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BIHARMONIC ORBITS OF ISOTROPY REPRESENTATIONS

OF SYMMETRIC SPACES
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Abstract

In this paper, we give a necessarly and su‰cient condition for orbits of linear

isotropy representations of Riemannian symmetric spaces are biharmonic submanifolds

in hyperspheres in Euclidean spaces. In particular, we obtain examples of biharmonic

submanifolds in hyperspheres whose co-dimension is greater than one.

1. Introduction

J. Eells and L. Lemaire ([6]) introduced the notion of biharmonic map as
a generalization of the notion of harmonic map. For a smooth map j from a
Riemannian manifold ðM; gÞ into another Riemannian manifold ðN; hÞ, j is said
to be harmonic if it is a critical point of the energy functional defined by

EðjÞ ¼ 1

2

ð
M

jdjj2 dmg:

The Euler-Lagrange equation is given by the vanishing of the tension field tj.
Harmonic maps are studied by many mathematicians (cf. [5], [7], [9]).

The biharmonic maps, which is a generalization of the harmonic map, is
defined as a critical point of bienergy functional

E2ðjÞ ¼
1

2

ð
M

ktjk2 dmg:

Similar to harmonic maps, biharmonic maps are characterized by the Euler-
Lagrange equation t2;j ¼ 0 where t2;j is the bitension field of j. It is known
that the equation t2;j ¼ 0 is a fourth order partial di¤erential equation. By
definition, harmonic maps are biharmonic maps.

On the other hand, a biharmonic map is not necessary harmonic. The
B. Y. Chen’s conjecture is to ask whether every biharmonic submanifold of the
Euclidean space Rn must be harmonic, i.e., minimal ([4]). It was partially solved
positively. For example, K. Akutagawa and Sh. Maeta showed ([1]) that every
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complete properly immersed biharmonic submanifold in the Euclidean space Rn

must be minimal. Furthermore, it is known (cf. [14], [15], [16]) that every
biharmonic map of a complete Riemannian manifold into another Riemannian
manifold of non-positive sectional curvature with finite energy and finite bienergy
must be harmonic.

On the contrary, for the target Riemannian manifold ðN; hÞ of non-negative
sectional curvature, there exist examples of biharmonic submanifolds which are
not harmonic. A biharmonic submanifold is called proper if it is not harmonic.
T. Ichiyama, J. Inoguchi and H. Urakawa ([10]) classified homogeneous hyper-
surfaces which are proper biharmonic in the hypersphere in Euclidean spaces.
More generally, biharmonic homogeneous hypersurfaces in compact symmetric
spaces are studied in [17] and [11]. Furthermore, S. Ohno, T. Sakai and H.
Urakawa construct higher co-dimensional biharmonic submanifolds in compact
symmetric spaces as orbits of Hermann actions which are generalizations of
isotropy actions of compact symmetric spaces ([18]). However, since the rank
of hyperspheres are one, the cohomogeneity of Hermann actions on hyperspheres
are one. Therefore, in orbits of Hermann actions on hyperspheres, there is no
proper biharmonic submanifolds whose co-dimension is greater than one.

A. Blamuş, S. Montaldo and C. Oniciuc give new examples of proper bihar-
monic submanifolds in spheres and classification of biharmonic submanifolds
which are the direct products of some spheres in the unit sphere in [2] and [3].

In this paper, using root systems, we describe a necessary and su‰cient con-
dition for an orbit of the linear isotropy representation of a Riemannian sym-
metric space to be biharmonic in the hypersphere, and give examples of proper
biharmonic submanifolds in the hypersphere whose co-dimension is greater than
one.

The organization of this paper is as follows. In Section 2, we recall the
foundation for the following sections. In 2.1, we describe biharmonic isometric
immersions. In particular, we explain that for an isometric immersion whose
tension field is parallel, the biharmonic property is characterized by a condition of
the second fundamental form of the isometric immersion (Theorem 2.4). In 2.2,
we examine the linear isotropy representations of Riemannian symmetric spaces.
We state that the second fundamental form of an orbit of the linear isotropy
representation of a Riemanniam symmetric space is described by the root system
of the Riemannian symmetric space. Moreover, we show the tension field of an
orbit of the linear isotropy representation of a Riemanniam symmetric space is
parallel with respect to the normal connection. In Section 3, we state and prove
our main theorem (Theorem 3.1) and give new examples of proper biharmonic
submanifolds of hyperspheres.

2. Preliminaries

2.1. Biharmonic isometric immersions. In this section, we describe bihar-
monic isometric immersions. Let ðM; gÞ and ðN; hÞ be Riemannian manifolds,
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and j be a smooth map from M into N. We denote by ‘, ‘h the Levi-Civita
connections on TM, TN of ðM; gÞ, ðN; hÞ, and by ‘ the induced connection on
j�1TN respectively. Let Bj denotes the second fundamental form of j, i.e.

BjðX ;YÞ ¼ ‘X ðdjðYÞÞ � djð‘XY Þ
for X ;Y A XðMÞ. For p A M, BjðX ;YÞp depends only on the vectors Xp;Yp A
TpM. Then we define the tension field tj of j by

ðtjÞp ¼
Xm
i¼1

Bjðei; eiÞp ðp A MÞ

where feigm
i¼1 is an orthonormal basis of TpM. Then the tension field tj is a

smooth section on j�1TN.

Definition 2.1. A smooth map j is called harmonic if tj ¼ 0. If a har-
monic map j is an isometric embedding, then the image jðMÞ � N is called a
harmonic submanifold.

Remark 2.2. When a smooth map j is an isometric immersion, the def-
inition of tj coincides with the definition of mean curvature vector field of j.
Then, a harmonic map is a minimal immersion, and a harmonic submanifold is a
minimal submanifold.

There are articles whose mean curvature vector field is defined by dividing
the trace of the second fundamental form by the dimension of the submanifold.
The reference [12] is one of them. Even if either definition is adopted, since the
mean curvature vector field coincides with the exception of the di¤erence in the
scalar multiplication, the definition of the minimality does not change.

To define the notion of biharmonic maps, we define the Jacobi operator J.
For V A Gðj�1TNÞ

JðVÞ :¼ DV �RðVÞ;
where DV ¼ ‘

�
‘V ¼

Pm
i¼1f‘ei‘eiV � ‘‘ei

eiVg, RðVÞ ¼
Pm

i¼1 R
hðV ; djðeiÞÞ �

djðeiÞ. Here Rh is the curvature tensor field of N. Then we set

t2;j ¼ JðtjÞ:
The vector field t2;j is called a bitention field of j.

Definition 2.3. A smooth map j is called biharmonic if t2;j ¼ 0. If a
biharmonic map j is an isometric embedding, then the image jðMÞ � N is called
a biharmonic submanifold.

Then we have the following theorem.

Theorem 2.4 ([17]). Let j : M ! N be a isometric immersion which satisfies
that ‘?

X tj ¼ 0 for all X A XðMÞ. Here ‘? is the normal connection of j. Then
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j is biharmonic if and only if for any p A M,Xm
i¼1

RhððtjÞp; djðeiÞÞ djðeiÞ ¼
Xm
i; j¼1

hððtjÞp;Bjðei; ejÞpÞBjðei; ejÞpð2:1Þ

holds, where feigm
i¼1 is an orthonormal basis of TpM.

Remark 2.5. The condition (2.1) is equivalent to the following equation,Xm
i¼1

Rhðtj; djðeiÞÞ djðeiÞ ¼
Xm
i¼1

BjðAtjei; eiÞÞ:ð2:2Þ

Here Atj is the shape operator of j with respect to tj. It holds gðAtjX ;YÞ ¼
hðBjðX ;YÞ; tjÞ:

2.2. Compact symmetric pair and the second fundamental form of R-spaces
in spheres. In this section, we express the second fundamental form of orbits
of the linear isotropy representations of Riemannian symmetric spaces in hyper-
spheres in terms of root systems.

Let G be a compact connected semisimple Lie group and s an involutive
automorphism of G. We take a subgroup K of G which satisfies Fixðs;GÞ0 �
K � Fixðs;GÞ, where Fixðs;GÞ is the subgroup of the fixed point set of s and
Fixðs;GÞ0 is the identity component of Fixðs;GÞ. Let g and k denote the Lie
algebras of G and K respectively. The involutive automorphism of g induced
from s will be also denoted by s. Then, by definition of K , we have k ¼ fX A g j
sðXÞ ¼ Xg. Take an AdðGÞ-invariant inner product h� ; �i on g. Then

g ¼ klm

is an orthogonal direct sum decomposition of g where m ¼ fX A g j sðXÞ ¼ �Xg.
Let p denotes the natural projection from G onto the coset manifold G=K .

The tangent space TpðeÞG=K of G=K at the origin pðeÞ is identified with m in a
natural way, where e is the identity element of G. Then the inner product h� ; �i
induces a G-invariant Riemannian metric on G=K. We denote the Riemannian
metric on G=K by the same symbol h� ; �i. Then G=K is a compact Riemannian
symmetric space with respect to h� ; �i.

The group G acts on G=K isometrically by LyðxKÞ :¼ yxK ðx; y A GÞ.
Thus the subgroup K acts on G=K isometrically, and the action is called the
isotropy action of G=K . Since for any k A K , the isometry Lk fixes o :¼ eK A
G=K , the di¤erential dLk of Lk at o gives a linear transformation on ToG=K .
For each k; k 0 A K , Lk � Lk 0 ¼ Lkk 0 holds. Thus, K has a representation on
ToG=K , and this representation on ToG=K is called the linear isotropy representa-
tion of G=K .

On the other hand, the di¤erential AdðxÞ of an inner automorphism Ix at e is
an automorphism on g for x A G, where IxðyÞ ¼ xyx�1 ðy A GÞ. Then we have

AdðkÞk ¼ k; AdðkÞm ¼ mð2:3Þ
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for any k A K . Therefore, K has a representation on m. It is well known
that

ðdpÞeðAdðkÞXÞ ¼ ðdLkÞoððdpÞeðXÞÞ ðk A K ;X A mÞ:
Thus, the linear isotropy representation and the adjoint representation on m
are equivalent as an orthogonal representation. Hence we identify the linear
isotropy representation and the adjoint representation on m. Hereafter we con-
sider the representation K on m.

Take and fix a maximal abelian subspace a of m. Then it is known

AdðKÞa ¼ m:

Since

hAdðkÞX ;AdðkÞYi ¼ hX ;Yi ðX ;Y A mÞ
holds for all k A K , AdðkÞ preserving the unit sphere S in m.

For each H A S, the orbit AdðKÞH in S is a submanifold of S, and AdðKÞH
is called an R-space. In particular, if AdðKÞH in S is a minimal submanifold,
then it is called a minimal R-space.

We would like to examine a necessary and su‰cient condition for an
R-space AdðKÞH in S is a biharmonic submanifold.

In order to apply Theorem 2.4 to AdðKÞH in S, we calculate the second
fundamental form of AdðKÞH in S, using the root system of G=K . We define
subspaces of g as follows:

k0 ¼ fX A k j ½H 0;X � ¼ 0 ðH 0 A aÞg;
for each l A anf0g,

kl ¼ fX A k j ½H 0; ½H 0;X �� ¼ �hl;H 0i2X ðH 0 A aÞg;

ml ¼ fX A m j ½H 0; ½H 0;X �� ¼ �hl;H 0i2X ðH 0 A aÞg:

We set S ¼ fl A anf0g j kl 0 f0gg and mðlÞ ¼ dim kl. The subset S in a is called
the root system of G=K (cf. [8]). Since kl ¼ k�l, if l A S, then �l A S. Fix a
basis of a and define a lexicographic ordering > on a with respect to the basis of
a, and set Sþ ¼ fl A S j l > 0g:

Hereafter, we assume H A a \ S. In order to compute the second funda-
mental form of AdðKÞH in S, we use the following lemma.

Lemma 2.6 ([8]). For each l A Sþ, there exist orthonormal bases fSl; igmðlÞ
i¼1

and fTl; igmðlÞ
i¼1 of kl and ml respectively such that for any H 0 A a,

½H 0;Sl; i� ¼ hl;H 0iTl; i; ½H 0;Tl; i� ¼ �hl;H 0iSl; i; ½Sl; i;Tl; i� ¼ l;

AdðexpðH 0ÞÞSl; i ¼ coshl;H 0iSl; i þ sinhl;H 0iTl; i

AdðexpðH 0ÞÞTl; i ¼ �sinhl;H 0iSl; i þ coshl;H 0iTl; i

holds.
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By Lemma 2.6, we have the following direct sum decompositions:

k ¼ k0 l
X
l ASþ

kl ¼ k0 l
X
l ASþ

XmðlÞ

i¼1

R � Sl; i;

m ¼ al
X
l ASþ

ml ¼ al
X
l ASþ

XmðlÞ

i¼1

R � Tl; i:

The tangent space THðAdðKÞHÞ and the normal space T?
H ðAdðKÞHÞ in S of

AdðKÞH at the point H A a \ S is given as

THðAdðKÞHÞ ¼ d

dt
AdðexpðtXÞÞH

����
t¼0

����X A k

� �
¼ f½X ;H� jX A kg ¼ ½k;H�

¼
X
l ASþ

XmðlÞ

i¼1

R � ðhl;HiTl; iÞ ¼
X

l ASþ;hl;Hi00

XmðlÞ

i¼1

R � Tl; i

¼
X

l ASþ;hl;Hi00

ml;

T?
H ðAdðKÞHÞ ¼ al

X
l ASþ;hl;Hi¼0

ml

0@ 1A\ THS:

For H A a \ S, we set SH ¼ fl A S j hl;Hi ¼ 0g. Let X T denotes the
tangent vector in THS ¼ fY A m j hY ;Hi ¼ 0g which is defined as

X T ¼ X � hX ;HiH

for X A m. The vector X T depends on H A a \ S.
Then we compute the covariant derivative of the orbit AdðKÞH in S.

Let ‘m, ‘S and ‘ denote the Levi-Civita connections of m, S and AdðKÞH,
respectively. For each l A SþnSH , 1a iamðlÞ, we define a vector field ðTl; iÞ�
on m by

ðTl; iÞ�X ¼ d

dt
Ad exp � tSl; i

hl;Hi

� �� �
X

����
t¼0

¼ � ½Sl; i;X �
hl;Hi

ðX A mÞ

Then ðTl; iÞ�H ¼ Tl; i holds. Moreover, for each X A AdðKÞH and Y A S,
ðTl; iÞ�X A TX AdðKÞH and ðTl; iÞ�Y A TYS holds. Hence ðTl; iÞ� gives a tangent
vector field on AdðKÞH and a tangent vector field on S.

Using ðTl; iÞ�, we compute the covariant derivative of AdðKÞH. By the
following lemma, it is su‰cient to compute the covariant derivative on m.
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Lemma 2.7 ([13]). Let ðN; h ; iÞ be a Riemannian manifold and M be a

submanifold of N. Let ‘N and ‘M denote the Levi-Civita connection of N and
M, respectively. Then, we have:

(1) ‘N
X Y ¼ ‘M

X Y þ BðX ;Y Þ ðX ;Y A XðMÞÞ,
(2) ‘N

X x ¼ �AxX þ ‘?
Xx ðX A XðMÞ; x A GðT?MÞÞ.

Here B and A denote second fundamental form on M � N and shape operator of
M � N, respectively.

Moreover, we can compute the covariant derivative of m.

Proposition 2.8. For each l; m A SþnSH , 1a iamðlÞ, 1a jamðmÞ, we
have

ð‘m
ðTl; iÞ� ðTm; jÞ�ÞH ¼ � ½Sm; j;Tl; i�

hm;Hi
:

Proof. For l; m A SþnSH , 1a iamðlÞ, 1a jamðmÞ, we set a smooth
curve

cðtÞ ¼ Ad exp � tSl; i

hl;Hi

� �� �
Hð2:4Þ

in AdðKÞH. Since dc=dtð0Þ ¼ ðTl; iÞ�H ¼ Tl; i, we have

d

dt
ðTm; jÞ�cðtÞ

����
t¼0

¼ d

dt

�1

hm;Hi
½Sm; j; cðtÞ�

����
t¼0

¼ � 1

hm;Hi
Sm; j;�

1

hl;Hi
½Sl; i;H�

� �
¼ � 1

hm;Hi
½Sm; j;Tl; i�: r

By using Proposition 2.8 and Lemma 2.7, we can express the tension field tH
of AdðKÞH in S. In [12], the mean curvature vector field calculated by using the
lemma corresponding to Proposition 2.8. The result of [12] using the symbol in
this paper is as follows.

Corollary 2.9 ([12]). Let ftHtH be the tension field of AdðKÞH in m.
Then,

ðftHtHÞH ¼ �
X

l ASþnSH

mðlÞ
hl;Hi

lð2:5Þ

holds. In particular, ðftHtHÞH A a holds.

By the above corollary, we have the following.
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Corollary 2.10. Let tH be the tension field of AdðKÞH in S. Then,

ðtHÞH ¼ �
X

l ASþnSH

mðlÞ
hl;Hi

l

0@ 1AT

ð2:6Þ

holds. In particular, ðtHÞH A a holds.

Proof. We can see that

m ¼ TH AdðKÞHl ðT?
H AdðKÞH \ THSÞl ðT?

H AdðKÞH \ T?
HSÞ:

We set V ¼ T?
H AdðKÞH \ THS. Since S is the unit sphere in m, we can

apply Lemma 2.7. By applying Lemma 2.7 to AdðKÞH � S, AdðKÞH � m and
S � m, we can compute ðtHÞH as follows:

ðtHÞH ¼
X

l ASþnSH

XmðlÞ

i¼1

ð‘S
Tl; i

ðTl; iÞ� � ‘Tl; i
ðTl; iÞ�Þ

¼
X

l ASþnSH

XmðlÞ

i¼1

ð‘S
Tl; i

ðTl; iÞ�ÞV -part

¼
X

l ASþnSH

XmðlÞ

i¼1

fð‘m
Tl; i

ðTl; iÞ�ÞTHS-partgV -part

¼
X

l ASþnSH

XmðlÞ

i¼1

ð‘m
Tl; i

ðTl; iÞ�ÞV -part

¼ ððftHtHÞHÞV -part ¼ ðftHtHÞTH :
Therefore, by Corollary 2.9, we have the consequence. r

Since ðftHtHÞTH ¼ ðtHÞH and

hðftHtHÞH ;Hi ¼ �
X

l ASþnSH

mðlÞ
hl;Hi

hl;Hi ¼ �
X

l ASþnSH

mðlÞ ¼ �dimðAdðKÞHÞ

holds. Therefore, we have

ðftHtHÞH ¼ ðtHÞH � dimðAdðKÞHÞH:ð2:7Þ

Moreover, since AdðKÞH is homogeneous, we have

ðftHtHÞX ¼ ðtHÞX � dimðAdðKÞHÞX ðX A AdðKÞHÞ:ð2:8Þ

Thus, ðtHÞH ¼ 0 if and only if ðftHtHÞH ¼ �dimðAdðKÞHÞH. Y. Kitagawa and
Y. Ohnita prove that ftHtH is parallel with respect to the normal connection of
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AdðKÞH in m. Using this fact, we can prove the following lemma by a simple
calculation.

Lemma 2.11. For any X A TH AdðKÞH,

‘?
X tH ¼ 0ð2:9Þ

holds. Here ‘? is the normal connection of AdðKÞH in S.

The above lemma shows that the orbit AdðKÞH in S holds the assumption
of Theorem 2.3.

3. Main theorem and examples

In this section, under the same condition in Section 2.2, we prove our main
theorems (Theorems 3.1 and 3.5).

According to Corollary 2.10, the tension field tH of AdðKÞH in S can be
calculated using the root system. Hence, Theorem 3.1 gives a necessary and
su‰cient condition for orbits of linear isotropy representations of Riemannian
symmetric spaces are biharmonic submanifolds in unit spheres in terms of root
systems.

Theorem 3.1. Let H A a \ S. Then, AdðKÞH is biharmonic in S if and only
if

dimðAdðKÞHÞðtHÞH ¼
X

l ASþnSH

mðlÞ hl; ðtHÞHi
hl;Hi2

ðlÞT :ð3:1Þ

Here, for X A m, X T denotes the tangent vector in THS defined as X T ¼ X �
hX ;HiH.

Proof. By Lemma 2.11, we can apply Theorem 2.4 to the orbit AdðKÞH
in S. We compute both sides of the equation (2.2). If ðtHÞH ¼ 0, then the
equation (2.2) holds. Thus we suppose ðtHÞH 0 0.

Let R denotes the curvature tensor of S. Since S is the unit sphere, we can
easily calculate R (see [8]). In particular, for each orthonormal frame fX ;Yg in
THS, RðX ;YÞY ¼ X holds. Thus, for each l A SþnSH , 1a iamðlÞ, we have

RððtHÞH ;Tl; iÞTl; i ¼ ðtHÞH :
Then we have

X
l ASþnSH

XmðlÞ

i¼1

RððtHÞH ;Tl; iÞTl; i ¼
X

l ASþnSH

mðlÞðtHÞH

¼ dimðAdðKÞHÞðtHÞH
holds.
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Let Bð�; �Þ denotes the second fundamental form of AdðKÞH in S. By
Lemmas 2.7 and 2.8, for l; m A SþnSH , 1a iamðlÞ, 1a jamðmÞ,

hAðtH ÞHTl; i;Tm; ji ¼ hðtHÞH ;BðTl; i;Tm; jÞi ¼ hðtHÞH ; ð‘m
ðTl; iÞ� ðTm; jÞ�ÞTHi

¼ ðtHÞH ;�
1

hm;Hi
½Sm; j;Tl; i�

� 	
¼ � 1

hm;Hi
hðtHÞH ; ½Sm; j;Tl; i�i

¼ � 1

hm;Hi
h�½Sm; j; ðtHÞH �;Tl; ii ¼ 1

hm;Hi
hhm; ðtHÞHiTm; j;Tl; ii

¼ hm; ðtHÞHi
hm;Hi

dm;ldj; i:

Hence we obtain

AðtH ÞHTl; i ¼
hl; ðtHÞHi
hl;Hi

Tl; i ðl A SþnSH ; 1a iamðlÞÞ:
Thus,

BðAðtH ÞHTl; i;Tl; iÞ ¼
hl; ðtHÞHi
hl;Hi

BðTl; i;Tl; iÞ

¼ hl; ðtHÞHi
hl;Hi

½Sl; i;Tl; i�T

hl;Hi
¼ hl; ðtHÞHi

hl;Hi2
lT :

Therefore, we have the consequence. r

Corollary 3.2. We set

ðT2;HÞH ¼ 2 dimðAdðKÞHÞðtHÞH �
X

l ASþnSH

mðlÞ hl; ðftHtHÞHi
hl;Hi2

ðlÞT
� �

;

ðgT2;HT2;HÞH ¼ 2 dimðAdðKÞHÞðftHtHÞH �
X

l ASþnSH

mðlÞ hl; ðftHtHÞHi
hl;Hi2

l

� �
Then, we have the following;

(1) the orbit AdðKÞH in S is biharmonic if and only if ðT2;HÞH ¼ 0.
(2) the orbit AdðKÞH in S is biharmonic if and only if there exists some

constant c A R, ðgT2;HT2;HÞH ¼ cH holds.

Proof. The equation (3.1) is equivalent to,

0 ¼ dimðAdðKÞHÞðtHÞH �
X

l ASþnSH

mðlÞ hl; ðtHÞHi
hl;Hi2

ðlÞT

¼ dimðAdðKÞHÞðtHÞH �
X

l ASþnSH

mðlÞ hl; ðftHtHÞHi
hl;Hi2

� hH; ðftHtHÞHi
hl;Hi

� �
ðlÞT
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¼ dimðAdðKÞHÞðtHÞH �
X

l ASþnSH

mðlÞ hl; ðftHtHÞHi
hl;Hi2

ðlÞT
� �

þ dimðAdðKÞHÞðtHÞH

¼ 2 dimðAdðKÞHÞðtHÞH �
X

l ASþnSH

mðlÞ hl; ðftHtHÞHi
hl;Hi2

ðlÞT
� �

: r

Remark 3.3. The vector ðT2;HÞH is not necessarily the bitension field of
AdðKÞH in S, but the condition ðT2;HÞH ¼ 0 is a necessary and su‰cient con-
dition for AdðKÞH to be biharmonic in S.

Remark 3.4. Let P ¼ fa1; . . . arg be a set of simple roots of S where
r ¼ dim a. For 1a ia r, we define Hai A a by

hHai ; aji ¼ di; j ð1a ja rÞ:

Here, di; j is the Kronecker delta. Since P is a basis of a, fHa1 ; . . . ;Hrg is also a
basis of a. Using P and fHa1 ; . . . ;Harg, we set an open subset C of a as follows:

C ¼ fH A a j ha;Hi > 0 ða A PÞg ¼
Xr
i¼1

xiHai

���� xi > 0

( )
:

The closure C of C is given as

C ¼ fH A a j ha;Hib 0 ða A PÞg ¼
Xr
i¼1

xiHai

���� xi b 0

( )
:

Then,

AdðKÞC ¼ mð3:2Þ
holds.

For each subset D � P, we set

CD ¼ fH A a j ha;Hi > 0; hb;Hi ¼ 0 ða A D; b A PnDÞg:
Then we have the cell decomposition of C

C ¼
[
D�P

CD ðdisjoint unionÞ:ð3:3Þ

The set C is the orbit space of the representation of AdðKÞ on m. More-
over the cell decomposition (3.3) is a decomposition of orbits type of R-spaces.

Biharmonic orbits can be given by solving Equation (3.1) for H. However,
it is di‰cult to solve this equation in general. In [9], by using a convex function
on CD \ S which satisfy ðgrad FÞH ¼ ðtHÞH , they show that there exists a unique
H A CD \ S such that ðtHÞH ¼ 0 as a critical point of the function. Even if such
a function f on CD \ S exists for ðT2;HÞH , it is di‰cult to decide whether a
critical point of f gives a proper biharmonic submanifold or a harmonic submani-
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fold. Therefore we add some assumptions for S and H and discuss the equation
ðT2;HÞH ¼ 0.

Hereafter, we consider the case where the root system S is reducible. This
assumption means that the representation of K on m is reducible. Thus, the
orbit AdðKÞH is a direct product of some R-spaces.

Let us take ðG1;K1Þ and ðG2;K2Þ as symmetric pairs with connected semi-
simple Lie groups G1 and G2. We consider the case of ðG;KÞ ¼ ðG1 � G2;
K1 � K2Þ We write gi ¼ ki lmi for the decomposition of Lie algebra gi of Gi

with respect to the symmetric pair ðGi;KiÞ and fix a AdðGiÞ-invariant inner product
on mi for each i ¼ 1; 2.

The unit spheres in m1, that in m2 that in m ¼ m1 lm2 are denoted by S1,
S2 and S, respectively. Note that the unit sphere S in m is stable by the adjoint
representation of K1 � K2.

For i ¼ 1; 2, fix a maximal abelian subspace mi. The root system of ðGi;KiÞ
denoted by Si. Then the root system S of ðG;KÞ is decomposed as S ¼ S1 t S2,
For l A S1, m A S2, hl; mi ¼ 0 and S ¼ S1 [ S2 hold. We take Hi A Si for
i ¼ 1; 2. Then we have

dim AdðKÞHi ¼
X

l ASþ
i
nSH

mðlÞ:

Since AdðK1 � fegÞH2 ¼ fH2g and Adðfeg � K2ÞH1 ¼ fH1g, AdðKÞHi is iso-
metric to AdðKiÞHi � Si for i ¼ 1; 2.

For y A ð0; p=2Þ, we set H ¼ cos yH1 þ sin yH2: Then the tension field of
the orbit AdðKÞH in S is given as

ðftHtHÞH ¼ �
X

l ASþnSH

mðlÞ l

hl;Hi

¼ � 1

cos y

X
l ASþ

1
nSH

mðlÞ l

hl;H1i
þ 1

sin y

X
m ASþ

2
nSH

mðmÞ m

hm;H2i

0@ 1A
¼ 1

cos y
ðftH1
tH1

ÞH1
þ 1

sin y
ðftH2
tH2

ÞH2
:

The following theorem gives new examples of proper biharmonic submani-
folds of the unit sphere which are direct products of two R-spaces.

Theorem 3.5. Let we take H1 A S1 and H2 A S2 satisfying that the R-spaces
AdðKÞH1 and AdðKÞH2 are harmonic (or equivalently, minimal ) in S1 and S2,
respectively. The dimension of AdðKÞHi denoted by ni for i ¼ 1; 2. For each y A
ð0; p=2Þ, we set Hy ¼ cos yH1 þ sin yH2.

(1) The following two conditions on y are equivalent:
(a) The R-space AdðKÞHy is harmonic in S.
(b) cos y ¼ n1=ðn1 þ n2Þ.
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(2) The following two conditions on y are equivalent:
(a) The R-space AdðKÞHy is biharmonic in S.
(b) cos y ¼ n1=ðn1 þ n2Þ or 1=2.

In particular, if n1 0 n2, then the R-space AdðKÞHp=4 is proper biharmonic
in S.

Proof. Since

ðftHtHÞH ¼ � n1

cos y
H1 þ

n2

sin y
H2

� �
;

ðtHÞH ¼ 0 if and only if

� n1

cos y
H1 þ

n2

sin y
H2

� �
¼ �ðn1 þ n2Þðcos yH1 þ sin yH2Þ:

Thus we have

0 ¼ n1

cos y
� ðn1 þ n2Þ cos y

� �
H1 þ

n2

sin y
� ðn1 þ n2Þ sin y

� �
H2

¼ 1

cos y
fn1ðsin yÞ2 � n2ðcos yÞ2gH1 þ

1

sin y
fn2ðcos yÞ2 � n1ðsin yÞ2gH2:

The solution of the above equation is

ðcos yÞ2 ¼ n1

n1 þ n2
:

Then ðsin yÞ2 ¼ n2=ðn1 þ n2Þ holds.
A necessary and su‰cient condition for an orbit AdðKÞH � S to be bihar-

monic is there exists c A R, such that ðgT2;HT2;HÞH ¼ cH. To examine the condition
ðgT2;HT2;HÞH ¼ cH, we compute ðgT2;HT2;HÞH . Then we have

ðgT2;HT2;HÞH ¼ 2 dimðAdðKÞHÞðftHtHÞH �
X

l ASþnSH

mðlÞ hl; ðftHtHÞHi
hl;Hi2

l

� �

¼ 2ðn1 þ n2ÞðftHtHÞH �
X

l ASþ
1
nSH

mðlÞ �n1

ðcos yÞ3
hl;H1i

hl;H1i
2
l

 !

�
X

m ASþ
2
nSH

mðmÞ �n2

ðsin yÞ3
hm;H2i

hm;H2i
2
m

 !

¼ 2ðn1 þ n2ÞðftHtHÞH � n1

ðcos yÞ3
ðftH1
tH1

ÞH1
� n2

ðsin yÞ3
ðftH2
tH2

ÞH2

¼ �2ðn1 þ n2Þ
n1

cos y
H1 þ

n2

sin y
H2

� �
þ n21

ðcos yÞ3
H1 þ

n22

ðsin yÞ3
H2
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¼ 1

cos y
�2ðn1 þ n2Þn1 þ

n21

ðcos yÞ2

( )
H1

þ 1

sin y
�2ðn1 þ n2Þn2 þ

n22

ðsin yÞ2

( )
H2:

Since H ¼ cos yH1 þ sin yH2, a necessary and su‰cient condition for an orbit
AdðKÞH � S to be biharmonic is there exists c A R, such that

1

cos y
�2ðn1 þ n2Þn1 þ

n21

ðcos yÞ2

( )
¼ c cos y

1

sin y
�2ðn1 þ n2Þn2 þ

n22

ðsin yÞ2

( )
¼ c sin y:

8>>>>><>>>>>:
ð3:4Þ

The above equation holds if and only if

1

ðcos yÞ2
�2ðn1 þ n2Þn1 þ

n21

ðcos yÞ2

( )
ð3:5Þ

� 1

ðsin yÞ2
�2ðn1 þ n2Þn2 þ

n22

ðsin yÞ2

( )
¼ 0

holds. Then, we can calculate the left side of Equation (3.5).

1

ðcos yÞ2
�2ðn1 þ n2Þn1 þ

n21

ðcos yÞ2

( )
� 1

ðsin yÞ2
�2ðn1 þ n2Þn2 þ

n22

ðsin yÞ2

( )

¼ ðn1ðsin yÞ2 � n2ðcos yÞ2Þ2ððsin yÞ2 � ðcos yÞ2Þ
ðcos yÞ4ðsin yÞ4

:

Hence the solutions of Equation (3.5) are

ðcos yÞ2 ¼ n1

n1 þ n2
;
1

2
:ð3:6Þ r

Finally, we introduce concrete examples of biharmonic submanifolds in the
unit sphere which given by Theorem 3.5. We consider the case of ðG1;K1Þ ¼
ðG2;K2Þ ¼ ðSUðnÞ; SOðnÞÞ ðn > 3Þ. In this case, we can see that

LieðG1Þ ¼ g1 ¼ fX A Mðn;CÞ j tX þ X ¼ 0g:
Here, X and tX denote the complex conjugation and the transpose of X A
Mðn;CÞ, respectively. For X A g, we set sðXÞ ¼ X . Then

k1 ¼ fX A g jX ¼ Xg ¼ fX A Mðn;RÞ jX ¼ � tXg;

m1 ¼ fX A g j �X ¼ Xg ¼
ffiffiffiffiffiffiffi
�1

p
fX A Mðn;RÞ jX ¼ tX ; traceðX Þ ¼ 0g:
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It is known that AdðkÞX ¼ kXk�1 for k A K1, X A m1. We set hX ;Yi ¼
�traceð tXY Þ for X ;Y A g1. Then hX ;Yi is a AdðG1Þ-invariant inner product
of g1. We define a subspace a1 of m1 by

a1 ¼ fH ¼
ffiffiffiffiffiffiffi
�1

p
diagðh1; . . . ; hnÞ j h1; . . . ; hn A R; traceðHÞ ¼ 0g:

Then a1 is a maximal abelian subspace of m1. A simple calculation shows that
the root system S1 of ðG1;K1Þ with respect to a1 is given as

S1 ¼ fGðEi
i � E

j
j Þ j 1a i < ja ng;

where E
j
i denotes the n� n-matrix whose ði; jÞ-entry is one and all the other

entries are zero. The set P1 ¼ fai ¼ Ei
i � Eiþ1

iþ1 j 1a ia n� 1g is a set of simple
roots in S1.

For 1a ia n� 1, we set

Hai ¼
1

n
ðn� iÞ

Xi

j¼1

E
j
j � i

Xn
j¼iþ1

E
j
j

 !
:

Then, hai;Haji ¼ di; j ði; j A f1; . . . ; n� 1gÞ holds. We set Hi ¼ Hai=kHaik for
1a ia n� 1. Then, by Corollary 2.10, the orbit AdðK1ÞHi is a minimal sub-
manifold of S for 1a ia n� 1.

We can see that the isotropy subgroup of AdðK1ÞHi at Hi is isomorphic to
SðOðiÞ �Oðn� iÞÞ. Therefore, AdðK1ÞHi is di¤eomorphic to the Grassmannian
manifold GiðRnÞ. In particular, dim AdðK1ÞHi ¼ iðn� iÞ. Hence for 1a i; ja
n� 1, if dim AdðK1ÞHi ¼ dim AdðK1ÞHj, then i ¼ j; n� j.

By the above argument, we can apply Theorem 3.5 for ðG;KÞ ¼
ðG1 � G2;K1 � K2Þ. By Theorem 3.5, for 1a i; ja n� 1 if i0 j; ðn� jÞ,
then ðAdðK1ÞHi=

ffiffiffi
2

p
Þ � ðAdðK2ÞHj=

ffiffiffi
2

p
Þ � Snðnþ1Þ�3ð1Þ is a proper biharmonic

submanifold.
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