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Abstract

We introduce Tate homology of complexes of finite Gorenstein flat dimension based
on complete flat resolutions and give a new method of computing Tate homology in
Christensen and Jorgensen’s sense. We also investigate the relationship between Tate
homology and Tate cohomology. As an application, a more brief proof of the main
result on derived depth formula of [Vanishing of Tate homology and depth formula over
local rings, J. Pure Appl. Algebra 219 (2015) 464-481] is given.

1. Introduction

Throughout this paper, R denotes a ring, R-Mod the category of left R-
modules and %(R) the category of complexes of left R-modules. R° denotes the
opposite ring.

The notion of Tate cohomology originated from the study of representations
of finite groups. Avramov and Martsinkovsky [4] extended the definition, based
on complete projective resolutions (or Tate projective resolutions), so that it can
work well for finitely generated modules of finite G-dimension over a noetherian
ring. Later, Veliche [20] and Christensen and Jorgensen [6] studied a Tate
cohomology theory for complexes. The parallel theory of Tate homology has
been treated by lacob [16] and Christensen and Jorgensen [6, 7]. They defined
Tate homology of complexes based on complete projective resolutions. That is,
given an R°-complex M with a complete projective resolution U SPEiMm (that
is, a diagram of morphisms of complexes, where U is a totally acyclic complexes
of projective R°-modules, 7 is a dg-projective resolution of M, and 7, is an
isomorphism for n > 0), Tate homology of the R°-complex M with coefficients
in an arbitrary R-complex N is defined as

Tor(M,N) = H;(U @ N).

However we note that there is no relationship between Tate homology and Tate
cohomology when R is a coherent ring. The motivation of current paper is to
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establish a Tate homology theory based on complete flat resolutions, which can
form a correspondence with the classical Tor homology. More precisely, given
an R°-complex M admitting a complete flat resolution 7 — F = C & M (see
Definition 3.1 for details). For an R-complex N, the Tate homology with
respect to the complete flat resolution of M with coefficients in N is defined as

Tor®(M,N) = H;(T ®& N).

We find a relationship between Tate homology and Tate cohomology and provide
a new method of computing Tate homology in Christensen and Jorgensen’s sense.

Let M and N be finitely generated modules over a commutative noetherian
local ring R. We say that (M, N) satisfies the depth formula if

depthiz(M ®g N) = depthy M + depthy N — depth R
and satisfies the derived depth formula if
depthp(M ®5 N) = depthy, M + depthy N — depth R.
For the width, under suitable conditions on M and N, there is a width formula
widthg (R Homg(M, N)) = depthy M + widthg N — depth R.

Several authors have proved that the two formulas hold under certain conditions
in different ways, such as [1, 2, 11, 15, 18, 22]. Especially, Christensen and
Jorgensen [7] proved the depth formula holds for every pair of Tate Tor-
independent complexes, one of which is of finite Gorenstein projective dimen-
sion and the other is bounded above. It subsumes previous generalizations of
Auslander’s depth formula obtained over the half-century that has passed since [2]
appeared. Also the width formula holds for every pair of Tate Ext-independent
complexes, one of which is of finite Gorenstein injective dimension and the
other is bounded above. However, in the previous passages, the study of depth
formula and width formula is always independent. As applications of the Tate
homology we have established in Section 3, we simplify the study of depth
formula and width formula and provide a more brief proof to Christensen and
Jorgensen’s main result.

The layout of this paper is as follows: In section 2, we recall the definitions
and basic notations of complexes and depth. Section 3 is devoted to discussing
complete flat resolutions of complexes and Tate homology. We prove that when
R is a left coherent ring over which each flat right R-module has finite projective
dimension, the Tate homology defined here coincides with Tate homology defined
by complete projective resolutions treated by Christensen and Jorgensen [6] and
establish the relationship between Tate homology and Tate cohomology. In
section 4, we give some applications.

2. Preliminaries and basic facts

We first review some basic facts on complexes. For terminologies we follow
(3, 12, 10].
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CompLEX. Given a complex X

s 1 oo 01

”_>Xl_>XO—>X71‘>"’a

the n-th homology module of X is H,(X)=2Z,(X)/B,(X), where Z,(X) =
Ker(d), Bu(X)= Im(é,frl); we set H"(X)=H_,(X), C,(X)= Coker(é,ﬁl).
A complex X is called acyclic or exact if the homology complex H(X) is the
zero-complex.

Given a complex X and an integer i, 2'X denotes the complex such that
(X'X), = X,_; and whose boundary operators are (—1)'5. .

For a complex X we associate the numbers

sup X =sup{i|X; #0} and inf X =inf{i|X; # 0}.

The complex X is called bounded above when sup X < oo, bounded below when
inf X > —oo and bounded when it is bounded below and above.

A homomorphism ¢: X — Y of degree n is a family (g;),., of homo-
morphisms of R-modules ¢, : X; — Y,4;. All such homomorphisms form an
abelian group, denoted by Homg(X,Y),; it is clearly isomorphic to
[l;cz Homg(X;, Y,1;). We let Hompg(X,Y) denote the complex of abelian
groups with n-th component Hompg(X, Y), and boundary operator

0n((9:)icz) = (5;3;1'% - (71)n¢i715i)()iel'

A homomorphism ¢ € Homg(X,Y), is called a chain map if d(p) =0, that is,
if (5,,Y+i(pi: (=1)"p;,_,0F for all ieZ. A chain map of degree 0 is called a
morphism. A morphism ¢ : X — Y is called a quasi-isomorphism if the induced
morphisms H,(¢) : H,(X) — H,(Y) are isomorphisms for all n e Z. Complexes
X and Y are quasi-isomorphic (denoted as X ~ Y) if they are linked by a chain
of quasi-isomorphisms.

If X is a complex of right R-modules and Y is a complex of left R-modules,
the tensor product of X and Y is the complex of abelian groups X ®z Y with
(X ®rY),=@,c,(Xi® Yay) and 6(x®ry) =6 (x)® y+(-1)'x®0, ()
for all xe X;, ye Y,_,.

Let X be an R-complex and u, v integers. The hard above-truncation, X,
of X at u and the hard below-truncation, X-,, of X at v are given by:

XSu:O_’XuﬁXufl_)Xu72_)"'7
Xopy= = X2 = Xop1 = Xo, — 0.

The soft above-truncation, X, of X at u and the soft below-truncation,
X5,, of X at v are given by:

XCHZO—>CH(X)—> el — Xyp — -+,
X5, = — Xppo — Xopp1 — Zy(X) — 0.
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COTORSION PAIR. A pair (o/,%) of subcategories in R-Mod is called a
cotorsion pair provided that .«/* = # and % = .o/, where *% = {4 € R-Mod |
Exth(4,B) =0,YBe A} and o/ = {BeR- Mod|ExtR(A B)=0,YAe./}. We
say that a homomorphlsm ¢ M — Bis a #-preenvelope if B € # and the abelian
group homomorphism Homg (¢, B') : Homg(B, B') — Homg(M, B’) is surjective
for each B’ € . Moreover, if Coker ¢ € -4, then such a preenvelope is called
a special #-preenvelope of M. Dually we have the definitions of .o/-precover
and special .o/-precover. A cotorsion pair (./,%) is said to be hereditary if
Exth(4,B) =0 for all i > 1 and A€ .o/ and Be 4. A cotorsion pair (.«7, %) is
called complete if every R-module M has a special #-preenvelope and a special
o/ -precover.

DEeriNiTION 2.1 ([13]).  Let (o7, %) be a cotorsion pair in R-Mod. Let X be
a complex.

(1) X is called an .7 complex if it is exact and Z,(X) € o/ for all n.

(2) X is called a # complex if it is exact and Z,(X) e # for all n.

(3) X is called a dg-o/ complex if X, € o/ for each n, and Hom(X, B) is
exact whenever B is a 4 complex.

(4) X is called a dg-# complex if X, € # for each n, and Hom(4, X) is exact
whenever A is an ./ complex.

We denote the class of .« complexes by .o/ and the class of ~dg-.o/ complexes
by dg /. Similarly, the class of % complexes are denoted by % and the class of
dg-# complexes by dg 4.

In the following, we denote 2, .#, &, € the class of projective, injective, flat
and cotorsion modules respectively. Let (o/, %) = (F,%) be the flat cotorsion
pair in R-Mod. Then .o/ (resp. %) complex and dg-./ (resp. dg-#) complex are
flat (resp. cotorsion) complex and dg-flat (resp. dg-cotorsion) complex. Also the
induced cotorsion pair (51'; ,dg (é) and (dy Z, (é) are both complete and hereditary
in €(R) by [13, Corollary 3.13, 4.18]. Similarly, let (o7, #) = (?, R-Mod), then
dg-.of complex is dg-projective complex and let (o7, #) = (R-Mod, ), then dg-%#
complex is dg-injective.

The projective and injective dimension of an R-complex M are defined as

pdg M =inf{sup P| P = M is a dg-projective resolution},

idg M = inf{—inf I | M = I is a dg-injective resolution}.

DepPTH AND WIDTH. Let (R, m, k) be a local ring. Let M be an R-complex.
(1) The depth of M is defined as

depthry M = —sup H(R Homg(k, M)).
For every R-complex M one has

depthy M > —sup H(M).
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If sup H(M) = s < oo, then the equality holds if and only if m is an associated
prime ideal of the homology module H (M) (that is, m = Ann(x) for some
x € Hy(M)).

(2) The width of M is defined as

widthg M = inf H(k ®f M).
There is an obvious inequality
widthg M < inf H(M),

and the equality holds if H(M) is bounded below with each item being a finitely
generated module.

DEerFINITION 2.2 ([7]). Let M and N be R-complexes. We say that the
derived depth formula holds for M and N if there is an equality

depthx(M ®f N) = depthgy M + depthy N — depth R.

By [11, Lemma 2.1] the derived depth formula holds for complexes M and N,
if M has finite projective dimension and H(N) is bounded above.

3. Complete flat resolution and tate homology

In this section, R is an associative ring (not necessarily commutative
noetherian). Right modules over R are treated as (left) modules over the
opposite ring R°. We establish Tate homology with respect to complete flat
resolutions.

Recall that a totally acyclic complex of flat R-modules is an exact complex
of flat R-modules which remains exact after applying I ®  — for any injective
R°-module I. An R-module G is called Gorenstein flat if there exists a totally
acyclic complex 7' of flat R-modules such that G = Ker(7_; — 7_;). By [14,
Lemma 2.3.2], if R is a right coherent ring, an R-module M is Gorenstein flat
if and only if Exti(M,B) =0 for any i > 1 and Be # N%, and there exists a
Hompg(—, # N %)-exact exact sequence

0—-M-—B"—>B —...
with each B'e Z N&.

DErFINITION 3.1 ([14]). For an R-complex M, a complete flat resolution of

M is a diagram
TSFScdm

of morphisrnns ofq complexes satisfying:

(1) F > C+ M is a flat-cotorsion resolution of M, that is, ¢ is a special
dg-cotorsion preenvelope and n is a special dg-flat precover;

(2) T is an exact complex with each entry in # N% and Homg(—, 7 N ¥)-
exact;
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(3) ©: T — F is a morphism such that t; =idy, for all i> 0.
The Gorenstein flat dimension Gfdg M is defined by:
TSFLCcE Misa complete flat resolution}

Gfdg M =inf{geZ : R
with 7; : T; — F; bijective for each i > g

Lemma 3.2 ([14]). Let R be a right coherent ring. For an R-complex M, the
following are equivalent for each integer n e Z.

(1) Gfdg M < n.

(2) There exists a quasi-isomorphism F — M with F dg-flat such that
sup H(F) <n and C;(F) is Gorenstein flat for any zmeger j>n

(3) For each flat- cotorswn resolulzon FS5cdMm of M, there exists a
complete flat resolution T - F = C Lm of M such that t; = 1dT for all i = n.

Remark 3.3. By Lemma 3.2, the Gorenstein flat dimension defined here
coincides with lacob’s definition in [17] over a right coherent ring.

Livva 34, Let TSFSCEM and TS F' 5 0 & M be complete
flat resolutions. For every morphism o : M — M' there exists a morphism & such
that the right hand square of the diagram

T - F ., cCc L M
A R S S VY

commutes; for each choice of @, there exists a unique up to homotopy morphism a,
making the middle square commute up to homotopy; for each choice of o there
exists a unique up to homotopy morphism &, making the left hand square commute
up to homotopy. 1If one has M = M’ and o is the identity map, then &, & and &
are homotopy equivalences.

Proof. By [14, Lemma 2.2.4|, for each morphism o : M — M’ there exists a
morphism & such that the right hand square of the diagram

F ., c 1 _ m

1

commutes; for each choice of & there exists a unique up to homotopy morphism
a, making the left-hand square commute. If o = id,,, then & and & are homotopy
equivalences. We only prove the remaining conclusions.

Note that ¢/ can be factored as T’ - 7" 2 F ', where 1 is a homotopy
equivalence and f is a morphism with each f; a split epimorphism. Thus
without loss of generality, we assume that each ] is a split epimorphism.
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Thus there exists an exact sequence 0 — Kert' — 7' 5 F' — 0 with Ker 7/
bounded above and each item in # N%¥. Applying Homg(7,—) to this
sequence, we have an exact sequence of complexes 0 — Homg(T,Ker 7') —

Homg(T,T") Homa (T, ) Homg(7T,F') — 0. Note that Homg(7',Ker 7’) is exact

by [5, Lemma 2.5]. Then Homg(T,T’) Homa(, ) HomR(T F')—0 is a sur-
jective quasi-isomorphism. Hence there exists a unique up to homotopy
morphism & such that ar =7’a by [4, (1.1.1)]. The homotopy equivalence is
easy to get. [

DEeriNiTION 3.5. Let R be a left coherent ring and M an R°-complex with
a complete flat resolution T SFS5cL M. For an R- complex N, the Tate
homology with respect to complete flat resolutions of M with coefficients in N
is defined as

Tor®(M,N) = H;(T @z N).

Remark 3.6. (1) It follows from Lemma 3.4 that the definition is inde-
pendent of the choice of complete flat resolutions.

(2) Let R be a left coherent ring and M an R°-complex of finite Gorenstein
flat dimension. If de M < oo, then TorX(M,N) =0 for all ieZ.

In fact, 0 » F 5 C L Misa complete flat resolution of M, so one has
TorR (M, N)fo for all ieZ.

For an R-complex M of finite Cr}orennstein projective dimension with a chosen
complete projective resolution U — P — M and an arbitrary R-complex N,
Veliche defined in [20] the Tate cohomology group by

Exth(M,N) = H_;(Homg(U, N)).

Christensen and Jorgensen [6] defined the Tate homology of an R°-complex M
with coefficients in an arbitrary R-complex N as

Tor (M,N)=H;(U®gN).
In the following, we compare these two different definitions of Tate homology.
LemMa 3.7. Let T be a Homg(—,P)-exact exact R-complex of projective

modules. Then T is Homg(—, Q)-exact for any R-module Q with finite projective
dimension.

Proof. This follows by induction on the projective dimension of Q. []J

THEOREM 3.8. Let R be a left coherent ring over which each flat R°-module
has finite projective dimension and let M be an R°-complex of finite Gorenstein
projective dimension. Then for any bounded above R-complex N, one has

TorR(M,N) = TorR(M,N).
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Proof. Since each flat R°-module has finite projective dimension, Gfdg. M
< Gpdg. M < oo by Remark 3.3 and [17, Proposition 3.6]. Choose a complete
projective resolution

T5PLiMm
and a complete flat resolution

(S RV

of M. To prove the desired isomorphism we firstly show that there exists the
following commutative diagram

T P M= M
R R B
AN T A S VO

Since P is dg-projective and ©’ a quasi-isomorphism, there is a morphism of
complexes o : P — F’ such that n’'a ~ ¢’z by [19, Proposition 1.4]. Note that
o is also a quasi-isomorphism, because ¢’z is so. Next we prove the existence
of . Assume that 7; and | are bijective for i > s and j > ¢ respectively. Set
n=max{s,t}. If i >n, then we set f; =0o;. For i <n, consider the following
diagram

I — n+1—)71n—)7_'nfl—’"'

L1 l atnl Bur J

T Tr:+1 — T, —— T, ——
The existence of f; for i <n is by Lemma 3.7 because that the upper row is
Homg(—,?) exact and pdg. T/ < oo for all ieZ. Hence f = {f},., is the
desired morphism.

In the following we prove T ®xN — T'®rN is a quasi-isomorphism.
Consider the short exact sequences 0 — 7<,—y = T — T, - 0and 0 - T, |, —
T'"—=T.,—0. Byabove T>,=T.,. SoT>,®xN=T,,®rN. We denote
B:Tep 1 — T L._1- Then C(B) is bounded above and degreewise flat. We
show f®rN:T<, | QN — T., ,®gN is a quasi-isomorphism, that is,
C(B) ®x N is exact. Assume that y: N =] is a dg-injective resolution of

N. Then C(y) is exact. C(f) ®r C(y) is exact by [5, Lemma 2.13]. Hence
C(B) ®r N ~ C(f) ®zrI. We only need to show C(f)®rI=C(f®rI) is
exact. Consider the following commutative diagram

0 —— Tgnfl T TZn 0

T ]

0 —— T! T T! 0.

<n—1 >n
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We have an exact sequence
0— C(B) — C(p) — C(idr.,) — 0.

Since C(idr.,) ®g i and C(f) ®g I; are exact by assumption, C(f) Qg I is
exact. So C(f)®zrI is exact by [5, Lemma 2.13]. Therefore 7T @z N —
T’ ®x N is a quasi-isomorphism by five lemma. O

In classical homology algebra, for an R°-module M and R-module N,
(Torf(M,N))* = ExtR(N,M™)

for all i>0. But we find that Tate cohomology and Tate homology in
Christensen and Jorgensen [6]’s sense don’t have such isomorphisms when the
ring is coherent. In the following, we discuss the relationship of Tate coho-
mology and Tate homology based on complete flat resolutions.

LemMA 3.9. Let R be a lefl coherenl ring and M an R°-complex with a
complete flat resolution T > F 5 C L M. Then M+ — F+ =T+ isa complete
injective resolution of M = Homgz (M, Q/Z).

Proof. let TSF5C LM be a complete flat resolution of M.
Applylng the functor Homgz(—,Q/Z) to T - F 5 C < M, we have M+ L

Ct L Ft 5 T+, where F*' is dg-injective and n*, ¢ are quasi-isomorphisms.
Hence there exists a quasi-isomorphism o: M™ — F* such that n" ~ ag*
by [19, Proposition 1.5]. We show M*™ — F™ — Tt is a complete injective
resolution of MT. Assume that 7;=F; for all i>0. Then T." =F;" for
all i« 0. Note that T+ is degreewise injective. It remains to show that
Homg(E, T") is exact for arbitrary injective R-module E. Indeed, we have
isomorphism (7 ®g E)" =~ Homg(T,E"). Since E is an injective R-module,
EteZN%. Thus Homg(T,ET) is exact by assumption, and hence
Homg(E, T*) = (T Qg E)" is exact. O

THEOREM 3.10. Let R be a left coherent ring and M a bounded above
R°-complex of  finite Gorenstein flat  dimension. Then (TorR(M, NNt
ExthL(N, M™T) for all i e Z and any bounded above R-complex N.

Proof By Lemma 3.2, we have a complete flat resolution 7 — F =
C < M. Thus Lemma 3.9 implies that M+ — F* — T+ is a complete injective
resolution of M™. Then we have the following sequence of equalities

(Tor/{(M,N))" = (H(T ®kN))"
= H.i((T ®:N)")
~ H_;(Homg(N,T™))
=~ Exty(N, M),
where the last isomorphism is by [6, Definition 5.5]. O
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In the rest part of this section we study some properties of Tate homology.

ProrosITION 3.11.  Let R be a left coherent ring and M an R°-complex of
Jfinite Gorenstein flat dimension. —For every bounded above R-complex N of finite
flat dimension, one has TorR(M,N) =0 for all ieZ.

Proof. Let T S5F 5 C LM be a complete flat resolution of M over
R. For every dg-flat resolution n’: F’— N over R, applying the functor
T ®z — to the exact sequence 0 — N — Cone(n’) — LF' — 0, we get a short
exact sequence in homology and further yields an isomorphism H(7 ®z N) =
H(T ®z Cone(n’)), as one has H(T ®x F’) =0 because F' is dg-flat. If N is
bounded above and of finite flat dimension, then we can assume that F’
and therefore, Cone(n’) is bounded above, and then H(T ®jCone(n’)) =0
by [5, Lemma 2.13]. Thus Tor?(M,N) =0 for all ieZ. O

ProrosITION 3.12. Let R be a left coherent ring and M an R°-complex
of finite Gorenstein flat dimension. For every exact sequence 0 — N' — N —
N" — 0 of R-complexes, there is an exact sequence of Z-modules

-+ — Torf | (M,N") — Tor}(M,N') — Tor}(M,N) — Tor}(M,N") — ---.

Proof. Let TSFS5CL M bea complete flat resolution of M. The
sequence

0—> T@RN/HT®RN—> T®RN”—>0

is exact because 7 is a complex of flat R°-modules. The associated exact
sequence in homology is the desired one. O

The next result establishes the dimension shifting for Tate homology.

LemMA 3.13. Let R be a left coherent ring and M an R°-complex of finite
Gorenstein flat dimension and let N be an R-complex.

(1) For every complete flat resolution T — F — C «— M and for every m € Z,
there are isomorphisms

Tor®(M,N) = TorR, (C,(T),N) for all ieZ.

(2) For every dg-flat resolution F = N and every integer n > sup N, one has
isomorphisms
Tor®(M,N) = Tor® (M, C,(F)) for all icZ.
Proof. (1) For every meZ, L"T — X "Fs,, LA S & Cu(T) s
a complete flat resolution of C,,(T). Indeed, since ¥ "F.,_; is a bounded
above complex of cotorsion modules, it is dg-cotorsion by [13, Lemma 3.4 (2)],
YX™F.,, is a dg-flat complex by [13, Lemma 3.4 (1)] since it is a bounded below
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complex of flat modules. Also it is easy to check that o and f are quasi-
isomorphisms. Hence one has

TorR
Tor;_,,

(Cu(T),N) =H; us(E7"T) ®& N)
=Hiw(E™"(T @& N))
=~ Hi(T ®x N)
= Tor®(M, N).

(2) We may assume that N is bounded above. For every dg-flat resolution
F =N and n>sup N there is a quasi-isomorphism o : F-, — N. Since the
exact complex Cone(a) is bounded above, T ®z Cone(x) is exact by [5, Lemma
2.13]. By Proposition 3.12, the exact sequence 0 — N — Cone(o) — XF-, — 0
yields isomorphisms

Tor®(M,N) = TorX(M,F.,) for all ieZ.

Consider the exact sequence of R-complexes 0 — Fc,— ] — Fc, — X"C,(F) — 0.
Then F<,_; has finite flat dimension. Indeed, since 0 — F., | = F — F~, — 0
is exact, the complexes F and F-, are dg-flat, so F., | is dg-flat. Note that
F_,_ is bounded above. Then Proposition 3.11 and 3.12 imply that

Tor®(M, F.,) =~ TorX(M,X"C,(F)) for all ieZ.
The desired isomorphisms follows from these two assertions. O

Next we use pinched tensor product complexes introduced in [6] to inves-
tigate the balancedness for Tate homology based on complete flat resolutions.

(Construction) Let R be a left coherent ring and T an R°-complex and
A an R-complex. The pinched tensor product of 7' and A4 is defined as
follows:

(T>0 ®rA>0),, n=0,
(T<-1 ®rE(A<-1)),, n<-L

The differential on T ®%' A4 is defined by

(r @i ), ~{

6520@11/1207 n> 1’
TR A T A
oA =L ol @g (a0f), n=0,
gre@d=n oy < .

where ¢ denotes the canonical map 4 — ZA.
There are also equalities

(T®g A)sg = T>0 ®r A0,
(T®rA)c 1 =T<1 ®pZ(A<-1).
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LemMMA 3.14. Let R be a left coherent ring and M an R°-complex with a
complete flat resolution T — F — C «— M and let A be an exact R-complex and
set N = Cy(A). For every i€ Z there is an isomorphism of Z-modules

Hi(T ®% 4) = Tor®(M,N).

Proof. Note that Tor®(M,N)=H;(T ®z N) by definition, so we must
show H(T ®x N) = H(T ®%'4). The quasi-isomorphisms

n:Asg >N and y:N S Z(Ado ) with ymo = 60,
induce quasi-isomorphisms
(T®FA)sy— T-0@rN and T< | @xN = (T QF A)__;.

The first quasi-isomorphism is because 7'-¢ is dg-flat and the second is by [5,
Proposition 2.14], because N and X(4._;) is bounded above and T is degreewise
flat. It follows that there are isomorphisms H;(T ®x N) = H;(T ®% 4) for all
i€ Z\{0,1}. The isomorphisms in the remaining two degrees are by the proof of
[6, Theorem 3.5]. O

ProposITION 3.15. Let R be a left and right coherent ring and M an R°-
complex and N an R-complex, both of which are bounded above and of finite
Gorenstein flat dimension. For every i € Z there is an isomorphism of Z-modules

Tor®(M,N) = Tor® (N, M).

Proof. Choose complete flat resolutions T — F — C«+— M and T' — F' —
C' — N. Set m = max{sup M,Gfdg- M} and n = max{sup N,Gfdg N}. Then
the modules C,(F) = C,(T) and C,(F') = C,(T') are Gorenstein flat modules
with complete flat resolutions

ST = X " Fap — X", — Cu(T),
T — XTFL, - STUEL L C(T).

<n-1

Hence we have the following isomorphisms by Lemma 3.13, 3.14 and [6,
Proposition 3.6,
Torf (M, N) = Torf,,_,(Cu(F), Cu(F"))
= Hip(Z7"T) @ (7'T"))
~Hm(E"T) QF(ETT))
= Tor, _,(Ca(F"), Cu(F))

=~ Tor} (N, M).
This completes the proof. O
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4. Applications

In this section, R always denotes a commutative noetherian local ring.

The depth formula and width formula are always studied independently.
Using the relationship of Tate cohomology and Tate homology we have
established in Section 3, we can simplify this study and also provide a brief
proof to a special case of the main result of [7].

Lemma 4.1 ([7, Proposition 6.4]). Let N be an R-complex of finite Goren-
stein injective dimension and M a bounded above R-complex. If one has
Extpx(M,N) =0 for all i€ Z, then the next equality holds

widthg (R Homg(M, N)) = depthy M + widthg N — depth R.

ProprosITION 4.2 ([7, Theorem 2.3]). Let M be an R-complex of finite

Gorenstein projective dimension and N a bounded above R-complex. If one has
Tor®(M,N) =0 for all ieZ, then the derived depth formula holds for M and
N. That is, one has

depthx(M ®§ N) = depthgy M + depthy N — depth R.

Proof. By [9, Corollary 3.5], Gfdg M < o0. Let E(k) be the injective hull
of the residue field. Since M is an R-complex of finite Gorenstein flat dimen-
sion, MY = Homg(M, E(k)) has finite Gorenstein injective dimension by [21,
Corollary 3.2]. Note that for an injective module E, we have Extp(F,EY) =
Hompg(Tor{(F, E), E(k)) =0 for any flat R-module F by [8, Theorem 3.2.1].
So EY is cotorsion. Thus EY e # N%. So for a complete flat resolution 77 —
F— C— M of M (the existence of complete flat resolutions is ensured by

Lemma 3.2), MY — FY — TV is a complete injective resolution of MV by
analogy with the proof of Lemma 3.9. Then by Theorem 3.8 we have

(Tor/{(M,N))" = (H(T ®g N))"
=H_ (T ®&N)")
~ H_;(Homg(N,T"))
~ Exth(N, M™).
Hence Lemma 4.1 implies that
depthz(M ®§ N) = widthg(M ®F N)"

= widthg(R Homg (N, M"))

= depthy N + widthg M — depth R

= depth, M + depth, N — depth R.

The first equality follows from the similar proof of [22, Lemma 2.2] and the
second is by adjoint isomorphism. O
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Remark 4.3. Let M and N be R-complexes. Set (—)" = Homg(—, E(k)).
Then

depthx(M ®5 N) = widthg(R Homg(N, M ")) = widthg(R Homg(M,N")).

Combined with Lemma 3.9, the depth formula and the width formula of [7] can
only be discussed one of them.
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