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DOUADY-EARLE EXTENSION OF THE STRONGLY

SYMMETRIC HOMEOMORPHISM

Yan Wu and Yi Qi

Abstract

It is shown that the complex dilatation of the Douady-Earle extension of a strongly

symmetric homeomorphism induces a vanishing Carleson measure on the unit disk D.

As application, it is proved that the VMO-Teichmüller space is a subgroup of the

universal Teichmüller space.

§1. Introduction

Let D ¼ fz : jzj < 1g be the unit disk of the extended complex plane ĈC and
let D� ¼ ĈCnD be the exterior of D and S1 ¼ qD ¼ qD� be the unit circle.

A sense-preserving homeomorphism h : S1 ! S1 is said to be quasisymmetric
if there exists some constant M > 0 such that

1

M
a

jhðI1Þj
jhðI2Þj

aM

for all pairs of adjacent arcs I1 and I2 on S1 with the same arc-length jI1j ¼
jI2jða pÞ. It is well known in [4] that a sense-preserving self-homeomorphism h
is quasisymmetric if and only if there exists some quasiconformal homeomor-
phism of D onto itself which has boundary values h.

Let QSðS1Þ be the set of all quasisymmetric homeomorphisms of the unit
circle S1. Then QSðS1Þ is a group under the composition of homeomorphisms.
The universal Teichmüller space T is defined as

T ¼ QSðS1Þ=M€oobðS1Þ;
where M€oobðS1Þ is the group of Möbius transformations of S1. It is well known
that the universal Teichmüller space plays a significant role in the study of
Teichmüller theory. For more details we refer to the books [12, 13, 16, 18].
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For every h A QSðS1Þ, it is proved in [9] that there exists a quasiconformal
extension of h to the unit disk, called the Douady-Earle extension, which is
conformally invariant, that is,

Eða � h � bÞ ¼ a � EðhÞ � b
holds for any a; b A MöbðS1Þ. Douady-Earle extension is very important in
Teichmüller theory, which provides a great convenience to discuss Teichmüller
spaces of Riemann surfaces on the unit disk, for instance.

A quasisymmetric homeomorphism h of S1 is called integrably asymptotic
a‰ne [7] if it admits a quasiconformal extension into D such that its complex
dilatation m is square integrable in the Poincaré metric on D, that isðð

D

jmðzÞj2

ð1� jzj2Þ2
dxdy < y:

It is proved in [7] that the complex dilatation of the Douady-Earle extension of
an integrably asymptotic a‰ne homeomorphism h is square integrable in the
Poincaré metric on D.

An asymptotically conformal mapping f of D is a quasiconformal homeo-
morphism of D with complex dilatation m satisfying

lim
jzj!1�

jmðzÞj ¼ 0:

A quasisymmetric homeomorphism h of S1 is called symmetric if it admits an
asymptotically conformal extension on D. It is proved in [11] that the Douady-
Earle extension of a symmetric homeomorphism is asymptotically conformal.

A quasisymmetric homeomorphism h of S1 is said to be strongly quasisym-
metric if for each � > 0, there exists a d > 0 such that

jEja djI j ) jhðEÞja �jhðIÞj
where I HS1 is an interval and EH I is a measurable subset. It is equivalent to
that [3] h admits a quasiconformal extension into D which complex dilatation m
induces a Carleson measure jmðzÞj2=ð1� jzj2Þ dxdy on D. It is shown in [8] that
the complex dilatation of the Douady-Earle extension of a strongly quasisym-
metric homeomorphism induces a Carleson measure. Furthermore, h is strongly
quasisymmetric if and only if h is absolutely continuous and log h 0 A BMOðS1Þ,
the space of integrable functions on S1 of bounded mean oscillation (see [6, 10,
14, 20]).

A quasisymmetric homeomorphism h of S1 is called strongly symmetric if h
is absolutely continuous and log h 0 A VMOðS1Þ, the space of integrable functions
on S1 of vanishing mean oscillation (see [14, 20, 21]). The BMO-Teichmüller
space and VMO-Teichmüller space are defined as the following models

Tb ¼ SQSðS1Þ=M€oobðS1Þ and Tv ¼ SSðS1Þ=M€oobðS1Þ;

where SQSðS1Þ and SSðS1Þ are the sets of all strongly quasisymmetric and all
strongly symmetric homeomorphisms of the unit circle S1 respectively. The
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BMO-Teichmüller space and VMO-Teichmüller space are two important sub-
spaces of the universal Teichmüller space which are fully studied [1, 3, 5,
8, 23].

The purpose of this paper is to study the Douady-Earle extensions of
strongly symmetric homeomorphisms. It is obtained that h is a strongly sym-
metric homeomorphism if and only if h admits a quasiconformal extension
into D which complex dilatation m induces a vanishing Carleson measure
jmðzÞj2=ð1� jzj2Þ dxdy on D. Moreover, it is proved that the complex dilatation
of the Douady-Earle extension of h properly induces this vanishing Carleson
measure. As application, it is gotten that the VMO-Teichmüller space Tv is a
subgroup of the universal Teichmüller space T .

§2. Preliminaries

In this section, we recall some notions and basic results on BMO-functions,
Ay weight functions and Carleson measures which will be needed in this paper.
For more details we refer to [6, 10, 14].

BMOðS1Þ is the space of all integrable functions on S1 of bounded mean
oscillation (see [6, 10, 14, 20]). An integrable function u A L1ðS1Þ is said to be of
bounded mean oscillation if

kukBMO ¼ sup
I

1

jI j

ð
I

ju� uI j dy < y;

where I is any arc on S1, jI j is the length of I and uI ¼
1

jI j
Ð
I
u dy is the average

of u over I . VMOðS1Þ is the subspace of BMOðS1Þ which consists of all
vanishing mean oscillation functions. A function u A BMOðS1Þ is said to be of
vanishing mean oscillation if

lim
jI j!0

1

jI j

ð
I

ju� uI j dy ¼ 0:

Let m ¼ oðxÞ dx be a positive Borel measure on R, finite on compact sets.
oðxÞ is called an Ay weight function [14], denoted by o A Ay, if

mðEÞ=mðIÞaCðjEj=jI jÞa

holds for any interval I and any Borel subset E of I , where C > 0 and a > 0 are
constants independent of E and I . Let h A SSðS1Þ, then h is strongly quasisym-
metric, and consequently h 0 A Ay (see [14]).

For every o A Ay, it holds the reverse Hölder inequality [6]. So there exists
a constant c > 0 and p > 1 such that

1

jI j

ð
I

opðxÞ dxa c
1

jI j

ð
I

oðxÞ dx
� �p

:ð2:1Þ

for every interval I in R.
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The Carleson sector SðIÞ, based on I , is defined by

SðIÞ ¼ z ¼ reiy : 1� jI j
2p

a r < 1; eiy A I

� �
:

A positive Borel measure l on D is called a bounded Carleson measure if there
exists a positive constant C such that

lðSðIÞÞaCjI j

We say that l is a vanishing Carleson measure if

lðSðIÞÞ ¼ oðjI jÞ; jI j ! 0:

For a positive measure l on D�, replacing SðIÞ in the above definition by the
following Carleson sector:

S �ðIÞ ¼ z ¼ reiy : 1 < ra 1þ jI j
2p

; eiy A I

� �
;

We similarly obtain the definition of a bounded or vanishing Carleson measure
on D�. Denote by CMðWÞ and CM0ðWÞ the set of all bounded Carleson mea-
sures and vanishing Carleson measures on W, respectively.

We need a lemma in [23] for Carleson measure.

Lemma 2.1. For a positive measure l on D, set

~llðzÞ ¼
ðð

D

ð1� jzj2Þð1� jwj2Þ
j1� wzj4

lðwÞ dudv

Then ~ll is a bounded or vanishing Carleson measure if l is a bounded or vanishing
Carleson measure on D.

The Douady-Earle extension w ¼ EðhÞðzÞ is defined by the equation

Fðz;wÞ ¼ 1

2p

ð
S 1

hðtÞ � w

1� whðtÞ
1� jzj2

jz� tj2
jdtj ¼ 0:

For h A QSðS1Þ, let vðhÞ denote the Beltrami coe‰cient of the inverse mapping
of the Douady-Earle extension EðhÞ, and v denote the Beltrami coe‰cient of a
quasiconformal extension of h�1. Then we have the following result (for details,
see [15]).

Lemma 2.2. There exists a constant CðhÞ such that Ew A D

jvðhÞðwÞj2

1� jvðhÞðwÞj2
aCðhÞ

ðð
D

jvðzÞj2

1� jvðzÞj2
ð1� jwj2Þ2

j1� zwj4
dxdh
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§3. Douady-Earle extension of a strongly symmetric homeomorphism

Recall that for any h A QSðS1Þ, there exists a unique pair of conformal
mappings f : D ! f ðDÞ and g : D� ! ĈCn f ðDÞ, called the normalized decompo-
sition of h, satisfying f ð0Þ ¼ f 0ð0Þ � 1 ¼ 0, gðyÞ ¼ y and h ¼ f �1 � g on S1,
respectively. Furthermore, f can be extended to a quasiconformal mapping in
the whole plane with Beltami coe‰cient mf . At the same time, h is called the
normalized conformal welding mapping of f . It is known that h A QSðS1Þ if and
only if h�1 A QSðS1Þ. For h A SSðS1Þ, we have

Proposition 3.1. For any h A QSðS1Þ, f , g are the above normalized decom-
position of h. The following conditions are equivalent:

(1) h A SSðS1Þ;
(2) h�1 A SSðS1Þ;
(3) There exists a quasiconformal extension cðzÞ : D ! D of h�1 whose

Beltrami coe‰cient m induces a vanishing Carleson measure jmðzÞj2=ð1� jzj2Þ dxdy
on D.

Proof. It should be pointed out that ð1Þ , ð2Þ is implied in [23]. For
completeness, we give the proof here.

Suppose that h A SSðS1Þ and h ¼ f �1 � g, where f , g are the normalized
decomposition of h. Then log f 0 A VMOAðDÞ, the space of analytic functions
in D of vanishing mean oscillation (see Theorem 4.1 in [23]). It is known that
log f 0 A VMOAðDÞ if and only if the quasicircle G ¼ f ðS1Þ ¼ gðS1Þ is asymptoti-
cally smooth (see Section 7.5 in [20]). Furthermore, we have h�1 ¼ g�1 � f ¼
ðrj � g � jÞ�1 � ðrj � f � jÞ, where jðzÞ ¼ z�1 is the standard reflection of the
unit circle S1 and r is a constant such that rð j � g � jÞ0ð0Þ ¼ 1. So rj � g � j,
rj � f � j are the normalized decomposition of h�1. Since G is asymptotically
smooth, then rj � g � jðS1Þ ¼ rjðGÞ is also asymptotically smooth. This means
h�1 A SSðS1Þ and ð1Þ ) ð2Þ. With similar discussion, ð2Þ ) ð1Þ.

Now we show that ð1Þ , ð3Þ. It is known that h A SSðS1Þ if and only if
f can be extended to a quasiconformal mapping to the whole plane, denoted
also by f , whose complex dilatation mf satisfying jmf ðzÞj

2=ðjzj2 � 1Þ dxdy A
CM0ðD�Þ [23]. Defining jðzÞ ¼ g�1 � f ðzÞ, z A D�, then jðzÞ is the quasicon-
formal extension of h�1 to D� with Beltrami coe‰cient nðzÞ ¼ mf ðzÞ and
jnðzÞj2=ðjzj2 � 1Þ dxdy A CM0ðD�Þ. By reflection, h�1 may be extended to a
quasiconformal mapping cðzÞ to D whose Beltrami coe‰cient mðzÞ satisfies

mðzÞ ¼ n
1

z

� �
z2

z2
; z A D:

For any subarc I A S1ðjI ja pÞ, let 2I be the subarc of S1 with the same
center of I , j2I j ¼ 2jI j and z A SðIÞ. Then, by simple calculation, we getðð

SðIÞ

jmðzÞj2

1� jzj2
dxdy ¼

ðð
S 0ðIÞ

jvðwÞj2

jwj2 � 1

1

jwj2
dudva

ðð
S �ð2IÞ

jvðwÞj2

jwj2 � 1
dudv
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where S 0ðIÞ is the refection sector of SðIÞ, S �ð2IÞHD� is the Carleson sector
over 2I on D� and S 0ðIÞHS �ð2IÞ.

For any given e > 0, since jnðwÞj2=ðjwj2 � 1Þ dudv A CM0ðD�Þ, there exists a
d > 0 such that ðð

S �ð2IÞ

jvðwÞj2

jwj2 � 1
dudv < 2ejI j

holds for every subarc I HS1 with jI ja d. So jmðzÞj2=ð1� jzj2Þ dxdy A CM0ðDÞ
and ð1Þ ) ð3Þ.

Conversely, if condition (3) holds, by quasiconformal reflection, there exists a
quasiconformal extension fðzÞ : D� ! D� of h�1 with Beltrami coe‰cient mfðzÞ
satisfying jmfðzÞj

2=ðjzj2 � 1Þ dxdy A CM0ðD�Þ. Let ~ff ¼ g � f, it is easy to see
that ~ff is the quasiconformal extension of f and jm~ff ðzÞj

2=ðjzj2 � 1Þ dxdy A
CM0ðD�Þ. Thus ð3Þ ) ð1Þ. r

Now we prove that the complex dilatation of the Douady-Earle extension
of a strongly symmetric homeomorphism induces a vanishing Carleson measure
on D.

Theorem 3.1. If h A SSðS1Þ, that is, h is a strongly symmetric homeomor-
phism on S1. Let m be the complex dilatation of the Douady-Earle extension
F ¼ EðhÞ. Then it holds that jmðzÞj2=ð1� jzj2Þ dxdy A CM0ðDÞ.

In order to prove Theorem 3.1, we need some preparations.
Set zk ¼ e2kpi=3 ðk ¼ 1; 2; 3Þ. For every w A D, let t be the Möbius trans-

formation of D onto itself with tð0Þ ¼ w and tðz2Þ ¼ w=jwj. Denote wk ¼ tðzkÞ
ðk ¼ 1; 2; 3Þ and let Jw be the subarc of S1 with endpoints w1 and w3 and
containing w2. Then we have the following lemma.

Lemma 3.1. Let h be a symmetric homeomorphism of S1 and F be the
Douady-Earle extension of h, then there exist positive constants C1 and C2

depending only on h, such that

2ð1� jwjÞa jJwja 2pð1� jwjÞ;ð3:1Þ
1

C1

jh�1ðJwÞj
jJwj

a
1� jF�1ðwÞj2

1� jwj2
aC1

jh�1ðJwÞj
jJwj

ð3:2Þ

and

ð1� jwj2Þ2

ð1� jF�1ðwÞj2Þ2
JF�1ðwÞaC2:ð3:3Þ

Proof. Since F is the Douady-Earle extension of h, it is bi-Lipschitz with
respect to the Poincaré metric and the Lipschitz constant C ¼ CðKÞ depends only
on the maximal dilatation K ¼ KF of F [9]. Hence, F�1 is also bi-Lipschitz
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with respect to the Poincaré metric with the same Lipschitz constant C ¼ CðKÞ.
So,

1

CðKÞ rðwÞjdwja rðF�1ðwÞÞjdF�1ðwÞjaCðKÞrðwÞjdwj;

which implies (3.3) with C2 ¼ CðKÞ2 directly.
Let zk ¼ h�1ðwkÞ ðk ¼ 1; 2; 3Þ and s be the Möbius transformation of D

onto itself with sðzkÞ ¼ zk ðk ¼ 1; 2; 3Þ. Set F� ¼ t�1 �F � s. Then F� is the
Douady-Earle extension of the sense-preserving quasisymmetric F�jS 1 ¼ t�1 �
h � s and can be extended to a K ¼ KF-quasiconformal mapping of C onto itself
by reflection. Thus, F�jS 1 is hK -quasisymmetric by Corollary 3.10.4 in [2], where

hKðtÞ ¼ lðKÞ2K maxftK ; t1=Kg; t A ½0;þyÞ
and

lðKÞ ¼ supfj f ðeiyÞj : f : C ! C is K-q:c: and fixes 0; 1; 0a ya 2pg:ð3:4Þ
Therefore, by Proposition 5.21 in [20], there exists a constant r 0 A ð0; 1Þ which
depends only on K but not on w, such that jF�ð0Þja r 0 < 1.

As F� is the Douady-Earle extension of the sense-preserving quasisymmetric
F�jS1 ¼ t�1 � h � s, it is bi-Lipschitz with respect to the Poincaré metric, where
the Lipschitz constant CðKÞb 1 depends only on K [9]. Thus,

log
1þ jF��1ð0Þj
1� jF��1ð0Þj

aCðKÞ log 1þ jF�ð0Þj
1� jF�ð0Þj

This implies that

jF��1ð0Þja r0 < 1;ð3:5Þ
where r0 is a constant depending only on K but not on the choice of w.

It is easy to see that tðzÞ ¼ ðzþ eiawÞ=ðeia þ zwÞ, where a ¼ 4p

3
� y and y is

the argument of w. By a simple computation, we have

jw1 � w2j ¼
ffiffiffi
3

p
ð1� jwjÞ

jz1 þ jwj j ; jw2 � w3j ¼
ffiffiffi
3

p
ð1� jwjÞ

jz2 þ jwj j ;

and

jw1 � w3j ¼
ffiffiffi
3

p
ð1þ jwjÞð1� jwjÞ

jz2 þ jwj j jz1 þ jwj j :

Consequently, it is gotten that jw1 � w2j ¼ jw2 � w3j and

1� jwja jw1 � w2ja 2ð1� jwjÞ:
So, jw1 � w2j, jw2 � w3j, jw1 � w3j are all comparable with 1� jwj and the
constants appeared in the comparisons are universal, and

jJwjb jw1 � w2j þ jw2 � w3jb 2ð1� jwjÞ:

416 yan wu and yi qi



By Jordan inequality,

jJwj ¼ 2j dw1w2w1w2ja pjw1 � w2ja 2pð1� jwjÞ:

Thus, (3.1) is true.
We now prove that jz1 � z2j, jz2 � z3j and jz3 � z1j are all comparable with

1� jF�1ðwÞj and the constants appeared in the comparisons depend only on
K ¼ Kf.

Let z ¼ F�1ðwÞ and let z 0 A S1 such that sðz 0Þ ¼ z=jzj. Set

sðzÞ ¼ eib
z� a

1� az
; z A D;

where a A D and b A R are constants determined by s. Then

jzi � zjj
1� jzj ¼

jsðziÞ � sðzjÞj
jsðz 0Þ � sðF��1ð0ÞÞj

¼
jzi � zjj

jz 0 �F��1ð0Þj
j1� az 0j j1� aF��1ð0Þj

j1� azij j1� azjj
ð3:6Þ

for 1a i < ja 3. If arg a A ½�p=3; p=3Þ, then

j1� az1jb
ffiffiffi
3

p
=2 and j1� az2jb

ffiffiffi
3

p
=2:

Thus, by (3.5) and (3.6),

jz1 � z2j
1� jzj a

ffiffiffi
3

p

1� r0
� 16
3
:ð3:7Þ

Similarly, if arg a A ½p=3; pÞ or ½p; 5p=3Þ, (3.7) is also true for replacing jz1 � z2j
by jz1 � z3j or jz2 � z3j, respectively.

On the other hand,

1� jzj
jzi � zj j

a
jzi � zj
jzi � zjj

¼ jzi �F��1ð0Þj
jzi � zjj

j1� azj j
j1� aF��1ð0Þj

a
4ffiffiffi
3

p 1

1� r0

for 1a i < ja 3. Since h is a symmetric homeomorphism and jw1 � w2j ¼
jw2 � w3j, then jz1 � z2j, jz2 � z3j and jz3 � z1j can be compared with each other
and the constants in the comparisons depend only on K . Thus, all these three
quantities are all comparable with 1� jzj and constants in the comparisons
depend only on r0 ¼ r0ðKÞ but independent on w.

Therefore, there exists a constant Cb 1 depending only on K such that

1

C

jh�1ðw1Þ � h�1ðw3Þj
jw1 � w3j

a
1� jzj
1� jwj aC

jh�1ðw1Þ � h�1ðw3Þj
jw1 � w3j

;

which implies (3.2) directly. The proof of Lemma 3.1 is completed. r

Now we prove the Theorem 3.1.

Proof. For every h A SSðS1Þ, by proposition 3.1, there exists a quasicon-

formal extension g of h�1 satisfying jmgðzÞj
2=ð1� jzj2Þ dxdy A CM0ðDÞ. Let v
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denote the Beltrami coe‰cient of the inverse mapping F�1 of the Douady-Earle
extension F. By Lemma 2.2, there exists a constant CðhÞ such that Ew A D

jvðwÞj2

1� jvðwÞj2
aCðhÞ

ðð
D

jmgðzÞj
2

1� jmgðzÞj
2

ð1� jwj2Þ2

j1� zwj4
dxdh

Furthermore,

jvðwÞj2

1� jwj2
aCðhÞ

ðð
D

1� jvðwÞj2

1� jmgðzÞj
2

jmgðzÞj
2

1� jzj2
ð1� jwj2Þð1� jzj2Þ

j1� zwj4
dxdh

a
CðhÞ

1� kmgk
2
y

ðð
D

jmgðzÞj
2

1� jzj2
ð1� jwj2Þð1� jzj2Þ

j1� zwj4
dxdh

It follows from Lemma 2.1 that jvðwÞj2=ð1� jwj2Þ dudv A CM0ðDÞ. In what

follows we prove that jvðwÞj2=ð1� jwj2Þ dudv A CM0ðDÞ implies jmðzÞj2=
ð1� jzj2Þ dxdy A CM0ðDÞ.

Since h A SSðS1Þ, h is a symmetric homeomorphism [22], namely,

jhðI1Þj
jhðI2Þj

¼ 1þ oð1Þ

holds for every pair of adjacent subarcs I1 and I2 in ½0; 2p� with jI1j ¼
jI2j ! 0þ.

For every I HS1, set I ¼ I1 þ I 01 and 2I ¼ I2 þ I1 þ I 01 þ I 02, where I2, I1, I
0
1,

I 02 are adjacent subarcs with jI1j ¼ jI 01j ¼ jI2j ¼ jI 02j. Then we have

jhðI1 þ I2Þj ¼ 2jhðI1Þj þ oð1Þ ¼ jhðIÞj þ oð1Þ
and

jhðI 01 þ I 02Þj ¼ 2jhðI 01Þj þ oð1Þ ¼ jhðIÞj þ oð1Þ

as jI j ! 0þ. Thus,

jhð2IÞj
jhðIÞj ¼ 2þ oð1Þ; jI j ! 0þ:

Furthermore, for a positive integer N > 1, it is not hard to verify that

jhðNIÞj
jhðIÞj ¼ N þ oð1Þ; jI j ! 0þ;ð3:8Þ

where I and NI are the subarcs of S1 with the same center and jNI j ¼ NjI j.
Let z0 be the center of I and let Dð2IÞ be the disk centered at z0 and

Dð2IÞV qD ¼ 2I . It is easy to verify that the Carleson sector SðIÞHDð2IÞ for
every I with jI j < p. By reflections and pre-compositing a Teichmüller shift
[24] (A Teichmüller shift mapping on the unit disk D is the uniquely extremal
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mapping T ½w1;w2� which sends w1 to w2 and is equal to the identity on qD),
F can be extended to a K 0-quasiconformal mapping ~FF of C onto itself with
~FFj

D
¼ F, where K 0 depends only on F. Since it is clear that

max
w A qFðSðIÞÞnqD

jw� hðz0Þja max
z A qDð2IÞ

j~FFðzÞ � hðz0Þj

and

min
z A qDð2IÞ

j~FFðzÞ � hðz0Þja jhð2IÞj;

so, by Teichmüller distortion theorem [17] and (3.8), we have

max
w A qFðSðIÞÞ

jw� hðz0Þja lðK 0Þjhð2IÞja 3lðK 0ÞjhðIÞj

for su‰cient small arc I , where lðK 0Þ is defined in (3.4) depending only on
the maximal dilatation K 0. Choose an integer N 0 depending only on K 0 with
N 0 b 6plðK 0Þ. Then by the definition of the Carleson sector, we have

FðSðIÞÞHSðN 0hðIÞÞ:

Denote dl ¼ jmðzÞj2=ð1� jzj2Þ dxdy and dl 0 ¼ jnðwÞj2=ð1� jwj2Þ dudv. For
any given e > 0, as we have just proved that l 0 is a vanishing Carleson measure,
there exists a d 0 > 0 such that

l 0ðSðJÞÞ < e

4
jJj

for every subarc JHS1 with jJja d 0=2.
Let J ¼ N 0hðIÞ be the open subarc of the same center point with hðIÞ and

jJj ¼ N 0jhðIÞj. Then there is a d1 > 0 such that jJja d 0=2 and FðSðIÞÞHSðJÞ
holds for every subarc I on S1 with jI j < d1.

By the properties of integral,

lðSðIÞÞ ¼
ðð

SðIÞ

jmðzÞj2

1� jzj2
dxdy ¼

ðð
FðSðIÞÞ

1� jwj2

1� jF�1ðwÞj2
JF�1ðwÞ dl 0

a

ðð
SðJÞ

1� jwj2

1� jF�1ðwÞj2
JF�1ðwÞ dl 0:

Then, from (3.2) and (3.3) in Lemma 3.1, we have

lðSðIÞÞaC

ðð
SðJÞ

jh�1ðJwÞj
jJwj

dl 0;ð3:9Þ

where C ¼ C1C2 is a constant depending only on K .
Let c be a lift of h�1 to the real line R over the obvious covering

mapping. Then c is strictly increasing, continuous and cðyþ 2pÞ � cðyÞ ¼ 2p.
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As h�1 A SSðS1Þ, c is di¤erentiable almost everywhere in R and

ðh�1Þ0ðeiyÞ ¼ eiðcðyÞ�yÞc 0ðyÞ:

Let 2J be the arc on S1 with the same center as J and of length 2jJj.
Choose a component of the lift of 2J, which is an open interval, and denoted by
2J. Denote also by J the component lift of J contained in the component 2J
and I the component lift of I contained in cðJÞ. Let

fðyÞ ¼ c 0ðyÞw2JðyÞ;

where w2J is the characteristic function of 2J on R. Let

MfðyÞ ¼ sup
y A J 0

1

jJ 0j

ð
J 0
jfðtÞj dt

be the Hardy-Littlewood maximal function of f, where the supremum is taken
over all intervals J 0 containing y. Then

MfðyÞb jh�1ðJ 0Þj=jJ 0jð3:10Þ

holds for all subarc J 0 H 2J containing y.
By a property of Hardy-Littlewood maximal functions, fy A R : MfðyÞ > kg

is an open set for every k > 0. Thus,

fy A 2J : MfðyÞ > kg ¼ 2J V fy A R : MfðyÞ > kg

is open and consequently,

fy A 2J : MfðyÞ > kg ¼ 6 Jl ;ð3:11Þ

where fJlg is a finite or infinite sequence of disjoint intervals contained in J.

We may assume that jJj < p

4
. Let

TðJlÞ ¼ w ¼ reiy : 1� 2jJl j
p

a r < 1; eiy A Jl

� �
:

Then,

w A SðJÞ : jh
�1ðJwÞj
jJwj

> k

� �
H6TðJlÞ:ð3:12Þ

Indeed, if w A SðJÞ and

jh�1ðJwÞj
jJwj

> k;ð3:13Þ

then by the definition of Carleson sector, 1� jwj < jJj=2p. So by (3.1) in
Lemma 3.1, we have jJwj < jJj and consequently, Jw H 2J. Thus, by (3.10)
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and (3.13), eiy :¼ w=jwj A 6 Jl . If w B 6TðJlÞ, then jJl j <
p

2
ð1� jwjÞ for Jl

containing w=jwj. Thus, by (3.1), jJwj > jJl j. So, there exists a eiy
0
A Jwn6 Jl

such that Mfðy 0Þ > k. This contradicts to (3.11). Therefore, (3.12) holds.
Since jJl ja 2jJja d 0, then for the above e > 0,

l 0 w A SðJÞ : jh
�1ðJwÞj
jJwj

> k

� �� �
a

X
j

l 0ðTðJlÞÞa e
X
l

jJl j

¼ ejfy A 2J : MfðyÞ > kgj:

So, we have ðð
SðJÞ

jh�1ðJwÞj
jJwj

dl 0
a e

ð
2J

Mf dy:ð3:14Þ

Since c 0ðyÞ belongs to the class of weights Ay, it holds the inverse hölder
inequality (2.1) for some p > 1 and c > 0, that is,

1

2jJj

ð
2J

c 0p dya c
1

2jJj

ð
2J

c 0 dy

� �p

:ð3:15Þ

By Hölder inequality, for q > 1, 1=pþ 1=q ¼ 1, we haveð
2J

Mf dya ð2jJjÞ1=q
ð
2J

ðMfÞp dy
� �1=p

:ð3:16Þ

Furthermore, by Muckenhoupt theory (see §VI.6 of [14]), there exists a constant
Cp for p > 1, independent of f, such thatð

2J

ðMfÞp dya
ð
R

ðMfÞp dyaCp

ð
R

fp dy ¼ Cp

ð
2J

c 0p dy:ð3:17Þ

From (3.15)–(3.17), we haveð
2J

MfðyÞ dya ðcCpÞ1=p
ð
2J

c 0ðyÞ dy:ð3:18Þ

Combining (3.9), (3.14) and (3.18), we get

lðSðIÞÞaC 0e

ð
2J

c 0ðyÞ dyaC 0ejh�1ð2JÞj

for jI j < d1, where C 0 ¼ CðcCpÞ1=p and 2J ¼ 2N 0hðIÞ. By (3.8),

jh�1ð2JÞj
jI j ¼ 2N 0 þ oð1Þ; jI j ! 0þ:
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So for the above e > 0, there exists a positive number d with d < d1 such that

lðSðIÞÞaC 0ð2N 0 þ 1ÞejI j:
holds for every subarc I on S1 with jI j < d. Hence jmðzÞj2=ð1� jzj2Þ dxdy A
CM0ðDÞ. The proof of this Theorem is completed. r

An application of Theorem 3.1

As an application of Theorem 3.1, we prove the following theorem.

Theorem 4.1. Tv is a subgroup of T.

Proof. It is clear that the universal Teichmüller space T and the VMO-
Teichmüller space Tv can be identified as the spaces of all normalized quasisym-
metric and all strongly symmetric homeomorphisms of S1 respectively. Here, a
homeomorphism of S1 is called normalized if it fixes G1 and i.

Let h1; h2 A Tv be the normalized strongly symmetric homeomorphisms and
F ¼ Eðh1Þ be the Douady-Earle extension of h1 with the Beltrami di¤erential m1.

By Theorem 3.1, jm1ðzÞj
2=ð1� jzj2Þ dxdy A CM0ðDÞ. Furthermore, by Proposi-

tion 3.1, there exists a quasiconformal extension f of h2 with Beltrami di¤erential
m2 satisfying jm2ðzÞj

2=ð1� jzj2Þ dxdy A CM0ðDÞ. Let r be the Beltrami di¤eren-
tial of f �F�1, then for any z A D,

jrðFðzÞÞj2 ¼ m2ðzÞ � m1ðzÞ
1� m2ðzÞm1ðzÞ

�����
�����
2

a
2ðjm1ðzÞj

2 þ jm2ðzÞj
2Þ

ð1� km1kykm2kyÞ2
:

Thus,ðð
SðIÞ

jrðwÞj2

1� jwj2
dudv ¼

ðð
F�1ðSðIÞÞ

jrðFðzÞÞj2

1� jFðzÞj2
JFðzÞ dxdy

aC

ðð
SðNJÞ

jm1ðzÞj
2 þ jm2ðzÞj

2

1� jzj2
1� jzj2

1� jFðzÞj2
JFðzÞ dxdy

¼ C

ðð
SðNJÞ

1� jzj2

1� jFðzÞj2
JFðzÞ �

jm1ðzÞj
2

1� jzj2
dxdy

þ C

ðð
SðNJÞ

1� jzj2

1� jFðzÞj2
JFðzÞ �

jm2ðzÞj
2

1� jzj2
dxdy;

where SðNJÞ is a carleson cantor containing F�1ðSðIÞÞ and J ¼ F�1ðIÞ.
Since jm1ðzÞj

2=ð1� jzj2Þ dxdy and jm2ðzÞj
2=ð1� jzj2Þ dxdy are vanishing Car-

leson measures on D, similar to proof of Theorem 3.1, we haveðð
SðIÞ

jhðwÞj2

1� jwj2
dudv ¼ oðjI jÞ; jI j ! 0:
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So jhðwÞj2=ð1� jwj2Þ dxdy A CM0ðDÞ. It is obvious that f �F�1 is the quasi-
conformal extension of the normalized homeomorphism h2 � ðh1Þ�1. Therefore,
h2 � ðh1Þ�1 A Tv from Proposition 3.1 and Tv is a subgroup of T . r
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