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Consider the following problem: if the maximum likelihood estimate of a location parameter of a

population is given by the sample mean, is it true that the distribution is of normal type? The answer

is positive and the proof was provided by Gauss, albeit without using the likelihood terminology. We

revisit this result in a modern context and present a simple and rigorous proof. We also consider

extensions to a p-dimensional population and to the case with a parameter additional to that of

location.
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1. Background and discussion

It is a commonplace that, if x1, . . . , xn is a random sample from a p-dimensional normal

population with mean vector � and covariance matrix �, N p(�, �) say, then the maximum

likelihood estimate (MLE) of � is given by the sample mean vector x ¼
Pn

i¼1xi=n,

irrespective of the fact that � is known or must be estimated. The converse statement is far

less obvious and familiar: if the sample mean is known to be the MLE �̂� for the location

parameter � of a given parametric family of distributions, can we conclude that the

population has a normal density? To put it in mathematical notation, the problem is as

follows: if x1, . . . , xn is a random sample from a location family of p-dimensional densities

f (x� �) such that the MLE �̂� coincides with the sample mean x, can we conclude that

f (x) coincides with � p(x; �), the density of N p(0, �) evaluated at x, for some covariance

matrix � ? A second layer of complication arises if an additional parameter, Ł say, is

introduced. Typically Ł regulates the covariance matrix, so that � ¼ �(Ł); other cases are

possible in principle, but ruled out by the results presented later.

The origins of the problem can be traced back to Gauss (1809) himself (see also Gauss

1963), and relate directly to the argument which led to the current prominent role of the

univariate normal distribution. Gauss (1809: § 177) showed that, if the sample mean is the

solution to the likelihood equation (although, of course, this terminology was not used by

him) for all possible samples and possible values of n, and the score function is continuous,

then the parent distribution is the normal. See also the accounts of Hald (1998: 354–355)
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and Chatterjee (2003: 225–227) that illustrate and complement the original argument; in

particular, Chatterjee shows that the argument goes through if the required property holds

for sample sizes n ¼ 1, 2, 3 only.

Among the few papers that have explored problems of this sort further, there is the

classical work of Teicher (1961) which considers characterizations of distributions via MLE

when p ¼ 1; the normal case with a location parameter is clearly of most interest. Teicher

weakened the conditions required by Gauss in two ways: (i) differentiability of f is not

required and can be replaced by lower semi-continuity; (ii) x must be the MLE for samples

of size n ¼ 2 and 3 only. Teicher’s (1961) result was extended to the p-dimensional setting

by Marshall and Olkin (1993), although the additional condition that log f (x) admits a

gradient and that this gradient must satisfy some minimal regularity condition (in order to

invoke a linear solution of the Cauchy functional equation involved in the proof) would seem

necessary for a rigorous statement of the theorem. Stadje (1993) studied this characterization

problem as well, but with the above requirement for n ¼ 2, 3, 4 simultaneously.

In addition to the papers quoted above, characterizations of distributions via MLE were

considered by Hürlimann (1998) following a very different sort of argument. His approach

is in a sense more general since it applies to any location–scale family, but is limited to the

case p ¼ 1.

The argument developed in the next section deals with the problem described above.

While the proof shares some features with others already developed by the aforementioned

authors, it has the advantage of requiring that �̂� ¼ x for only one value of n, provided

n > 3, in place of making this requirement for n ¼ 2 and n ¼ 3 simultaneously. Compared

to Teicher’s (1961) argument, the present proof has more stringent regularity conditions, but

it relaxes the condition on the sample size, and it seems to us somewhat simpler; in

addition, the present proof holds for general dimension p and allows the presence of a

parameter in addition to �.

To preserve the simplicity of the proof in its essential form, we first present the argument

for the basic case, and then add levels of complication in subsequent formulations of

increasing generality.

2. Characterization

2.1. Univariate location family

Theorem 1. Consider a parametric location family for a one-dimensional continuous random

variable, such that for any choice of � 2 R the corresponding probability density function at

the point x 2 R is f (x� �). Assume that a random sample of size n > 3 is drawn from a

member of this parametric family, and that the following conditions hold:

(i) f (x) is a differentiable function of x and its derivative f 9(x) is continuous at

least at one point x 2 R;

(ii) for each set of sample values, x1, . . . , xn, the sample mean x ¼
Pn

i¼1xi=n is a

solution of the likelihood equation for the location parameter �.
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Then f (x) is the one-dimensional normal density �(x; � 2) for some positive � 2.

Proof. Equating to 0 the score function for � derived from the log-likelihood function

associated with the sample x1, . . . , xn, we obtain

Xn

i¼1

g(xi � �) ¼ 0, (1)

where

g(x) ¼ d

dx
log f (x): (2)

Notice that we allow f (x) ¼ 0 and in that case adopt the common convention that

log 0 ¼ �1. However, since f (x) . 0 must hold true for a range of x values, then (2) must

correspondingly be finite for a range of values of � and the solution to (2) is to be searched

for in this set. Under condition (ii) of the theorem, we have

Xn

i¼1

g(xi � x) ¼ 0

for all possible choices of the sample values.

Consider a sample with x1 ¼ . . . ¼ xn ¼ u for some constant u. Then (1) becomes

n g(u� �) ¼ 0,

whose solution is �̂� ¼ u under the assumption of the theorem; hence g(0) ¼ 0.

Consider now the sample 2u, 0, u, . . . , u. Then again �̂� ¼ u and

g(u) þ g(�u) þ (n� 2)g(0) ¼ 0,

which implies g(�u) ¼ �g(u), that is, that g is antisymmetric.

For any two points u and v, consider further the sample u, v, �(uþ v), 0, . . . , 0 such

that �̂� ¼ 0; therefore

g(u) þ g(v) ¼ g(uþ v): (3)

This is the celebrated Cauchy functional equation which has been discussed extensively in the

mathematical literature; see, in particular, Aczél and Dhombres (1989) under the assumption

of continuity at a point for g(�). The solution to equation (3) is of the type

g(x) ¼ �cx,

for some c 2 R not depending on x; the minus sign is inserted for mere notational

convenience. From (2), the corresponding integral function is of the form

log f (x) ¼ d � 1

2
c x2,

for some real constant d. It is implicit that c . 0, otherwise f (x) would not be integrable

over the real line. After the constant d is suitably adjusted so that f integrates to 1 over R,

we obtain the normal density �1(x; 1=c) for f , where c . 0. This completes the proof. h
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Remark 1. If the requirements of Theorem 1 refer to the case n ¼ 2 instead of some n > 3,

then the conclusion does not hold. A counter-example is given by the density function

f (x) ¼ constant 3 e�x2=2þw(x), x 2 R,

where w : R ! R is an even function. Equation (1) becomes

Xn

i¼1

(xi � �) ¼
Xn

i¼1

w9(xi � �),

where the derivative w9 is an odd function. If n ¼ 2, the value � ¼ x is always a solution to

this equation, even if f (x) is not normal. The choice w(x) ¼ cos (x) is particularly

appropriate because it is then obvious that the log-likelihood function is log-concave.

2.2. Multivariate location family

Theorem 2. Consider a parametric family for a p-dimensional continuous random variable,

depending on a location parameter � 2 R p, such that the corresponding probability density

function at point x 2 R p is f (x� �). Assume that a random sample of size n > 3 is drawn

from a member of this parametric family, and that the following conditions hold:

(i) f (x) admits partial derivatives with respect to the p components of x and the

gradient is continuous at least at one point x 2 R p;

(ii) for each set of sample p-dimensional vectors, x1, . . . , xn, the sample mean vector

x ¼
Pn

i¼1xi=n is a solution of the likelihood equation for the location parameter �.

Then f (x) is the p-dimensional normal density � p(x; �) for some positive definite matrix �.

Proof. Since the proof is largely the same as that of Theorem 1, we only highlight the

differences. Once the definition (2) of the derivative g(x) is replaced by the gradient formed

by the p partial derivatives with respect to the components of x, the proof proceeds as before

up to equation (3), where the quantities u, v are now intended as p-dimensional vectors.

Under the condition of continuity of g(x) at one point, the solution to the vector equation

(3) is still of linear type; see, for instance, Aczél and Dhombres (1989). Write the solution

as

g(x) ¼ �C x,

where C is a p3 p constant matrix. On integrating this expression, we have

log f (x) ¼ d � 1
2
xTC x

where d is some real constant.

There is no loss of generality in assuming that C is symmetric since xTC x ¼ (xTC x)T,

and it is implicit that C > 0. Otherwise, if there were a point x0 2 R p such that xT
0Cx0 , 0,

then the same would hold for all multiples Æx0 for any real Æ. Combining this fact with

continuity of xTCx, there would be a cone where the density has arbitrarily high values,

against the hypothesis of integrability.
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After the constant d is suitably adjusted so that f integrates to 1 over R p, we obtain the

multivariate normal density � p(x; C�) for f , where C� is a generalized inverse of C.

However, if C were not of full rank, the density of the resulting singular normal distribution

would lie on a linear subspace of R p and would not exist over the entire space R p, since

the probability mass outside the aforementioned linear space must be 0; see, for instance,

Rao (1973: 527–528). Since this would contradict the hypothesis of continuous

differentiability of f at one point at least, we conclude that C�1 exists, and f is the

density of � p(x; �), with � ¼ C�1. This completes the proof. h

Remark 2. Here again, if the requirements of Theorem 2 refer to the case n ¼ 2 instead of

some n > 3, then the conclusion does not hold. A counter-example similar to that in Remark

1 is given by the density function

f (x) ¼ constant 3 e�xTx=2þw(x), x 2 R p,

where w : R p ! R satisfies w(�x) ¼ w(x) for all x 2 R p.

2.3. Multivariate location family with additional parameters

Theorem 3. Consider a parametric family for a p-dimensional continuous random variable,

depending on a location parameter � 2 R p, and possibly an additional parameter Ł 2 ,̈ ¨
an open subset of Rq, such that the corresponding probability density function at point

x 2 R p is f (x� �; Ł). Assume that a random sample of size n > 3 is drawn from a member

of this parametric family, and that the following conditions hold:

(i) for any fixed Ł, f (x; Ł) admits partial derivatives with respect to the p

components of x and the gradient is continuous at least at one point x 2 R p, and

f (x; Ł) admits partial derivative with respect to Ł;
(ii) for each set of sample p-dimensional vectors, x1, . . . , xn, and for each choice of

Ł, the sample mean vector x ¼
Pn

i¼1xi=n is a solution of the likelihood equation

for the location parameter �.

Then f (x; Ł) is the p-dimensional normal density � p(x; �) for some positive definite matrix

� that depends on Ł.

Proof. If Ł is known, then the argument is exactly as in the proof of Theorem 2. In the case

where Ł is not known, there is of course a second likelihood equation. However, the argument

of Theorem 2 for the first equation still carries over, since it works for any fixed Ł, and we

still obtain that f (x; Ł) ¼ � p(x; �) where � ¼ C�1 depends on Ł. This completes the

proof. h

Remark 3. Under the assumptions of Theorem 3, the MLE Ł̂Ł of Ł has to maximize the profile

log-likelihood
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‘(Ł) ¼ constant � n

2
logj�(Ł)j � 1

2

Xn

i¼1

(xi � x)T�(Ł)�1(xi � x):

An interesting special case is when the parameter Ł has dimension q ¼ p (pþ 1)=2 and

represents the non-duplicated elements of �, under the constraint that � ¼ �(Ł) is positive

definite. It follows from Theorem 3 that �(Ł̂Ł) in this setting must be the sample covariance

matrix. In particular, when p ¼ 1 and f (x� �; Ł) ¼ f [(x� �)=Ł]=Ł, a location–scale family

with Ł . 0, the implication is that the MLE of the scale parameter Ł must be the square root

of the sample variance.
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