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BIHARMONIC ORBITS OF ISOTROPY REPRESENTATIONS
OF SYMMETRIC SPACES
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Abstract

In this paper, we give a necessarly and sufficient condition for orbits of linear
isotropy representations of Riemannian symmetric spaces are biharmonic submanifolds
in hyperspheres in Euclidean spaces. In particular, we obtain examples of biharmonic
submanifolds in hyperspheres whose co-dimension is greater than one.

1. Introduction

J. Eells and L. Lemaire ([6]) introduced the notion of biharmonic map as
a generalization of the notion of harmonic map. For a smooth map ¢ from a
Riemannian manifold (M,g) into another Riemannian manifold (N,4), ¢ is said
to be harmonic if it is a critical point of the energy functional defined by

1
E(p) = EJM do|” du,.

The Euler-Lagrange equation is given by the vanishing of the tension field 7,.
Harmonic maps are studied by many mathematicians (cf. [5], [7], [9]).

The biharmonic maps, which is a generalization of the harmonic map, is
defined as a critical point of bienergy functional

1
Ex) =3 | el d

Similar to harmonic maps, biharmonic maps are characterized by the Euler-
Lagrange equation 75, = 0 where 7, , is the bitension field of ¢. It is known
that the equation 7, =0 is a fourth order partial differential equation. By
definition, harmonic maps are biharmonic maps.

On the other hand, a biharmonic map is not necessary harmonic. The
B. Y. Chen’s conjecture is to ask whether every biharmonic submanifold of the
Euclidean space R"” must be harmonic, i.e., minimal ([4]). It was partially solved
positively. For example, K. Akutagawa and Sh. Maeta showed ([1]) that every
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complete properly immersed biharmonic submanifold in the Euclidean space R”
must be minimal. Furthermore, it is known (cf. [14], [15], [16]) that every
biharmonic map of a complete Riemannian manifold into another Riemannian
manifold of non-positive sectional curvature with finite energy and finite bienergy
must be harmonic.

On the contrary, for the target Riemannian manifold (N, %) of non-negative
sectional curvature, there exist examples of biharmonic submanifolds which are
not harmonic. A biharmonic submanifold is called proper if it is not harmonic.
T. Ichiyama, J. Inoguchi and H. Urakawa ([10]) classified homogeneous hyper-
surfaces which are proper biharmonic in the hypersphere in Euclidean spaces.
More generally, biharmonic homogeneous hypersurfaces in compact symmetric
spaces are studied in [17] and [11]. Furthermore, S. Ohno, T. Sakai and H.
Urakawa construct higher co-dimensional biharmonic submanifolds in compact
symmetric spaces as orbits of Hermann actions which are generalizations of
isotropy actions of compact symmetric spaces ([18]). However, since the rank
of hyperspheres are one, the cohomogeneity of Hermann actions on hyperspheres
are one. Therefore, in orbits of Hermann actions on hyperspheres, there is no
proper biharmonic submanifolds whose co-dimension is greater than one.

A. Blamus, S. Montaldo and C. Oniciuc give new examples of proper bihar-
monic submanifolds in spheres and classification of biharmonic submanifolds
which are the direct products of some spheres in the unit sphere in [2] and [3].

In this paper, using root systems, we describe a necessary and sufficient con-
dition for an orbit of the linear isotropy representation of a Riemannian sym-
metric space to be biharmonic in the hypersphere, and give examples of proper
biharmonic submanifolds in the hypersphere whose co-dimension is greater than
one.

The organization of this paper is as follows. In Section 2, we recall the
foundation for the following sections. In 2.1, we describe biharmonic isometric
immersions. In particular, we explain that for an isometric immersion whose
tension field is parallel, the biharmonic property is characterized by a condition of
the second fundamental form of the isometric immersion (Theorem 2.4). In 2.2,
we examine the linear isotropy representations of Riemannian symmetric spaces.
We state that the second fundamental form of an orbit of the linear isotropy
representation of a Riemanniam symmetric space is described by the root system
of the Riemannian symmetric space. Moreover, we show the tension field of an
orbit of the linear isotropy representation of a Riemanniam symmetric space is
parallel with respect to the normal connection. In Section 3, we state and prove
our main theorem (Theorem 3.1) and give new examples of proper biharmonic
submanifolds of hyperspheres.

2. Preliminaries

2.1. Biharmonic isometric immersions. In this section, we describe bihar-
monic isometric immersions. Let (M,g) and (N,%) be Riemannian manifolds,
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and ¢ be a smooth map from M into N. We denote by V, V’ the Levi-Civita
connections on TM, TN of (M,g), (N,h), and by V the induced connection on
¢ 'TN respectively. Let B, denotes the second fundamental form of ¢, i.e.

B,(X,Y) =Vx(dp(Y))—dp(VxY)

for X, Y e X(M). For pe M, B,(X,Y), depends only on the vectors X, Y, €
T,M. Then we define the tension field 7, of ¢ by

(TW)p = ZBw(ei,ei)p (peM)
i=1

where {¢;};", is an orthonormal basis of 7,M. Then the tension field 7, is a
smooth section on ¢ !TN.

DerFINITION 2.1. A smooth map ¢ is called harmonic if 7, =0. If a har-
monic map ¢ is an isometric embedding, then the image ¢(M) C N is called a
harmonic submanifold.

Remark 2.2. When a smooth map ¢ is an isometric immersion, the def-
inition of 7, coincides with the definition of mean curvature vector field of ¢.
Then, a harmonic map is a minimal immersion, and a harmonic submanifold is a
minimal submanifold.

There are articles whose mean curvature vector field is defined by dividing
the trace of the second fundamental form by the dimension of the submanifold.
The reference [12] is one of them. Even if either definition is adopted, since the
mean curvature vector field coincides with the exception of the difference in the
scalar multiplication, the definition of the minimality does not change.

To define the notion of biharmonic maps, we define the Jacobi operator J.
For V eT'(p~'TN)
J(V):=AV —R(V),
where AV =V'VV =" {V.V.V—Vy  V}, (V)= 0" RV dp(e))

l

dp(e;). Here R” is the curvature tensor field of N. Then we set
72,9 = J(1p).

The vector field 7, is called a bitention field of ¢.

DerINITION 2.3. A smooth map ¢ is called biharmonic if 7,,=0. If a
biharmonic map ¢ is an isometric embedding, then the image ¢(M) C N is called
a biharmonic submanifold.

Then we have the following theorem.

THEOREM 2.4 ([17]). Let ¢ : M — N be a isometric immersion which satisfies
that Vyt, =0 for all X € X(M). Here V* is the normal connection of ¢. Then
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@ is biharmonic if and only if for any pe M,

m

(2.1) ZRh ,rdoler)) Z h((zy),. By(ei,€;),)Byleis€)),

i=1

holds, where {e;}!", is an orthonormal basis of T,M.

Remark 2.5. The condition (2.1) is equivalent to the following equation,

m

(2.2) Em: R (z,,dp(e;)) ZB (A, e,¢))
i=1

Here 4., is the shape operator of ¢ with respect to 7,. It holds g(4.,X,Y) =
h(B,(X,Y),1,).

2.2. Compact symmetric pair and the second fundamental form of R-spaces
in spheres. In this section, we express the second fundamental form of orbits
of the linear isotropy representations of Riemannian symmetric spaces in hyper-
spheres in terms of root systems.

Let G be a compact connected semisimple Lie group and ¢ an involutive
automorphism of G. We take a subgroup K of G which satisfies Fix(g, G), C
K C Fix(o, G), where Fix(o,G) is the subgroup of the fixed point set of ¢ and
Fix(o, G), is the identity component of Fix(s,G). Let g and t denote the Lie
algebras of G and K respectively. The involutive automorphism of g induced
from o will be also denoted by . Then, by definition of K, we have = {X € g
g(X)=X}. Take an Ad(G)-invariant inner product <-,-> on g. Then

g=fI®m

is an orthogonal direct sum decomposition of g where m = {X e g|a(X) = —X}.

Let 7 denotes the natural projection from G onto the coset manifold G/K.
The tangent space T G/K of G/K at the origin n(e) is identified with nt in a
natural way, where e is the identity element of G. Then the inner product <-,->
induces a G-invariant Riemannian metric on G/K. We denote the Riemannian
metric on G/K by the same symbol <-,->. Then G/K is a compact Riemannian
symmetric space with respect to {-,-).

The group G acts on G/K isometrically by L,(xK):= yxK (x,y € G).
Thus the subgroup K acts on G/K isometrically, and the action is called the
isotropy action of G/K. Since for any k € K, the isometry L, fixes o :=¢eK €
G/K, the differential dL; of L, at o gives a linear transformation on 7,G/K.
For each k,k'e€ K, Lyo Ly = Ly holds. Thus, K has a representation on
T,G/K, and this representation on 7,G/K is called the linear isotropy representa-
tion of G/K.

On the other hand, the differential Ad(x) of an inner automorphism I, at e is
an automorphism on g for x € G, where I,(y) = xyx~! (y e G). Then we have

(2.3) Ad(k)t=1, Adk)m=m
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for any ke K. Therefore, K has a representation on m. It is well known
that

(dn) (Ad(k)X) = (dLy),((dm) (X)) (ke K, X em).

Thus, the linear isotropy representation and the adjoint representation on m
are equivalent as an orthogonal representation. Hence we identify the linear
isotropy representation and the adjoint representation on m. Hereafter we con-
sider the representation K on m.

Take and fix a maximal abelian subspace a of m. Then it is known

Ad(K)a =m.
Since
AA(R)X,Ad(K)Y) =<X,Y) (X,Yem)

holds for all k € K, Ad(k) preserving the unit sphere S in n.

For each H € S, the orbit Ad(K)H in S is a submanifold of S, and Ad(K)H
is called an R-space. In particular, if Ad(K)H in S is a minimal submanifold,
then it is called a minimal R-space.

We would like to examine a necessary and sufficient condition for an
R-space Ad(K)H in S is a biharmonic submanifold.

In order to apply Theorem 2.4 to Ad(K)H in S, we calculate the second
fundamental form of Ad(K)H in S, using the root system of G/K. We define
subspaces of g as follows:

fo={Xel|[H,X]=0 (H €a)},
for each A€ a\{0},
b= (X | [H', [, X]) =~ 'YX (H' € a)),
m;, ={X em|[H [H X]]=-U,H )X (H ea)}.

We set £ = {1 e€a\{0}|f, # {0}} and m(4) = dim ;. The subset X in a is called
the root system of G/K (cf. [8]). Since f;, =f_,, if A€X, then —1eX. Fix a
basis of a and define a lexicographic ordering > on a with respect to the basis of
a, and set T ={leX|l> 0}.

Hereafter, we assume H e ansS. In order to compute the second funda-
mental form of Ad(K)H in S, we use the following lemma.

LemMA 2.6 ([8]). For each L€ X", there exist orthonormal bases {S;,_y,-};ﬁli)
and {Tiy,‘};i@ of ¥, and my respectively such that for any H' € a,
(H', 8] =< H' YT, [H', Tyl = =< H' >S4, [Sii, Thil = 4,
Ad(exp(H"))S,.; = cos<A, H'YS; ; + sindA, H'YT);
Ad(exp(H"))T;,; = —sin{i, H')S,. ; + cos<{2, H' YT} ;

holds.
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By Lemma 2.6, we have the following direct sum decompositions:

f=H® > L=(® ZZR Siin

Lex™ Lext i=
n’l/
m=a® Zm;-a@ Z ZR T, ;.
lex” Lext i=

The tangent space Ty(Ad(K)H) and the normal space Ti(Ad(K)H) in S of
Ad(K)H at the point He anS is given as

T(Ad(K)H) = {jl Ad(exp(iX)H| |Xe f} = {[X.H]| X et} = [t H]

=0

m(2)
ZZR (AHT) = Y, Y R-Ty,

Jext i= AeTT, G HY#0 i=1

= 2 om

€St O HY£0

Tp(AdK)H)={a® > my |NTyS.
Aext (A HY=0

For Heans, we set Xy ={AeX|<{A, HY=0}. Let XT denotes the
tangent vector in TyS ={Y e m|<{Y,H) =0} which is defined as

XT=X—<X,HYH

for X em. The vector X7 depends on Heans.

Then we compute the covariant derivative of the orbit Ad(K)H in S.
Let V™, VS and V denote the Levi-Civita connections of m, S and Ad(K)H
respectively. For each 2e "\Zy, 1 <i < m(4), we define a vector field (77 ;)"

on m by
. _i _ ZS;,J‘
(Toi)y = dt Ad(exp( <i,H>>)X

7 [Sl,iaX]
LHD)

Then (7;:);; = T,; holds. Moreover, for each X e Ad(K)H and Y €S,
(T.)y € Ty AA(K)H and (T,;)y € TyS holds. Hence (7, ;)" gives a tangent
vector field on Ad(K)H and a tangent vector field on S.

Using (T;)", we compute the covariant derivative of Ad(K)H. By the
following lemma, it is sufficient to compute the covariant derivative on m.

t=0

(X em)
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Lemma 2.7 ([13]). Let (N,<,») be a Riemannian manifold and M be a
submanifold of N. Let VV and VM denote the Levi-Civita connection of N and
M, respectively. Then, we have:

(1) VEY =V¥Y + B(X,Y) (X,Y e X(M)),

(2) VNE = —AX + VEE (X € X(M), & e T(T*M)),

Here B and A denote second fundamental form on M C N and shape operator of
M C N, respectively.

Moreover, we can compute the covariant derivative of m.
PROPOSITION 2.8. For each J,ueX\Zy, 1 <i<m(l), 1 <j<m(u), we
have

[Syjs T2.]

Vm__* T Nk — _ .
( (T/.,:) ( ﬂa]) )H <,u,H>

Proof. For AueXf\Zy, 1<i<m(l), 1 <j<m(u), we set a smooth
curve

ZSL,'
(2.4) c(t) = Ad(exp (— </1,H>>>H
in Ad(K)H. Since dc/dt(0) = (T).);; = T, we have
d . d -1

— (T, ; P S A’ct
d[( ,Ua])c(t) o dt <,u,H>[ ] ( )] —o

1 1
-~ [~z e )
1

= _W[S/l,ja i) O

By using Proposition 2.8 and Lemma 2.7, we can express the tension field gy
of Ad(K)H in S. In [12], the mean curvature vector field calculated by using the
lemma corresponding to Proposition 2.8. The result of [12] using the symbol in
this paper is as follows.

CorOLLARY 2.9 ([12]). Let 7y be the tension field of AA(K)H in m.
Then,

25) @n=- Y 2

holds. In particular, (Tg), € a holds.

By the above corollary, we have the following.
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COROLLARY 2.10. Let ty be the tension field of Ad(K)H in S. Then,

T
26) (cr)ss = - ( > 2 i)

holds. In particular, (ty)y € a holds.

Proof. We can see that
m= Ty AdK)H @ (T Ad(K)H N TyS) @ (T AA(K)H N T5S).

We set V =Txs Ad(K)HNTyS. Since S is the unit sphere in m, we can
apply Lemma 2.7. By applying Lemma 2.7 to Ad(K)H C S, Ad(K)H C m and
S Cm, we can compute (ty), as follows:

m(2)
= > ZVS (T3,0)" = V1, (Ts1)")
)EE+\2H7

m(%)
= 2. 2V (T) )ypan
)EE+\2H1 1

- Z 2 {(V"l ( s ’)*)THS—part}V-parl

m
A 1 V -part

= ((?I;)H)V-part = (TH>[7;‘

Therefore, by Corollary 2.9, we have the consequence. O

Since ()} = (tu)y and

{(Ta), H = Z G H> G Hy = — Z m() = —dim(Ad(K)H)
jext\Ty 2exH\2y
holds. Therefore, we have
(2.7) () = (tn)y — dim(Ad(K)H)H.
Moreover, since Ad(K)H is homogeneous, we have
(2.8) (th)y = (tu)y —dim(Ad(K)H)X (X e Ad(K)H).

Thus, (tg)y =0 if and only if (7g), = —dim(Ad(K)H)H. Y. Kitagawa and
Y. Ohnita prove that 7y is parallel with respect to the normal connection of
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Ad(K)H in m. Using this fact, we can prove the following lemma by a simple
calculation.

Lemma 2.11. For any X € Ty Ad(K)H,
(2.9) Vit =0
holds. Here V* is the normal connection of Ad(K)H in S.

The above lemma shows that the orbit Ad(K)H in S holds the assumption
of Theorem 2.3.

3. Main theorem and examples

In this section, under the same condition in Section 2.2, we prove our main
theorems (Theorems 3.1 and 3.5).

According to Corollary 2.10, the tension field t; of Ad(K)H in S can be
calculated using the root system. Hence, Theorem 3.1 gives a necessary and
sufficient condition for orbits of linear isotropy representations of Riemannian
symmetric spaces are biharmonic submanifolds in unit spheres in terms of root
systems.

THEOREM 3.1. Let He anS. Then, AA(K)H is biharmonic in S if and only
if

(3.1) dim(Ad(K)H)(t)y = Y m(2)

).EZ+\ZH

{2 (Ti) g

! NT.

Here, for X em, XT denotes the tangent vector in TyS defined as X7 = X —
(X,H>H.

Proof. By Lemma 2.11, we can apply Theorem 2.4 to the orbit Ad(K)H
in S. We compute both sides of the equation (2.2). If (ty), =0, then the
equation (2.2) holds. Thus we suppose (tg); # 0.

Let R denotes the curvature tensor of S. Since S is the unit sphere, we can
easily calculate R (see [8]). In particular, for each orthonormal frame {X, Y} in
TyS, R(X,Y)Y = X holds. Thus, for each AeX"\Zy, 1 <i<m(4), we have

R((tt) g, To.i)Thi = (ti) -

Then we have
m(2)
Z ZR((TH)H»T).,i)Tz,i = Z m(2)(tH) gy
;LGZ+\ZH i=1 AEE+\2H
= dim(Ad(K)H)(tr)
holds.
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Let B(-,-) denotes the second fundamental form of Ad(K)H in S. By
Lemmas 2.7 and 2.8, for LueX\Zy, 1 <i<m(l), 1 <j<m(p),

LAy, Togis Ty jp = (tr) g B(T0,0, Ty j) > = L(t) g E'}/A“I.)*(Tu,_/)*);]>

1 1
= <(TH)H7 (S5 Ti,ﬂ> = _W«TH)Hv [Su,j> Th,il>

u H)
1 1
= —m<—[5ﬂ,_;‘, (tw)yl, Ty = W«”’ () g> T, Thiy
_ <Iu7 (TH)H>
T Gu) O
Hence we obtain
</’L> (TH) > .
A(r”),,T/l,i = T]_];’ T;“’,- (i € Z+\ZH, 1<i< m(/l))
Thus,
Ay (Tw)
B(A (e, Tris Thi) = TH;IB(TM, T;,:)
_ oty S0 Tadl T i)y
{4 HY <A HD O HY
Therefore, we have the consequence. O

COROLLARY 3.2. We set

(Taa)y = 2 (AR oy = 5~ (i 2 7).

(Tom)y = 2 dim(Ad(K) H) (Tir) y — g (m(/l) % i)

Then, we have the following,

(1) the orbit AA(K)H in S is biharmonic if and only if (T u)y = 0.

(2) the orbit AA(K)H in S is biharmonic if and only if there exists some
constant c € R, (To,y)y = cH holds.

Proof. The equation (3.1) is equivalent to,

» N i Sl
0 = dim(Ad(K)H) (z11) MZ;EH (4) G (4)
. y(tr)y>  <H, @)\, 7
= dim(Ad(K)H)(ty)y — Z M(i)( <}V,H>}21 - <;L7H>H )(’L)

).€Z+\2H
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— dim(AdK)A )y~ 3 (m0) S ()T dim(A(K) ) o)

/e N\Zy s H>2
Py 3 {2 (TH) gy T>
=2 dim(Ad(K)H) (i) AE;\E” (m(/l) T n"). O

Remark 3.3. The vector (7> )y is not necessarily the bitension field of
Ad(K)H in S, but the condition (75 #)y; =0 is a necessary and sufficient con-
dition for Ad(K)H to be biharmonic in S.

Remark 3.4. Let IT={oy,...0} be a set of simple roots of X where
r=dima. For 1<i<r we define H, €a by

(Hy,o5) =0;; (1<j<r).

Here, 0; ; is the Kronecker delta. Since II is a basis of a, {H,,,..., H,} is also a
basis of a. Using IT and {H,,,...,H, }, we set an open subset ¥ of a as follows:

i=1

¢={Hea|lo,H) >0 (ocel'[)}:{zr:xiHai xl->0}.

The closure % of % is given as

¢={Heal{e,HY >0 (xeIl)} :{zr:xiHm Xi 20}.
i=1

Then,
(3.2) Ad(K)6 =m

holds.
For each subset A C I, we set

¢ ={Hea|{e, HY >0, {f,HY =0 (xeA, fcI\A)}.
Then we have the cell decomposition of &

(3.3) € = U %* (disjoint union).
Acll

The set % is the orbit space of the representation of Ad(K) on m. More-
over the cell decomposition (3.3) is a decomposition of orbits type of R-spaces.

Biharmonic orbits can be given by solving Equation (3.1) for H. However,
it is difficult to solve this equation in general. In [9], by using a convex function
on %2 N S which satisfy (grad F),, = (ty),, they show that there exists a unique
H e * N S such that (ty), = 0 as a critical point of the function. Even if such
a function f on AN S exists for (T, 1)y, it is difficult to decide whether a
critical point of f gives a proper biharmonic submanifold or a harmonic submani-
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fold. Therefore we add some assumptions for £ and H and discuss the equation
(To.u)y = 0.

Hereafter, we consider the case where the root system X is reducible. This
assumption means that the representation of K on m is reducible. Thus, the
orbit Ad(K)H is a direct product of some R-spaces.

Let us take (G1,K);) and (G, K;) as symmetric pairs with connected semi-
simple Lie groups G; and G,. We consider the case of (G,K) = (G| x Gy,
K, x K;) We write g, =, @ m; for the decomposition of Lie algebra g; of G;
with respect to the symmetric pair (G;, K;) and fix a Ad(G;)-invariant inner product
on m; for each i = 1,2.

The unit spheres in my, that in m; that in m = n; @ m, are denoted by S,
S, and S, respectively. Note that the unit sphere S in m is stable by the adjoint
representation of K x Kj.

For i = 1,2, fix a maximal abelian subspace m;. The root system of (G;, K;)
denoted by ;. Then the root system X of (G, K) is decomposed as ¥ = X Ll X,
For 1e€X|, ue;, {,up=0 and T=%,U%, hold. We take H;e S; for
i=1,2. Then we have

dim Ad(K)H; = > m(4).
1eEN\Zy
Since Ad(K; x {e})H, = {H,} and Ad({e} x K»)H, = {H,}, Ad(K)H; is iso-
metric to Ad(K;)H; C S; for i=1,2.
For 0 € (0,7n/2), we set H =cos 0H| + sin 0H,. Then the tension field of
the orbit Ad(K)H in S is given as

1 ) A 1
w0, 2 "y o, 2 "W ms

The following theorem gives new examples of proper biharmonic submani-
folds of the unit sphere which are direct products of two R-spaces.

THEOREM 3.5. Let we take Hy € S| and H, € S, satisfying that the R-spaces
Ad(K)H, and Ad(K)H, are harmonic (or equivalently, minimal) in Sy and S,
respectively.  The dimension of Ad(K)H; denoted by n; for i = 1,2. For each 0 €
(0,7/2), we set Hy = cos OH, + sin 6H,.

(1) The following two conditions on 0 are equivalent:

(a) The R-space AA(K)Hy is harmonic in S.
(b) cos 0 =ny/(n + ).
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(2) The following two conditions on 6 are equivalent:
(a) The R-space AA(K)Hy is biharmonic in S.
(b) cos 0 =ny/(n +mn) or 1/2.
In particular, if ny # ny, then the R-space Ad(K)Hy4 is proper biharmonic
in S.

Proof. Since

—~ n n
- _ Hi+ -2 H,),
H)n (cos 6" T sin o 2)

(tw)y =0 if and only if

ny ny .
N " Hy ) =— OH OH,).
<cos 0! + sin 0 2) (n1 + n2)(cos OH, + sin 0H,)

Thus we have

_ ni _ ny _ .
0= {cos 7 (n) + my) cos G}Hl + {—sin 7 (n1 + ny) sin H}Hz

1 .
= o 0{”1(Sln 0)> — ny(cos 0)*}YH, +

The solution of the above equation is

1 .
Sl,n—O{nz(cos 0)> — ny(sin 0)*} Hs.

n

(cos 0)* = .
ny +np

Then (sin 0)2 = ny/(n; + n2) holds.

A necessary and sufficient condition for an orbit Ad(K)H C S to be bihar-
monic is there exists ¢ € R, such that (75 g),; = cH. To examine the condition
(T2, g)y = cH, we compute (T3 g)y,. Then we have

— . —~ ) <)~7 (HI)H>
(T, Vg =2dim(AdK)H)(tg); — m(l)——4%]
), 2 dim P z\( T )

. —~ B N —m <17H1>
=2m +m)(T)y — Y (’”W (cos 0)° <A,H1>22>

1eX\Zy
B -y {u, Hy)p
#ezz;:\zH <m(ﬂ) (sin 0)* <u, Hz>2ﬂ>
— 2(n1 + ) (Th) g — @(Z—‘g)g@m - (n—zg) GAM

2

— 2mm) e+ ) gy n
N P cos 0 Tsing (cos 0)° ] (sin 0)° ?
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1 n?
- ) Moy
o 0{ (m + na)m + (cos 0)2} 1

1 n3
+—< 2m +m)m+—=— y H>.
sin 0
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(sin 0)*

Since H = cos OH; + sin 0H,, a necessary and sufficient condition for an orbit
Ad(K)H C S to be biharmonic is there exists ¢ € R, such that

1 n?
-2 — 1 A= 0
s 0{ (m +n2)ny + (cos 0)2} ¢ cos
(3.4) | ,
n
—K =2 —2 L —rcsiné.
sin 0 { o+ ma)nz + (sin 0)2} s

The above equation holds if and only if

(3.5) b —2(ny +ny)n + i
. (cos 0)? L (cos 0)?

1 n?
— {2 + +—=5:=0
(sin 0)° { It 4] 0)2}

Then, we can calculate the left side of Equation (3.5).

holds.

1

L T R _m
(cos )* { 2 m2)m ¥ (cos 0)2} (sin 6)* { 2 ¥ (sin 0)2}

~ (m(5in 0)% — na(cos 0))*((sin 0) — (cos 0)°)
B (cos 0)*(sin 6)*

Hence the solutions of Equation (3.5) are

(3.6)

2 m 1
(cos 0) = im 2 O

Finally, we introduce concrete examples of biharmonic submanifolds in the
unit sphere which given by Theorem 3.5.

We consider the case of (G,K)) =
(G2, K) = (SU(n),SO(n)) (n > 3).

In this case, we can see that
Lie(G)) =g, ={X eM(n,C)|'X + X =0}.

Here, X and ‘X denote the complex conjugation and the transpose of X e
M(n,C), respectively. For X eg, we set o(X) =X. Then

fi={Xeqg|X=X}={XeMuR)|X=—'X},

m={Xeg|-X=X}=vV-1{XeMnR)| X ="X, trace(X) = 0}



62 SHINJI OHNO

It is known that Ad(k)X = kXk=! for ke K, X em;. We set {(X,Y)=
—trace(’XY) for X,Y €g,. Then <X, Y) is a Ad(G))-invariant inner product
of g,. We define a subspace a; of m; by

ay ={H =v—1diag(hy,...,h,) | ,...,h, € R, trace(H) = 0}.

Then a; is a maximal abelian subspace of m;. A simple calculation shows that
the root system X; of (Gj,K;) with respect to a; is given as

%= {+(E - E/)|1 <i<j<n},

where E/ denotes the n x n-matrix whose (i, j)-entry is one and all the other
entries are zero. The set IT; = {o; = E] — El.’ill |1 <i<n-—1} is a set of simple
roots in Xi.

For 1 <i<n-—1, we set

H,, :% (nfi)ziE/jfii E/’j
=1

j=i+l

Then, <o, Hy ) =06;; (i,je{l,...,n—1}) holds. We set H; = H, /| H,]| for
1 <i<n-—1. Then, by Corollary 2.10, the orbit Ad(K})H; is a minimal sub-
manifold of S for 1 <i<n-—1.

We can see that the isotropy subgroup of Ad(K;)H; at H; is isomorphic to
S(O(i) x O(n —1i)). Therefore, Ad(K;)H; is diffeomorphic to the Grassmannian
manifold G;(R"). In particular, dim Ad(K,)H; =i(n—1i). Hence for 1 <i,j <
n—1, if dim Ad(K,)H; = dim Ad(K;)H;, then i= j,n— j.

By the above argument, we can apply Theorem 3.5 for (G,K)=
(G1 x G2, K1 X K3). By Theorem 3.5, for 1<i,j<n—1 if i#j (n—)),
then (Ad(K))H;/v2) x (Ad(Ky)H;/v/2) € §""+D=3(1) is a proper biharmonic
submanifold.
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