = {i : θi �= 0} be the support of θ . It is straightforward to derive
from Proposition 2.1 that

Rφ

(
fλ(r)

) + r‖δ‖�1 ≤ Rφ(fθ ) + 2r‖δI‖�1

and, subsequently, that

r‖δIC ‖�1 ≤ Rφ(fθ ) − Rφ

(
fλ(r)

) + r‖δI‖�1 ≤ r‖δI‖�1 .

The first inequality, combined with the assumption κ = κ(θ,1) > 0, yields

�Rφ

(
fλ(r)

) + r‖δ‖�1 ≤ �Rφ(fθ ) + κ−1‖fδ‖(r2|I |)1/2

≤ �Rφ(fθ ) + κ−1‖fλ − f0‖(r2|I |)1/2 + κ−1‖fθ − f0‖(r2|I |)1/2,

using the notation ‖f‖ = E
1/2[f2(X)ω(X)] and ω(X) = η(X)(1 − η)(X). By Lemma A.1 in

Appendix A, we find that

‖fλ − f0‖2+2α ≤ 4A(2d)α‖fλ − f0‖2+α∞ {�Rφ(fλ)}α

for λ = θ and λ = λ(r). After we plug this bound into the right-hand side of the previous display,
we find that

�Rφ

(
fλ(r)

) + r‖δ‖�1

≤ �Rφ(fθ ) + κ−1(r2|I |)1/2{4A(2d)α}1/(2+2α)
∥∥fλ(r) − f0

∥∥(2+α)/(2+2α)

∞
{
�Rφ

(
fλ(r)

)}α/(2+2α)

+ κ−1(r2|I |)1/2{4A(2d)α}1/(2+2α)‖fθ − f0‖(2+α)/(2+2α)∞ {�Rφ(fθ )}α/(2+2α).
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Next, we apply Young’s algebraic inequality,

ab ≤ ap

p
+ bq

q
with p > 1 and q = p

p − 1
for all a, b > 0,

to the last two terms on the right-hand side, with p = (2 + 2α)/α and q = (2 + 2α)/(2 + α), to
get

�Rφ

(
fλ(r)

) + r‖δ‖�1

≤ �Rφ(fθ ) + α

2 + 2α

{
�Rφ

(
fλ(r)

) + �Rφ(fθ )
}

+ 2 + α

2 + 2α
{4A(2d)α}1/(2+α)(κ−2r2|I |)(1+α)/(2+α)

(∥∥fλ(r) − f0
∥∥∞ + ‖fθ − f0‖∞

)
.

Since ‖fλ(r) − f0‖∞ ≤ ‖fθ − f0‖∞ + CF ‖δ‖�1, we deduce, after invoking (2.4), that

(2 + α)�Rφ

(
fλ(r)

) + (1 + 3α/2)r‖δ‖�1

≤ (2 + 3α)�Rφ(fθ ) + 2(2 + α){4A(2d)α}1/(2+α)(κ−2r2|I |)(1+α)/(2+α)‖fθ − f0‖∞,

and the conclusion follows. �

It is interesting to see that the bound (2.5) crucially depends on the classification complexity
parameter α and ‖fθ − f0‖∞. In particular, if f0 can itself be represented as a linear combination
of the basis functions, then f0 = fλ(0). In this case, provided that κ(λ(0),1) > 0, Theorem 2.4
implies that �Rφ(fλ(r))+ r‖λ(r)−λ(0)‖�1 ≤ 0. In other words, we have the following corollary.

Corollary 2.5. If f0 = fλ(0) and κ(λ(0),1) > 0, then λ(r) = λ(0) for any

r ≤ (2CF )−(2+α)/α{4A(2d)α}−1/α(κ−2‖λ(0)‖�0)
−(1+α)/α.

3. �1-regularized empirical generalized hinge risk minimizers

In this section we study the estimate λ̂(2r). In what follows, we will simplify notation so as not to
show dependence of λ̂ on r whenever no confusion occurs. Again, we emphasize that our results
hold, in particular, for d = 1/2, the case of a support vector machine without a reject option.

Note that the inequality

R̂φ(λ̂) + 2r‖λ̂‖�1 ≤ R̂φ(λ) + 2r‖λ‖�1 (3.1)

applied to the vector of zeros λ = (0, . . . ,0)′ implies that ‖λ̂‖�1 ≤ φ(0)/(2r) = 1/(2r). This
means that we can restrict our analysis to the set

� = {λ ∈ R
M :‖λ‖�1 ≤ 1/(2r)}.
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The aim of this section is to show that λ̂ is close to λ(r) for a judiciously chosen tuning parame-
ter r .

Theorem 3.1. If, for some p ≥ 1,

r ≥ 1 − d

d
CF

{
9

√
2 log 2(M ∨ n)

n
+ 2

p log2 n√
2M ∨ 2n

+
√

2 log 1/δ

n

}
, (3.2)

then for all θ ∈ �, with probability larger than 1 − δ,

�Rφ(f
λ̂
) + r‖λ̂‖�1 ≤ �Rφ(fθ ) + 3r‖θ‖�1 + n−p

and, moreover,

�Rφ(f
λ̂
) + r‖λ̂ − θ‖�1 ≤ �Rφ(fθ ) + 4r‖θ‖�1 + n−p.

Proof. Write δ̂ = λ̂ − θ . Let ε = r−1n−p and define

r̂ = sup
λ∈�

{R̂φ(fλ) − Rφ(fλ)} − {R̂φ(fθ ) − Rφ(fθ )}
‖λ − θ‖�1 + ε

. (3.3)

By Propositions B.1 and B.2 in Appendix B,

P{r̂ ≤ r} ≥ 1 − δ

for the choice r given in (3.2). Rewriting the inequality (3.1), we find that

Rφ(f
λ̂
) ≤ Rφ(fθ ) + {R̂φ(fθ ) − Rφ(fθ )} − {R̂φ(f

λ̂
) − Rφ(f

λ̂
)}

+ 2r‖θ‖�1 − 2r‖λ̂‖�1 (3.4)

≤ Rφ(fθ ) + r̂(‖δ̂‖�1 + ε) + 2r‖θ‖�1 − 2r‖λ̂‖�1 .

Thus, on the event r̂ ≤ r , after adding r‖λ̂‖�1 to both sides, we obtain

Rφ(f
λ̂
) + r‖λ̂‖�1 ≤ Rφ(fθ ) + 3r‖θ‖�1 + rε,

which proves the first claim. Adding r‖δ̂‖�1 to both sides easily yields the second claim. �

A direct consequence of Theorem 3.1 is the following corollary which states that in the sparse
setting where r‖λ(r)‖�1 → 0, the estimator λ̂(2r) behaves like the penalized minimizer λ(r) in
terms of their risk.

Corollary 3.2. Suppose that r‖λ(r)‖�1 → 0 as n → ∞ for r satisfying (3.2). Then, with proba-
bility at least 1 − δ,

|{Rφ(λ̂) + r‖λ̂‖�1} − {Rφ(λ(r)) + r‖λ(r)‖�1}| → 0
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as n → ∞. In particular, when taking θ = λ(0), we have |Rφ(λ̂)−Rφ(λ(0))| → 0 and ‖λ̂(2r)−
λ(0)‖�1 = o(1/r).

Proof. We combine the basic property (3.1) applied to θ = λ(r) and Theorem 3.1, and we find
that on the event r̂ ≤ r ,

Rφ(λ(r)) + r‖λ(r)‖�1 ≤ Rφ(λ̂) + r‖λ̂‖�1 ≤ Rφ(λ(r)) + r‖λ(r)‖�1 + {2r‖λ(r)‖�1 + rε}.
The result then follows from {2r‖λ(r)‖�1 + rε} → 0. �

We emphasize that the above results do not impose any restrictions on the dictionary {fj }. If
we are willing to make assumptions on the Gram matrix 	 , then we obtain a more refined result.

Theorem 3.3. For all r satisfying (3.2) and θ ∈ � such that κ = κ(θ,7) > 0 and

(
κ2rα/(1+α)‖θ‖�0

)(1+α)/(2+α)
< c (3.5)

for some (small) c depending on CF , α, A and d , we have, for some C depending on c, that

�Rφ(f
λ̂
) + 1

2 r‖λ̂ − θ‖�1 ≤ 3�Rφ(θ) + C‖fθ − f0‖∞(κ−2r2‖θ‖�0)
(1+α)/(2+α) + n−p

holds with probability at least 1 − δ.

Proof. Recall that ε = r−1n−p . We may assume without loss of generality that

Rφ(fθ ) + εr ≤ Rφ(f
λ̂
) + 1

2 r‖δ̂‖�1 (3.6)

holds, since otherwise the statement holds trivially. Consequently, on the event r̂ ≤ r , using (3.4)
and (3.6), we get

Rφ(f
λ̂
) ≤ Rφ(fθ ) + εr + r‖δ̂‖�1 + 2r‖θ‖�1 − 2r‖λ̂‖�1

≤ Rφ(f
λ̂
) + 3

2 r‖δ̂‖�1 + 2r‖θ‖�1 − 2r‖λ̂‖�1

= Rφ(f
λ̂
) + 3

2 r‖δ̂I‖�1 + 3
2 r‖λ̂I c‖�1 + 2r‖θ‖�1 − 2r‖λ̂‖�1

= Rφ(f
λ̂
) + 3

2 r‖δ̂I‖�1 + 2r‖θ‖�1 − 2r‖λ̂I‖�1 − 1
2 r‖δ̂I c‖�1

≤ Rφ(f
λ̂
) + 7

2 r‖δ̂I‖�1 − 1
2 r‖λ̂I c‖�1

so that ‖δ̂I c‖�1 ≤ 7‖δ̂I‖�1 , where I is the support of θ . On the other hand,

Rφ(f
λ̂
) + 1

2 r‖δ̂‖�1 ≤ Rφ(fθ ) + εr + 3
2 r‖δ̂‖�1 + 2r‖θ‖�1 − 2r‖λ̂‖�1

≤ Rφ(fθ ) + εr + 3
2 r‖δ̂I‖�1 + 2r‖δ̂I‖�1 − 1

2 r‖λ̂I c‖�1

≤ Rφ(fθ ) + 7
2 r‖δ̂I‖�1 + rε.
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The remainder of the proof follows that of Theorem 2.4, with κ = κ(θ,7). �

This result differs from [11] (and [8] for the case d = 1/2) in the appearance of the norm
‖f0 − fθ‖∞ on the right-hand side of the (oracle) inequality. This implies that for f0 = fθ and
for some sparse θ = λ(0) satisfying the conditions of Theorem 3.3, we can expect fast rates,
regardless of the classification complexity! Another important difference with both papers is that
no restriction is imposed on the sup-norm of fλ. Such a condition is unnatural as |fλ| ≤ C may
overrule the restriction that the penalty term r‖λ‖�1 imposes.

We now consider bounds on the error and reject rates without an additional test sample. We
write

Pn{Y f
λ̂
(X) ≤ β} = 1

n

n∑
i=1

I {Yi fλ̂(Xi) ≤ β}

for any β > 0. The misclassification and rejection rate can be bounded above as follows.

Theorem 3.4. If

r(γ ) ≥ 9CF

γ

√
2 log 2(M ∨ n)

n
+ 2p log2(n)CF

γ
√

2(M ∨ n)
+ CF

γ

√
2 log(1/δ)

n
,

then, with probability at least 1 − δ, we have

P{Y f
λ̂
(X) ≤ −τ } ≤ min

γ>0
[Pn{Y f

λ̂
(X) ≤ −τ + γ } + r(γ )‖λ̂‖�1] + n−p,

P{|f
λ̂
(X)| ≤ τ } ≤ min

γ>0
[Pn{|fλ̂(X)| ≤ τ + γ } + r(γ )‖λ̂‖�1] + n−p.

Proof. Set

ϕγ (z) =

⎧⎪⎨
⎪⎩

1, if z < −τ ,
1

γ
(γ − τ − z), if −τ ≤ z ≤ −τ + γ ,

0, if z ≥ −τ + γ .

The following inequalities then hold uniformly in λ:

P{Y fλ(X) ≤ −τ } ≤ Pn{Y fλ(X) ≤ −τ + γ } + Rϕγ (fλ) − R̂ϕγ (fλ)

≤ Pn{Y fλ(X) ≤ −τ + γ } + r̂0{‖λ‖�1 + ε},
where

r̂0 = sup
λ∈�

|R̂ϕγ (fλ) − Rϕγ (fλ)|
‖λ‖�1 + ε

,

with ε given by εr(γ ) = n−p . We can invoke Propositions B.1 and B.2 to complete the proof of
the first claim. The proof of the second claim uses the reasoning above, with the only modification
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being that ϕγ (z) is now given by

ϕγ (z) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, if |z| < τ ,
1

γ
(z + γ + τ), if −τ − γ ≤ z ≤ −τ ,

− 1

γ
(z − γ − τ), if τ ≤ z ≤ τ + γ ,

0, if |z| ≥ τ + γ ;

the rest of the reasoning is unchanged. �

4. Numerical experiments

We now demonstrate the practical merits of λ̂(r) via a couple of numerical experiments. We begin
by noting that the computation of λ̂(r) can be conveniently formulated as a linear program. Let
ξ1, . . . , ξn be the slack variables such that

ξi ≥ 0, ξi ≥ 1 − Yifλ(Xi), ξi ≥ 1 − aYifλ(Xi). (4.1)

Clearly the minimum ξi that satisfies these constraints is φ(Yif (Xi)). We also introduce slack
variables ξn+i , i = 1, . . . ,M, to represent |λi |, that is,

ξn+i ≥ λi, ξn+i ≥ −λi. (4.2)

Using the slack variables, λ̂(r) can be given as the solution of the linear program

min
λ,ξ

[ξ1 + · · · + ξn + r(ξn+1 + · · · + ξn+M)]

subject to

ξi ≥ 0, ξi ≥ 1 − yihi, ξi ≥ 1 − aYihi, i = 1, . . . , n,

ξn+i ≥ λi, ξn+i ≥ −λi, i = 1, . . . ,M,

hi =
∑
j

λjfj (Xi), i = 1, . . . , n.

To illustrate the merits of λ̂, we implement the method described above and first apply it to a set
of simulated examples. To fix ideas, we set d = 0.25 or, equivalently, a = 3. For each run, 50
positive instances (Y = +1) and 50 negative instances (Y = −1) were generated. Two hundred
(M = 200) features (fj ’s) were simulated from a multivariate normal distribution. For positive
instances, the mean was set to (1/

√
2,1/

√
2,0, . . . ,0)′, whereas for the negative instances, the

mean was set to (−1/
√

2,−1/
√

2,0, . . . ,0)′. In both cases, the covariance matrix was the iden-
tity matrix. The operating characteristics of the method are demonstrated in Figure 1. On the
left-hand side, the misclassification rate (P(Y f

λ̂
(X) < −0.5)), rejection rate (P(|Y f

λ̂
(X)| < 0.5))
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Figure 1. Simulation – the effect of rejection, misclassification rate and excess risk R�. The left-hand
panel shows the three criteria as functions of the tuning parameter r for the support vector machine (SVM)
with rejection option for a typical run. Also included is the misclassification rate for the usual SVM. It
is evident that SVM with rejection option enjoys lower misclassification rate by withholding decision for
“hard-to-classify” cases. The right-hand panel compares the excess �-risk for SVM with or without rejection
option. The box plots of the excess risk are produced based on 200 runs. This again confirms that SVM with
rejection option leads to improved performance in terms of the � loss.

and associated �-risk of the �1-regularized generalized hinge loss (R�(fλ̂)) are plotted as func-
tions of the tuning parameter r for a typical simulation. The results are to be compared with the
usual �1-regularized support vector machines where no rejection option is allowed. Since there
is no rejection, the misclassification rate for the usual support vector machines coincides with its
�-risk. It is evident that by incorporating the rejection option, λ̂ yields a smaller �-risk, provided
that both methods are optimally tuned. To further investigate the merits of allowing the rejection
option, we repeated the experiment 200 times. The excess risk �R� of both the usual support
vector machine and the proposed method are summarized in the plot on the right-hand side. It
further confirms the advantage of λ̂.

To further demonstrate the merits of the method, we apply it to the mixture data example
considered in [4]. The training data consist of 200 data points generated from a pair of two-
dimensional mixture densities. Similarly to [4], we consider a dictionary of Gaussian radial ba-



Reject SVM 1379

sis functions fj (·) = exp(−2‖ · −bj‖2), j = 1, . . . ,100, where the locations bj are placed on
a 10 × 10 equally spaced lattice. To fix ideas, we consider the case where d = 0.25. The optimal
classification rule will classify an observation as +1 if the corresponding conditional probabil-
ity P(Y = +1|X) is greater than 0.75 and as −1 if the conditional probability is less than 0.25.
When the conditional probability is between 0.25 and 0.75, we withhold the decision. The cor-
responding decision boundaries are given in the right-hand panel of Figure 2. It is known that
the usual SVM only targets the decision boundary identified with P(Y = +1|X) and cannot be
used to recover the optimal decision boundaries given here; see, for instance, [12] for further
discussion of this issue. In contrast, the SVM with rejection option is devised specifically for this
purpose. To this end, we ran the SVM with rejection option with a = 3 and τ = 0.5, as discussed
earlier. The tuning parameter r was selected by tenfold cross-validation. The left-hand panel of
Figure 2 gives the estimated decision boundaries. It is clear from the plot that SVM with rejection
option successfully captured the main characteristics of the underlying probabilities. The main
difference between the two sets of decision boundaries occurs in regions where no observations
are available. As a result, the SVM with rejection option opted for withholding a decision.

Appendix A: Connection between excess risk and weighted
L2 norm

The next lemma is a technical result that links the excess risk �Rφ(λ) to the L2 norm:

‖fλ − f0‖ =
√

E[|fλ(X) − f0(X)|2ω(X)]

with ω(X) = η(X)(1 − η)(X). Its proof is rather technical and relies on results obtained in [1].
Essentially, ‖fλ − f0‖∞ replaces the suboptimal bound 1 + C�CF in [11].

Lemma A.1. Let α > 0 be as in Definition 2.2. Then, for all λ ∈ R
M ,

‖fλ − f0‖2+2α ≤ 4A(2d)α‖fλ − f0‖2+α∞ {�Rφ(λ)}α. (A.1)

Proof. Let f : X → R be arbitrary and set

ρη(f,f0) =
{

η|f − f0|, if η < d and f < −1,
(1 − η)|f − f0|, if η > 1 − d and f > 1,
|f − f0|, otherwise,

then [1], Lemma 9, states that

�Rφ(λ) ≥ d−1
E

[
ρη(f,f0)(X)

(|η(X) − (1 − d)|I{X∈E−} + |η(X) − d|I{X∈E+}
)]

with

E− = {|η − (1 − d)| ≤ |η − d|}, E+ = {|η − (1 − d)| > |η − d|}.
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Figure 2. Mixture data – optimal and estimated decision boundaries. The left-hand panel gives the op-
timal decision boundary, whereas the right-hand panel corresponds to the SVM with rejection option. In
both plots, positive cases are represented by red circles and negative cases by green triangles. The light
red regions correspond to classification Y = +1 and light green regions to classification Y = −1. Areas
where a decision is withheld are not shaded. The solid black line in the left-hand panel is the level set for
P(Y = +1|X) = 0.5. The solid black line in the right-hand panel is the level set for f

λ̂
= 0.

Using (A.1), for any set E,

E
[
ρη(f,f0)(X)|η(X) − (1 − d)|I{X∈E}

]
≥ tE

[
ρη(f,f0)(X)I{|η(X)−(1−d)|≥t}I{X∈E}

]
= tE

[
ρη(f,f0)(X)I{X∈E}

] − tE
[
ρη(f,f0)(X)I{|η(X)−(1−d)|<t,X∈E}

]
≥ tE

[
ρη(f,f0)(X)I{X∈E} − ‖f − f0‖∞Atα

]
.

Similarly,

E
[
ρη(f,f0)(X)|η(X) − d|I{X∈E}

] ≥ tE
[
ρη(f,f0)(X)I{X∈E} − ‖f − f0‖∞Atα

]
,
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and we obtain

�Rφ(λ) ≥ d−1tE
[
ρη(fλ, f0)(X)I{X∈E+∪E−} − 2‖fλ − f0‖∞Atα

]
= d−1tE[ρη(fλ, f0)(X) − 2‖fλ − f0‖∞Atα].

Plugging

t =
(

E[ρη(fλ, f0)(X)]
4A‖fλ − f0‖∞

)1/α

into the preceding expression, we obtain

�Rφ(λ) ≥ (E[ρη(fλ, f0)(X)])(1+α)/α

2d(4A‖fλ − f0‖∞)1/α
.

Since

‖fλ − f0‖2 = E[ω(X)(fλ − f0)
2(X)] ≤ ‖fλ − f0‖∞E[ω(X)|fλ(X) − f0(X)|],

we get, for all λ,

�Rφ(λ) ≥ (E[ω(X)|fλ(X) − f0(X)|])(1+α)/α

2d(4A‖fλ − f0‖∞)1/α

≥ (‖fλ − f0‖2)(1+α)/α

2d(4A)1/α‖fλ − f0‖(2+α)/α∞
.

The claim follows. �

Remark A.2. If |fλ| ≤ 1, then ρη(fλ, f0) = |fλ − f0|. Hence, if we restrict the parameters λ such
that fλ are bounded by 1, then we can impose the restricted eigenvalue condition on the matrix
with entries E[fi(X)fj (X)] instead of E[fi(X)fj (X)ω(X)].

Appendix B: A maximal inequality for a weighted
empirical process

Recall that � = {λ ∈ R
M :‖λ‖�1 ≤ 1/(2r)} and let θ ∈ � and ε > 0. Let ϕ : R → R be a convex

function with Lipschitz constant Cϕ and define the risks

Rϕ(fλ) = E[ϕ(Y fλ(X))],

R̂ϕ(fλ) = 1

n

n∑
i=1

ϕ(Yi fλ(Xi)).
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Finally, let ε > 0 and set

r̂(ϕ, θ, ε) = sup
λ∈�

|{R̂ϕ(fλ) − Rϕ(fλ)} − {R̂ϕ(fθ ) − Rϕ(fθ )}|
‖θ − λ‖�1 + ε

.

We prove a maximal inequality for r̂(ϕ, θ, ε) which slightly generalizes the result obtained
in [11].

Proposition B.1. Let 0 < δ < 1 and set

r(ϕ, θ, ε) = E[r̂(ϕ, θ, ε)] + CϕCF

√
2 log(1/δ)

n
.

Then,

P{r(ϕ, θ, ε) ≥ r̂(ϕ, θ, ε)} ≥ 1 − δ.

Proof. First, observe that changing a pair (Xi, Yi) in r̂ changes it by at most 2CϕCF /n. The
result follows immediately after applying McDiarmid’s exponential inequality [3], Theorem 2.2,
page 8. �

We now control the expectation of r̂(ϕ, θ, ε).

Proposition B.2. Set J = log2(1/{εr})�. Then,

E[r̂(ϕ, θ, ε)] ≤ 9CϕCF

√
2 log 2(M ∨ n)

n
+ 2JCϕCF√

2(M ∨ n)
.

Proof. Let σ1, . . . , σn be independent Rademacher variables, taking the values ±1, each with
probability 1/2, independent of the data (X1, Y1), . . . , (Xn,Yn). Set

R̂0
ϕ(fλ) = 1

n

n∑
i=1

σiϕ(Yi fλ(Xi)).

A standard symmetrization trick [3], page 18, shows that

E[r̂(ϕ, θ, ε)] ≤ 2E

[
sup
λ∈�

|R̂0
ϕ(fλ) − R̂0

ϕ(fθ )|
‖λ − θ‖�1 + ε

]

≤ 2E

[
sup

‖λ−θ‖�1 ≤ε

|R̂0
ϕ(fλ) − R̂0

ϕ(fθ )|
‖λ − θ‖�1 + ε

]
+ 2E

[
sup

ε≤‖λ−θ‖�1 ≤1/r

|R̂0
ϕ(fλ) − R̂0

ϕ(θ)|
‖λ − θ‖�1 + ε

]

= (I ) + (II).
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The first term

I = 2E

[
sup

‖λ−θ‖�1 ≤ε

|R̂0
ϕ(fλ) − R̂0

ϕ(fθ )|
‖λ − θ‖�1 + ε

]

= E

[
sup

‖λ−θ‖�1 ≤ε

1

‖λ − θ‖�1 + ε

∣∣∣∣∣1

n

n∑
i=1

{ϕ(Yi fλ(Xi)) − ϕ(Yi fθ (Xi))}
∣∣∣∣∣
]

can be bounded using the contraction principle for Rademacher processes; see [7], pages 112–
113. For this, we observe that the function g(z) = ϕ(z0 + z) − ϕ(z0) is Lipschitz with Lipschitz
constant Cϕ and g(0) = 0. Consequently,

(I ) ≤ 2
Cϕ

ε
E

[
sup

‖λ−θ‖�1 ≤ε

∣∣∣∣∣1

n

n∑
i=1

σiYi fλ−θ (Xi)

∣∣∣∣∣
]

≤ 2
Cϕ

ε
E

[
sup

‖λ−θ‖�1 ≤ε

‖λ − θ‖�1 max
1≤j≤M

∣∣∣∣∣1

n

n∑
i=1

σiYifj (Xi)

∣∣∣∣∣
]

≤ 2CϕE

[
max

1≤j≤M

∣∣∣∣∣1

n

n∑
i=1

σiYifj (Xi)

∣∣∣∣∣
]

≤ 2CϕCF

√
2 log(2M)√

n
.

The last maximal inequality can be found in [3], Lemma 2.2, page 7, which uses the fact that the
variables σiYifj (Xi) are sub-Gaussian,

E

[
exp

{
s

n∑
i=1

σiYifj (Xi)

}]
≤ exp(ns2C2

F /2)

for all s, which follows, in turn, from [3], Lemma 2.1, page 5.
The second term (II) requires a peeling argument [10], page 70. Since 0 ≤ r̂ ≤ 2CϕCF almost

surely, we can use the bound

(II) ≤ ζ + 2CϕCF P

{
sup

ε≤‖λ−θ‖�1 ≤1/r

2
|R̂0

ϕ(fλ) − R̂0
ϕ(fθ )|

‖λ − θ‖�1 + ε
≥ ζ

}
. (B.1)
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Observe that for any ζ > 0,

P

{
sup

ε≤‖λ−θ‖�1 ≤1/r

2
|R̂0

ϕ(fλ) − R̂0
ϕ(fθ )|

‖λ − θ‖�1 + ε
≥ ζ

}

≤
J∑

j=1

P

{
sup

2j−1ε≤‖λ−θ‖�1 ≤2j ε

|R̂0
ϕ(fλ) − R̂0

ϕ(fθ )| ≥ 2j−2εζ

}
.

Now, set

Zj = sup
‖λ−θ‖�1 ≤2j ε

|R̂0
ϕ(fλ) − R̂0

ϕ(fθ )|

and the same considerations leading to the final bound of (I) above yield

E[Zj ] ≤ 2j εCφCF

√
2 log(2M)√

n

and for t = 1/
√

2, we obtain

(II) ≤ ζ + 2CϕCF

J∑
j=1

P{Zj − E[Zj ] ≥ 2j−2εζ − E[Zj ]}.

A change of a single pair (Xi, Yi) changes Zj by at most 2CϕCF (2j ε)/n, so that another appli-
cation of the bounded differences inequality [3], Theorem 2.2, page 8, gives, by taking

ζ = 7CϕCF

√
2 log 2(M ∨ n)√

n
,

the final bound

J∑
j=1

P{Zj − E[Zj ] ≥ 2j−2εζ − E[Zj ]}

≤
J∑

j=1

P

{
Zj − E[Zj ] ≥ t · 2jCϕCF ε

√
2 log(2M ∨ 2n)√

n

}

≤ J exp

{
−2

t2(CϕCF 2j ε)22 log(2M ∨ 2n)

(2CφCF 2j ε)2

}

= J (2M ∨ 2n)−t2
< J/

√
2M ∨ 2n.

Finally, we invoke (B.1) to complete the proof of Proposition B.1. �
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