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DOUADY-EARLE EXTENSION OF THE STRONGLY
SYMMETRIC HOMEOMORPHISM
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Abstract

It is shown that the complex dilatation of the Douady-Earle extension of a strongly
symmetric homeomorphism induces a vanishing Carleson measure on the unit disk D.
As application, it is proved that the VMO-Teichmiiller space is a subgroup of the
universal Teichmiiller space.

§1. Introduction

Let D = {z:|z| < 1} be the unit disk of the extended complex plane C and
let D* = C\D be the exterior of D and S! = 0D = dD* be the unit circle.

A sense-preserving homeomorphism 4 : S' — S! is said to be quasisymmetric
if there exists some constant M > 0 such that

1l

M = |h(h)|
for all pairs of adjacent arcs I; and I, on S' with the same arc-length |I;| =
|L|(< 7). It is well known in [4] that a sense-preserving self-homeomorphism /
is quasisymmetric if and only if there exists some quasiconformal homeomor-
phism of D onto itself which has boundary values h.

Let QS(S') be the set of all quasisymmetric homeomorphisms of the unit

circle S!.  Then QS(S') is a group under the composition of homeomorphisms.
The universal Teichmiiller space 7 is defined as

T = QS(S")/Mob(s"),
where Mob(S!) is the group of Mébius transformations of S'. It is well known

that the universal Teichmiiller space plays a significant role in the study of
Teichmiiller theory. For more details we refer to the books [12, 13, 16, 18].
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DOUADY-EARLE EXTENSION 411

For every he QS(S!), it is proved in [9] that there exists a quasiconformal
extension of / to the unit disk, called the Douady-Earle extension, which is
conformally invariant, that is,

E(xohof)=0o0E(h)of

holds for any o« e Mob(S!). Douady-Earle extension is very important in
Teichmiiller theory, which provides a great convenience to discuss Teichmiiller
spaces of Riemann surfaces on the unit disk, for instance.

A quasisymmetric homeomorphism # of S' is called integrably asymptotic
affine [7] if it admits a quasiconformal extension into D such that its complex
dilatation u is square integrable in the Poincaré metric on D, that is

2
JJD% dxdy < oo.

It is proved in [7] that the complex dilatation of the Douady-Earle extension of
an integrably asymptotic affine homeomorphism / is square integrable in the
Poincaré metric on D.

An asymptotically conformal mapping f of D is a quasiconformal homeo-
morphism of D with complex dilatation y satisfying

Jim |u(2)] =0.

A quasisymmetric homeomorphism 4 of S! is called symmetric if it admits an
asymptotically conformal extension on D. It is proved in [11] that the Douady-
Earle extension of a symmetric homeomorphism is asymptotically conformal.

A quasisymmetric homeomorphism / of S! is said to be strongly quasisym-
metric if for each e > 0, there exists a ¢ > 0 such that

|E| <olI| = |h(E)| < elh(I)]

where I = S! is an interval and E < I is a measurable subset. It is equivalent to
that [3] & admits a quasiconformal extension into D which complex dilatation
induces a Carleson measure |u(z)|*/(1 — |z|*) dxdy on D. It is shown in [8] that
the complex dilatation of the Douady-Earle extension of a strongly quasisym-
metric homeomorphism induces a Carleson measure. Furthermore, / is strongly
quasisymmetric if and only if / is absolutely continuous and log 2’ € BMO(S'),
the space of integrable functions on S' of bounded mean oscillation (see [6, 10,
14, 20]).

A quasisymmetric homeomorphism /4 of S' is called strongly symmetric if /
is absolutely continuous and log 4’ e VMO(S!), the space of integrable functions
on S! of vanishing mean oscillation (see [14, 20, 21]). The BMO-Teichmiiller
space and VMO-Teichmiiller space are defined as the following models

T, = SQS(S')/Mob(S') and T, =SS(S!)/Mob(S!),

where SQS(S!) and SS(S!) are the sets of all strongly quasisymmetric and all
strongly symmetric homeomorphisms of the unit circle S' respectively. The
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BMO-Teichmiiller space and VMO-Teichmiiller space are two important sub-
spaces of the universal Teichmiiller space which are fully studied [1, 3, 5,
8, 23].

The purpose of this paper is to study the Douady-Earle extensions of
strongly symmetric homeomorphisms. It is obtained that /4 is a strongly sym-
metric homeomorphism if and only if 4 admits a quasiconformal extension
into D which complex dilatation x induces a vanishing Carleson measure
lu(2)|*/(1 = |z|*) dxdy on D. Moreover, it is proved that the complex dilatation
of the Douady-Earle extension of / properly induces this vanishing Carleson
measure. As application, it is gotten that the VMO-Teichmiiller space 7, is a
subgroup of the universal Teichmiiller space 7.

§2. Preliminaries

In this section, we recall some notions and basic results on BMO-functions,
A, weight functions and Carleson measures which will be needed in this paper.
For more details we refer to [6, 10, 14].

BMO(S!) is the space of all integrable functions on S' of bounded mean
oscillation (see [6, 10, 14, 20]). An integrable function u € L'(S") is said to be of
bounded mean oscillation if

1
l[ullgmo = su —J lu—uy| dO < o0,
r U

. . 1 .
where [ is any arc on S', |I| is the length of 7 and u; = mf,u d0 is the average

of u over I. VMO(S!) is the subspace of BMO(S!) which consists of all
vanishing mean oscillation functions. A function u € BMO(S') is said to be of
vanishing mean oscillation if

1
lim —J u—url df=0.
Ry M

Let 1= w(x) dx be a positive Borel measure on R, finite on compact sets.
w(x) is called an A, weight function [14], denoted by w e 4, if

u(E)/u(I) < C(E|/|T])"

holds for any interval / and any Borel subset E of I, where C > 0 and o > 0 are
constants independent of £ and I. Let he SS(S'), then /4 is strongly quasisym-
metric, and consequently /' € A,, (see [14]).

For every w € A, it holds the reverse Holder inequality [6]. So there exists
a constant ¢ >0 and p > 1 such that

(2.1) |17|J1 o (x) dx < c(ﬁj{ w(x) dx)p.

for every interval / in R.
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The Carleson sector S(/), based on I, is defined by

. 1 ;
S(I)—{Z—re’0:1—|27l Sr<l,e’0€l}.

A positive Borel measure 4 on D is called a bounded Carleson measure if there
exists a positive constant C such that

AS()) < C|I)
We say that 4 is a vanishing Carleson measure if
A(S(D) = o(1]), 1] — 0.

For a positive measure 2 on D*, replacing S(/) in the above definition by the
following Carleson sector:

_ Il
S*(I){zre’0:1<r§l+u,e’0€l},
2n

We similarly obtain the definition of a bounded or vanishing Carleson measure
on D*. Denote by CM(Q) and CM(Q) the set of all bounded Carleson mea-
sures and vanishing Carleson measures on Q. respectively.

We need a lemma in [23] for Carleson measure.

LemMA 2.1. For a positive measure A on D, set

Az) = JJD (=)0 = wl?) A(w) dudv

11— wz|*

Then A is a bounded or vanishing Carleson measure if A is a bounded or vanishing
Carleson measure on D.

The Douady-Earle extension w = E(h)(z) is defined by the equation

L[ A —w L=z
F(zw) _ELI i =0

For h e QS(S!), let v(h) denote the Beltrami coefficient of the inverse mapping
of the Douady-Earle extension E(%), and v denote the Beltrami coefficient of a
quasiconformal extension of #~'. Then we have the following result (for details,
see [15]).

LEmMMA 2.2. There exists a constant C(h) such that Yw e D

o _ o [ HOF (=P
L ol ()”D1—|v<c>|2 1=
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§3. Douady-Earle extension of a strongly symmetric homeomorphism

Recall that for any /e QS(S'), there exists a unique pair of conformal
mappings f: D — f(D) and g : D* — C\ f(D), called the normalized decompo-
sition of A, satisfying £(0) = f/(0)—1=0, g(co) =c0 and h=f'og on S!,
respectively. Furthermore, f can be extended to a quasiconformal mapping in
the whole plane with Beltami coefficient y,. At the same time, / is called the
normalized conformal welding mapping of f. It is known that 4 € QS(S"!) if and
only if 7~' € QS(S"). For heSS(S!), we have

PROPOSITION 3.1.  For any h e QS(S'), f, g are the above normalized decom-
position of h. The following conditions are equivalent:

(1) heSS(Sh);

(2) =1 eSS(Sh);

(3) There exists a quasiconformal extension y(z):D — D of h~! whose
Beltrami coefficient u induces a vanishing Carleson measure |u(z)|*/(1 — |z|*) dxdy
on D.

Proof. 1t should be pointed out that (1) < (2) is implied in [23]. For
completeness, we give the proof here.

Suppose that #eSS(S') and A= f~'og, where f, g are the normalized
decomposition of 4. Then log f/ € VMOA(D), the space of analytic functions
in D of vanishing mean oscillation (see Theorem 4.1 in [23]). It is known that
log ' € VMOA(D) if and only if the quasicircle I' = £(S!) = g(S') is asymptoti-
cally smooth (see Section 7.5 in [20]). Furthermore, we have h=!' =g~ 'o f =
(rjogoj) ' o(rjofoj), where j(z)=z"' is the standard reflection of the
unit circle S' and r is a constant such that r(jogoj)'(0)=1. So rjogo j
rjo foj are the normalized decomposition of #~'. Since I' is asymptotically
smooth, then rjogo j(S') =rj(T) is also asymptotically smooth. This means
h=' € SS(S') and (1) = (2). With similar discussion, (2) = (1).

Now we show that (1) < (3). It is known that /4 e SS(S!) if and only if
f can be extended to a quasiconformal mapping to the whole plane, denoted
also by f, whose complex dilatation g, satisfying |,u/-(z)|2/(|z|2—1)dxdye
CMy(D*) [23]. Defining ¢(z) =g~ 'o f(z), ze D*, then ¢(z) is the quasicon-
formal extension of A~! to D* with Beltrami coefficient v(z) = 4 (z) and
v(2)*/(|z]* = 1) dxdy € CMo(D*). By reflection, A~! may be extended to a
quasiconformal mapping ¥(z) to D whose Beltrami coefficient u(z) satisfies

1\ z
u(z) :v<E>Z_—2, zeD.

For any subarc I € S!(|I| <), let 21 be the subarc of S! with the same
center of I, |21| =2|I| and z e S(I). Then, by simple calculation, we get

2 2 2
” |,u(z)|2dxdy:JJ |v(2w)\ %dudvg “ |v(2W)| duds
sy 1 — |z sy lwl” =1 |w s+ |w|” =1

S8}
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where S’(I) is the refection sector of S(I), S*(2I) =« D* is the Carleson sector
over 21 on D* and S'(I) = S*(21).
For any given ¢ > 0, since |[v(w)|*/(|w|* — 1) dudv € CMy(D*), there exists a

0 > 0 such that
” O e < 2|1
se@n |w|* =1

holds for every subarc I = S' with |[I| <. So |u(z)|*/(1 — |2|?) dxdy € CMy(D)
and (1) = (3).

Conversely, if condition (3) holds, by quasiconformal reflection, there exists a
quasiconformal extensmn ¢(z) : D* — D* of h~! with Beltrami coefficient #4(2)
satisfying |1y (2 2)?/(|z]* = 1) dxdy e CMyp(D*). Let f=gog, 1t is jeasy to see
that f is the quasiconformal extension of f and |us(z 2)?/(|z]* = 1) dxdy €
CMy(D*). Thus (3) = (1). O

Now we prove that the complex dilatation of the Douady-Earle extension
of a strongly symmetric homeomorphism induces a vanishing Carleson measure
on D.

TueoreM 3.1. If he SS(SY), that is, h is a strongly symmetric homeomor-
phism on S'. Let u be the complex dzlatatzon of the Douady-Earle extension
® = E(h). Then it holds that |u(z)|*/(1 — |z|*) dxdy e CMy(D).

In order to prove Theorem 3.1, we need some preparations.

Set { = e*™/3 (k=1,2,3). For every weD, let 7 be the M&bius trans-
formation of D onto itself with 7(0) = w and ©({;) = w/|w|. Denote wy = 7({;)
(k=1,2,3) and let J, be the subarc of S! with endpoints w; and w; and
containing w,. Then we have the following lemma.

Lemma 3.1. Let h be a symmetric homeomorphism of S' and ® be the
Douady-Earle extension of h, then there exist positive constants C; and C,
depending only on h, such that

(3.1) 2(1 = |w]) < | < 27(1 = |w)),
L )] _ 1= o)) |~ ()]
3.2 — < <C———=
( ) Cl |Jw| 1— ‘W‘z : |Jw|
and
2
(3.3) wj a(w) < G

(1— o t(w))*"?

Proof. Since @ is the Douady-Earle extension of 4, it is bi-Lipschitz with
respect to the Poincaré metric and the Lipschitz constant C = C(K) depends only
on the maximal dilatation K = K¢ of ® [9]. Hence, ® ! is also bi-Lipschitz
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with respect to the Poincaré metric with the same Lipschitz constant C = C(K).
So,

S POl < p(@7 ()10 ()] = C(R)p()f,
which implies (3.3) with C, = C(K)? directly.

Let zx = h~'(wi) (k=1,2,3) and o be the Mébius transformation of D
onto itself with a({;) =z (k=1,2,3). Set ®* =7 'o®og. Then ®* is the
Douady-Earle extension of the sense-preserving quasisymmetric ®*|g =170
hoo and can be extended to a K = Kg-quasiconformal mapping of C onto itself
by reflection. Thus, ®*|4: is 7x-quasisymmetric by Corollary 3.10.4 in [2], where

N (1) = A(K)™ max{*, (K}, 1e(0,+o0)
and
(3.4)  A(K) =sup{|f(e?)]:f:C— C is K-q.c. and fixes 0, 1,0 < 0 < 2x}.

Therefore, by Proposition 5.21 in [20], there exists a constant ' € (0,1) which
depends only on K but not on w, such that |®*(0)] <+ < 1.

As ®* is the Douady-Earle extension of the sense-preserving quasisymmetric
®*|gi =1t'ohoao, it is bi-Lipschitz with respect to the Poincaré metric, where
the Lipschitz constant C(K) > 1 depends only on K [9]. Thus,

1+ @ '(0)] 1+ [@7(0)]
1@ (0)] I —|®7(0)]

< C(K)lo

This implies that
(3.5) |*1(0)] <ro < 1,
where ry is a constant depending only on K but not on the choice of w.

. ‘ ‘ 4 )
It is easy to see that 7({) = ({ +e™w)/(e™ + (W), where o = ?n —0 and 0 is
the argument of w. By a simple computation, we have

w1 — il _ V31— w) w2 — | _ V31— w)
&+ w7 G+ [wl]
and
1 1 —
oy — ] = YL D1 = o)

&+ Wl TS+ w] |
Consequently, it is gotten that |w; — wp| = |wy — ws| and
L—|w| < |wp —wy| <2(1 — |wl).

So, |wi —wy|, [wa—ws|, |w; —ws| are all comparable with 1— |w| and the
constants appeared in the comparisons are universal, and

[Jw| = w1 — wa| + w2 — ws| = 2(1 — |w]).
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By Jordan inequality,
|| = 2|wiwa| < mlwy — wy| < 27(1 — |wl).

Thus, (3.1) is true.
We now prove that |z; — z3|, |z2 — z3] and |z3 — z;| are all comparable with
1 —|® '(w)| and the constants appeared in the comparisons depend only on

K=K,
Let z=® '(w) and let (' € S! such that o(') = z/|z|. Set
_pl=d
al{)=e I at (eD,

where a € D and f € R are constants determined by . Then
=zl el e IG=Gl t-al||l—ad (o)
L=z o) —a(@ 1 (0)] [¢'=@*10)]  [1—abl[l —ag]
for | <i< j<3. If argae[-n/3,n/3), then

Il —at | >+3/2 and |1 —at| > V3)2.
Thus, by (3.5) and (3.6),

(3.6)

|Z| —Zz| < \/§ 16

(37) 1—z2l T 1-=r 3°

Similarly, if arga € [z/3,7) or [r,57/3), (3.7) is also true for replacing |z; — z»
by |z; — z3| or |z; — z3], respectively.
On the other hand,

L=z _Jzi—z _[G=@ ') |1 -a( 4 1
= = — T x—1 =
lzi =z = |z -zl G =Gl [1=a0*='(0)] ~ V3 1-r

for 1 <i<j<3. Since i is a symmetric homeomorphism and |w; —wy| =
[wo — w3, then |z; — z»|, |20 — z3] and |z3 — z;| can be compared with each other
and the constants in the comparisons depend only on K. Thus, all these three
quantities are all comparable with 1 —|z| and constants in the comparisons
depend only on ry = ro(K) but independent on w.

Therefore, there exists a constant C > 1 depending only on K such that

LI v) = b )l _ L=zl IR Ovn) = B ()]
C [wi — ws| 1 —|w| [wi — ws|
which implies (3.2) directly. The proof of Lemma 3.1 is completed. O

Now we prove the Theorem 3.1.

Proof. For every he SS(S!), by proposition 3.1, there exists a quasicon-
formal extension g of h~! satisfying |,ug(z)|2/(1 — |2|?) dxdy e CMy(D). Let v
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denote the Beltrami coefficient of the inverse mapping ® ! of the Douady-Earle
extension ®. By Lemma 2.2, there exists a constant C(/) such that Ywe D

W 1 OF (1 =)
= )P ()JJDI-—IﬂACNZ 11— wl*

dédn
Furthermore,

o(w)? 1= [ow))? 1y OF (1= w]?)(1 = (2%
1—wzscm”nl—mg(oﬁl—cf T dedn
C(h) “ g (O (1= w1 = )

R 17 1% e ¢ O AT

dédn

It follows from Lemma 2.1 that [o(w)|*/(1 —|w|?) dudv e CMy(D). In what
follows we prove that [o(w)|?/(1 —|w|?) dudve CMy(D) implies |u(z)|*/
(1 —|2)?) dxdy € CMy(D).

Since 4 e SS(S'), h is a symmetric homeomorphism [22], namely,

|A(1)|

h(5)|
holds for every pair of adjacent subarcs /; and 5L in [0,27n] with |[}] =
|| — 0.

For every I = S', set I =1; + 1] and 2] = L, + I, + I + I, where b, I, I},
I are adjacent subarcs with |I;| = |I]| = || = |I;]. Then we have

[h(l + B)| = 2[h(1)| + o(1) = [A(I)] + o(1)

=1+o0(1)

and
(I + L) = 2A(I))| + o(1) = [A(I)| + o(1)
as |I| — 0.. Thus,

—240(l), |1]—0..

Furthermore, for a positive integer N > 1, it is not hard to verify that

D =

where I and NI are the subarcs of S' with the same center and |NI| = N|I|.

Let zyp be the center of I and let D(2I) be the disk centered at z, and
D(2I)NdD =2I. Tt is easy to verify that the Carleson sector S(I) = D(2I) for
every I with |I| <z By reflections and pre-compositing a Teichmiiller shift
[24] (A Teichmiiller shift mapping on the unit disk D is the uniquely extremal
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mapping T[w;,w;] which sends w; to w, and is equal to the identity on JD),
® can be extended to a K'-quasiconformal mapping ® of C onto itself with
®|; = @, where K’ depends only on ®. Since it is clear that

—h < ®(z) — h
méﬁﬁww” &m_zg%M (z) = h(zo0)]

and

in |®(z) — < |h(21
;ﬁ%ﬁz)' (z) = h(zo)| < |A(2D)],

so, by Teichmiiller distortion theorem [17] and (3.8), we have

— K\h(21 K)\h(I1
Lmaxw— h(z0)| < A(K)AQD)] < 3K (D)

for sufficient small arc I, where A(K') is defined in (3.4) depending only on
the maximal dilatation K’. Choose an integer N’ depending only on K’ with
N' > 6nA(K'). Then by the definition of the Carleson sector, we have

O(S(1)) = S(N'h(I)).

Denote d/ = |u(z)|*/(1 — |z|?) dxdy and di' = [v(w)|*/(1 — |w|*) dudv. For
any given ¢ > 0, as we have just proved that A’ is a vanishing Carleson measure,
there exists a ¢’ > 0 such that

2(SW) <Ml

for every subarc J = S!' with |J| <§'/2.

Let J = N'h(I) be the open subarc of the same center point with 4(I) and
|J| = N'|h(I)]. Then there is a 6; > 0 such that |J| <4'/2 and ®(S(I)) = S(J)
holds for every subarc I on S' with |I| <J.

By the properties of integral,

~ _ u(z)? _ L —|w)* /
sy = ”s(z) 1|z dxdy = ”q><S(1)) 1- |<1)’1(w)|2J(IYI () d2

1 _ 2
< JJ %J@l(w/) di.
sy 1 — |0 (w)]

Then, from (3.2) and (3.3) in Lemma 3.1, we have

-1
(3.9) Awuhscjh”&w%ﬂ

di,

where C = C;C; is a constant depending only on K.
Let  be a lift of A~' to the real line R over the obvious covering
mapping. Then  is strictly increasing, continuous and /(0 + 27) — y(0) = 2x.
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As h=1 e SS(S'), ¥ is differentiable almost everywhere in R and
(h71)'(e") = e O=0y'(0).

Let 2J be the arc on S' with the same center as J and of length 2|J|.
Choose a component of the lift of 2J, which is an open interval, and denoted by
2J. Denote also by J the component lift of J contained in the component 2J
and I the component lift of I contained in y/(J). Let

$(0) = ' (0)12,(0),

where y,; is the characteristic function of 2J on R. Let

M0) = sup 1o | Joto) dr

OelJ’ lJll

be the Hardy-Littlewood maximal function of ¢, where the supremum is taken
over all intervals J' containing 6. Then

(3.10) M@(0) = |h=H(J")I/1'|

holds for all subarc J' = 2J containing 6.
By a property of Hardy-Littlewood maximal functions, {6 € R : M¢(0) > k}
is an open set for every k > 0. Thus,

{0€2]: Mp(0) >k} =2JN{0eR: Mp(0) > k}
is open and consequently,
(3.11) {02 : Mp(0) >k} =),
where {J;} is a finite or infinite sequence of disjoint intervals contained in J.

We may assume that |J| < g Let

T(J)) :{w: re ;1 —% <r< l,eiﬂeJ;}.
Then,
(3.12) {WGS(J)ZW>/€}CUT(J/).
Indeed, if we S(J) and
(3.13) w>k,

then by the definition of Carleson sector, 1—|w| < |J|/2z. So by (3.1) in
Lemma 3.1, we have |J,,| < |J| and consequently, J, = 2J. Thus, by (3.10)
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and (3.13), e :=w/|w|elJJ. If we¢l])T(J), then |Jj| < g(l — |w]) for J;

containing w/|w|. Thus, by (3.1), |J,| > |/i]. So, there exists a ¢ € J,\|JJ
such that M@(0") > k. This contradicts to (3.11). Therefore, (3.12) holds.
Since |J;| <2|J] <6', then for the above & > 0,

/V({w e S(J) % > k}) <N (T < |
w 7 i

—e|{0e2] : Mp(0) > k}|.

So, we have

-1
(3.14) “ =l 40 o aj M do.
S(J) ‘JW| 2J

Since /'(0) belongs to the class of weights A, it holds the inverse holder
inequality (2.1) for some p > 1 and ¢ > 0, that is,

1 1 p
3.15 —J r d@SC(—J ’d@) .
(3.15) 21J| 2J¢ 21J] 2le

By Holder inequality, for ¢ > 1, 1/p+1/q =1, we have

(3.16) LJ Mg do < (2))" (LJ(Mqﬁ)” d@)l/p.

Furthermore, by Muckenhoupt theory (see §VI.6 of [14]), there exists a constant
C, for p > 1, independent of ¢, such that

(3.17) LJ(MW do < J

(M¢)? do < c,,J ¢" do = c,,J W” do.
R R 2

7
From (3.15)-(3.17), we have
(3.18) J M$(0) do < (cc,,)‘/f’J W'(0) do.
27 27
Combining (3.9), (3.14) and (3.18), we get
AMS(D) < c’gJ W'(0) dO < C'elh ™' (27)]
27

for |I| <6, where C' = C(¢C,)"” and 2J = 2N'h(I). By (3.8),

|t (27)]

a7 = 2 o), 11— 0.



422 YAN WU AND YI QI

So for the above ¢ > 0, there exists a positive number J with J < J; such that
A(S(I)) < C'(2N" + 1)g|1|.

holds for every subarc I on S' with |[I| <d. Hence |u(z)|*/(1 —|z|?) dxdy e
CMy(D). The proof of this Theorem is completed. O

An application of Theorem 3.1

As an application of Theorem 3.1, we prove the following theorem.
THEOREM 4.1. T, is a subgroup of T.

Proof. 1t is clear that the universal Teichmiiller space 7" and the VMO-
Teichmiiller space T, can be identified as the spaces of all normalized quasisym-
metric and all strongly symmetric homeomorphisms of S' respectively. Here, a
homeomorphism of S! is called normalized if it fixes +1 and i.

Let hy,hy € T, be the normalized strongly symmetric homeomorphisms and
® = E(h;) be the Douady-Earle extension of /; with the Beltrami differential ;.
By Theorem 3.1, |u,(z)|*/(1 — |z|?) dxdy € CMy(D). Furthermore, by Proposi-
tion 3.1, there ex1sts a quas1conformal extension f of &, with Beltrarm differential
5 satlsfylng ln(2)12/(1 = |z|?) dxdy e CMo(D). Let p be the Beltrami differen-
tial of fo®!, then for any z e D,

2 2
p(®(2))]* = 2(Ju (2)]” + [ (2)]7)

2
t(z) — i (2)

R AETE] B A e
Thus,
J Lm % ducy = ” %%(z) dxdy
2 2
[l 1|_+|Z||ﬂz( o 1_|q)|f|z)|21o(z>dxdy
Il s 1 qu)|2| s Jo(2)- 1““2:2 dxdy

- |z k(2
CJJ 5Jo(z) - 5 dxdy,
s 1 —|®(2))| L=

where S(NJ) is a carleson cantor containing CI)’I(S( )) and J = ®~(1).
Since |u;(z)|?/(1 — |z|?) dxdy and |uy(2)|>/(1 — |z|*) dxdy are vanishing Car-
leson measures on D, similar to proof of Theorem 3.1, we have

“ O —o(|I), 1] —o.
s()

11— |w]?
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So |7(w)|?/(1 = |w|?) dxdy e CMy(D). 1t is obvious that fo®' is the quasi-

conformal extension of the normalized homeomorphism /#, o (hl)_l. Therefore,
hy o (hl)*1 e T, from Proposition 3.1 and 7, is a subgroup of T. O
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