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In regression problems where covariates can be naturally grouped, the group Lasso is an attractive method
for variable selection since it respects the grouping structure in the data. We study the selection and esti-
mation properties of the group Lasso in high-dimensional settings when the number of groups exceeds the
sample size. We provide sufficient conditions under which the group Lasso selects a model whose dimen-
sion is comparable with the underlying model with high probability and is estimation consistent. However,
the group Lasso is, in general, not selection consistent and also tends to select groups that are not important
in the model. To improve the selection results, we propose an adaptive group Lasso method which is a gen-
eralization of the adaptive Lasso and requires an initial estimator. We show that the adaptive group Lasso is
consistent in group selection under certain conditions if the group Lasso is used as the initial estimator.

Keywords: group selection; high-dimensional data; penalized regression; rate consistency; selection
consistency

1. Introduction

Consider the linear regression model with p groups of covariates

Yi =
p∑

k=1

X′
ikβk + εi, i = 1, . . . , n,

where Yi is the response variable, εi is the error term, Xik is a dk ×1 covariate vector representing
the kth group and βk is the corresponding dk × 1 vector of regression coefficients. For such a
model, the group Lasso (Antoniadis and Fan (2001), Yuan and Lin (2006)) is an attractive method
for variable selection since it respects the grouping structure in the covariates. This method is
a natural extension of the Lasso (Tibshirani (1996)), in which an �2-norm of the coefficients
associated with a group of variables is used as a component in the penalty function. However,
the group Lasso is, in general, not selection consistent and tends to select more groups than there
are in the model. To improve the selection results, we consider an adaptive group Lasso method
which is a generalization of the adaptive Lasso (Zou (2006)). We provide sufficient conditions
under which the adaptive group Lasso is selection consistent if the group Lasso is used as the
initial estimator.
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The need to select groups of variables arises in many statistical modeling problems and ap-
plications. For example, in multifactor analysis of variance, a factor with multiple levels can be
represented by a group of dummy variables. In nonparametric additive regression, each com-
ponent can be expressed as a linear combination of a set of basis functions. In both cases, the
selection of important factors or nonparametric components amounts to the selection of groups
of variables. Several recent papers have considered group selection using penalized methods. In
addition to the group Lasso, Yuan and Lin (2006) have proposed the group Lars and group non-
negative garrote methods. Kim, Kim and Kim (2006) considered the group Lasso in the context
of generalized linear models. Zhao, Rocha and Yu (2008) proposed a composite absolute penalty
for group selection, which can be considered a generalization of the group Lasso. Meier, van
de Geer and Bühlmann (2008) studied the group Lasso for logistic regression. Huang, Ma, Xie
and Zhang (2008) proposed a group bridge method that can be used for simultaneous group and
individual variable selection.

There has been much work on the penalized methods for variable selection and estimation
with high-dimensional data. Several approaches have been proposed, including the least absolute
shrinkage and selection operator (Lasso, Tibshirani (1996)), the smoothly clipped absolute devi-
ation (SCAD) penalty (Fan and Li (2001), Fan and Peng (2004)), the elastic net (Enet) penalty
(Zou and Hastie (2006)) and the minimum concave penalty (Zhang (2007)). Much progress has
been made in understanding the statistical properties of these methods in both fixed p and p � n

settings. In particular, several recent studies considered the Lasso with regard to its variable
selection, estimation and prediction properties; see, for example, Knight and Fu (2001), Green-
shtein and Ritov (2004), Meinshausen and Buhlmann (2006), Zhao and Yu (2006), Huang, Ma
and Zhang (2006), van de Geer (2008) and Zhang and Huang (2008), among others. All of these
studies are concerned with the Lasso for individual variable selection.

In this article, we study the asymptotic properties of the group Lasso and the adaptive group
Lasso in high-dimensional settings when p � n. We generalize the results concerning the Lasso
obtained in Zhang and Huang (2008) to the group Lasso. We show that, under a generalized
sparsity condition and the sparse Riesz condition, as well as certain regularity conditions, the
group Lasso selects a model whose dimension has the same order as the underlying model,
selects all groups whose �2-norms are of greater order than the bias of the selected model and
is estimation consistent. In addition, under a narrow-sense sparsity condition (see page 1371)
and using the group Lasso as the initial estimator, the adaptive group Lasso can correctly select
important groups with high probability.

Our theoretical and simulation results suggest the following one-step approach to group se-
lection in high-dimensional settings. First, we use the group Lasso to obtain an initial estimator
and reduce the dimension of the problem. We then use the adaptive group Lasso to select the
final set of groups of variables. Since the computation of the adaptive group Lasso estimator can
be carried out using the same algorithm and program for the group Lasso, the computational
cost of this one-step approach is approximately twice that of a single group Lasso computation.
This approach, iteratively using the group Lasso twice, follows the idea of the adaptive Lasso
(Zou (2006)) and a proposal by Bühlmann and Meier (2008) in the context of individual variable
selection.

The rest of the paper is organized as follows. In Section 2, we state the results on the selection,
bias of the selected model and convergent rate of the group Lasso estimator. In Section 3, we



Consistent group selection 1371

describe the selection and estimation consistency results concerning the adaptive group Lasso. In
Section 4, we use simulation to compare the group Lasso and adaptive group Lasso. Proofs are
given in Section 5. Concluding remarks are given in Section 6.

2. The asymptotic properties of the group Lasso

Let Y = (Y1, . . . , Yn)
′ and X = (X1, . . . ,Xp), where Xk is the n × dk covariate submatrix cor-

responding to the kth group. For a given penalty level λ ≥ 0, the group Lasso estimator of
β = (β ′

1, . . . , β
′
p)′ is

β̂ = arg min
β

1

2
(Y − Xβ)T(Y − Xβ) + λ

p∑
k=1

√
dk‖βk‖2, (2.1)

where β̂ = (β̂ ′
1, . . . , β̂

′
p)′.

We consider the model selection and estimation properties of β̂ under a generalized spar-
sity condition (GSC) of the model and a sparse Riesz condition (SRC) on the covariate ma-
trix. These two conditions were first formulated in the study of the Lasso estimator (Zhang
and Huang (2008)). The GSC assumes that for some η1 ≥ 0, there exists an A0 ⊂ {1, . . . , p}
such that

∑
k∈A0

‖βk‖2 ≤ η1, where ‖ · ‖2 denotes the �2-norm. Without loss of generality, let
A0 = {q + 1, . . . , p}. The GSC is then

p∑
k=q+1

‖βk‖2 ≤ η1. (2.2)

The number of truly important groups is thus q . A more rigid way to describe sparsity is to
assume η1 = 0, that is,

‖βk‖2 = 0, k = q + 1, . . . , p. (2.3)

This is a special case of the GSC and we call it the narrow-sense sparsity condition (NSC). In
practice, the GSC is a more realistic formulation of a sparse model. However, the NSC can often
be considered a reasonable approximation to the GSC, especially when η1 is smaller than the
noise level associated with model fitting.

The SRC controls the range of eigenvalues of the submatrix. For A ⊂ {1, . . . , p}, we define
XA = (Xk, k ∈ A) and �AA = X′

AXA/n. Note that XA is an n × ∑
k∈A dk matrix. The design

matrix XA satisfies the sparse Riesz condition (SRC) with rank q∗ and spectrum bounds 0 <

c∗ < c∗ < ∞ if

c∗ ≤ ‖XAν‖2
2

n‖ν‖2
2

≤ c∗ ∀A with q∗ = |A| = #{k: k ∈ A} and ν ∈ R
∑

k∈A dk . (2.4)

Let Â = {k: ‖β̂k‖2 > 0,1 ≤ k ≤ p}, which is the set of indices of the groups selected by the
group Lasso. An important quantity is the cardinality of Â, defined as

q̂ = |Â| = #{k: ‖β̂k‖2 > 0,1 ≤ k ≤ p}, (2.5)
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which determines the dimension of the selected model. If q̂ = O(q), then the selected model has
dimension comparable to the underlying model. Following Zhang and Huang (2008), we also
consider two measures of the selected model. The first measures the error of the selected model:

ω̃ = ‖(I − P̂ )Xβ‖2, (2.6)

where P̂ is the projection matrix from Rn to the linear span of the set of selected groups and
I ≡ In×n is the identity matrix. Thus, ω̃2 is the sum of squares of the mean vector not accounted
for by the selected model. To measure the important groups missing in the selected model, we
define

ζ2 =
( ∑

k /∈A0

‖βk‖2
2I {‖β̂k‖2 = 0}

)1/2

. (2.7)

We now describe several quantities that will be useful in describing the main results. Let
da = max1≤k≤p dk , db = min1≤k≤p dk , d = da/db and Nd = ∑p

k=1 dk . Define

r1 ≡ r1(λ) =
(

nc∗√daη1

λdbq

)1/2

, r2 ≡ r2(λ) =
(

nc∗η2
2

λ2dbq

)1/2

, c̄ = c∗

c∗
, (2.8)

where η2 ≡ maxA⊂A0 ‖∑
k∈A Xkβk‖2,

M1 ≡ M1(λ) = 2 + 4r2
1 + 4

√
dc̄r2 + 4dc̄, (2.9)

M2 ≡ M2(λ) = 2
3

(
1 + 4r2

1 + 2dc̄ + 4
√

2d
(
1 + √

c̄
)√

c̄r2 + 16
3 dc̄2), (2.10)

M3 ≡ M3(λ) = 2
3

(
1 + 4r2

1 + 4
√

dc̄
(
1 + 2

√
1 + c̄

)
r2 + 3r2

2 + 2
3dc̄(7 + 4c̄)

)
. (2.11)

Let λn,p = 2σ
√

8(1 + c0)dad2q∗c̄nc∗ log(Nd ∨ an), where c0 ≥ 0 and an ≥ 0, satisfying
pda/(Nd ∨ an)

1+c0 ≈ 0, and λ0 = inf{λ: M1q + 1 ≤ q∗}, where inf∅ = ∞. We also consider
the constraint

λ ≥ max{λ0, λn,p}. (2.12)

For large p, the lower bound here is allowed to be λn,p = 2σ [8(1 + c0)dad
2q∗c̄nc∗ log(Nd)]1/2

with an = 0; for fixed p, an → ∞ is required.
We assume the following basic condition.

(C1) The errors ε1, . . . , εn are independent and identically distributed as N(0, σ 2).

Theorem 2.1. Suppose that q ≥ 1 and that (C1), the GSC (2.2) and SRC (2.4) are satisfied. Let
q̂, ω̃ and ζ2 be defined as in (2.5), (2.6) and (2.7), respectively, for the model Â selected by
the group Lasso from (2.1). Let M1,M2 and M3 be defined as in (2.9), (2.10) and (2.11), re-
spectively. If the constraint (2.12) is satisfied, then the following assertions hold with probability
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converging to 1:

q̂ ≤ #{k: ‖β̂k‖2 > 0 or k /∈ A0} ≤ M1(λ)q,

ω̃2 = ‖(I − P̂ )Xβ‖2
2 ≤ M2(λ)B2

1 (λ),

ζ 2
2 =

∑
k /∈A0

‖βk‖2
2I {‖β̂k‖2 = 0} ≤ M3(λ)B2

1 (λ)

c∗n
,

where B1(λ) = ((λ2d2
bq)/(nc∗))1/2 .

Remark 2.1. The condition q ≥ 1 is not necessary since it is only used to express quantities in
terms of ratios in (2.8) and Theorem 2.1. If q = 0, we use r2

1 q = nc∗√daη1/(λdb) and r2
2 q =

nc∗η2
2/(λ

2db) to recover M1, M2 and M3 in (2.9), (2.10), (2.11), respectively, giving the results
q̂ ≤ 4nc∗√daη1/λdb, ω̃2 ≤ 8λ

√
dadbη1/3 and ζ 2

2 = 0.

Remark 2.2. If η1 = 0 in (2.2), then r1 = r2 = 0 and

M1 = 2 + 4dc̄, M2 = 2
3

(
1 + 2dc̄ + 16

3 dc̄2), M3 = 2
3

(
1 + 2

3dc̄(7 + 4c̄)
)
,

all of which depend only on d and c̄. This suggests that the relative sizes of the groups affect the
selection results. Since d ≥ 1, the most favorable case is d = 1, that is, when the groups have
equal sizes.

Remark 2.3. If d1 = · · · = dp = 1, the group Lasso simplifies to the Lasso and Theorem 2.1 is
a direct generalization of Theorem 1 on the selection properties of the Lasso obtained by Zhang
and Huang (2008). In particular, when d1 = · · · = dp = 1, r1, r2,M1,M2,M3 are the same as the
constants in Theorem 1 of Zhang and Huang (2008).

Remark 2.4. A more general definition of the group Lasso is

β̂∗ = arg min
β

1

2
(Y − Xβ)′(Y − Xβ) + λ

p∑
k=1

(β ′
kRkβk)

1/2, (2.13)

where Rk is a dk × dk positive definite matrix. This is useful when certain relationships among
the coefficients need be specified. By the Cholesky decomposition, there exists a matrix Qk such
that Rk = dkQ

′
kQk . Let β∗ = Qkβ , and X∗

k = XkQ
−1
k . Then, (2.13) becomes

β̂∗ = arg min
β∗ (Y − X∗β∗)′(Y − X∗β∗) + λ

p∑
k=1

√
dk‖β∗

k ‖2.

The GSC for (2.13) is
∑p

k=q+1(β
′
kQ

′
kQkβk)

1/2 ≤ η1. The SRC can be assumed for X · Q−1,

where X · Q−1 = (X1Q
−1
1 , . . . ,XpQ−1

p ).
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Immediately, from Theorem 2.1, we have the following corollary.

Corollary 2.1. Suppose that the conditions of Theorem 2.1 hold and λ satisfies the constraint
(2.12). Then, with probability converging to one, all groups with ‖βk‖2

2 > M3(λ)qλ2/(c∗c∗n2)

are selected.

From Theorem 2.1 and Corollary 2.1, the group Lasso possesses similar properties to the Lasso
in terms of sparsity and bias (Zhang and Huang (2008)). In particular, the group Lasso selects
a model whose dimension has the same order as the underlying model. Furthermore, all of the
groups with coefficients whose �2-norms are greater than the threshold given in Corollary 2.1 are
selected with high probability.

Theorem 2.2. Let {c̄, σ, r1, r2, c0, d} be fixed and 1 ≤ q ≤ n ≤ p → ∞. Suppose that the condi-
tions in Theorem 2.1 hold. Then, with probability converging to 1, we have

‖β̂ − β‖2 ≤ 1√
nc∗

(
2σ

√
M1 log(Nd)q + (

r2 + √
dM1c̄

)
B1

) +
√

c∗r2
1 + r2

2

c∗c∗

√
qλ

n

and

‖Xβ̂ − Xβ‖2 ≤ 2σ
√

M1 log(Nd)q + (
2r2 + √

dM1c̄
)
B1.

Theorem 2.2 is stated for a general λ that satisfies (2.12). The following result is an immediate
corollary of Theorem 2.2.

Corollary 2.2. Let λ = 2σ

√
8(1 + c′

0)dad2q∗c̄c∗n log(Nd) with a fixed c′
0 ≥ c0. Suppose that

all of the conditions in Theorem 2.2 hold. We then have

‖β̂ − β‖2 = Op

(√
q log(Nd)/n

)
and ‖Xβ̂ − Xβ‖2 = Op

(√
q log(Nd)

)
.

This corollary follows by substituting the given λ value into the expressions in the results of
Theorem 2.2.

3. Selection consistency of the adaptive group Lasso

As shown in the previous section, the group Lasso has excellent selection and estimation prop-
erties. However, there is room for improvement, particularly with regard to selection. Although
the group Lasso selects a model whose dimension is comparable to that of the underlying model,
the simulation results reported in Yuan and Lin (2006) and those reported below suggest that it
tends to select more groups than there are in the underlying model. To correct the tendency of
overselection by the group Lasso, we generalize the idea of the adaptive Lasso (Zou (2006)) for
individual variable selection to the present problem of group selection.
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Consider a general group Lasso criterion with a weighted penalty term,

1

2
(Y − Xβ)′(Y − Xβ) + λ̃

p∑
k=1

wk

√
dk‖βk‖2, (3.1)

where wk is the weight associated with the kth group. The λk ≡ λ̃wk can be regarded as the
penalty level corresponding to the kth group. For different groups, the penalty level λk can be
different. If we can have lower penalty for groups with large coefficients and higher penalty for
groups with small coefficients (in the �2 sense), then we expect to be able to improve variable
selection accuracy and reduce estimation bias. One way to obtain the information about whether
a group has large or small coefficients is by using a consistent initial estimator.

Suppose that an initial estimate β̃ is available. A simple approach to determining the weight is
to use the initial estimator. Consider

wk = 1

‖β̃k‖2
, k = 1, . . . , p. (3.2)

Thus, for each group, its penalty is proportional to the inverse of the norm of β̃k . This choice of
the penalty level for each group is a natural generalization of the adaptive Lasso (Zou (2006)). In
particular, when each group only contains a single variable, (3.2) simplifies to the adaptive Lasso
penalty.

Let θa = maxk∈Ac
0
‖βk‖2 and θb = mink∈Ac

0
‖βk‖2. We say that an initial estimator β̃ is consis-

tent at zero with rate rn if rn maxk∈A0 ‖β̃k‖2 = Op(1), where rn → ∞ as n → ∞, and there exists
a constant ξb > 0 such that for any ε > 0, P(mink∈Ac

0
‖β̃k‖2 > ξbθb) > 1 − ε for n sufficiently

large.
In addition to (C1), we assume the following conditions:

(C2) the initial estimator β̃ is consistent at zero with rate rn → ∞;
(C3) √

da(logq)√
nθb

→ 0,
λ̃d

3/2
a q

nθ2
b

→ 0,

√
nd log(p − q)

λ̃rn
→ 0,

d
5/2
a q2

rnθb

√
db

→ 0;

(C4) all of the eigenvalues of �Ac
0A

c
0

are bounded away from zero and infinity.

Condition (C2) assumes that an initial zero-consistent estimator exists. It is the most criti-
cal one and is generally difficult to establish. It assumes that we can consistently differentiate
between important and non-important groups. For fixed p and dk , the ordinary least-squares es-
timator can be used as the initial estimator. However, when p > n, the least-squares estimator is
no longer feasible. By Theorems 2.1 and 2.2, the group Lasso estimator β̂ is consistent at zero
with rate

√
n/(q log(Nd)). Condition (C3) restricts the numbers of important and non-important

groups, as well as variables within the groups. It also places constraints on the penalty parameter
and the �2-norm of the smallest important group. Condition (C4) assumes that the eigenvalues of
�Ac

0A
c
0

are finite and bounded away from zero. This is reasonable since the number of important
groups is small in a sparse model. This condition ensures that the true model is identifiable.
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Define

β̂∗ = arg min
1

2
(Y − Xβ)′(Y − Xβ) + λ̃

p∑
k=1

‖β̃k‖−1
2

√
dk‖βk‖2. (3.3)

Theorem 3.1. If (C1)–(C4) and NSC (2.3) are satisfied, then

P(‖β̂∗
k ‖2 �= 0, k /∈ A0,‖β̂∗

k ‖2 = 0, k ∈ A0) → 1.

Therefore, the adaptive group Lasso is selection consistent if the conditions stated in Theo-
rem 2.1 hold.

If we use β̂ as the initial estimator, then (C3) can be changed to

(C3)∗ √
da(logq)√

nθb

→ 0,
λ̃d

3/2
a q

nθ2
b

→ 0,

√
dq log(p − q) log(Nd)

λ̃
→ 0,

(daq)5/2
√

log(Nd)

θb

√
ndb

→ 0.

We often have λ̃ = nα for some 0 < α < 1/2. In this case, the number of non-important
groups can be as large as exp(n2α/(q logq)) with the number of important groups satisfying
q5 logq/n → 0, assuming that θb and the number of variables within the groups are finite.

Corollary 3.1. Let the initial estimator β̃ = β̂ , where β̂ is the group Lasso estimator. Suppose
that the NSC (2.3) holds and that (C1), (C2), (C3)∗ and (C4) are satisfied. We then have

P(‖β̂∗
k ‖2 �= 0, k /∈ A0,‖β̂∗

k ‖2 = 0, k ∈ A0) → 1.

This corollary follows directly from Theorem 3.1. It shows that the iterated group Lasso pro-
cedure that uses a combination of the group Lasso and the adaptive group Lasso is selection
consistent.

Theorem 3.2. Suppose that the conditions in Theorem 2.2 hold and that θb > tb for some con-
stant tb > 0. If λ̃ ∼ O(nα) for some 0 < α < 1/2, then

‖β̂∗ − β‖2 = Op

(√
q

n
+ λ̃2

n2

)
= Op

(√
q

n

)
, ‖Xβ̂∗ − Xβ‖2 ∼ O

(√
q + λ̃2

n

)
= Op

(√
q
)
.

Theorem 3.2 implies that for the adaptive group Lasso, given a zero-consistent initial estima-
tor, we can reduce a high-dimensional problem to a lower-dimensional one. The convergence
rate is improved, compared with that of the group Lasso, by choosing an appropriate penalty
parameter λ̃.
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4. Simulation studies

In this section, we use simulation to evaluate the finite sample performance of the group Lasso
and the adaptive group Lasso. Let λk = λ̃/‖β̂k‖2, if ‖β̂k‖2 > 0; if ‖β̂k‖2 = 0, then λk = ∞,
β̂∗

k = 0. We can thus drop the corresponding covariates Xk from the model and only consider the
groups with ‖β̂∗

k ‖2 > 0. After a scale transformation, we can directly apply the group least angle
regression algorithm (Yuan and Lin (2006)) to compute the adaptive group Lasso estimator β̂∗.
The penalty parameters for the group Lasso and the adaptive group Lasso are selected using the
BIC criterion (Schwarz (1978)).

We consider two scenarios of simulation models. In the first scenario, the group sizes are equal;
in the second, the group sizes vary. For every scenario, we consider the cases p < n and p > n.
In all of the examples, the sample size is n = 200.

Example 1. In this example, there are 10 groups, each consisting of 5 covariates. The co-
variate vector is X = (X1, . . . ,X10), where Xj = (X5(j−1)+1, . . . ,X5(j−1)+5), 1 ≤ j ≤ 10.
To generate X, we first simulate 50 random variables, R1, . . . ,R50, independently from
N(0,1). Then, Zj , j = 1, . . . ,10, are simulated from a multivariate normal distribution with
with mean zero and cov(Zj1 ,Zj2) = 0.6|j1−j2|. The covariates X1, . . . ,X50 are generated
as

X5(j−1)+k = Zj + R5(j−1)+k√
2

, 1 ≤ j ≤ 10,1 ≤ k ≤ 5.

The random error ε ∼ N(0,32). The response variable Y is generated from Y = ∑10
k=1 X′

kβk + ε,
where β1 = (0.5,1,1.5,2,2.5), β2 = (2,2,2,2,2), β3 = · · · = β10 = (0,0,0,0,0).

Example 2. In this example, the number of groups is p = 10. Each group consists of 5
covariates. The covariates are generated the same way as in Example 1. However, the re-
gression coefficients β1 = (0.5,1,1.5,1,0.5), β2 = (1,1,1,1,1), β3 = (−1,0,1,2,1.5), β4 =
(−1.5,1,0.5,0.5,0.5), β5 = · · · = β10 = (0,0,0,0,0).

Example 3. In this example, the number of groups p = 210 is bigger than the sample size n.
Each group consists of 5 covariates. The covariates are generated the same way as in Exam-
ple 1. However, the regression coefficients β1 = (0.5,1,1.5,1,0.5), β2 = (1,1,1,1,1), β3 =
(−1,0,1,2,1.5), β4 = (−1.5,1,0.5,0.5,0.5), β5 = · · · = β210 = (0,0,0,0,0).

Example 4. In this example, the group sizes differ across groups. There are 5 groups with
size 5 and 5 groups with size 3. The covariate vector is X = (X1, . . . ,X10), where Xj =
(X5(j−1)+1, . . . ,X5(j−1)+5), 1 ≤ j ≤ 5, and Xj = (X3(j−6)+26, . . . ,X3(j−6)+28), 6 ≤ j ≤ 10.
In order to generate X, we first simulate 40 random variables R1, . . . ,R40, independently from
N(0,1). Then, Zj , j = 1, . . . ,10 are simulated with a normal distribution with mean zero and
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cov(Zj1 ,Zj2) = 0.6|j1−j2|. The covariates X1, . . . ,X40 are generated as

X5(j−1)+k = Zj + R5(j−1)+k√
2

, 1 ≤ j ≤ 5,1 ≤ k ≤ 5,

X3(j−6)+25+k = Zj + R3(j−6)+25+k√
2

, 6 ≤ j ≤ 10,1 ≤ k ≤ 3.

The random error ε ∼ N(0,32). The response variable Y is generated from Y = ∑10
k=1 Xkβk +

ε, where β1 = (0.5,1,1.5,2,2.5), β2 = (2,0,0,2,2), β3 = · · · = β5 = (0,0,0,0,0), β6 =
(−1,−2,−3), β7 = · · · = β10 = (0,0,0).

Example 5. In this example, the number of groups is p = 10 and the group sizes differ
across groups. The data are generated the same way as in Example 4. However, the re-
gression coefficients β1 = (0.5,1,1.5,2,2.5), β2 = (2,2,2,2,2), β3 = (−1,0,1,2,3), β4 =
(−1.5,2,0,0,0), β5 = (0,0,0,0,0), β6 = (2,−2,1), β7 = (0,−3,1.5), β8 = (−1.5,1.5,2),

β9 = (−2,−2,−2), β10 = (0,0,0).

Example 6. In this example, the number of groups p = 210 and the group sizes differ
across groups. The data are generated the same way as in Example 4. However, the re-
gression coefficients β1 = (0.5,1,1.5,2,2.5), β2 = (2,2,2,2,2), β3 = (−1,0,1,2,3), β4 =
(−1.5,2,0,0,0), β5 = · · · = β100 = (0,0,0,0,0), β101 = (2,−2,1), β102 = (0,−3,1.5),

β103 = (−1.5,1.5,2), β104 = (−2,−2,−2), β105 = · · · = β210 = (0,0,0).

The results are given in Table 1, based on 400 replications. The columns in the table include
the average number of groups selected with standard error in parentheses, the median number

Table 1. Simulation study by the group Lasso and adaptive group Lasso for Examples 1–6. The true num-
bers of groups are included in [] in the first column

Group Lasso Adaptive group Lasso

σ = 3 mean med ME % incl % sel mean med ME % incl % sel

Ex. 1, [2] 2.04 2 8.79 100 96.5 2.01 2 8.54 100 99.5
(0.18) (2,2) (0.94) (0) (0.18) (0.07) (2,2) (0.90) (0) (0.07)

Ex. 2, [4] 4.11 4 8.52 99.5 88.5 4.00 4 8.10 99.5 98.00
(0.34) (4,4) (0.94) (0.07) (0.32) (0.14) (4,4) (0.87) (0.07) (0.14)

Ex. 3, [4] 4.00 4 9.48 93.0 86.5 3.94 4 8.19 93.0 92.5
(0.38) (4,4) (1.19) (0.26) (0.34) (0.27) (4,4) (0.96) (0.26) (0.26)

Ex. 4, [3] 3.17 3 8.78 100 85.3 3.00 3 8.36 100 100
(0.45) (3,3) (1.00) (0) (0.35) (0) (3,3) (0.90) (0) (0)

Ex. 5, [8] 8.88 9 7.68 100 40.0 8.03 8 7.58 100 97.5
(0.81) (8,10) (0.94) (0) (0.49) (0.16) (8,8) (0.86) (0) (0.16)

Ex 6, [8] 12.90 9 14.61 66.5 7.0 11.49 8 9.28 66.5 47.0
(12.42) (8,11) (7.21) (0.47) (0.26) (12.68) (7,8) (5.79) (0.47) (0.50)
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(‘med’) of groups selected with the 25% and 75% quantiles of the number of selected groups in
parentheses, model error (‘ME’), percentage of occasion on which correct groups are included
in the selected model (‘% incl’) and percentage of occasions on which the exactly correct groups
are selected (‘% sel’), with standard error in parentheses.

Several observations can be made from Table 1. First, in all six examples, the adaptive group
Lasso performs better than the group Lasso in terms of model error and the percentage of cor-
rectly selected models. The group Lasso which gives the initial estimator for the adaptive group
Lasso includes the correct groups with high probability. And the improvement is considerable
for models with different group sizes. Second, the results from models with equal group sizes
(Examples 1, 2 and 3) are better than those from models with different group sizes (Examples 4,
5 and 6). Finally, when the dimension of the model increases, the performance of both methods
becomes worse. This is to be expected since selection in models with a larger number of groups
is more difficult.

5. Concluding remarks

We have studied the asymptotic selection and estimation properties of the group Lasso and adap-
tive group Lasso in ‘large p, small n’ linear regression models. For the adaptive group Lasso to
be selection consistent, the initial estimator should possess two properties: (a) it does not miss
important groups and variables; (b) it is estimation consistent, although it may not be group-
selection or variable-selection consistent. Under the conditions stated in Theorem 2.1, the group
Lasso is shown to satisfy these two requirements. Thus, the iterated group Lasso procedure,
which uses the group Lasso to achieve dimension reduction and generate the initial estimates and
then uses the adaptive group Lasso to achieve selection consistency, is an appealing approach to
group selection in high-dimensional settings.

6. Proofs

We first introduce some notation which will be used in proofs. Let {k: ‖β̂k‖2 > 0, k ≤ p} ⊆
A1 ⊆ {k: X′

k(Y −Xβ̂) = λ
√

dkβ̂k/‖β̂k‖2} ∪ {1, . . . , q}. Set A2 = {1, . . . , p} \A1, A3 = A1 \A0,
A4 = A1 ∩ A0, A5 = A2 \ A0 and A6 = A2 ∩ A0. Thus, we have A1 = A3 ∪ A4, A3 ∩ A4 = ∅,
A2 = A5 ∪ A6 and A5 ∩ A6 = ∅. Let |Ai | = ∑

k∈Ai
dk , N(Ai) = #{k: k ∈ Ai}, i = 1, . . . ,6 and

q1 = N(A1).

Proof of Theorem 2.1. The basic idea used in this proof follows the proof of the rate consis-
tency of the Lasso in Zhang and Huang (2008). However, there are many differences in technical
details, for example, in the characterization of the solution via the Karush–Kuhn–Tucker (KKT)
conditions, in the constraint needed for the penalty level and in the use of maximal inequalities.

The proof consists of three steps. Step 1 proves some inequalities related to q1, ω̃ and ζ2.
Step 2 translates the results of Step 1 into upper bounds for q̂ , ω̃ and ζ2. Step 3 completes
the proof by showing the probability of the event in Step 2 converging to 1. The details of the
complete proof are available from the website www.stat.uiowa.edu/techrep. We will sketch the
proof in the following.

http://www.stat.uiowa.edu/techrep
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If β̂ is a solution of (2.1), then, by the KKT condition, X′
k(Y − Xβ̂) = λ

√
dkβ̂k/‖β̂k‖2

∀‖β̂k‖2 > 0 and −λ
√

dk ≤ X′
k(Y − Xβ̂) ≤ λ

√
dk ∀‖β̂k‖2 = 0. We then have

�−1
11 SA1/n = (βA1 − β̂A1) + �−1

11 �12βA2 + �−1
11 X′

A1
ε/n, (6.1)

n�22βA2 − n�21�
−1
11 �12βA2 ≤ CA2 − X′

A2
ε − �21�

−1
11 SA1 + �21�

−1
11 X′

A1
ε, (6.2)

where SAi
= (S′

k1
, . . . , S′

kqi
)′, Ski

= λ
√

dki
ski

, sk = X′
k(Y − Xβ̂)/(λ

√
dk), CAi

= (C′
k1

, . . . ,

C′
kqi

)′, Cki
= λ

√
dki

I (‖β̂ki
‖2 = 0)edki

×1, all the elements of matrix edki
×1 equal 1, ki ∈ Ai and

�ij = X′
Ai

XAj
/n.

Step 1. Define

V1j = �
−1/2
11 Q′

Aj 1SAj
/
√

n, j = 1,3,4, ωk = (I − PA1)XAk
βAk

, k = 2, . . . ,6,

where QAkj is the matrix representing the selection of variables in Ak from Aj . Define
u = XA1�

−1
11 Q′

A41SA4/n − ω2/‖XA1�
−1
11 Q′

A41SA4/n − ω2‖2. From (6.1) and (6.2), we have

V ′
14(V13 + V14) ≤ S′

A4
QA41�

−1
11 �12βA2 + S′

A4
QA41�

−1
11 X′

A1
ε/n + √

daλ
∑

k∈A4
‖βk‖2 and

‖ω2‖2
2 ≤ β ′

A2
(CA2 − X′

A2
ε − �21�

−1
11 SA1 + �21�

−1
11 X′

A1
ε). Then, under GSC,

‖V14‖2
2 + ‖ω2‖2

2 ≤ (‖V14‖2
2 + ‖ω2‖2

2)
1/2u′ε + (‖V14‖2 + ‖P1XA2βA2‖2)

(
λ2daN(A3)

nc∗(|A1|)
)1/2

(6.3)
+ √

daλη1 + λ
√

da‖βA5‖2.

Step 2. Define B2
1 = λ2dbq/(nc∗(|A1|)) and B2

2 = λ2dbq/(nc∗(|A0| ∨ |A1|)). In this step, we
consider the event |u′ε|2 ≤ (|A1| ∨ db)B

2
1/(4qda). Suppose that the set A1 contains all large

βk �= 0. From (6.3), ‖V14‖2
2 ≤ B2

1 + 4
√

daλη1 + 4
√

dη2B2 + 4dB2
2 , so we have

(q1 − q)+ ≤ q + nc∗(|A1|)
λ2db

(
4
√

daλη1 + 4

√
λ2daq

nc∗(|A1|)η2 + 4λ2daq

nc∗(|A1|)

)
. (6.4)

For general A1, let C5 = c∗(|A5|)/c∗(|A1| ∪ |A5|). From (6.3),

‖ω2‖2
2 ≤ 4

3

(
B2

1

2
+ dB2

2 + √
d
(
1 + √

C5
)
η2B2 + 2

√
daη1

)
+ 32

9
dC5B

2
2 . (6.5)

From Zhang and Huang (2008), ‖ω2‖2
2 ≥ (‖βA5‖2(nc∗,5)

1/2 − η2)
2 and ‖XA2βA2‖2 ≤ η2 +

‖XA5βA5‖2 ≤ η2 + (nc∗(|A5|))1/2‖βA5‖2. By the Cauchy–Schwarz inequality, then, we have

‖βA5‖2
2nc∗,5 ≤

[
4

3
λ

√
daq

nc∗,5

(
1 + c∗(|A5|)

c∗(|A1|)
)1/2

+ 2η2

]2

(6.6)

+ 8

3

[
B2

1

4
+ √

daλη1 + η2

(
λ2daq

nc∗(|A1|)
)1/2

+ λ2daq

2nc∗(|A1|) − 3

4
η2

2

]
,
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where c∗,5 = c∗(|A1 ∪ A5|).
Step 3. Letting c∗(|Am|) = c∗, c∗(|Am|) = c∗ for N(Am) ≤ q∗, we have

q1 ≤ N(A1 ∪ A5) ≤ q∗, |u′ε|2 ≤ (|A1| ∨ db)λ
2db

4danc∗(|A1|) . (6.7)

We have c̄ = C5 = c∗(|A5|)/c∗(|A1|∨ |A5|) = c∗/c∗ and c∗,5 = c∗(|A1 ∪A5|) = c∗. From (6.4),
(6.5) and (6.6), (q1 − q)+ + q ≤ M1q , ‖ω2‖2

2 ≤ M2B
2
1 , nc∗‖γ̃A5‖2

2 ≤ M3B
2
1 when (2.12) is

satisfied. Define

x∗
m ≡ max|A|=m

max
‖UAk

‖2=1,k=1,...,m

∣∣∣∣ε′ XA(X′
AXA)−1S̄A − (I − PA)Xβ

‖XA(X′
AXA)−1S̄A − (I − PA)Xβ‖2

∣∣∣∣ (6.8)

for |A| = q1 = m ≥ 0, S̄A = (S̄′
A1

, . . . , S̄′
Am

)′, where S̄Ak
= λ

√
dAk

UAk
, ‖UAk

‖2 = 1. Let QA =
X∗

A(X′
AXA)−1, where X∗

k = λ
√

dkXk for k ∈ A. For a given A, let Vlj = (0, . . . ,0,1,0, . . . ,0)

be the |A| × 1 vector with the j th element in the lth group being 1. Then, by (6.8),

x∗
m ≤ max|A|=m

max
l,j

{∣∣∣∣ε′ QAVlj

‖QAVlj‖2

∣∣∣∣‖QAVlj‖2
∑

l∈A

√
dl

‖QAUA‖2
+

∣∣∣∣ ε′(I − PA)Xβ

‖(I − PA)Xβ‖2

∣∣∣∣
}
.

If we define �m0 = {(U, ε): x∗
m ≤ σ

√
8(1 + c0)V 2((mdb) ∨ db) log(Nd ∨ an) ∀m ≥ m0}, then

(X, ε) ∈ �m0 ⇒ |u′ε|2 ≤ (x∗
m)2 ≤ (|A1| ∨ db)λ

2db/(4danc∗) for N(A1) ≥ m0 ≥ 0. By the def-
inition of x∗

m, it is less than the maximum of
(

p
m

)∑
k∈A dk normal variables with mean 0 and

variance σ 2V 2
ε , plus the maximum of

(
p
m

)
normal variables with mean 0 and variance σ 2. It

follows that P {(X, ε) ∈ �m0} → 1 when (6.7) holds. This completes the sketch of the proof of
Theorem 2.1. �

Proof of Theorem 2.2. Consider the case when {c∗, c∗, r1, r2, c0, σ, d} are fixed. The required
configurations in Theorem 2.1 then become

M1q + 1 < q∗, η1 ≤ r2
1

c∗
qλ

n
, η2

2 ≤ r2
2

c∗
qλ2

n
. (6.9)

Let A1 = {k: ‖β̂k‖2 > 0 or k /∈ A0}. Define v1 = XA1(β̂A1 − βA1) and g1 = X′
A1

(Y − Xβ̂).

We then have ‖v1‖2
2 ≥ c∗n‖β̂A1 − βA1‖2

2, (β̂A1 − βA1)
′g1 = v′

1(Xβ − XA1βA1 + ε) − ‖v1‖2
2

and ‖g1‖∞ ≤ max
k,‖β̂k‖2>0 ‖λ√

dkβ̂k/‖β̂k‖2‖∞ = λda . Therefore, ‖v1‖2 ≤ η2 + ‖PA1ε‖2 +
λ
√

daN(A1)/(nc∗). Since ‖PA1ε‖2 ≤ 2σ
√

N(A1) log(Nd) with probability converging to 1 un-
der the normality assumption, ‖X(β̂ − β)‖2 ≤ 2η2 + ‖PA1ε‖2 + λ

√
daN(A1)/(nc∗). We then

have

( ∑
k∈A1

‖β̂k − βk‖2
2

)1/2

≤ ‖v1‖2√
nc∗

≤ 1√
nc∗

(
η2 + 2σ

√
N(A1) log(Nd) + √

dM1c̄B1
)
. (6.10)
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Since A2 ⊂ A0, by the second inequality in (6.9), #{k ∈ A0: ‖βk‖2 > λ/n} ≤ r2
1 q/c∗ ∼ O(q).

By the SRC and the third inequality in (6.9),
∑

k∈A0
‖βk‖2

2I {‖βk‖2 > λ/n} ≤ ∑
k∈A0

‖Xkβk ×
I {‖βk‖2 > λ/n}‖2

2/(nc∗) ≤ r2
2 qλ2/(n2c∗c∗) and

∑
k∈A0

‖βk‖2
2I {‖βk‖2 ≤ λ/n} ≤ r2

1 qλ2/(c∗n2).
From (6.10), we then have

‖β̂ − β‖2 ≤ 1√
nc∗

(
2σ

√
M1 log(Nd)q + (

r2 + √
dM1c̄

)
B1

) +
√

c∗r2
1 + r2

2

c∗c∗

√
qλ

n
,

‖Xβ̂ − Xβ‖2 ≤ 2σ
√

M1 log(Nd)q + (
2r2 + √

dM1c̄
)
B1.

This completes the proof of Theorem 2.2. �

Proof of Theorem 3.1. Let û = β̂ − β , W = X′ε/
√

n, V (u) = ∑n
i=1[(εi − xiu)2 − ε2

i )] +∑p

k=1 λk

√
dk‖uk + βk‖2 and û = minu(ε − Xu)′(ε − Xu) + ∑p

k=1 λk

√
dk‖uk + βk‖2, where

λk = λ̃/‖β̃k‖2. By the KKT conditions, if there exists û such that

�Ac
0A

c
0

(√
nûAc

0

) − WAc
0
= −SAc

0
/
√

n, ‖ûk‖2 ≤ ‖βk‖2 for k ∈ Ac
0, (6.11)

−CA0/
√

n ≤ �A0A
c
0

(√
nûAc

0

) − WA0 ≤ CA0/
√

n, (6.12)

then ‖β̂k‖2 �= 0 for k = 1, . . . , q and ‖β̂k‖2 = 0 for k = q + 1, . . . , p.
From (6.11) and (6.12), (

√
nûAc

0
) − �−1

Ac
0A

c
0
WAc

0
= − 1√

n
�−1

Ac
0A

c
0
SAc

0
and �A0A

c
0
(
√

nûAc
0
) −

WA0 = −n−1/2X′
A0

(I − PAc
0
)ε − n−1/2�A0A

c
0
�−1

Ac
0A

c
0
SAc

0
. Define the events

E1 = {
n−1/2‖(�−1

Ac
0A

c
0
X′

Ac
0
ε)k‖2 <

√
n‖βk‖2 − n−1/2‖(�−1

Ac
0A

c
0
SAc

0
)k‖2, k ∈ Ac

0

}
,

E2 = {
n−/2

∥∥(
X′

A0
(I − PAc

0
)ε

)
k

∥∥
2 < n−1/2‖Ck‖2 − n−1/2‖(�A0A

c
0
�−1

Ac
0A

c
0
SAc

0
)k‖2, k ∈ A0

}
,

where (·)k denotes the dk-dimensional subvector of the vector (·) corresponding to the kth group.
We then have P(‖β̂k‖2 �= 0, k ∈ A0, and ‖β̂k‖2 = 0, k /∈ A0) ≥ P(E1 ∩ E2) and P(E1 ∩ E2) =
1 − P(Ec

1 ∪ Ec
2) ≥ 1 − P(Ec

1) − P(Ec
2).

First, we consider P(Ec
1). Define R = {‖β̃k‖−1

2 ≤ c1θ
−1
b , k ∈ Ac

0}, where c1 is a con-
stant. P(Ec

1) = P(Ec
1 ∩ R) + P(Ec

1 ∩ Rc) ≤ P(Ec
1 ∩ R) + P(Rc). By (C2), P(Rc) → 0.

Let Nq = ∑q

k=1 dk , τ1 ≤ · · · ≤ τNq be the eigenvalues of �Ac
0A

c
0

and γ1, . . . , γNq be the

associated eigenvectors. The j th element in the lth group of vector �−1
Ac

0A
c
0
SAc

0
is ulj =∑Nq

l′=1 τ−1
l′ (γ ′

l′SAc
0
)γlj . By the Cauchy–Schwarz inequality, u2

lj ≤ τ−2
1

∑Nq

l=1 ‖γl‖2
2‖SAc

0
‖2

2 =
τ−2

1 Nq‖SAc
0
‖2

2 ≤ τ−2
1 Nq(

∑q

k=1 λ2
kdk). Therefore, ‖uk‖2

2 ≤ dkτ
−2
1 q2d2

a (λ̃c1θ
−1
b )2.

If we define υAc
0
= √

nθb − n−1/2c1τ
−1
1 qd

3/2
a λ̃θ−1

b , ηAc
0
= n−1/2�−1

Ac
0A

c
0
X′

Ac
0
ε, ξA0 = n−1/2 ×

X′
A0

(I − PAc
0
)ε, CAc

0
= {maxk∈Ac

0
‖ηk‖2 ≥ υAc

0
}, then P(Ec

1) ≤ P(CAc
0
). By Lemmas 1 and 2

of Huang, Ma and Zhang (2008), P(Cc
A0

) ≤ K(da logq)1/2/υAc
0
, where K is a constant,

k(da logq)1/2/υAc
0
→ 0 from (C3). We then have P(Ec

1 ∩ R) → 0, P(Ec
1) → 0.
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Next, we consider P(Ec
2). Similarly as above, define D = {‖β̃k‖−1

2 > rn, k ∈ A0} ∩ R.

P(Ec
2) ≤ P(Ec

2 ∩ D) + P(Dc). By (C2), P(Dc) → 0. |∑Nq

l=1

∑n
i=1(XA0)ij (XAc

0
)ilul | ≤∑Nq

l=1 |ul/n| ≤ τ−1
1 q2d2

a λ̃c1θ
−1
b , where ul is the lth element of vector �−1

Ac
0A

c
0
SAc

0
. If we define

υA0 = n−1/2λ̃rn
√

db − n−1/2τ−1
1 q2d

5/2
a λ̃c1θ

−1
b , CA0 = {maxk∈A0 ‖ξk‖2 > υA0}, then P(Qc) ≤

P(CA0), P(CA0) ≤ K(da log(p − q))1/2/υA0 . K(da log(p − q))1/2/υA0 → 0 from (C3). We
then have P(Ec

2 ∩ D) → 0, P(Ec
2) → 0. This completes the proof of Theorem 3.1. �

Proof of Theorem 3.2. If we let Â = {k: ‖β̃k‖2 > 0, k = 1, . . . , p}, then
∑

k∈Âc ‖β̂∗
k ‖2 = 0, the

dimension of our problem (3.1) is reduced to q̂ , q̂ ≤ q∗ and Âc ⊂ A0. By the definition of β̂∗,
we have

1

2
‖Y − X

Â
β̂∗

Â
‖2

2 + λ̃
∑
k∈Â

√
dk

‖β̃k‖2
‖β̂∗

k ‖2 ≤ 1

2
‖Y − X

Â
β

Â
‖2

2 + λ̃
∑
k∈Â

√
dk

‖β̃k‖2
‖βk‖2, (6.13)

η∗ = λ̃
∑
k∈Â

√
dk

‖β̃k‖2
(‖βk‖2 − ‖β̂∗

k ‖2) ≤ λ̃
∑
k∈Â

√
dk

‖β̃k‖2
‖β̂∗

k − βk‖2. (6.14)

If we let δ
Â

= �
1/2

ÂÂ
(β̂∗

Â
−β

Â
) and D = �

−1/2

ÂÂ
X′

Â
, then ‖Y −X

Â
β̂∗

Â
‖2

2/2−‖Y −X
Â
β

Â
‖2

2/2 =
δ′
Â
δ
Â
/2−(Dε)′δ

Â
. By (6.13) and (6.14), δ′

Â
δ
Â
/2−(Dε)′δ

Â
−η∗ ≤ 0, so ‖δ

Â
−Dε‖2

2 −‖Dε‖2
2 −

2η∗ ≤ 0. By the triangle inequality, ‖δ
Â
‖2 ≤ ‖δ

Â
− Dε‖2 + ‖Dε‖2. Thus, ‖δ

Â
‖2

2 ≤ 6‖Dε‖2
2 +

6η∗.
Let Di be the ith column of D. E(‖Dε‖2

2) = σ 2 tr(D′D) = σ 2q̂ . Then, with probability con-
verging to 1, ‖β̂

Â
−β

Â
‖2

2 ≤ 6σ 2M1q/(nc∗)+ (λ̃
√

da/(ξbθbnc∗))2/2 +‖β̂
Â

−β
Â
‖2

2/2. Thus, for
λ̃ = nα for some 0 < α < 1/2, with probability converging to 1,

‖β̂
Â

− β
Â
‖2 ≤

√
6σ 2M1

c∗
q

n
+ da

(ξbθbc∗)2

(
λ̃

n

)2

∼ O

(√
q

n

)

and ‖X
Â
β̂

Â
− X

Â
β

Â
‖2 ≤ √

nc∗‖β̂
Â

− β
Â
‖2 ∼ O(

√
q). This completes the proof of Theo-

rem 3.2. �
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