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UNIT TANGENT SPHERE BUNDLES WITH THE REEB FLOW
INVARIANT RICCI OPERATOR

JoNG Taek CHO AND SUN HyaNG CHUN*

Abstract

In this paper, we study unit tangent sphere bundles 77 M whose Ricci operator S is
Reeb flow invariant, that is, L:S = 0. We prove that for a 3-dimensional Riemannian
manifold M, T\ M satisfies L:S = 0 if and only if M is of constant curvature 1. Also,
we prove that for a 4-dimensional Riemannian manifold M, T;M satisfies L:S =0
and /8¢ =0 if and only if M is of constant curvature 1 or 2, where / = R(-,&)¢ is
the characteristic Jacobi operator.

1. Introduction

In a contact manifold (M,#), we have a fundamental property that the
Reeb vector field ¢ generates a contact diffeomorphism, that is, Ls# =0. For
an associated Riemannian metric g, if ¢ generates an isometric flow, that is,
M satisfies L:g =0, then M is said to be K-contact. Recently, Perrone ([11])
introduced the so-called H-contact manifolds, which include K-contact manifolds.
It means that the Reeb vector field & is a harmonic vector field. In the same
paper, it was shown that the Reeb vector field of an H-contact manifold is the
eigenvector of the Ricci operator S.

It is very intriguing to study the interplay between Riemannian manifolds
(M,g) and their unit tangent sphere bundles 73 M with the standard contact
metric structure (1,g,¢,&). In particular, the geodesic flow generated by the
Reeb vector field ¢ has a crucial role on the geometry of Riemannian mani-
fold (M,g). As a classical result, Y. Tashiro ([14]) proved that (T1M,n,g) is a
K-contact manifold if and only if (M,g) has constant sectional curvature 1.

In this paper, we study unit tangent sphere bundles 77M whose Ricci
operator S is Reeb flow invariant, that is, L:S = 0. In Section 3, we prove that
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for a 3-dimensional Riemannian manifold M, T\ M satisfies L:S = 0 if and only
if M is of constant curvature 1 (Theorem 2). In Section 4, we investigate the
relationship between the condition L;S =0 and H-contact condition. Then we
prove that a contact metric manifold M satisfying L:S =0 is H-contact if
and only if M satisfies /SE =0, where / is the characteristic Jacobi operator
(Theorem 4). Moreover, for a 2-dimensional Riemannian manifold M, T\M
satisfies L:S = 0 if and only if M is of constant curvature 0 or 1 (Proposition 7).
For a 4-dimensional Riemannian manifold M, we prove that 7)M satisfies
L:S=0 and /S¢=0 if and only if M is of constant curvature 1 or 2
(Theorem 9).

2. The unit tangent sphere bundle

First, we review some fundamental facts on contact metric manifolds. We
refer to [1] for more details. All manifolds are assumed to be connected and of
class C*. A (2n — 1)-dimensional manifold M is said to be an almost contact
manifold if its structure group of the linear frame bundle is reducible to
U(n—1) x {1}. This is equivalent to the existence of a (1, 1)-tensor field ¢,
a vector field ¢ and a 1-form # satisfying

2.1 nE =1 and ¢*=—-id+n®:E

Here (¢,&,n) is called an almost contact structure. Then one can always find a
compatible Riemannian metric §:

(2.2) g($X.¢Y) =g(X,Y) = n(X)n(Y)

for any vector fields X and Y on M. Such a metric is called an associated
metric and (M, ¢,&,n,G) is said to be an almost contact metric manifold. The
Sfundamental 2-form ® is defined by ®(X,Y)=g(X,4Y). If M satisfies in
addition dn = @, then M is called a contact metric manifold, where d is the
exterior differential operator. We call the structure vector field & the Reeb
vector field or the characteristic vector field. From (2.1) and (2.2) it follows that

$pc=0, nop=0, n(X)=4g(X,2).

Given a contact metric manifold M, we define the structural operator h by
h=1L:§, where L: denotes Lie differentiation for &, Then we may observe
that / is self-adjoint and satisfies

(2.3) he=0 and h¢ = —gh,
(2.4) V& = —¢X — gh¥X,

where V is the Levi-Civita connection on M. From (2.3) and (2.4) we see that
each trajectory of & is a geodesic. We denote by R the Riemannian curvature
tensor defined by

R(X,Y)Z=V3(V3Z) - V3(V3Z) - Vg 3Z
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for all vector fields X, Y and Z. Along a trajectory of &, the Jacobi operator
/= R(-,&)¢ is a symmetric (1, 1)-tensor field. We call it the characteristic Jacobi
operator. We have

(25) {=¢tp—2h* + ¢%),
(2.6) Veh = ¢ — ¢f — ph>.

A contact metric manifold for which ¢ is Killing is called a K-contact manifold.
It is easy to see that a contact metric manifold is K-contact if and only if 7 =0
or, equivalently, / =1 —n ® . It is well-known that a unit vector field V" on a
Riemannian manifold M determines a map between M and T'M. Then V is
said to be harmonic if it is a critical point of the energy functional restricted to
X (M), the set of all sections of 71M. In particular, a contact metric manifold
M is said to be an H-contact manifold if its Reeb vector field is harmonic
in above sense. In [11] it was proved that a contact metric manifold M is
H-contact if and only if & is an eigenvector field of the Ricci operator S on
M. From this, it follows that any K-contact manifold is an H-contact manifold.

Let (M,g) be an n-dimensional Riemannian manifold and V the associated
Levi-Civita connection. Its Riemann curvature tensor R is defined by R(X, Y)Z
=VxVyZ —VyVxZ —Vix y)Z for all vector fields X, ¥ and Z on M. The
tangent bundle over (M,g) is denoted by TM and consists of pairs (p,u),
where p is a point in M and u a tangent vector to M at p. The mapping
n:TM — M, n(p,u) = p, is the natural projection from TM onto M. For a
vector field X on M, its vertical lift X" on TM is the vector field defined by
X’w =w(X)on, where w is a l-form on M. For the Levi-Civita connection
V on M, the horizontal lift X" of X is defined by X’w = Vyw. The tangent
bundle TM can be endowed in a natural way with a Riemannian metric g, the
so-called Sasaki metric, depending only on the Riemannian metric g on M. It is
determined by

GX" Y =g(X", Y") =g(X,Y)om, GX"Y")=0

for all vector fields X and Y on M. Also, TM admits an almost complex
structure tensor J defined by JX” = X? and JX? = —X". Then § is a Hermitian
metric for the almost complex structure J.

The unit tangent sphere bundle 7 : T1M — M is a hypersurface of TM given
by g,(u,u) =1. Note that 7 =noi, where i is the immersion of T\ M into
TM. A unit normal vector field N = u” to T3 M is given by the vertical lift of
u for (p,u). The horizontal lift of a vector is tangent to 77M, but the vertical
lift of a vector is not tangent to 71 M in general. So, we define the tangential lift
of X to (p,u)e T'M by

Xy =X —g(X,u)u)".
Clearly, the tangent space T{, ,T1M is spanned by vectors of the form X b and
X', where X € T,M.
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We now define the standard contact metric structure of the unit tangent
sphere bundle 73 M over a Riemannian manifold (M,g). The metric g’ on Ty M
is induced from the Sasaki metric § on 7M. Using the almost complex structure
J on TM, we define a unit vector field &', a 1-form »’ and a (1,1)-tensor field ¢’
on T1M by

&'=—JN, ¢'=J-5n'®N.

Since ¢'(X,¢'Y)=2dn'(X,Y), (n',9',4',&') is not a contact metric structure.
If we rescale this structure by
!/ 1 ! !/ = 1 !
ézzéa 772577’ ¢: y 4=79,
we get the standard contact metric structure (7,d,¢,¢). Here the tensor ¢ is
explicitly given by

1
(2.7) $X'=—X"+Sg(X, )¢, ¢X" =X,
where X and Y are vector fields on M. From now on, we consider 77 M =
(T1'M,n,g) with the standard contact metric structure.

The Levi-Civita connection V of 73 M is described by

Vi ¥ = —g(Y,u0)X",

N —

Vi Y' =2 (Ru, X)Y)",

(2.8) B o ,
Vi ¥' = (VoY) +5 (R, )X)",

Vi Y= (VyY)" —%(R(X, Y)u)'

for all vector fields X and Y on M.
Also the Riemann curvature tensor R of T\ M is given by

R(X[7 YI)Z[ = —(g(X,Z) - g(X,u)g(Z, u)) Y!
+(9(Y,2) = g(Y,u)g(Z,u)) X',
R(X', YNZ" = {R(X — g(X,u)u, Y — g(Y,u)u)Z}"
(2.9) +%{[R(u,X),R(u, Y)Z}",

R(X" yhz' = —%{R( Y —g(Y,u)u, Z — g(Z,u)u) X }"

~ (R V)R )X},
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R(X" yhz"= %{R(X, Z)(Y —g(Y,u)u)} — %{R(X, R(u, Y)Z)u}'

3 (TR, V)2},
R(Xh’ Yh)Zt = {R(X> Y)(Z-yg(Z, u)u)}f

+ % {R(Y,R(u, Z)X)u — R(X,R(u, Z)Y)u}'
(2.9)

£ 3 (VR W.Z)Y — (VyR)(w Z)X)"
R(X" Y"Mz" = (R(X,Y)Z)" —&—%{R(u, R(X, Y)u)Z}"

- %{R(u, R(Y,Z)u)X — R(u,R(X,Z)u)Y}"

3 (V2R (X, V)

for all vector fields X, Y and Z on M.
Next, to calculate the Ricci curvature tensor p of 71 M at the point (p,u) €
TiM, let ey,...,e, =u be an orthonormal basis of 7,M. Then p is given by

ﬁ(X’, Yt) = (I’l - 2)(g(Xv Y) _g(Xvu)g(Yv u))

1 n
" R X [aR aY i)s
+4;g( (u, X)ei, R(u, Y)e;)

(2.10) |

ﬁ(le Yh) = E((Vup)(Xa Y) — (Vxp)(u, Y))v

POXT, Y1) = p(X, ¥) = 33" g(Rluse) X, Ria ) Y),
1

n
=

where p denotes the Ricci curvature tensor of M. We can refer to [4, 9] for
formulas (2.8)—(2.10).
From ¢ =2u" and (2.8), it follows

(2.11) Vyié = =2¢X' — (RX)", Vyié = —(RX)

where R, = R(-,u)u is the Jacobi operator associated with the unit vector u.
From (2.4) and (2.11), it follows that

hX'=X"— (R,X)",
(2.12)

hxh = —xh 4 %g(X, u)é+ (R,X)".

The above formulae are also found in [2, 3, 8].
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3. Reeb flow invariant Ricci operators

Suppose that the contact metric manifold M satisfies the condition L:S = 0

for the Ricci operator S and the Reeb vector field ¢ on M. Then from the
definition of Lie differentiation and (2.4) we have

(3-1) = (L:S)X
= L:SX — S(L:X)
(VeS)X = Vszé+ S(Vg<)
_ (V.3)X + 35X — 54X + $hSX — Sph¥
for any vector field X on M. In (3.1), since V5S+¢S S¢ is a symmetric

operator and ¢hS — S¢h is a skew -symmetric operator, M satisfies the condition
L:S =0 if and only if it satisfies

(3.2) V:S = S¢— ¢S
and
(33) ¢hS = S¢h.

Now, we consider the unit tangent sphere bundle 77 M over an n-dimensional
Riemannian manifold M satisfying the condition L;S =0. From (2.7), (2.10)
and (2.12), we can calculate

(34) 0=g((VeS)X' — SpX' + pSX', Y")
= (Vep) (X', Y') = p(¢X", Y') = p(X ', ¢Y")

= EZ{Q((VL{R)(% X)ei, R(u, Y)ei) + g(R(u, X)e, (VuR)(u, Y)e;) }
P

43 ((Vup)(RX, ¥) 4 (Vap) (X, R, Y)
— (Vap) R Y) = (Typ) 0, R X))

3 2%0)(X, ¥) — (Vap)a, V) — (Vap) . X))

A9 ) (Vap) (e ¥) — (V). )
+9(Y,u)(Vup)(u, X) = (Vxp)(u,u))},
(3.5) 0=g((VeS)X' — SpX' +¢SX' ¥Y")
= (Vep)(X', YY)~ pgx", YH) — (X" Y7
= (V)X Y) = (Vyp) . ¥) — (1= 2)g(X. R Y) + p(R,X, Y)
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—lZg(R(u e;)R,X,R(u,e;)Y ——Zg (u, X)e;, R(u, R, Y )e;)

—(n=2)(g9(X,Y) — g(X,u)g(Y,u)) ——Zg (u, X)ei, R(u, Y)e,),

(3.6) 0=g((VeS)X" — Sgpx" + ¢pSXx" Y™
= (Véﬁ)(th Yh) _:5(¢th Yh) _ﬁ(th¢Yh)

= = S ORI ) X, Rl ) V) + (Rl ) X, (VuR) ) )}

~ S{up)(RX, ¥) + (Vap) (X, R,Y)
~ (Vaxp)( RaY) = (Vyp) 0 R X))
2 V) (X, ¥) 4 (Vap)(a ¥) + (Vop) . X)),

(3.7) 0= g(SphX' — phSX', Y")
(PhX', Y') +p(X ', hgY")

MI»—‘ 1l

{(Vyp)(u, X) = (Vxp)(u, Y) — (Vup) (X, R, Y)

(
+ (Vup) (R X, Y) + (Vxp)(u, R, Y) — (Vyp)(u, R X)
+ (X, u)((Vup) (4, Y) —

(Vyp)(u,u))
= g9(Y,u)(Vup)(u, X) — (Vxp)(u,u))},
(3.8) = G(SghX' — ghSX', Y")
= p(phX ', Y") + p(X' hp Y
=(n—2)(g(X,Y)—g(X,u)g Zg u, X)er, R(u, Y)e;)

— (n—2)g(X,R,Y) Zg (u, X)e;, R(u, R, Y)e,)
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—p(X,Y)+ %; g(R(u,e;) X, R(u,e;)Y)

(X, u>{p< o) 4> g(Ru eu, Rl e) Y>}
i=1

n

1
+p(RuX,Y) =5 > " g(R(u,e)R,X, R(u, ;) Y),
i=1

(3.9) 0= g(Sphx" — ghSx" v")
(hX", Y") + p(X" hpY")

{(VXP)(u7 Y) - (VYP)(M7 X) + (Vup)(RuX7 Y)

- (Vup)(Xa Ru Y) - (VR,,Xp)(ua Y) + (VRqu)(u7 X)}

=

Therefore T)M satisfies L:S = 0 if and only if M satisfies (3.4)—(3.9).

THEOREM 1. Let M = (M,g) be an n-dimensional Riemannian manifold of
constant curvature ¢ and let TyM be the unit tangent sphere bundle with the
standard contact metric structure (n,g,$,&) over M.  Then T\M satisfies L:S =0
if and only if M is of constant curvature 1 or n— 2.

_ Proof. Suppose that M is a space of constant curvature ¢ and 71 M satisfies
L:S=0. Then from (3.5) and (3.8), we obtain two equations;

(3.10) A—n=2)*—c+(n-2)=0,
(3.11) A —n?+(2n—3)c—(n—2)=0.

Therefore we see that 7Ty M satisfies L;S =0 if and only if c=1 or c=n—2.
O

Now, we study the case of 3-dimensional base manifold. Then we have

THEOREM 2. Let M = (M,g) be a 3-dimensional Riemannian manifold and
let T\M be the unit tangent sphere bundle with the standard contact metric
structure (17,3, ¢, &) over M.  Then Ty M satisfies L:S = 0 if and only if M is of
constant curvature 1.

Proof. Suppose that M is a 3-dimensional Riemannian manifold and let
{ei}le be an orthonormal basis of eigenvectors of the Ricci operator S, at point
p € M, that is,

Sei = o;é;, i= 1727 3.
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It is well-known that the curvature tensor R of 3-dimensional Riemannian
manifold (M,g) is of the following form

(3.12) RX,Y)Z=p(Y,Z)X —p(X,Z)Y +g(Y,Z)SX — g(X,Z)SY
~5{0(Y. 2)X —g(X,2)Y},

where 7 denotes the scalar curvature on M. If we put u=¢;, X =Y =¢; in
(3.8), then using (3.12), we have

2

(3.13) (1 — o —rxz—i—;) (oc]z—f—fx%—l—Zalocz—wl —‘cocz—oc2—|—1—|—r4> =0.

Similarly, putting u =e,, X = Y =¢; in (3.8), we have

2
(3.14) (1 — oy — rxz—i—;) (OC]Z +fx§ + 20000 — 10 — To — 0o + 1 —|—T4> =0.
This time, we put u =¢;, X =Y =e3 in (3.8), then we have
(3.15) l—ocl—rx3+§ (xl+oc3+2fxloc3—‘coc1—m3—oc3+l—|—z =0.
Similarly, putting u =e3, X = Y =¢; in (3.8), we have
(3.16) l—ocl—acg—i—i ocl+oc3+2aloc3—7:oc1—foc3—ocl+l+z =0.
In addition, put u=e;, X = Y =e¢;3 in (3.8) to have
(3.17) l—ocz—acg—i—z oc2+oc3+20<2a3—foc2—foc3—oc3+l+z =0.

Similarly, put u=e3, X =Y =e¢; in (3.8) to obtain

2
(3.18) (1 — 0y — 03 +%> <a§+oc32+2cx2a3—roc2—w3—oc2+1+%> =0.

From (3.13) and (3.14), we obtain either 1 — oy — o —&-%: 0 or oy =ay. Also,

from (3.15) and (3.16), we obtain either 1 — a5 — o3 —i—%:O or oy =o03. We

deduce from (3.17) and (3.18) that either 1 — oy — a3 +I=0or o = a3 holds.
Therefore we may consider the following eight cases.

(1) 1—a1—a2+%:0 and l—oq—oc3+§:0 and l—ocz—oc3+%:0,

(1) l—oq*aer%:Oandl—cx]—a3+%:0 and oy = o3,
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(I11) 1—061—%2—#3:0 and o = a3 and l—az_aﬁ_f:

0
2 2 ’

IV) oy = and 1—a17a3+%:0 and l—ocz—oc3+%:0,

V) 1—061—062+%:Oanda1:oc3 and o = o3,

VH) oy = op and o = o3 and 1—0(2—0(3+E=0,

VHI) o = 0o and ol = A3 and Oy = 3. 2
For cases (I), (V), (VI), (VII), we immediately see that each case gives a
contradiction. In case (II), since 7 = o + 02 + a3 and oy = a3, we have o) = 2.
Also, from (3.17) we obtain

(
(
(VI) o1 =0y and l—oq—ocg—&-%:O and o = a3,
(
(

23 —3m+2=0,
that is, ap = 1 or ap = 2. Thus, since o # o, we have oy =2 and op = o3 = 1.

. 1 .
On the other hand, if we set u = —=(e; +¢;) and X = ¥ = e3 in (3.8), then
by the direct calculation we have V2

(3.19) {1 —a3 = (ocl +<x3—> (oc2+oc3—;>2}
IR

But, for oy =2 and o, = a3 = 1, (3.19) does not hold. By similar arguments to
those for case (II), we see that the cases (III) and (IV) cannot occur. Lastly,
in case (VIII), we immediately see that M is FEinstein and hence M is of
constant curvature. Due to Theorem 1, M is of constant curvature 1 and the
converse is evident. Ul

Together with Y. Tashiro’s result, we have

COROLLARY 3. Let (M,g) be a 3-dimensional Riemannian manifold. Then
the unit tangent sphere bundle T\M satisfies L:S =0 if and only if ¢ is a Killing
vector field.

4. The case of 4-dimensional base manifolds

First, we investigate the relationship between the condition L:S=0 and
H-contact condition on contact metric manifold. Let M be a contact metric
manifold whose Ricci operator S is Reeb flow invariant. Then from (3.3), we
have

(4.1) hSE = 0.
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Differentiating (4.1) with respect to ¢ and using (3.2), we have
(4.2) 0= (Vch)SE+ h(S¢ — ¢S)E.

From (2.3), (4.1) and (4.2), we see that M satisfies (V:h)SE=0. We obtain
from (2.6) that

(4.3) = (Veh)S¢
= (¢ — ¢h> — ¢¢)S¢
= ¢SE — ¢/ SE.

Applying ¢ to (4.3), we obtain
(4.4) —SE+n(SEE+SE =0,

and hence from (4.4), we have

_ TueOREM 4. Let M be a contact metric manifold and assume that M satisfies
L:S=0. Then M is H-contact if and only if M satisfies /SE = 0.

Also, from the above theorem we can easily obtain

COROLLARY 5. If a contact metric manifold M satisfies L:S =0 and /S =

S¢, then M is H-contact.

n 7] the first named author classified M satisfying L;S = 0 for the dimension 3.
Indeed, in the proof of Main Theorem in [7], we have

PROPOSITION 6. Let M be a 3-dimensional contact metric manifold. If M
satisfies L:S =0, then M is H-contact.

Boeckx and Vanhecke ([5]) proved that the unit tangent sphere bundle of a
2- or 3-dimensional Riemannian manifold is H-contact if and only if the base
manifold is of constant curvature. Calvaruso and Perrone ([6]) obtained the same
result in the case of an n(> 4)-dimensional conformally flat manifold. Thus,
from the result of Boeckx and Vanhecke, Proposition 6 and Theorem 1, we have

ProprOSITION 7. Let M = (M, g) be a 2-dimensional Riemannian manifold
and let T\M be the unit tangent sphere bundle with the standard contact metric
structure (17,3, ¢, &) over M.  Then T\M satisfies L:S =0 if and only if M is of
constant curvature 0 or 1.

Also, we have

PropPOSITION 8. Let M = (M,g) be an n(> 4)-dimensional conformally flat
manifold and let T\M be the unit tangent sphere bundle with the standard contact
metric structure (1,3, ¢,&) over M. If T\M satisfies L:S =0 and /SE =0, then
M is of constant curvature 1 or n— 2.
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Now we concentrate on the case of dim M =4. Then, we have

THEOREM 9. Let M = (M,g) be a 4-dimensional Riemannian manifold and
let T\M be the unit tangent sphere bundle with the standard contact metric
structure (1,3, ¢,&) over M. Then TiM satisfies L:S =0 and /SE =0 if and
only if M is of constant curvature 1 or 2.

Proof. Suppose that the unit tangent sphere bundle 77M over an n-
dimensional Riemannian manifold M satisfies the condition L:S =0 for the
Ricci operator S on Ty M. Then T} M satisfies L:S = 0 if and only if M satisfies
(3.4)-(3.9). In (3.8) we put X =¢,, Y =¢p, u=¢,. Then we have

1 n 1 n
(45) (l’l - 2) (51117 - éac(sbc) + Z Z Rcag‘/'Rcb[/ - (I’l - 2)Raccb - Z Z Rcainbccchkij
b= ijk=1

— Pab +5 2 Z Rua]Rub] + 5ac (pb( 2 Z R(IC]RClb/>

i,j=1 i,j=1

n

Z 1
+ Z Racckpin — B Z Recerc Reitg Reiny = 0,
k=1 i,j k=1

where 0, denotes the Kronecker’s delta, Rup.q = g(R(eq, ep)e.,eq) and p,, =
ples,ep). For a=b#c in (4.5), we get

n

(4'6) + Z RLm] Z)Racca - Z Rcainaccchklj
i,j,k=1

n

4paa +2 Z Rua] +4 Z Racckpka -2 Z acckRCiijciqj =0.
i,j=1 i,j, k=1

From Theorem 4, we see that TyM satisfying L:S=0 and /S¢=0 has an
H-contact structure. We suppose that n = 4. Then owing to a result in [10]
M is 2-stein, that is, an Einstein manifold satlsfylng (R u,u,)z = u(p)|u|* for
all ue T,M, pe M, where R, = g(R(u,e;)u,e;), |u| = g(u u) and u is a real-
valued function on M. Now, since M is Einstein i.e., p = pg (y is a constant on
M), we may choose an orthonormal basis {e,-}?:1 (known as the Singer-Thorpe
basis) at each point p € M such that

Rioi2 = Ragza = A1, Ri3iz = Roapa = Ao, Rigia = Rozns = 23,
Rioza =1y, Rizar = 1, Riaz = 1,
Ry =0  whenever just three of the indices i, j, k,!/

are distinct (cf. [13]).

(4.7)

Note that
(4.8) Mt +u3 =0
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by the first Bianchi identity and
(4.9) Mtl+d=—-
where 7 is the scalar curvature of M.

It is also known that a 4-dimensional Einstein manifold M is 2-stein if and
only if

T T T
(4.10) M=kt =kt =t
or
T T
—,u]:)q—l—z, 124‘12, _/13:/13“’5

holds for any Singer-Thorpe basis {e,} _, at each point pe M (cf. [12]).
On the other hand, if we puta=b=1,c=2anda=5b=3, c =4 in (4.6),
then, using (4.7), we have

(4.11) (1+ )2y —4 247 — 1 — i3 —13) = 0.
Similarly, put a=b=1, c=3 and a=b=2, c=4 in (4.6) to have
(4.12) (14+2)(2y —4—213 — 1 — i3 —13) = 0.
Fora=b=1,c=4and a=b=2, c=3 in (4.6), we have
(4.13) (14 73)(2y —4 =203 —pi? — i3 — 1i3) = 0.
From (4.11)—(4.13), we get the following cases.

) h=hh=4=-1,

i) A =2d=—1and 2y =4+2)3+ 1} + 13 +43,

iil) A=Ay =—1and 2y =4+2)5 + 13 + 15 + 43,
V) da=/l3=—1and 2y =4+ 2} + 1} + 15 + 13,

—

V) 1 =-1 and J; =3,
vi) Jp=—1 and A} = A3,
vii) 23 =—1 and A} =73,

N N N N N N N

viil) A7 =13 = A2,
From case (i), we see that M is of constant curvature 1. In case (ii), we get from
(4.9) and (4.10)

T T
(4.14) )672_4_1’ ﬂlziuZ:_lJ’_Ev ﬂ3:2_6-

Applying (4.14) in case (ii), we have
(4.15) (t—12)(z —9) =0.
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Similarly, in cases (iii) and (iv), we get (4.15). But, the case v = 12 yields again
that M is of constant curvature 1. For the case 7 =9, from (4.14) we get
M=lo=-1,23=-% p=w=-1and y3=1. Use (4.7) to check (3.5), a
necessary equation for 77 M to satisfy L:S =0. Indeed, the right hand side of

(3.5) for u=e;, X = Y = ey, for example, becomes —4 +%— 203 — ik — i} — 2.

It gives a contradiction. In case (v), we consider two cases A, = A3 or Ay = —/13.
If 4, =13, from (4.9) and (4.10) we get

1 1 7
4.16 M=Mh==—= =-1 =l ==—=—
( ) 2 3 2 ] ) My + 12 ) H M3 2 24
From (4.12) and (4.16), we obtain

(r—12)? =0,
that is, A, = A3 = —1, which yields that this is a contradiction. If 1, = —13, from
(4.9) and (4.10) we get
2 1 , 1

(4.17) =4, m=-3, m=hty, B=kts.

From (4.12) and (4.17), we obtain
325 +2=0,

which can not occur. Similarly, the cases (vi) and (vii) can not hold.
Lastly, we consider the case (viii);

(4.18) M =2}=1
Then, from (4.8), (4.9), (4.10) and (4.18) we obtain the following four cases.
) T
@ h=h=7h= —1p and =y =3 =0,

T T T T
(b) 4 —)2——1, /1321 and =T =3
T T T T
(c) /11=)~3=—Z, /1222 and :lu3:_87 ﬂzzg,
T T T T
(d) 12:&3:—2, AIZZ and ﬂ2:ﬂ3:—6, ﬂ1:§

In cases (b)—(d), we get from (4.12)
7t =121 +96 =0,
which can not occur. In case (a), we get from (4.12)
(t—12)(r—24) =0.

Therefore M is of constant sectional curvature 1 or 2. Since the unit tangent
sphere bundle of a space of constant curvature is H-contact ([5]), the converse
follows from Theorem 1. O
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