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Abstract

The analytic part of a planar harmonic mapping plays a vital role in shaping its
geometric properties. For a normalized analytic function f defined in the unit disk,
define an operator ®[f](z) = f(z) + f(z) —z. In this paper, necessary and sufficient
conditions on f are determined for the harmonic function ®[f] to be univalent and
convex in one direction. Similar results are obtained for @[ f] to be starlike and convex
in the unit disk. This results in the coefficient estimates, growth results and convolution
properties of ®[f]. In addition, various radii constants associated with @[ f] have been
computed.

1. Introduction

Let .o denote the class of all analytic functions f defined in the open unit
disk D:={z e C: |z| < 1} normalized by f(0) =0= f’(0) — 1 and ¥ be its sub-
class consisting of univalent functions. Let # denote the class of all harmonic
functions f = h+ g, where & and ¢ are analytic in D and normalized so that
h(0) =g(0) =h'(0) — 1 =¢’(0) =0. Therefore, if f =h+ ge#, then

(L.1) h(z)=z+ Zanz” and ¢(z) = anz”, zeD.
n=2

n=2

The functions / and g are called analytic and co-analytic parts of f respectively.
By Lewy’s theorem [9], we know that the Jacobian of a locally univalent har-
monic function does not vanish. Thus the Jacobian of a locally univalent func-
tion f e # is, in view of |£.(0)|* — [£2(0)]* = |/(0)]* — |¢’(0)|* = 1 > 0, positive
in D, and so f is sense-preserving in D. Let % be the subclass of 5 consisting
of sense-preserving univalent functions. Finally, let ,;°, #;) and %) be the
subclasses of %3 consisting of functions mapping D onto starlike, convex and
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close-to-convex domains, respectively, just as ", # and & are the subclasses of
& mapping D onto their respective domains.

The analytic part /& of a harmonic mapping f =/ + g plays a crucial role in
shaping the geometric properties of f (for instance, see [5, Theorem 5.17, p. 20]
and [3, Theorem 1, p. 768]). Consequently, univalent harmonic mappings can
be constructed in such a manner that the co-analytic part is a slight modification
of its analytic part. Motivated by these ideas and Shear Construction Theorem
[5, Theorem 5.3, p. 14], we define an operator @ : o/ — # by

Of)(2) =f(2)+ f(z) =2, zeD, fed.
If fe.of is of the form

(1.2) f(E) =2+ asz" (z€D)

then

o0 o0
O[f](z) =z + Zanz” + Zanz”, zeD.
n=2

n=2

In this paper, we study the geometric properties of the operator ®@. In Section 2,
necessary and sufficient conditions are obtained for ®[f] to be univalent and
convex in one direction. As a consequence, coefficient bounds and convolution
properties are investigated. In the last section of the paper, the radius of con-
vexity and other related radii constants are determined corresponding to the
function ®[f]. The following lemma will be needed in our investigation which
determines a sufficient coefficient condition for functions of the form f =
h+ge# to be in the classes ¥;;° and #,. It is worth to note that these
conditions in fact yield the sufficient conditions for functions to be fully starlike
and fully convex in D (see [1, 4, 16]).

Lemma 1.1 ([2]). Let f=h+ge H where h and g are given by (1.1). If
S o n(|an| + ba]) < 1, then [ € %30 and if 37 5 n*(|ay| + |ba]) < 1, then [ € Ay,
Moreover, if a, <0 and b, > 0 for n > 2, then these conditions are also necessary
for f to be in " and Ay

2. Properties of the operator ®

If we consider the Koebe function k(z) = z/(1 —z)? € &, then it is easy to
see that the harmonic function ®[k] is not univalent in D, since its Jacobian
vanishes inside D. In particular, this shows that ®[¥] ¢ ¥, ®[S*] ¢ ;" and
@[] ¢ %5. Similarly, if /(z) = z/(1 — z) € A, then the Jacobian of the function
®[/)(z) = z/(1 — z) +22/(1 — Z) vanishes at z=1—+/2 and hence ®[#] ¢ ;.
The following theorem determines a subclass of % which is mapped into %f, C
9’1_(} by the operator ©.
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THEOREM 2.1. Let f e .o/. Then we have the following:

(i) ®@[f] is sense-preserving in D if and only if Re f'(z) > 1/2 for all z € D.

(ii) If Re f' > 1/2 in D, then ®[f] e %) and is convex in the direction of real
axis. In particular, ®|[f] is close-to-convex in D.

Proof. (1) Write ®[f] =h+ g, where h(z) = f(z) and g(z) = f(z) — z are
analytic functions in D. Then ®[f] is sense-preserving in D < |A'(z)| > |g9'(z)| &
|/ (2)] > |f'(z) = 1| & Re f/(z) > 1/2 for all zeD.

(i) If Re f/ > 1/2 in D, then ®[f] =/ + g is sense-preserving in D by part
(). Also, h(z) — g(z) = z is univalent and convex in the direction of real axis.
Therefore, by Shear Construction Theorem [5, Theorem 5.3, p. 14], ®[f] is uni-
valent and is convex in the direction of real axis. O

COROLLARY 2.2. If fe.of is given by (1.2) and ®[f] e S, then |a,| < 1/n
Jor all n=2,3,.... The bound 1/n is best possible. Moreover, the sharp in-
equality |®[f](z)| < —|z| — 2 log(1 — |z|) holds for all z € D.

Proof: By Theorem 2.1(i), Re /' > 1/2 in D which gives |a,| < 1/n for
n>1 and

0 0

n 1 n

R < [zl 42 lanl 2] SIZI+2Z;|ZI = —|z[ = 2 log(1 — |z])
n=2 n=2

for all zeD.
Since the analytic function fy(z) = —log(1l — z) satisfies Re f;(z) > 1/2 for
all ze D, therefore the harmonic function

2.1) (I)[fo](z):—2log|1—z\—2:2+Z%+Z%, zeD
n=2 n=2
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FIGURE 1. Image of the unit disk under @[ fo](z) = —2log|l —z| — 2
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belongs to the class . Figure I illustrates that the image domain ®[f)(D) is
convex in the direction of real axis. O

If f € .o/ is given by (1.2), then it is easily seen that if >~ , nja,| < 1/2, then
®[f] e ;° and if 3.7, n%la,| < 1/2, then ®[f] € #, by Lemma 1.1. For the
special case f(z) =z + ayz* € .o/, the following theorem determines the necessary
and sufficient coefficient conditions for the function ®[f] to belong to the classes
SO F0 A and 6.

THEOREM 2.3. Let f(z) =z+az’> € /. Then
(a) ®[f] e Iy & |aa| < 1/4;
(b) O] € %" (or 6) & |ar] < 1/4;
() ®[f] e A, < |ar] < 1/8.
The constants 1/4 and 1/8 are best possible.

Proof. (a) If a, =0, then we have nothing to prove. Therefore, assume
that ay # 0. If ®[f] € %, then Re f’ > 1/2 in D by Theorem 2.1(i). It is easy
to deduce that Re(l 4 2az) = 1/2 on |z = 1. In particular, for z = —e &),
we have 1 — 2|az| > 1/2 which simplifies to |az| < 1/4. Conversely, if |ay| < 1/4,
then |f'(z) — 1| = 2]aa| |z| < 2|az| < 1/2 so that Re f'(z) > 1/2 for all ze D. By
Theorem 2.1(ii), ®[f] e ¥2.

(b) If ®[f] € #;° or %)), then by part (a), |a| < 1/4. Conversely, let |a;| <
1/4. Then ®[f] e %5 by Theorem 2.1(ii), since a domain convex in the direction
of real axis is close-to-convex. Also, ®[f] e ¥ since 2|ay| < 1/2 (by the dis-
cussion preceding Theorem 2.3).

(c) Let ®[f] € #,). Without loss of generality, we may assume that a; > 0.
Since ®[f](D) is a convex set, we have

% <arg{6—60¢)[f](em)}> >0, 0<0<2n

By a straightforward calculation, the last expression reduces to

2
e<z+8."2Re(2)> >0 for |z| = 1.
z + 4iay Im(z?)
In particular, at z = —1, we have 1 — 8a, > 0 which gives the desired result. As
4|lay| < 1/2, the converse part is obvious.
For sharpness of the results, consider the analytic functions g(z) = z + z2/4
and h(z) = z+2?/8. Figure 2 depicts that the harmonic functions

72 72 72 72

Vlgl(z) =2+ +7 and @) =z+ o+

map D onto starlike and convex domain respectively. O
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FIGURE 2. Images of the unit disk under ®[z 4 z%/4] and ®[z +z2/8].

The study of convolution properties of harmonic mappings is a fairly
active area of research (see [6-8, 15, 17]). Given two analytic functions
f(z) =37 a,z" and F(z) =), Ayz", their analytic convolution is defined
as (f*F)(z) =, a,Anz". In the harmonic case, with f =h+g and F =

H + G, their harmonic convolution is defined as f* F=h+ H +g*G. The
following theorem investigates the convolution properties of the function ®[f7.

TueoreM 2.4. (a) If fi,f>e.o/ with Re(fi xf2) > 1/2 in D, then ®[f]*
@[ 2] € Y and is convex in the direction of real axis. (b) If f € .o/ and L is the
harmonic half-plane mapping defined as

then L x ®[f] is univalent and convex in the direction of imaginary axis if and only
if feA.

Proof. (a) It is easy to see that (®[fi]*D[f2])(z) = (fi(z) +fi(z) —z) =

(L) +(z) —2) = (fi * H)(2) + (fi * /2)(z) — z = D[ f1 * f5](z) so that the result
follows by invoking Theorem 2.1(ii).
(b) Observe that

(ﬂ@+4ﬁ»+;ﬂ@*4WD:ﬂm@%Z€D

N =

(L*@[f])(2) =

where T.[f] (¢ > 0) is the operator defined by Muir [11]. By [11, Theorem 3.2,
p. 225], it follows that L ®[f] is univalent and convex in the direction of
imaginary axis if and only if fe % . O
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Note that Theorem 2.4(a) was independently proved by the last two authors
[17, Corollary 2.2, p. 1330]. If f=h-+ge A, then the d-neighborhood of f
denoted by N;(f) (see [2]) is the set consisting of all harmonic functions

(2.2) F(z) = Z—l—ZA,,Z” —|—ZB,1Z”, zeD
n=2 n=2

satisfying >_", n(|4, — a,| + |B, — by|) <J. The last result of this section deals
with the neighborhood of ®[f].

THEOREM 2.5. If fe.f is given by (1.2) with Y. ,n*la,| <1/2, then
Ns(®[f]) € %30 for 0 <5 <1)2.

Proof. Let F e Ns(®[f]) be given by (2.2). Then

Zn(‘An - an' + |Bn - bn‘) < 6;

n=2

so that

0 o0 0

Zn |An] + |Bu]) < ”(|An_an|+|Bn_an|)+zzn|an|

n=2 n=2 n=2

<5+Zn2|an\ <6+ <1
n=2

By Lemma 1.1, Fe %;". O

3. Radii constants

By Figure 1, it is evident that if a function f € .o/ satisfies Re f/(z) > 1/2 for
all ze D, then ®[f] € %) need not map D onto a convex domain. Therefore it
is interesting to determine the largest radius p < 1 for which the functions @[ f
with the condition Re f’(z) > 1/2 map the subdisk |z| < p onto a convex domain.
This is achieved in the next theorem which makes use of the result that for every
r>0 and every harmonic mapping f=h+g in a disk {ze C:|z|] < R} with
R > r, the curve [0,27] 3 0 +— f(re™) is convex if and only if for every 0 € [0, 27,

i 0 }"60 o Zh’(z)+22h//(z)+m
a@( (agf( ))>—Re< D) -2 )zo

1()

where z = re

THEOREM 3.1. Let f € o/ with Re f'(z) > 1/2 for all zeD. Then ®[f]€e
Y and maps the disk |z) < /2 — 1 onto a convex domain. The bound /2 — 1 is
best possible.
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Proof. By Theorem 2.1(i1), ®[f] is_univalent in D. Consequently, it
suffices to show that Re((zh'(z) + z2h"(2) + zg'(z) + 229" (2))(zh'(z) — zg'(2))) > 0
for |z < V2 — 1, where ®[f] =+ g. Observe that

Re((zh'(z) + 220" (2) + 29'(2) + 229" (2)) (21 (2) = 29(2)))
= 2’1 () + |2 Re zh"(2)h'(2) — Re 2" (2)g/ ()
—|21%lg'(2)|” + Re 2’1 (2)g" () — || Re 29" (2)g'(2).

On substituting h(z) = f(z) and g(z) = f(z) — z, the last expression simplifies to

Re((zh'(2) + 220" (2) + 29/ (2) + 229" (2)) (21 (2) — 29'(2)))
= 221" (2)1° + Re 23"(2) = |21°|f"(2) — 1] + |2” Re 77" (2)
=2|z]* Re f'(2) — |2)* + |z|* Re zf"(z) + Re 23" (2)
> 2[z” Re f'(2) — |2I* = 21211/ (2)]
= 21’2 Re f'(z) = 1 = 2|z| |/"(2)])-

Making use of the fact that [13, Corollary 3, p. 213] an analytic function p in D
with p(0) =1 and Re p(z) >« for all zeD and o€ [0,1) satisfies

2(Re p(z) — o
1p'(2)] < (4)2)
1 —|z|
it is easy to deduce that
2Re f'(z) -1
) < 2RO
1—|z

so that

Re((z'(z) + 220" (2) + 29" () + 229" (2)) (' (2) — 29/ (2)))
22 Re f'(2) - 1))

L=z

> |z|2<2 Re f'(z) — 1
2
— P@Re f/(2) - 1) (%)

for all ze D. The right hand side of the above expression is positive provided
|zl < v2—1. For the function ®[fy] given by (2.2), we have
=0

st}

which verifies the sharpness of the result. O
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For f e .o/, it is worth to note that all the following three conditions imply
that Re f’(z) > 1/2 for all z e D (see [18, Theorem 1, p. 64] and [18, Corollary 2,
p. 67)):

(i) Re(l+zf"(z)/f'(z)) > 1/2 for all zeD;

(i) [f'(z)—1] < 1/2 for all zeD;

(iii) |f"(z)] < 1/4 for all zeD.

Thus ®[f] € 43 by Theorem 2.1(ii) and the next corollary determines the largest
disk |z| < p mapped by ®@[f] onto a convex domain in each case. In particular,
Corollary 3.2(iii) determines a subclass of 2#° which is mapped by the operator
® into ;).

COROLLARY 3.2. Let fe .o.

(i) If Re(1+zf"(2)/f"(z)) > 1/2 for all zeD, then ®[f] e S, and maps
the disk |z| < /2 —1 onto a convex domain. The bound /2 — 1 is best
possible.

(i) If|f'(z) — 1| < 1/2 for all z €D, then ®[f] € 42 and maps the disk |z| <
1/2 onto a convex domain. The bound 1/2 is best possible.

(iii) If |f"(z)| < 1/4 for all zeD, then ®[f] e A,.

Proof. (i) Since the function fy(z) = —log(l —z) satisfies Re(l + zf"(z)/
f'(z)) > 1/2 for all z e D, therefore the result follows by invoking Theorem 3.1.

For the next two parts, write ®[f] =/ + g, where h(z) = f(z) and ¢g(z) =
f(z)—z. Let F,=h+e¢g for |g| = 1.

(@) Note that [E(2) 1| = 12) +.26'() ~ 1] = (1+2)(/'(2) ~ D) <
21f'(z) =1 <1 for all zeD and |¢f=1. By [I12, Theorem 5, p. 314], F,
is convex in |z|] < 1/2 for each |¢] = 1. Thus CD[ ] is convex in |z| < 1/2 by
[16, Theorem 2.3, p. 89].

For sharpness, consider the function /i(z) = z + z2/4.  Clearly, |h}(z) — 1| =
|z|/2 < 1/2 for all zeD and

=0

060 (arg{(j() [ho](rei())}) O=n,r=1/2

(iif) Since |[F/(z)| =|(1+¢&)f"(z)| <2|f"(z)] <1/2 for all ze D, therefore
F, is convex in D for each |¢/ =1 by [14, Theorem 2, p. 33] and hence
O[f] € Ay 0

If fe.of with ®[f] e 7Y, then |a,| < 1/n for n=1,2,... by Corollary 2.2.
However, if f € ./ is given by (1.2) with |a,| < 1/n for n > 1, then ®[f] need not
be univalent in D. If we consider the function f(z) = z + z?/2, then it is easy to
see that the harmonic function ®[f](z) = 1 +z%/2 + 2%/2 is not univalent in D,
since its Jacobian vanishes at the point z = —1/2. The next result determines the
radius of univalence of functions ®[f] with the prescribed coefficient bounds.

THEOREM 3.3. If f € o/ is given by (1.2) with |a,| < 1/n for n > 1, then ®|f)
is univalent in |z| < 1/3 and the radius 1/3 is best possible.
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Proof. For re(0,1), let ®,[f]:D — C be defined by
_(I)[f](rz) _ - P 1 P n—1-n
O [f)(z) == _z+n; T +Zar z

for all ze D. We shall show that ®,[f] e ¥, for r < 1/3. Since |a,| < 1/n for
n=2,3,..., note that

- X 2r
55:22n|an|r’171 S2Zrn71:ﬁ.
n=2 n=2 o

Thus S < 1 if r satisfies the inequality r < 1/3. By Lemma 1.1, ®,[f] e #,;° for
r<1/3. In particular ®[f] is univalent in |z| < 1/3.
For sharpness of the bound 1/3, consider the function

1
flz)=2z+1og(l —z) =z— Z;z,
n=2

The Jacobian of the harmonic function ®[f] is given by

Jatfe) = [ @F = 1)~ 1P =3 - 2Re

z

which vanishes at z =1/3. Therefore ®[f] is not univalent in |z| < r if r > 1/3.
O

As observed earlier, if f € A", then ®[f] need not be univalent in D. The
last theorem of this section determines the radius of univalence of the class

{of]:fex}.

TuroreM 3.4. If f € A, then ®[f] is univalent in |z| < /2 — 1 and the result
is sharp for the function 1(z) =z/(1 — z).

Proof. Since f € A, f'(z) < 1/(1 —z)* in D by Marx Strohhicker theorem
[10, Theorem 2.6(b), p. 60]. Using subordination, it follows that for every r e
(0,1), f'({zeC: |z <r}) Cg({zeC: |zl <r}), where g(z) = 1/(1 —z)>. Con-
sequently, for |z| <rp:=+v2—1, we have
Re f'(z) > min Re f’(z) > min Re g(z) = min Re g(z).

2| <ro 2| <ro |z|=ro

In view of these inequalities and Theorem 2.1, it suffices to show that

1
min Re —.
min Reg(z) =5
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For z = rge™, note that

1-2Rez+Rez? 1—2rcos 0+ r cos20

Reg(z) = =
) (1-2Rez+z1")* (1 —2rcosl+r2)?

which attains its minimum at 6 = +n. Therefore

1 1
min Reg(z) =—5=—~.
EE 9(2) (14+r)* 2

Thus Re f'(z) > 1/2 in |z| < ry and hence ®[f] € & in |z| < V2 — 1 by Theorem
2.1(i). 0
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