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HYPERSURFACES IN EUCLIDEAN SPACES WITH
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Abstract

We discuss complete noncompact hypersurfaces in the Euclidean space R”*!
with finite total curvature. We obtain vanishing result and finiteness theorem for
the space of L? harmonic 2-forms. These results are generalized versions of results for
L? harmonic 1-forms.

1. Introduction

Shen and Zhu [10] showed that a complete stable immersed minimal hyper-
surface M in the Euclidean space R"*! with finite total curvature is hyperplane.
Cheng, Cheung and Zhou [4] proved that a complete weakly stable immersed
minimal hypersurface M in R""!' with finite total curvature is hyperplane. Fu
and Xu [6] discussed a complete submanifold in R"*? and obtained the dimension
of the space of the L?> harmonic 1-forms on M is finite if M has finite total
curvature (i.e., ||®||;,» < 4+o0) and finite total mean curvature (i.e., ||H||; . < +o0).
Carron [2] obtained the dimension of the space of all L?> harmonic p-forms is
finite if M has finite total curvature and finite total mean curvature. Cavalcante,
Mirandola and Vitério [3] proved that if a complete noncompact submanifold
M" (n>3) isometric immersed in R"*” has finite total curvature, then the
dimension of the space of the L? harmonic 1-forms on M is finite. Furthermore,
they also proved that there exists a positive constant d(n), depending only on n,
such that if ||®|,, < &(n), then there admits no non-trivial L> harmonic 1-form
on M. It was showed in [1] that the space of L? harmonic p-forms is related
with reduced L? cohomology HY(M). The author [12] studied the existence of
the symplectic structure and L> harmonic 2-forms on complete manifolds by use
of the Bochner formula.

In this paper, we discuss a complete noncompact hypersurface M" in the
Euclidean space R"*! with finite total curvature. We obtain vanishing theorem
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and finiteness theorem for hypersurfaces in the Euclidean space with finite total
curvature as follows:

THEOREM 1.1.  Suppose that M" (n > 3) is an n-dimensional complete non-
compact hypersurface isometrically immersed in R""'.  There exists a positive
constant 6(n) depending only on n such that if the total curvature ||®|[ .y is less
than 5(n), then there admits no non-trivial L* harmonic 2-form on M and the
second space of reduced L*> cohomology of M is trivial.

THEOREM 1.2. Let M" (n>3) be an n-dimensional complete noncompact
hypersurface isometrically immersed in R"'. If the total curvature is finite, then
the dimension of the space of all L* harmonic 2-forms and the dimension of the
second space of reduced L* cohomology of M are both finite.

2. Preliminaries

We recall several definitions. Let M" be an n-dimensional Riemannian
manifold. The Hodge operator *: A\’(M) — /\"7(M) is defined as follows:

ke A-oner =sgnoa(iy, iy, ..., 0p)et A Ae™,

where ¢ (i}, ia,...,i,) denotes a permutation of the1 set (i1,i,...,1,) and sgn o is
the sign of o. The operator d*: A\"(M) — A\’" (M) is given by

d*w = (1) w4« w.
The Laplacian operator is defined by
Aw = —dd*w — d* do.

A p-form w is called L?-harmonic if Aw =0 and
J A *@ < 400.
M

We denote H?(L?*(M)) by the space of all L?> harmonic p-forms on M.
Suppose that x : M" — R is an isometric immersion of an n-dimensional

hypersurface M in an (n+ 1)-dimensional Euclidean space. Let 4 denote the

second fundamental form and H the mean curvature of the immersion x. Let

(I)(Xa Y):A(X7Y)_H<Xa Y>7

for all vector fields X and Y, where {, ) is the induced metric of M. We say the
immersion x has finite total curvature if

DI Lnary < +0.

We state several results which will be used later.
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LemMa 2.1 [8].  If (M",g) is a Riemannian manifold and o = ajw; € )\'(M),
then

Alo)? = 2{Aw, ) + 2|Vol|* + 2{E(w), »),

where E(w) = Riiyjpi,Giy-kgip€? Av-- AP A~ A,

ProposITION 2.2 [1]. Let (M,g) is a complete Riemannian manifold, then
the space of L?> harmonic p-forms HP(L*(M)) is isomorphic to the p-th space of
reduced L* cohomology HL(M).

PrOPOSITION 2.3 [7].  Let M" (n > 3) be a complete noncompact hypersurface
isometrically immersed in R"™"'.  Then

(n-2)/n
(JM |f|2n/(nz)> <G (JM V2 + JM H2f2>

for each f € C}(M), where Cy depends only on n and H is the mean curvature of
M in R".

3. An inequality for L? harmonic 2-forms

We initially prove an inequality for L? harmonic 2-forms on hypersurfaces
in R"™'. Suppose w e H*(L*>(M)) and h = |o|.

ProposiTiON 3.1. If M" (n > 3) is an n-dimensional complete noncompact
hypersurface isometrically immersed in R™*', then

|VA|? — |®|*h? +%H2h2 for n=3,
hAh >

%th - % |©|*h + nH?h>  for n > 4.
Proof. Since w e H*(L*(M)), we get that
(3.1) Alo|* = 2|V|o| |* + 2|o|Alw).
Lemma 2.1 implies that
(3.2) Alw]? = 2|Vol|* + 2{E(w), »).
Combining (3.1) with (3.2), we get that

(3.3) || Alw| = Vol = |V|o] |* + (E(w), o).
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Note that there is the Kato inequality for L? harmonic 2-forms [5, 11]:

-1
4 21 2
(34) Vol = 222 Vo]
By (3.3) and (3.4), we get that
1
(33) 0l6lo] 2 L Vil [+ <E@),0).

. . . . 2
Now, we give the estimate of the term {E(w),w). Letw = a;,e?re € /\" (M),
where a;;, = —a;;,. By Lemma 2.1, we obtain that
i ‘ j i
E(w) = Rkliljlil ajine” A el + szizjzizailkzej2 ne'
i j j i
+ Rk2i2j1i1 ajk,e” A el + Rklfljzizakﬂze]z ne'
. i j . j i
= Ricy, j akine” A et + Ricy, j,a; e Ae't
+ szizjlil ailkzelz nel' + Rkll’ljzizaklize‘lz ne'.
So, we have that
(3'6) <E(w)’w> = Rickl_/l A iy Wiy, + Rickzjzailkzailjz
+ szizjlil @ik, @iy + Rkliljzizaklizail 2+
By Gauss equation, we have that
Rijr = hichjy — hithy.

A direct computation shows that

(3'7) Rickljl = thkljl - hklih"j];
(3.8) Ricy, j, = nHhj, j, — hiyihy,;
(39) szizjlil = hkzjl hizil - hkzil hiz_/l
and

(3'10) Rklille‘z = hkljzhfliz - h/\’lizhiljz'

Since the operator is linear {E(w),w) and zero-th order differential operator, it is
sufficient to compute (E(w),w) at a point p. We can choose an orthonormal
frame {e;} such that

hij = 4idjj
at p. Note that
nH =714+ 4.
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y (3.6)—(3.10), we obtain that
CE(w),w)y =Y nHig(an,)’ = > i (an)?
+ Y nHi (i) =Y g (aik)’
= s, (aroiy)” — > i, (api,)’

=2 (a4 + d)ds — 27— Jidy)(ay)*.
i#j

Note that
A]* = |®|* + nH>.
For n =3, we get that
(3.11) CE(w),0y =2 (A + i+ 43)Ai — &7 — Jidi)(ay)’
i#j

= (A + Ao+ 23) (i + &) = (3 + A7) = 24id5) (ay)?
i#]

i#j k=1,k+#i,j
Lo 1S 0 2 0
= Z 5(3H) 3 Z e = (47 + 47) | (ay)
i#j k=1,k+#i,j
> S (2H - 4P ) @) = (2~ 0 ) oo
- — 2 v \2 ’
L7

(3.12) ®), ) =2 ((+ -+ I = 4] = didy)(ay)’
i#j
=3 (a4 2) (i ) — (A 4 22) = 2235) (ay)?
i#j ‘
=D (Gt it By ) ) )
i#j

n 2
= Z( -1 ( 72 ' ')vk> —%(ii +/1,-)2) (a)*
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n

k=1,k#i,j
1 n—2
= Y (300 =" )’
1#]

2
- (nH2 - ”T |q>|2) o]

By (3.5), (3.11) and (3.12), we obtain the desired result.

4. Vanishing theorem on hypersurfaces in R"*!

S e I VI ) BT [

557

In this section, we give the proof of Theorem 1.1. If # is a compactly

supported piecewise smooth function on M, then
div(n?hVh) = n*hAh + n?|VA|* + 20h<{Vn, Vi).
Integrating by parts on M, we have that

(4.1 J nzhAh+J 772|Vh|2+2J nh<{Vn,Vhy = 0.
M M M

Cask I: n=3. By Proposition 3.1 and (4.1), we obtain that

(4.2) —2J nh(Vn,Vh>—2J nz\wz\%rj |c1>|2;72h2—§J H>h*n* > 0.
M M M 2 M

Note that
1
(4.3) —ZJ nh{Vn,Vh) < a1J 772|Vh|2 +—J h2|V71|27
M M ar Jm

for any positive real number a. Set ¢,(1) := ([, |(D|3)1/3. Then

@) | 0Py < (LW<|<D|2>3/2)2/3 : (JM (nzhzf)w

— ) (JM<nh>6)l/3

< Cody(n)* - (JM Vi)l +9 JM Hz(nh)2>

<anw®((1+5) [ wwir

+(1+b) JM”Z‘W’|2 + 9JM Hz(nh)z),
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for any positive real number b;, where the second inequality holds because of
Proposition 2.3. By (4.2)-(4.4), we obtain that

(4.5) ‘%J n?|Vh|* + %J H*p*h* < %J h2|Vn)?,
M M M
where
= (2= Copy (1)) = (@1 + b1 Cog (1)),
3
By = 57 9Cog, (’7)2

and

| , |
@ -—a—l+ Cody (1) (1 +b_1>

. . 1
Since the total curvature [|®||;s, is less than J(3) = o % and € are
0

positive. Choose a; and b; small enough such that ./ is positive. Suppose
B, is a geodesic ball of radius r on M centered at a fixed point py. Choose
ne Cy (M) such that

0<y<l,

r
n=1 on B(§>7

n=0 on M\B(r),

2
< -.
Vil < -
So (4.5) reduces to
46
mj ;72|Vh|2+%J H*n’h? < —1J h?.
M M rJm

Since [,,h? is finite, taking r — +c0, we obtain that A is constant and H?h* = 0.
If h #0, then H =0. Hence, M has infinite volume, contracting the finiteness of
[y 1. Therefore, h=0.

Case II: n > 4. By Proposition 3.1 and (4.1), we get that

n—1
(4.6) 2| o iy =2 | i
+2Z 2J |®|2%h? — nJ H*h’y* > 0.
2 M M
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Note that
1
(4.7) 2| o iy < [ il [l
M M a )u

for any positive real number a;. We set ¢,(1) := ([, \¢)|")1/ " and get

. JM o n*h < (L (|<D|2)”/2>2/n : <JM('72h2)"/<nz>)(n_2)/n
upp n
= h(n)* ( jM(ﬂh)zn/m))M/n

< Coty(n)* - (JM MU JM HZW)Z>

< Con)* (jM(l +biz)h2\7n|2
+ (14 b2)y?|Vh|* + nZJ Hz(nh)z),
M

for any positive real number b,, where the second inequality holds because of
Proposition 2.3. By (4.6)—(4.8), we have that

(4.9) sz ;72|Vh\2+.%’2j Hz;yzhzs%J WV,
M M M

where

i (225 =T ot ) = (2 + "2 2o,

n?(n—2
By =n— (2 )C0¢2(77)2
and
1 n-2 1 5
(52-—0—24‘ 3 <1+b—2>C0¢2(77)-

Since the total curvature |||, is less than 6(n) = , we have %,

2
n(n —2)Cy
and %, are positive. Choose @, and b, small enough such that .o/, is positive.
Let B, be a geodesic ball of radius » on M centered at a fixed point py. Choose
ne Cy (M) such that
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0<p<l,

’
n=1 on B(§>7

n=0 on M\B(r),

2
|V < =.
.

Let r — 400 in (4.9). We obtain that & =0, which is similar to Case I.

Therefore, there admits no nontrivial L?-harmonic 2-form on M. By
Corollary 1.6 in [1], we get that the second space of reduced L> cohomology
of M is trivial.

5. Finiteness theorem on hypersurfaces in R""!

In this section, we prove Theorem 1.2.
Suppose n =3. By (4.5), we obtain that

(5.1) &/IJ ;72|Vh\2+%J Hz;yzhzs(glj WV,
M M M

o) = (2 — C0¢1(17)2) — (a1 + b1C0¢1(’7)2);
B = % —9Cody (1)’

and
3 -:—1+(i¢()2 1+—1
e a) 0Pl bl ’

Since the total curvature ||®||,s,, is finite, we can choose a fixed ro such that

1
1Pl 3 ar-5,) <01 = V126,

E,Qil = (2 — C()élz) — (a1 + b1C0(5f),

Set

,%Nﬁ = —9C05%

3
2

and

(él Izi-i- C()élz(l +1>
aj b]
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Thus,
(5.2) MJ ;72|Vh\2+9§1J Hznzhzgcélj W2Vnl?,
M M M

for any e C(M — B,,), where 7, #; and %, are positive. By Proposition
2.3, we have

53 (o) = [ o] o

0
1
< (1 +—> J h2|Vny)?
1) Im

+<1+c1>j nz\Vh|2+9J H>(nh)?,
M M

for any positive real number ¢;. By (5.2) and (5.3), we have

54 & (jMoW)m

1
S(H_)J h2|Vn|2+(1+01)J n2|\7h|2+9j H (1)’
Cl M M M

1 % J 2o 12 < %)J 2,22
< | I+—+U+a)—= V" +(9-14c)— Hnh~.
(14 v )| (- a+a) ) [

1 1

Choose a sufficient large ¢; such that

B
9—(1+c¢)—=<0.
(1+e) 2

1
Then (5.4) implies that

(5.5) (JMwmﬁ)m <d|

for any 5 e C°(M — B,,), where A is a positive constant.
Suppose n > 4. By (4.9), we get

(5.6) %J 772|Vh\2+ﬁzj H%ﬁhZS%J h2|Vn)?,
M M M

where

oty = (Z : ; - ; 2 C0¢2(’7)2> - (az +7 ; 2b2C0¢2(77)2),

2(n —
= n =" =2 gy’
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and

1 n-2 1
%:za—2+ 5 <1+b—2)co¢2(’7)2-

Since the total curvature ||®

Loy 18 finite, we can choose a fixed ro such that

1

D, ., =y
1@leer-p,) <02 =1\ —2)6,

N n—1 n-—2 n—2

sz = (n — 2 — TC05§> — <a2 -+ 2 b2C05§)7

2
~ -2
,@2 =n-—- %Caég

and

~ 1 n-2 1
=— 1 +—) Cod3.
6> a2+ 7 <+b2> 005

Obviously, </, %, and %, are positive. Thus,
(5.7) M;J ;72|Vh\2+9§2j H*n’n? S%J h2|Vn)?,
M M M

for any #e C§°(M — B,,). Combining with Proposition 2.3, we get that

1 NG
58 — J h| > ))
55 (]

gJ |V(17h)|2+n2J H2(nh)*

M M

S(1+Cz>J nleh|2+(1+1)j h2|V77|2+n2J Hn*h,
M 6‘2 M M

for any positive real number ¢,. By (5.7) and (5.8), we have

1 2n/(n2)>(n2>/n < 1 92)] 21012
5.9 — J h |\ 1T+—=+0+c)— h*|V
59 (] S 2) [ ww

gz)J 2,212
+ ’12_ 1+C — H h
( ( z)&{ M 1

2

We choose a sufficient large ¢, such that

g
2 2
}1—1 C—~<0.
(+2),

2
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Then (5.9) implies that

(n=2)/n ~
(5.10) (j (nh)z"/(”_2)) <A wiwp,
M M

for any e Cj°(M — B,,), where A is a positive constant depending only on 7.
Therefore, we show that

2
(5.11) (j (nh)z"“"”) <d| WP
M M

for any n e Cy°(M — B,,), where A is a positive constant depending only on n
(n=3).

Next, the proof follows standard techniques (after inequality (33) in [3]) and
uses a Moser iteration argument (lemma 11 in [9]). We include a proof here for
the sake of completeness. Choose r > ry+ 1 and e C°(M — B,,) such that

n=0 on B, U(M — By),
n=1 on B, — B, 1,

Vil < é on Byi1 — By,
|Vy| <ér=' on By — B,

for some positive constant ¢. Then (5.11) becomes that

(n=2)/n =
J 2! =) < AJ h? +£J h?.
B—By 1 Byy11—By, ), 5,

o+l

Letting r — oo and noting that # e L?(M), we obtain that

(n—2)/n
(5.12) J B2/ n=2) <A J h?.
M—By 1 By 11—By,

By Hoélder inequality

(n—2)/n 2/n
J /12 < J h2n/(n72) . J 1n/2 ,
BI‘O+Z_Br0+1 Br0+2_Br'0+] B)‘0+2_Br'0+1

we have that

(5.13) J P<(+4 Vol(B,.0+2)2/")J h?.
B,—O+2 Br0+]
Set
2 3yl
|| — EH , for n=3,
- n—2 2 ) .
3 |®|° —nH*|, for n>4.
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Fix x e M and take te C!(Bi(x)). By Proposition 3.1, we have
hih > a|Vh|* — Wh?,

where

,  for n=73

S

1

m, for n24

Then, for p > 2, there exsits

J ?h? '\ Ah > ocJ 2h?=2|Vh|* — J PR
M M

M
That is,
(5.14) —2J th?~"(Vt,Vhy > (0 + (p — 1))J 2h? 2 |Vh|?
Bi(x) Bi(x)
- J P /1
B]()C)
Note that

—2ch?" VT, Vhy = =2(h?*Ve, th?>~ V)
1
< &hl’|Vf|2 + o2h? 2|V

By (5.14), we have that

(5.15) (pfl)J rzhf”2|Vh|2£J Trzhulj \Vz|2h?.
B (x)

Bl<x) Bl(x) o

Combining Cauchy-Schwarz inequality with (5.15), we get that

(5.16) J \V(th??)|* < J AYTh? + BV *h?,

Bi(x) B (x)
where tQ{:L p—2—|—£ and 4 = 1—1—£ —&—# p—2—|—£ . Choose

p—1\4 2 2 a(p—1)\ 4 2
f =th?/? in Proposition 2.3. By (5.16), we obtain that
(n-2)/2
(5.17) J (ch?/?)2/ =2 < pfg‘J (22 4 |Vz|})h?,
By (x) B (x)
k

1 1
where ¢ depends on n and supg ) Y. Set px = ) and p; ==+ —— for
n—

k=0,1,2,.... Take a function 7 € C;°(B,,(v)) satisfying:
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0<t <1,
=1 on Bpw( X),
|V‘Ck‘ < 2K+3,

Choosing p = p; and 7 =1 in (5.17), we obtain that

1/(pis1) 1/pk
(5.18) (J h”"*‘) < ((gpk4k+4)1/pk (J h”") .
By (%) By (x)

By recurrence, we have

k
Upigi i
(519)  lAll oo gy < L1287 477 (44 P! 1B 2,0y < 2 120,000
i=0

where & is a positive constant depending only on n, Vol(B, 1) and supp o v,
Letting k& — oo, we get

(5.20) 1All o 8, px) < 2Nl 228,

Now, choose y € B, 41 such that supg, h? = h(y)®. Note that B;(y) C By
(5.20) implies that

(5.21) sup 1% < D[ 5, () < 2NhI 72

ro+1

(Brg+2)"

By (5.13), we have

(5.22) sup 1* < Z ||| 725

B, ro+1 ) ’

0+1
where # depends only on n, Vol(B,,+2) and supg, ., Y. In order to show the
finiteness of the dimension of H?(L?*(M)), it suffices to prove that the dimen-
sion of any finite dimensional subspaces of H?(L?*(M)) is bounded above
by a fixed constant. Combining (5.22) with Lemma 11 in [9], we show that
dim H*(L*(M)) < +oo. By Proposition 2.2, we have that the dimension of
the second space of reduced L? cohomology of M is finite.
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