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CURVED FOLDING AND PLANAR CUTTING OF

SIMPLE CLOSED CURVE ON A CONICAL ORIGAMI

Ikhan Choi

Abstract

The fold-and-cut theorem states that one can find a flat folding of paper, so that

one complete straight cut on the folding creates any desired polygon. We extend this

problem to curved origami for piecewise C 1 simple closed curves. Many of those curves

on paper turn out to be cut by a straight plane after we fold the paper into a conical

shape—the surface consists of half-lines with a common vertex. Let g : I ! R2 be a

piecewise C 1 simple closed curve such that there exists a parametrization

gðcÞ ¼ ðrðcÞ cos c; rðcÞ sin cÞ on c A ½0; 2pÞ for a Lipschitz continuous function

r : R ! ð0;yÞ. We prove that there exists a conical folding of the plane so that g

can be cut by a plane on the folding if a certain condition on angular total variation

holds.

1. Introduction

Origami is the art of folding paper, which also often refers to the math-
ematical study concerned with the paper folding. The fold-and-cut theorem [3]
states that we can find a flat folding of paper, so that one complete straight
cut on folding creates any desired polygon. Inspired by this theorem we suggest
in this paper a problem not for flat folding but for curved folding embedded
in three-dimensional Euclidean space R3. Once you have drawn a curve on a
piece of paper, for many of the cases, we can do crumple the paper and cut it
with one straight plane to cut out exactly the curve drawn. To study origami
in three-dimensional space, we consider the metric preserving map of W � R2

called an origami to model the process of folding the paper. For the given
curve g : I ! R2 and an origami u : W � R2 ! R3, the curve g is called a cut on
origami u if there exists a plane S � R3 such that S \ im u ¼ uðim gÞ. An
origami is defined as a Lipschitz continuous piecewise C1 map u : W ! R3

for connected set W � R2 such that the Jacobian matrix Du is a 3� 2 matrix
with orthonormal columns for all points of WnSu, where Su � W is the set of the

579

2010 Mathematics Subject Classification. 53A04, 53A05.

Key words and phrases. Fold-and-cut theorem, origami, isometric immersion.

Received September 8, 2015; revised March 7, 2016.



points at which u is not di¤erentiable. In addition, to make our model more
physically realizable, we require the paper not to intersect itself transversally.
See [2].

We consider single vertex origami in the curved fold-and-cut problem. The
image of the single vertex origami becomes a (general) cone in R3, a surface
generated by a continuously moving half-line cast from a common apex point.
We define a conical origami as a 1-homogeneous origami, that means the
equation uðtvÞ ¼ tuðvÞ holds for all t A R satisfying v; tv A W. Then, the image
of a conical origami should be contained in a cone and the origin of R2 maps
to the vertex of the cone under the conical origami. This paper discusses the
existence of the conical origami u such that the given piecewise C1 simple closed
curve is a cut on u.

We set up Cartesian coordinates ðx; yÞ on R2, and cylindrical coordinates

ðr;c; zÞ on R3. The rc-plane of R3 is meant to parallel with a plane S, which
intersects the image of the origami u exactly in uðim gÞ where g is the given
simple closed curve in R2. In Section 2, Proposition 2.1 on piecewise C 1 simple
closed curves on R2 describes some necessary conditions for the existence of the
conical origami u such that the given piecewise C1 simple closed curve is a cut
on u. If such an origami u exists, then the interior of the given simple closed
curve g is required to be star-shaped (there exists a point called the kernel such
that any half-line cast from the point intersects g only once). More precisely, the
kernel of the star-shaped curve is the origin. The proposition guarantees the
existence of a Lipschitz continuous function r : R ! ð0;yÞ that is periodic with
period 2p, such that the piecewise C1 simple closed curve g is parametrized by
c A I ¼ ½0; 2pÞ as gðcÞ ¼ ðrðcÞ cos c; rðcÞ sin cÞ. In this paper, I always denotes
the half-open interval ½0; 2pÞ.

Consider the piecewise C1 simple closed curve g in R2 that is a cut on
a certain conical origami. Then, we have the Lipschitz continuous function
r : R ! ð0;yÞ that is used to parametrize g. In fact, because the curve g is
piecewise C1, the function r is also piecewise C1. Let u be one of the conical
origami on which g is a cut, such that the z-coordinates of all points on u � g are
�z for a positive real number z. For the function r, a function Az : ½0; 2p� !
½0;yÞ is defined to be a strictly increasing function whose value is equal to the
amount of the angle that the point uðgðyÞÞ has traveled over y A ½0;c� in the
cylindrical coordinates. In other words, the function Az is the total variation of
the angular coordinate of the polar parametrization u, so we call AzðcÞ the total
angular variation of u up to c. Actually the function Az is independent of u, it
can be defined only by the function r and a real number z. The function Az is
defined by the following formula:

AzðcÞ :¼
ðc
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rðyÞ2 � z2
q

0
@

1
A
2

� zr 0ðyÞ
rðyÞ2 � z2

 !2vuuut dy:

Our main results are summarized by a part of Theorem 3.1 as follows:

580 ikhan choi



Theorem. Let g be a piecewise C1 simple closed curve in R2 such that there
exists a parametrization gðcÞ ¼ ðrðcÞ cos c; rðcÞ sin cÞ on c A I ¼ ½0; 2pÞ for a
Lipschitz continuous function r : R ! ð0;yÞ that has period 2p. If

sup
z

Azð2pÞb 2p;ð1Þ

then there exists a conical origami u such that g is cut on u.

We prove the theorem by directly presenting the conical origami in cylindrical
coordinates, that cuts the given simple closed curve.

In Section 2, we define new terminologies such as conical origami and give
the proposition describing the necessary conditions and existence of the star-
shaped parametrization of the given piecewise C1 simple closed curve. In
Section 3, we define the function Az and the main theorem. The idea of proof
will be also given. In section 4, we prove the main theorem.

2. Definition of conical origami and cut

We define a conical origami to be a Lipschitz continuous piecewise C1

map for analytic models of paper folding. For a connected set W � Rn and a
piecewise C1 map f : W ! Rm, the singular set Sf � W of the map f refers to the
set of points at which f is not di¤erentiable. The map f is C1 on WnSf , and
also, the singular set Sf is closed in W and each arbitrary compact set in W
intersects a finite number of connected components of WnSf ; it is the definition of
a piecewise C 1 function. A conical origami is a 1-homogeneous origami, where
the origami will be defined as a kind of rigid map that models the paper folding
embedded in R3. See [2]. See [1, 4, 5, 6] for usual geometric approaches to
origami.

An origami is a Lipschitz continuous piecewise C1 map u : W ! R3 such
that the Jacobian matrix Du has orthonormal columns and transversal self-
intersection is excluded. To make the model more physically realizable, we
allow precise overlappings which can be approximated by injective maps, that
means, im u can intersect itself tangently. For example, the map uðx; yÞ ¼
ðjxj; y; 0Þ is not injective but can be obtained as k ! y of the injective maps
ukðx; yÞ ¼ ðjxj cosð1=kÞ; y; x sinð1=kÞÞ, which represent the actual folding process
along time (see [2]). In this paper, we focus only on conical origamis.

Definition (Conical Origami). Let W be a connected set in R2. A
Lipschitz continuous piecewise C 1 map u : W ! R3 is a conical origami if it
satisfies the following: the Jacobian matrix Du has orthonormal columns for all
points of WnSu; there exists a sequence of maps uk : R2 ! R3 that are Lipschitz
continuous and injective, such that uk ! u in the uniform convergence; the
equation uðtvÞ ¼ tuðvÞ holds for all t A R satisfying that v, tv are in W.

The 1-homogeneity makes the image of u be contained in a cone and
the point uðOÞ becomes the vertex of the conical origami. If the condition
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about the homogeneity is excluded, then the map u is called just an origami.
See [2].

The fold-and-cut theorem states that we can find a flat folding of paper,
so that one complete straight cut on folding creates any desired plane graph of
cuts made up with straight sides. Similarly, within three-dimensional space, we
ask there is a (conical) origami map such that a certain planar straight cut on
folding creates the given curve, especially piecewise C1 simple closed curve, on the
unfolded paper. If there is such an origami u, we call the curve a cut on u. See
[3] for more details on the fold-and-cut theorem.

Definition (Cut). Let W be a connected set in R2. A curve g : I ! W is a
cut on origami u : W ! R3 if there exists a plane S � R3 such that S \ im u ¼
uðim gÞ.

We approach the problem about the simple closed curve by a parametri-
zation. Also the conical origami is parametrized by a metric preserving map
whose codomain is presented in cylindrical coordinates. The cylindrical coor-
dinate system is set up by letting the plane S containing uðim gÞ be parallel to
the rc-plane.

The following proposition presents the conditions required for a piecewise
C1 simple closed curve to be a cut on a conical origami, regarding the existence
of the polar parametrization. Using the function r defined in the following
proposition, we have the polar equation r ¼ rðcÞ represent the curve g.

Proposition 2.1. Let g be a piecewise C1 simple closed curve in R2 and u
be a conical origami. If g is a cut on u, then there exists a Lipschitz continuous
function r : R ! ð0;yÞ which has period 2p, such that g has a parametrization
gðcÞ ¼ ðrðcÞ cos c; rðcÞ sin cÞ on c A I ¼ ½0; 2pÞ.

Proof. Let O denote the origin of R2. First we prove that g is star-shaped
with kernel O, that is, any half-line cast from O intersects g only once. Then,
we can represent any point on g by ðrðcÞ cos c; rðcÞ sin cÞ for a periodic
piecewise C1 function r : R2 ! ð0;yÞ with period 2p. After that, we prove
that the function r is Lipschitz continuous if g has the parametrization. Since

Figure 1. The point uðOÞ cannot be in the plane S and the curve g is star-shaped.
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the star-shaped curve implies that r is a function on I and positive valued, the
proof is complete if we prove that g is star-shaped and the function r is Lipschitz
continuous.

We claim that uðOÞ cannot be in the plane S, where the plane S satisfies
S \ im u ¼ uðim gÞ.

For the proof, assume that uðOÞ is in the plane S. For a point P0O
which is on the curve g, we have uðPÞ A S. If we let h be a half-line on R2 cast
from O and passing through the point P, then uðhÞ is also half-line cast from
uðOÞ and passing through uðPÞ by 1-homogeneity. The plane S contains uðhÞ
because uðOÞ and uðPÞ are in S. The image ðim uÞ also contains the half-line
uðhÞ because ðim uÞ is a conical surface. Since uðhÞ is included in both S and
ðim uÞ, we obtain uðhÞ � uðim gÞ from the relation S \ im u ¼ uðim gÞ. So, the
curve uðgÞ is unbounded and it is a contradiction for g to be a closed curve.
Therefore uðOÞ cannot be in the plane S.

(star-shapedness) Assume that g is not star-shaped. If a half-line h cast from
O intersects im g more than once, the image uðhÞ also intersects uðgÞ more than
once. Since S � uðim gÞ � uðim gÞ \ uðhÞ and the cardinality of uðim gÞ \ uðhÞ is
greater than one, S contains the half line uðhÞ and also the point uðOÞ. By the
same argument for the previous claim, each half-line h cast from O intersects im g
at most once. If there is a half-line cast from O that does not meet im g, the
point O should be in the interior of the simple closed curve g and there exists a
half-line which intersects im g more than twice. Therefore all of the half-lines
cast form O intersects im g only once, and the g is star-shaped.

(Lipschitz continuity) For a point P on the curve g, there exists a piecewise
C1 function r : R ! ð0;yÞ such that we have P ¼ gðcÞ ¼ ðrðcÞ cos c; rðcÞ sin cÞ
on c A I because g is star-shaped and the kernel is O. Let l be a tangent line
at a point P, and H be the foot of the perpendicular from O to l. From
r 0ðcÞ
rðcÞ ¼ tan

p

2
� ffOPH

� �
, we have the length of the line segment OH as follows:

OHðcÞ ¼ rðcÞ sin ffOPH ¼ rðcÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðcÞ2 þ r 0ðcÞ2

q :

Let z be the distance between the point uðOÞ and the plane S in R3. Since
S contains uðlÞ, we have 0a zaOHðcÞ for all c. If the derivative of r is

Figure 2. The function r is Lipschitz continuous.
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unbounded, then the value of OHðcÞ can be arbitrarily small. So we have
z ¼ 0, it implies that uðOÞ is on the plane S. The function r is piecewise C1

and the derivative of r is bounded, hence the function r is Lipschitz continuous.
r

Note that the function r has positive lower bound, since O is in the interior
of g. In Theorem 3.1, a concrete construction of the conical origami is presented
on the cylindrical coordinates for the given piecewise C1 simple closed curve, that
has the star shaped parametrization with Lipschitz continuous function r and
satisfies the condition (1). In fact, the coordinate system on R2 and the preimage
of the vertex of the conical origami is given in advance.

3. The main theorem and the idea of proof

For a given piecewise C1 simple closed curve g that satisfies the condition
(1) and the assumption of Proposition 2.1, we propose a map u : R2 ! R3 in
Theorem 3.1. Let r : R ! ð0;yÞ be a Lipschitz continuous function with period
2p such that g has a parametrization gðcÞ ¼ ðrðcÞ cos c; rðcÞ sin cÞ on c A I ¼
½0; 2pÞ. We introduce total angular variation AzðcÞ for the definition of the map
u. After stating Theorem 3.1, we are going to describe our plan to prove the
theorem. We prove that this map u is a conical origami and g is cut on u in
Section 4.

For a moment, assume that u is a conical origami. Suppose that the given
curve g parameterized by angle is a cut on u and the z-coordinates of all points
on u � g are �z. We suggest a function Az : ½0; 2p� ! ½0;yÞ defined as a strictly
increasing function whose value is equal to the amount of the angle that the
point uðgðyÞÞ has traveled over y A ½0;c� in the cylindrical coordinates. In other
words, the function Az is the total variation of the angular coordinate of the
polar parametrization u, so we call AzðcÞ the total angular variation of u up to
c. If the image uðim gÞ is also star-shaped, then AzðcÞ is the angular coordinate
of uðgðcÞÞ.

Consider a infinitesimal triangle constructed by three points uðgðcþ dcÞÞ,
uðOÞ, and uðgðcÞÞ. Recall that the range of the map u � g is parallel to the
rc-plane, which is the plane S in the definition of a cut. By projection of this
triangle to S, we say that the infinitesimal value of the total angular variation
dAzðcÞ denotes the size of the angle constructed by uðgðcþ dcÞÞ, ð0; 0;�zÞ, and
uðgðcÞÞ. If this infinitesimal angle was integrated from 0 to c, then the value
would be same with AzðcÞ. Since u preserves the metric, the infinitesimal angle
dc denotes the angle dAzðcÞ before the projection. Actually the function Az is
independent of u, it can be defined only by the function r and a positive real
number z.

The function Az can be calculated through the projection of the angle mapped
by u on the plane S. Let z be the altitude of the vertex of the conical
origami. By the law of cosines, we have a relation between the infinitesimal dc
and dAzðcÞ as follows:
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rðcÞ2 þ rðcþ dcÞ2 � 2rðcÞrðcþ dcÞ cos dc

¼ ðrðcÞ2 � z2Þ þ ðrðcþ dcÞ2 � z2Þ

� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðcÞ2 � z2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðcþ dcÞ2 � z2

q
cos dAzðcÞ:

By the half-angle formula for sine and some calculations, we obtain the square
of the derivative of Az:

dAzðcÞ
dc

� �2
¼ rðcÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rðcÞ2 � z2
q

0
@

1
A
2

� zr 0ðcÞ
rðcÞ2 � z2

 !2

where r 0 denotes the derivative of r. Note that Az can be determined only by
r and z. Since the sign of the derivative of Az with respect to c cannot be
determined in here, we define the angular coordinate of u as the integral of the
product of dAz=dc and either 1 or ð�1Þ in Theorem 3.1.

Before giving the definition of the function Az, the domain of z is defined
as the open interval Ur that depends on the function r. If the nonnegative real
number z does not belong to Ur, then the image of u is the plane if z ¼ 0; there
exist a point such that Az is not strictly increasing if z ¼ sup Ur; the integrand of
the integral Az is not real number if z > sup Ur.

Definition. Let g be a piecewise C1 simple closed curve in R2 that has a
parametrization gðcÞ ¼ ðrðcÞ cos c; rðcÞ sin cÞ on c A I ¼ ½0; 2pÞ, for a Lipschitz
continuous function r : R ! ð0;yÞ with period 2p. The open interval Ur is
defined as follows:

Ur :¼ 0; inf
c A InSr

rðcÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðcÞ2 þ r 0ðcÞ2

q
0
@

1
A;

where r 0 denotes the derivative of the function r and Sr denotes the singular set.
For each z A Ur, an injective function Az : ½0; 2p� ! ½0;yÞ is defined by the

Figure 3. The infinitesimal triangle and its projection to the plane.
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following integral:

AzðcÞ :¼
ðc
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rðyÞ2 � z2
q

0
@

1
A
2

� zr 0ðyÞ
rðyÞ2 � z2

 !2vuuut dy:

The value AzðcÞ is called the total angular variation of u up to c.

In particular, we define A0ðcÞ to be equal to c. Because the total angular
variation Az does not allude the sign of the infinitesimal change of the angular
coordinate, something to indicate the sign is required. For a measurable subset
k of the interval I , let Ak

z ðcÞ be a abbreviation of the integral

Ak
z ðcÞ ¼

ðc
0

ð�1Þ1kðyÞA 0
zðyÞ dy;

where A 0
z denotes the derivative of Az with respect to c and 1k is the indicator

function of k. The value of Ak
z ðcÞ can represent the exact angular coordinate

of a conical origami in cylindrical coordinates. If c belongs to k, then the
infinitesimal change of the angular coordinate becomes negative.

Since the derivative of Az is positive, the function Az is strictly increasing
in c and thereby it has an inverse function. We will often use the property that
Az is strictly increasing. The curve g is piecewise C1, so the function r is C1 on
the set RnSr. The derivative r 0 is bounded since the function r is Lipschitz
continuous, and the function r has a positive lower bound. So, the open interval
Ur is non-empty.

Theorem 3.1. Let r : R ! ð0;yÞ be a Lipschitz continuous function with

period 2p and g be a piecewise C 1 simple closed curve in R2 that has a para-
metrization gðcÞ ¼ ðrðcÞ cos c; rðcÞ sin cÞ on c A I ¼ ½0; 2pÞ. If

sup
z AUr

Azð2pÞb 2p;ð1Þ

then there exist a closed interval k � I and a real number z A Ur such that a map
u : R2 ! R3 is a conical origami and g is a cut on u; the map u is defined as
follows:

uðr;cÞpolar ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

rðcÞ2

s
; Ak

z ðcÞ;�
zr

rðcÞ

 !
cylindrical

:ð2Þ

The condition (1) is required. For an example let rðcÞ ¼ 100þ
arccosðcos 103:15cÞ, then jr 0ðcÞj > rðcÞ for all c, so A 0

zðcÞ < 1 for all z and c;

since A 0
zðcÞ < 1 if and only if rðcÞ2 � z2 < r 0ðcÞ2. For this example we have

Azð2pÞ ¼
ð2p
0

A 0
zðcÞ dc <

ð2p
0

dc ¼ 2p

for all z A Ur.
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The proof of Theorem 3.1 will be given at the end of Section 4. Note that
the map u defined in Theorem 3.1 as (2) depends only on r and k and z, because
we defined Az only with r and z. Let u be the map defined in Theorem 3.1 as
(2). The altitude of a point uðr cos c; r sin cÞ ¼ uðr;cÞpolar in cylindrical co-
ordinate is �z if and only if r ¼ rðcÞ, that is, the point ðr cos c; r sin cÞ is
on the curve g. So we get S \ im u ¼ uðim gÞ if S is the plane containing
points whose z-coordinates are �z, and the curve g is a cut on u if u is an
origami.

Recall the definition of the conical origami. To prove that the map u is
a conical origami, we have to show that the following four propositions are
true:

� The Jacobian matrix Du has orthonormal columns for all points of R2nSu.
� The map u is 1-homogeneous.
� There exists a sequence of maps uk that are injective and uniformly
converges to u.

� The maps uk and u are Lipschitz continuous, and u is piecewise C1.
We give the proof of Theorem 3.1 throughout Section 4. For the map u defined
in Theorem 3.1, Theorem 4.1 shows that u preserves metric and Proposition 4.2
shows that u is 1-homogeneous. The proof of the other two conditions for
conical origami is divided into two cases: the function r is a constant function or
not. The case of the nonconstant function is treated in Theorem 4.3, 4.4, and
4.5; the case of the constant function is treated in Theorem 4.6.

In the case of nonconstant function, it is proved that we can find an injective
u, so that we can let uk be same with u. For an interval k ¼ ½a; b� � I and a
real number z A Ur, the following three conditions play an important role in the
proof.

(1) both 2AzðaÞ�AzðbÞ and 2AzðbÞ�AzðaÞ belong to the interval ½0;Azð2pÞÞ;
(2) the function r is strictly increasing over the interval

J ¼ ½A�1
z ð2AzðaÞ � AzðbÞÞ;A�1

z ð2AzðbÞ � AzðaÞÞ�;

(3) the value of Ak
z ð2pÞ is equal to 2p.

Recall that the map u is determined by only k and z if the curve g and the
function r were already given. Theorem 4.3 shows that there exist an interval

Figure 4. The rough shape of the graph of the function Ak
z for a closed interval k ¼ ½a; b �.
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k ¼ ½a; b� � I and a real number z A Ur satisfying the three conditions if r is
nonconstant. Theorem 4.4 shows that the map u is injective if the three condi-
tions are satisfied. Theorem 4.5 shows that the map u is Lipschitz continuous
and piecewise C1 if the third condition of the three conditions is satisfied.

Condition (1) ensures the existence of the interval J in Condition (2), where
A�1

z denotes the inverse function of Az. The interval J in Condition (2) is used
to prove that u is injective. To prove the injectivity of u, it is enough to show
that the curve u � g is simple because the image of u is a cone. A point uðgðcÞÞ
traces the curve u � g counter-clockwise, but clockwise when c is in the interval
k. So, the curve u � g can intersects itself only if the angular coordinate of u is
between Ak

z ðbÞ and Ak
z ðaÞ. From the definition of Ak

z , we have

Ak
z ðA�1

z ð2AzðaÞ � AzðbÞÞÞ ¼ Ak
z ðbÞ; Ak

z ðA�1
z ð2AzðbÞ � AzðaÞÞÞ ¼ Ak

z ðaÞ:

It implies that we do not have to check whether u � g intersects itself for c B J.
The condition that r is strictly increasing over J that u � g is injective. The
details of this idea will be presented rigorously in Theorem 4.4. Condition (3)
is necessary for u to be continuous because the map u is given on the polar
coordinates. By these conditions, we can conclude that there exists an conical
origami u on which the given simple closed curve g is a cut if the function r is not
a constant function.

If the function r is constant, the curve g is a circle such that the center is
the origin of R2 and the radius is r. Intuitively, we can see any circle is a cut
on a certain conical origami, which is folded like filter paper. In this case, the
sequence of maps uk is required to be di¤erent from u since the limit point u is
not injective, so we define a sequence uk separately from u. Theorem 4.6 shows
that a filter-paper-like folding satisfies the third and fourth condition to be a
conical origami.

Figure 5. If the function r is strictly increasing over J, then the map u is injective.
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4. The proof of the main theorem

Theorem 4.1. Let r : R ! ð0;yÞ be a Lipschitz-continuous piecewise-C 1

function. For a closed interval k ¼ ½a; b� � I ¼ ½0; 2pÞ and a real number z A Ur,
let u : R2 ! R3 be the map defined in Theorem 3.1 (2). The map u is a local
isometric immersion on R2nSu, that is, the Jacobian matrix Du has orthonormal
columns for all points of R2nSu.

Proof. The partial derivatives of u in cylindrical coordinates are

qu

qr
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

rðcÞ2

s
; 0;� z

rðcÞ

 !
;

and

qu

qc
¼ rz2r 0ðcÞ

rðcÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðcÞ2 � z2

q ; ð�1Þ1kðcÞA 0
zðcÞ;

rzr 0ðcÞ
rðcÞ2

0
@

1
A;

where the derivative of the function Az is

A 0
zðcÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðcÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rðcÞ2 � z2
q

0
@

1
A
2

� zr 0ðcÞ
rðcÞ2 � z2

 !2vuuut :

The metric g on the image of u is

g ¼
1 0 0

0 r2ð1� z2=rðcÞ2Þ 0

0 0 1

0
B@

1
CA

because the codomain of u was given in the cylindrical coordinate system. Then,
we have a calculation of the first fundamental form with the inner product in
the metric g as follows:

E ¼ qu

qr
;
qu

qr

� �
¼ 1; F ¼ qu

qr
;
qu

qc

� �
¼ 0; G ¼ qu

qc
;
qu

qc

� �
¼ r2:

It is same with the metric of polar coordinates, hence u is a local isometric
immersion at all points at which u is di¤erentiable. r

Proposition 4.2. Let r : R ! ð0;yÞ be a Lipschitz-continuous piecewise-C 1

function. For a closed interval k ¼ ½a; b� � I ¼ ½0; 2pÞ and a real number z A Ur,
let u : R2 ! R3 be the map defined in Theorem 3.1 as (2). The the map u is
1-homogeneous.

Proof. It is obvious by definition. r

Theorem 4.3. Let r : R ! ð0;yÞ be a Lipschitz continuous function with

period 2p and g be a piecewise C 1 simple closed curve in R2 that has a para-
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metrization gðcÞ ¼ ðrðcÞ cos c; rðcÞ sin cÞ on c A I ¼ ½0; 2pÞ. If r is not a con-
stant function and supz AUr

Azð2pÞb 2p, then there exists an interval k ¼ ½a; b� � I
and a real number z A Ur that satisfy:

(1) both 2AzðaÞ � AzðbÞ and 2AzðbÞ � AzðaÞ belong to the interval ½0;Azð2pÞÞ;
(2) the function r is strictly increasing over the interval

J ¼ ½A�1
z ð2AzðaÞ � AzðbÞÞ;A�1

z ð2AzðbÞ � AzðaÞÞ�;
(3) the value of Ak

z ð2pÞ is equal to 2p.

Proof. First assume that there is z such that Azð2pÞ ¼ 2p. For this z,
let a ¼ b. Then, we can say that r is strictly increasing over J ¼ ½a; b� ¼ fag
since 2AzðaÞ � AzðbÞ ¼ 2AzðbÞ � AzðaÞ ¼ a ¼ b. Furthermore, the measure of
k ¼ ½a; b� is 0, so we get

Azð2pÞ ¼ Ak
z ð2pÞ ¼ 2p:

The set k ¼ fag and this z satisfy the three conditions.
Otherwise if there is no z such that Azð2pÞ ¼ 2p, then Azð2pÞ > 2p for all

z A Ur because Az is continuous and

sup
z AUr

Azð2pÞb 2p:

Throughout the rest of the proof, assume that Azð2pÞ > 2p for all z.
Suppose that the function r is strictly increasing on a positive length interval

½a; b� � I . Because the function r is piecewise C 1 and periodic, such an interval
½a; b� exists. Let a0ðtÞ and b0ðtÞ be a function defined on Ur by:

a0ðtÞ ¼ A�1
t

2

3
AtðaÞ þ

1

3
AtðbÞ

� �
; b0ðtÞ ¼ A�1

t

1

3
AtðaÞ þ

2

3
AtðbÞ

� �
:

From AtðaÞ < AtðbÞ, we get a0ðtÞ < b0ðtÞ for a su‰ciently small t. Let z0 be a
real number in Ur satisfying

sup
t<z0

a0ðtÞ < inf
t<z0

b0ðtÞ:

Let us define k as an interval ½a; b� � ½supt<z0
a0ðtÞ; inf t<z0 b0ðtÞ� such that

0 < b � a <
Az0ð2pÞ � 2p

2 supc A InSr
A 0

z0
ðcÞ :

For the fixed k, consider the value of Ak
z ð2pÞ as a function of z. This

function is equal to Azð2pÞ � 2ðAzðbÞ � AzðaÞÞ and continuous with respect to z.
By letting z ¼ z0, we obtain

Ak
z0
ð2pÞ ¼ Az0ð2pÞ � 2

ð b
a

A 0
z0
ðyÞ dy

bAz0ð2pÞ � 2ðb � aÞ sup
c A InSr

A 0
z0
ðcÞ > 2p:
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On the other hand, letting z ¼ 0, we get

Ak
0 ð2pÞ ¼ 2p� 2ðb � aÞ < 2p:

By the intermediate value theorem, there exists z A ð0; z0Þ satisfying the third
condition. We will show that these k and z satisfy the other two conditions.

From the definition of k, We get

a0ðzÞa sup
t<z0

a0ðtÞa a; ba inf
t<z0

b0ðtÞa b0ðzÞ:

It implies that Azða0ðzÞÞaAzðaÞ, AzðbÞaAzðb0ðzÞÞ and

AzðaÞ ¼ 2Azða0ðzÞÞ � Azðb0ðzÞÞa 2AzðaÞ � AzðbÞ
a 2AzðbÞ � AzðaÞa 2Azðb0ðzÞÞ � Azða0ðzÞÞ ¼ AzðbÞ:

Since 2AzðaÞ � AzðbÞ and 2AzðbÞ � AzðaÞ belong to the interval ½AzðaÞ;AzðbÞ�,
the two values are in the range of Az. Also, we have the interval J ¼
½A�1

z ð2AzðaÞ � AzðbÞÞ;A�1
z ð2AzðbÞ � AzðaÞÞ� be a subset of ½a; b�, which the

function r is strictly increasing on. Hence, the first and second conditions
are satisfied. r

Theorem 4.4. Let r : R ! ð0;yÞ be a Lipschitz continuous function with
period 2p and g be a piecewise C 1 simple closed curve in R2 that has a para-
metrization gðcÞ ¼ ðrðcÞ cos c; rðcÞ sin cÞ on c A I ¼ ½0; 2pÞ. For a closed in-
terval k ¼ ½a; b� � I and a real number z A Ur, let u : R2 ! R3 be the map defined
in Theorem 3.1 as (2). The map u is injective if k and z satisfy the following
conditions:

(1) both 2AzðaÞ � AzðbÞ and 2AzðbÞ � AzðaÞ belong to the interval ½0;Azð2pÞÞ;
(2) the function r is strictly increasing over the interval

J ¼ ½A�1
z ð2AzðaÞ � AzðbÞÞ;A�1

z ð2AzðbÞ � AzðaÞÞ�;

(3) the value of Ak
z ð2pÞ is equal to 2p.

Proof. Assume that u is not injective, that is, there exist two distinct
points ðr1;c1Þ; ðr2;c2Þ on polar coordinates such that uðr1 cos c1; r1 sin c1Þ ¼
uðr2 cos c2; r2 sin c2Þ. From

r1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

rðc1Þ
2

s
¼ r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

rðc2Þ
2

s
; � zr1

rðc1Þ
¼ � zr2

rðc2Þ
;

we obtain r1 ¼ r2 and rðc1Þ ¼ rðc2Þ; suppose that 0ac1 < c2 < 2p. Also, we
have Ak

z ðc1Þ1Ak
z ðc2Þ ðmod 2pÞ. The function Ak

z : ½0; 2p� ! ½0;yÞ has local
minimums at c ¼ 0; b, and local maximums at c ¼ a; 2p. By the third con-
dition, we have

Ak
z ð2pÞ ¼ Azð2pÞ � 2ðAzðbÞ � AzðaÞÞ ¼ 2p;

591simple closed curve on a conical origami



and by the first condition, the following inequalities hold:

Ak
z ðaÞ ¼ AzðaÞ ¼ 2p� ðAzð2pÞ � ð2AzðbÞ � AzðaÞÞÞ < 2p;

Ak
z ðbÞ ¼ AzðaÞ � ðAzðbÞ � AzðaÞÞb 0:

Therefore, the value of Ak
z ðcÞ for c A I belongs to the interval I and we obtain

Ak
z ðc1Þ ¼ Ak

z ðc2Þ:
If we suppose ½c1;c2� \ k ¼ j, then Ak

z ðc2Þ � Ak
z ðc1Þ ¼ Azðc2Þ � Azðc1Þ > 0.

So we get c2 b a and c1 a b. Since Ak
z ðaÞ and Ak

z ðbÞ are the local extrema of
Ak

z , we have

Ak
z ðaÞ � Ak

z ðc1Þ ¼ jAzðaÞ � Azðc1ÞjbAzðaÞ � Azðc1Þ
and

Ak
z ðc2Þ � Ak

z ðaÞbAk
z ðbÞ � Ak

z ðaÞ ¼ �ðAzðbÞ � AzðaÞÞ:
Combining these two inequalities, we obtain Azðc1Þb 2AzðaÞ � AzðbÞ by

0 ¼ Ak
z ðc2Þ � Ak

z ðc1Þb 2AzðaÞ � AzðbÞ � Azðc1Þ:
Similarly, we also obtain Azðc2Þa 2AzðbÞ � AzðaÞ. These imply that c1 and c2

belong to the interval J ¼ ½A�1
z ð2AzðaÞ � AzðbÞÞ;A�1

z ð2AzðbÞ � AzðaÞÞ�. Because
the function r is strictly increasing over J, rðc1Þ cannot be equal to rðc2Þ. The
assumption that u is not injective leads to a contradiction. r

Theorem 4.5. Let r : R ! ð0;yÞ be a Lipschitz continuous function with
period 2p and g be a piecewise C 1 simple closed curve in R2 that has a para-
metrization gðcÞ ¼ ðrðcÞ cos c; rðcÞ sin cÞ on c A I ¼ ½0; 2pÞ. For a closed in-
terval k � I and a real number z A Ur, let u : R2 ! R3 be the map defined in
Theorem 3.1 as (2). The map u is Lipschitz continuous and piecewise C1 if
Ak

z ð2pÞ ¼ 2p.

Proof. If we prove the continuity of u, the Lipschitz continuity is proved
since each component of the derivatives of u is bounded for each variable. Also,
u is piecewise C1 since each component of u is piecewise C1. Let us prove the
continuity of u.

Since each component of u is continuous, it is su‰ce to prove continuity in
polar coordinates, that is, to check that the following conditions hold:

for all c; lim
r!0

uðr;cÞ ¼ uð0;cÞ

for all r; uðr; 0Þ ¼ uðr; 2pÞ

(

where uðr;cÞ is defined on a polar coordinate system. Recall that the map u is
defined as

uðr;cÞpolar ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

rðcÞ2

s
; Ak

z ðcÞ;�
zr

rðcÞ

 !
cylindrical

:
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The first condition is clearly true. The second condition is also true because
rð2pÞ ¼ rð0Þ implies that the radial and axial components of uðr; 0Þpolar and
uðr; 2pÞpolar are respectively same, and the di¤erence of the angular coordinates
Ak

z ð2pÞ � Ak
z ð0Þ, which is equal to 2p, is an integer multiple of 2p. Therefore,

the map u is continuous. r

In Theorem 4.6, we deal with the case that the function r is a constant
function. Since the derivative of r is 0, we have Ur ¼ ð0; rÞ and A 0

z ¼ r=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � z2

p
.

For the simple statement of the proof, the notation A 0 still denotes r=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � z2

p
for

given z.

Theorem 4.6. Let r be a positive real number and g be a circle parametrized
by angle; gðcÞ ¼ ðr cos c; r sin cÞ on c A I ¼ ½0; 2pÞ. There exists a closed interval
k for every z A Ur such that the curve g is a cut on u : R2 ! R3, which is defined
in Theorem 3.1 as (2).

Proof. Let z be a real number in ð0; rÞ and A 0 ¼ r=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � z2

p
. Let k ¼

0;
A 0 � 1

A 0 p

� �
. Let uk : R2 ! R3 be a sequence of maps such that:

ukðr;cÞpolar ¼
r

A 0 þ
1

k
	 c

A 0 � 1
;�A 0c;� zr

r

� �
cylindrical

for c A k;

and

ukðr;cÞpolar ¼
r

A 0 þ
1

k
	 2p� c

A 0 þ 1
; A 0c� 2pðA 0 � 1Þ; zr

r

� �
cylindrical

for c A ½0; 2p�nk.
The sequence uk converges uniformly to a map u as k ! y, which coincides

with what we define in Theorem 3.1 (2) for the interval k. So, the Jacobian
matrix Du has orthonormal columns for all points of R2nSu by Theorem 4.1, and
the image of u is a cone by Proposition 4.2. Assume that there exist distinct

Figure 6. The radial and angular coordinates of uk.
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points ðr1;c1Þ, ðr2;c2Þ on polar coordinates such that ukðr1 cos c1; r1 sin c1Þ ¼

ukðr2 cos c2; r2 sin c2Þ. Then, we obtain r1 ¼ r2, and 0ac1 a
A 0 � 1

A 0 p < c2 <
2p without loss of generality. Solving the equation

c1

A 0 � 1
¼ 2p� c2

A 0 þ 1
; �A 0c1 ¼ A 0c2 � 2pðA 0 � 1Þ

we have c1 ¼ c2 ¼
A 0 � 1

A 0 p. Therefore the map uk is injective.

From ukðr; 0Þpolar ¼ ukðr; 2pÞpolar, we can also prove that uk and u are
Lipschitz continuous and piecewise C 1 with the same logic with Theorem 4.5.

Therefore, the map u is a conical origami if k ¼ 0;
A 0 � 1

A 0 p

� �
.

Let S be a set of points whose z-coordinates are �z in the cylindrical
coordinate system. A point uðr cos c; r sin cÞ is in S if and only if r ¼ r, which
means the point is on the circle g. So, we have S \ im u ¼ uðim gÞ. Hence, the
circle g is a cut on the conical origami u. r

Proof of Theorem 3.1. By Theorem 4.6, Theorem 3.1 is true if the function
r is a constant function.

If the function r is not a constant function, by Theorem 4.1 and Proposition
4.2, the Jacobian matrix Du has orthonormal columns for all points of R2nSu and
the image of u is a cone. There exist a closed interval k � I and a real number
z A Ur such that:

(1) both 2AzðaÞ�AzðbÞ and 2AzðbÞ�AzðaÞ belong to the interval ½0;Azð2pÞÞ;
(2) the function r is strictly increasing over the interval

J ¼ ½A�1
z ð2AzðaÞ � AzðbÞÞ;A�1

z ð2AzðbÞ � AzðaÞÞ�;

(3) the value of Ak
z ð2pÞ is equal to 2p

by Theorem 4.3. By Theorem 4.4 and 4.5, the map u is injective, Lipschitz
continuous, and piecewise C1. If we let uk be a sequence of maps such that
uk ¼ u for all positive integer k, then uk uniformly converges to u and the map u
is a conical origami. Let S be a set of points whose z-coordinates are �z in the
cylindrical coordinate system. A point uðr cos c; r sin cÞ is in S if and only if
r ¼ rðcÞ, which means the point is on the curve g. So, we have S \ im u ¼
uðim gÞ. The curve g is a cut on the conical origami u for the k and z satisfying
the above three conditions.

Hence, the statement of Theorem 3.1 is true. r
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