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CONVEXITY PROPERTIES OF DIRICHLET INTEGRALS

AND PICONE-TYPE INEQUALITIES

Lorenzo Brasco and Giovanni Franzina

Abstract

We focus on three di¤erent convexity principles for local and nonlocal variational

integrals. We prove various generalizations of them, as well as their equivalences.

Some applications to nonlinear eigenvalue problems and Hardy-type inequalities are

given. We also prove a measure-theoretic minimum principle for nonlocal and non-

linear positive eigenfunctions.

1. Introduction

1.1. A general overview. The aim of this paper is to study three elementary
convexity principles which have found many applications in eigenvalue problems
and functional inequalities. In particular, we will focus on their mutual relations
and prove that they are indeed equivalent. In order to smoothly introduce the
reader to the subject and clarify the scopes of the paper, we start with the three
basic examples which will serve as a model for the relevant generalizations
considered in the sequel:

� the first one is the convexity of the Hamiltonian function for a system of
one free massive particle in classical mechanics

1

2

jfj2

m
;

which is jointly convex as a function both of the mass m > 0 and of the
conjugate momentum f A RN ;

� the second one is the convexity of the quantity j‘uj2 along curves of the
type

st ¼ ðð1� tÞu2 þ tv2Þ1=2; t A ½0; 1�;
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where u; vb 0 are di¤erentiable functions, i.e.

j‘stj2 a ð1� tÞj‘uj2 þ tj‘vj2:

This is also sometimes called hidden convexity;
� the third and last one is the so-called1 Picone identity

‘u;‘
v2

u

� �� �
a j‘vj2;

where again u; vb 0 are di¤erentiable functions, this time with u > 0.
As a well-known consequence of the convexity of the previous Hamiltonian, we
get that

r 7! j‘rðxÞj2

rðxÞ ;

is convex for every x. This in turn implies convexity of the Fisher information
with respect to a reference probability measure2 n. For every probability mea-
sure m, this functional is given by

JðmjnÞ ¼
ð
j‘ log rj2r dn ¼

ð j‘rj2
r

dn; if mf n and r ¼ dm

dn
;

and observe that the latter can also be re-written as

JðmjnÞ ¼ 4

ð
j‘ ffiffiffi

r
p j2 dn; if mf n and r ¼ dm

dn
:

From the previous we thus get for rt ¼ ð1� tÞr0 þ tr1ð
j‘ ffiffiffiffi

rt
p j2 dna ð1� tÞ

ð
j‘ ffiffiffiffiffi

r0
p j2 dnþ ð1� tÞ

ð
j‘ ffiffiffiffiffi

r1
p j2 dn:

Thus in particular if

rt ¼ ð1� tÞu2 þ tv2;

1This formula is called ‘‘identity’’ even if it is an inequality, because the di¤erence of the two

terms can be written as

‘u;‘
v2

u

� �� �
� j‘vj2 ¼ � ‘v� ‘u

v

u

���� ����2;
which is indeed non positive. The latter is the equality which appears in the original paper [25] by

Mauro Picone, after whom the formula is named. The identity is used there to obtain comparison

principles for ordinary di¤erential equations of Sturm-Liouville type.

2Here mf n means that m is absolutely continuous with respect to n. We denote by dm=dn the

Radon-Nykodim derivative of m with respect to n.
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we then obtain that the Dirichlet integral is convex along curves of the form

st ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� tÞu2 þ tv2

q
; t A ½0; 1�;

which is the hidden convexity exposed above. This striking convexity property of
the Dirichlet integral seems to have been first noticed by Benguria in his Ph.D.
dissertation (see [5] for example). Note that along the curve of functions st we
have

kstk2L2 ¼ ð1� tÞkuk2L2 þ tkvk2L2 ;

then if u, v belong to the unit sphere of L2, the same holds true for st. The
latter incidentally happens to be a constant speed geodesic for the metric defined
by

d2ðu; vÞ ¼
ð
u2 � v2
�� �� dx; u; v A L2:

As one should expect, the geodesic convexity described above is helpful to get
uniqueness results in eigenvalue problems. We recall that eigenvalues of the
Dirichlet-Laplace operator �D on an open set WHRN such that jWj < y are
defined as the critical points of the Dirichlet integral on the manifold

S2ðWÞ ¼ u A W 1;2
0 ðWÞ :

ð
W

u2 dx ¼ 1

� �
:

This constraint naturally introduces Lagrange multipliers, which by homogeneity
are the eigenvalues of the Laplace operator, i.e. any constrained critical point u is
a weak solution of

�Du ¼ lu; in W; u ¼ 0; on qW:ð1:1Þ

One says that the function u is an eigenfunction corresponding to the eigenvalue l.
Then the idea is very simple: for a convex minimization problem, critical

points are indeed minimizers. This means that hidden convexity trivializes the
global analysis for the Dirichlet energy on S2ðWÞV fub 0g and there cannot be
any constant sign critical point u other than its global minimizer. Since the
strong minimum principle states that any constant sign eigenfunction (up to a
sign) is strictly positive, this imposes any eigenfunction vb 0 to be associated
with the least eigenvalue

l1ðWÞ ¼ min
u AW 1; 2

0
ðWÞ

ð
W

j‘uj2 dx :

ð
W

juj2 dx ¼ 1

� �
;

which turns out to be simple as well.
Another way to prove the same result would be precisely by means of Picone

inequality. Let us call u1 a first eigenfunction of W, i.e. a function achieving
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l1ðWÞ. If vb 0 is a nontrivial eigenfunction with eigenvalue l, then by strong
minimum principle v > 0 and by Picone inequality one would get

l ¼ l

ð
W

v
u21
v
¼
ð
W

‘v;‘
u21
v

� �� �
dxa

ð
W

j‘u1j2 dx ¼ l1ðWÞ;

and thus l1ðWÞ ¼ l since l1ðWÞ is the minimal eigenvalue.
Of course, in the case of the Laplace operator �D simplicity of l1ðWÞ and

uniqueness of constant sign eigenfunctions are plain consequences of the Hilbertian
structure and of the strong minimum principle for supersolutions of uniformly
elliptic equations. Indeed, any first eigenfunction u1 must have constant sign
and can never vanish on the interior of the connected set W. Then any other
eigenfunction has to be orthogonal in L2ðWÞ to u1 (i.e. it has to change sign)
unless it is proportional to u1 . . .

1.2. Aim of the paper. . . . nevertheless, the advantage of the hidden con-
vexity exposed above is that it does not involve any orthogonality concept and
applies to general Dirichlet energies of the form

ð
W

Hð‘uÞ dx;ð1:2Þ

where z 7! HðzÞ is convex, even and positively homogeneous of degree p > 1.
Moreover, we prove in Proposition 2.6 that this remains true for the whole class
of interpolating curves

st ¼ ðð1� tÞuq þ tvqÞ1=q; t A ½0; 1�:ð1:3Þ

with 1a qa p. We point out that q ¼ 1 corresponds to convexity in the usual
sense and that for q > p the property ceases to be true, see Remark 2.8.

Like in the previous model case p ¼ q ¼ 2 and HðzÞ ¼ jzj2, this permits to
infer (see Theorem 5.1) that the only constant sign critical points of (1.2) on the
manifold

SqðWÞ ¼ u A W
1;p
0 ðWÞ :

ð
W

jujq dx ¼ 1

� �
; 1 < qa p;

are indeed the global minimizers, which are unique up to a sign. Observe that
these critical points yield the following nonlinear version of Helmoltz equation
(1.1), i.e.

�div ‘Hð‘uÞ ¼ lkukp�q

LqðWÞjuj
q�2

u; in W; u ¼ 0 on qW:

We refer the reader to [18] for a detailed account on this nonlinear eigenvalue
problem in the case HðzÞ ¼ jzjp.
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The previous general version of the hidden convexity can be seen again as a
consequence of the joint convexity of the generalized Hamiltonian3

ðm; fÞ 7! HðfÞ
mb

; for 0a ba p� 1;ð1:4Þ

which in turn gives the convexity of the information functional

JH;bðmjnÞ ¼
ð
H ‘ log rð Þrp�b dn; if mf n and r ¼ dm

dn
;

where the latter can also be written as

JH;bðmjnÞ ¼
p

p� b

� �pð
Hð‘rðp�bÞ=pÞ dn; if mf n and r ¼ dm

dn
:

Finally, hidden convexity is in turn equivalent (see Section 3) to the validity of the
following generalized Picone inequality

‘Hð‘uÞ;‘ vq

uq�1

� �� �
aHð‘vÞq=pHð‘uÞðq�pÞ=p;ð1:5Þ

for all di¤erentiable functions u; vb 0 with u > 0, which is proved in Proposition
2.9. Here again we consider 1 < qa p.

We point out that equivalence between Picone-type inequalities and the
hidden convexity property seemed to be unknown: indeed, one of the main scopes
of this paper is to precise the relation between these two properties.

Up to now, we have discussed applications of these convexity principles to
uniqueness issues in linear and nonlinear eigenvalue problems. But Picone-type
inequalities can be used to prove a variety of di¤erent results. Without any
attempt of completeness (we refer to the seminal paper of Allegretto and Huang
[2] and to the recent paper [21] for a significant account on the topic), we focus
on applications to Hardy-type functional inequalities.

The idea is that when u solves a quasilinear equation with principal part
given by

�div ‘Hð‘uÞ;

by integrating (1.5) and using the equation one can get a lower bound on
Ð
Hð‘vÞ

which does not depend on derivatives of u. This procedure is now well under-
stood, see the recent paper [12].

In Theorem 5.4 this is applied to get a sharp anisotropic version of the
Hardy inequality which reads as follows

3The parameters b and q are linked through the relation

b

p
þ 1

q
¼ 1:
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N þ g� p

p

� �pð
RN

jvjpF�ðxÞg�p
dxð1:6Þ

a

ð
RN

F ð‘vÞpF�ðxÞg dx; v A Cy
0 ðRNnf0gÞ;

for 1 < p < N and g > p�N. Here F is any C1 strictly convex norm and F�
denotes the corresponding dual norm, see Section 5.2. For the case g ¼ 0 a
di¤erent proof, based on symmetrization arguments, can be found in [29].

The same method can be used to get, for example, the following nonlocal
version of the Hardy inequality

C

ð
RN

jvjp

jxjsp dxa

ð
RN

ð
RN

jvðxÞ � vðyÞjp

jx� yjNþsp
dxdy; for all v A W

s;p
0 ðRNÞnf0g;ð1:7Þ

by means of the following discrete version of Picone inequality

juðxÞ � uðyÞjp�2ðuðxÞ � uðyÞÞ vðxÞp

uðxÞp�1
� vðyÞp

uðyÞp�1

" #
a jvðxÞ � vðyÞjp;ð1:8Þ

with the choice uðxÞ ¼ jxj�sp. The constant C ¼ CðN; s; pÞ > 0 is sharp and for
the sake of completeness we provide details about its computation in Appendix B.
We point out that (1.7) was proved by this same method by Frank and Seiringer
in [17], which is there called ground state substitution. Other fractional Hardy
inequalities have appeared in the literature, see [6, 16]. In particular, in the
recent paper [11] Davila, del Pino and Wei observed that a suitable fractional
Hardy inequality on surfaces plays a role in the stability of nonlocal minimal
cones, see [11, Corollary 11.1].

Noteworthy, not only does the Picone inequality (1.5) have its discrete
counterpart (1.8), but also the hidden convexity of the Dirichlet integral has a
nonlocal version. Indeed, the Gagliardo seminormð ð juðxÞ � uðyÞjp

jx� yjNþsp
dxdy

turns out to be convex along curves of the type (1.3), whenever u, v are positive.
Correspondingly, fractional Picone inequalities (or equivalently hidden convexity)
are used to get uniqueness results for positive eigenfunctions of the integro-
di¤erential operator defined by the following principal value integral

ð�DpÞsuðxÞ ¼ 2 p:v:

ð
RN

juðxÞ � uðyÞjp�2ðuðxÞ � uðyÞÞ
jx� yjNþsp

dy:

We point out that in order to get uniqueness results for constant sign nonlocal
eigenfunctions, i.e. for solutions of

ð�DpÞsu ¼ luq�1; in W; u ¼ 0; in RNnW;
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as in the local case, one needs to know that non-negative eigenfunctions are
indeed strictly positive, at least for W connected. A proof of this strong minimum
principle for nonlocal eigenfunctions is provided in the appendix and seems to
be new. The proof is based on a logarithmic lemma recently established in [13].
After the acceptance of the present paper, we were informed about the interesting
manuscript [14] which contains the proof of a weak Harnack’s inequality for
supersolutions (as well as a proper Harnack’s inequality for solutions) of the
operator ð�DpÞs. The interested reader may find in that article a more detailed
account about nonlocal Harnack’s inequalities. Nevertheless, those results are
not used in this paper.

1.3. Plan of the paper. In Section 2 we present and prove some general-
izations of the three convexity principles discussed above, then Section 3 is
devoted to discuss their equivalences. Section 4 deals with the nonlocal/discrete
versions of these convexities. Applications are then given in Sections 5 and 6.
The paper is concluded by two Appendices: one contains a new strong minimum
principle for positive nonlocal eigenfunctions (Theorem A.1), while the second
contains some computations related to the determination of the sharp constant
in (1.7).

Acknowledgements. We thank Agnese Di Castro, Tuomo Kuusi and Giam-
piero Palatucci for having kindly provided us a copy of their work [13], as well
as Enea Parini for pointing out a flaw in a preliminary version of the proof of
Theorem A.1. Part of this work has been done during the conferences ‘‘Linear
and Nonlinear Hyperbolic Equations’’ and ‘‘Workshop on Partial Di¤erential
Equations and Applications’’, both held in Pisa and hosted by Centro De Giorgi
and the Departement of Mathematics of the University of Pisa. We acknowl-
edge the two institutions as well as the organizers for the nice atmosphere and
the excellent working environment. The second author has been supported by
the ERC Starting Grant No. 258685 ‘‘AnOptSetCon’’.

2. Three convexity principles

We start with a couple of classical results, which will be useful in order to
prove some of the results of the paper. We give a proof for the reader’s
convenience.

Lemma 2.1. Let F : RN ! ½0;þyÞ be a positively 1-homogeneous function,
i.e.

FðlzÞ ¼ lFðzÞ; z A RN ; lb 0;

which is level-convex, i.e.

Fðð1� tÞzþ twÞamaxfF ðzÞ;FðwÞg; z;w A RN ; t A ½0; 1�:ð2:1Þ
Then F is convex.
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Proof. Let x0; x1 A RN , if Fðx0Þ ¼ Fðx1Þ ¼ 0 then by (2.1)

F ðð1� tÞx0 þ tx1Þ ¼ 0; t A ½0; 1�:

Let us now suppose for example that Fðx0Þ > 0 and take e > 0, we define

z ¼ x0

Fðx0Þ
; w ¼ x1

Fðx1Þ þ e
and t ¼ Fðx1Þ þ e

Fðx0Þ þ Fðx1Þ þ e
:

By using the 1-homogeneity of F , we then obtain

F ðð1� tÞzþ twÞ ¼ F ðx0 þ x1Þ
F ðx0Þ þ Fðx1Þ þ e

;

while

maxfF ðzÞ;F ðwÞg ¼ max 1;
F ðx1Þ

F ðx1Þ þ e

� �
¼ 1:

Then (2.1) implies

Fðx0 þ x1ÞaFðx0Þ þ Fðx1Þ þ e; x0; x1 A RN ;

and since e > 0 is arbitrary, we get

Fðx0 þ x1ÞaFðx0Þ þ Fðx1Þ; x0; x1 A RN ;

i.e. F is subadditive. This in turn implies the desired result, as

Fðð1� tÞx0 þ tx1ÞaF ðð1� tÞx0Þ þ F ðtx1Þ ¼ ð1� tÞFðx0Þ þ tFðx1Þ;

which concludes the proof. r

Lemma 2.2. Let 1 < p < y and let H : RN ! ½0;þyÞ be a C1 positively
p-homogeneous convex function. If HðzÞ ¼ 0 then we have ‘HðzÞ ¼ 0 as well.

Proof. The statement is evident if z ¼ 0, thus let us suppose that z0 0.

Assume on the contrary that ‘HðzÞ0 0, then there exists h A RN with unit norm
such that h‘HðzÞ; hi ¼ j‘HðzÞj. The function gðtÞ ¼ Hðzþ thÞ has the follow-
ing properties

g A C1ðRÞ; gðtÞb 0; g 0ð0Þ ¼ j‘HðzÞj > 0 ¼ gð0Þ:

This gives a contradiction, thus ‘HðzÞ ¼ 0. r

2.1. Convexity of generalized kinetic energies. The first convexity principle
we consider is the following.
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Proposition 2.3. Let 1 < p < y and let H : RN ! ½0;þyÞ be a convex
positively p-homogeneous function. For every 0 < ba p� 1 the function

ðm; fÞ 7! HðfÞ
mb

; ðm; fÞ A ð0;þyÞ � RN ;

is convex.

Proof. For b ¼ p� 1, it is su‰cient to observe that

HðfÞ
mp�1

¼ sup
ðt;xÞ

tmþ hx; fi : tþH �ðxÞa 0f g; m > 0; f A RN ;ð2:2Þ

where H � denotes the Legendre-Fenchel transform of H. This would give the
desired result, since the supremum of a‰ne functions is a convex function.

For completeness, we verify formula (2.2): since for every m > 0 the map
t 7! tm is increasing, the maximization in (2.2) is unchanged if we replace the
inequality constraint by the condition tþH �ðxÞ ¼ 0. Then the right-hand side
of (2.2) is equivalent to

sup
x ARN

hx; fi�H �ðxÞm ¼ m sup
x ARN

x;
f

m

� �
�H �ðxÞ

" #
¼ mH �� f

m

� �
;

which gives the desired conclusion, by using that H �� ¼ H and the positive
homogeneity of H. For 0 < b < p� 1, let us set for simplicity

Fðm; fÞ ¼ HðfÞ
mp�1

and cðmÞ ¼ mQ; m > 0; f A RN ;

where Q ¼ b=ðp� 1Þ < 1, then we can rewrite

HðfÞ
mb

¼ FðcðmÞ; fÞ;

where F is jointly convex thanks to the first part of the proof and decreasing
in its first argument, while c is concave, then it is standard to see that their
composition is a convex function. Indeed, for every t A ½0; 1�, m0;m1 > 0 and
f0; f1 A RN , we get

Fðcðð1� tÞm0 þ tm1Þ; ð1� tÞf0 þ tf1ÞaFðð1� tÞcðm0Þþ tcðm1Þ; ð1� tÞf0 þ tf1Þ
a ð1� tÞFðm0; f0Þ þ tFðm1; f1Þ;

which gives the desired result. r

A couple of comments on the previous result are in order.

Remark 2.4. As already recalled in the Introduction, the main instance of
functions considered in Proposition 2.3 is the following one

ðm; fÞ 7! jfj2

m
; f A RN ; m > 0:ð2:3Þ
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If one regards the scalar quantity m as a mass and the vector quantity f as the
moment of this mass, i.e. if we decompose f as f ¼ vm with v A RN (the velocity
of the mass particle), then we would have

jfj2

m
¼ jvj2m:

This simple remark is the crucial ingredient of the so-called Benamou-Brenier
formula for the 2-Wasserstein distance (see [4, 9]). The latter is a distance on the
space of probability measures PðWÞ over W, defined by

w2ðr0; r1Þ
2 :¼ inf

T

ð
W�W

jx� TðxÞj2dr0 : Tar0 ¼ r1

� �
;

for every r0; r1 A PðWÞ. Here Tar0 denotes the push-forward of the measure r0.
The Benamou-Brenier formula asserts that we have

w2ðr0; r1Þ
2 ¼ inf

ð1
0

ð
W

jvj2mt dxdt :
qtmt þ divðvtmtÞ ¼ 0

m0 ¼ r0 and m1 ¼ r1

� �
:

The latter consists in minimizing the integral of the total kinetic energy (the
action), under a conservation of mass constraint. Thanks to the previous discus-
sion, this dynamical problem can be transformed in a convex variational problem
under linear constraint, once we introduce the variable

ft ¼ vtmt:

For generalizations of this transport problem involving functions of the form
HðfÞm�b the reader can consult [10] and [15].

Remark 2.5 (Sharpness of the condition on b). The previous convexity
property fails to be true in general for b > p� 1. Let us fix f0 A RNnf0g and
m0 > 0. We take f1 ¼ cf0 and m1 ¼ cm0 with c > 1, then we consider the
convex combination

ðmt; ftÞ ¼ ðð1� tÞm0 þ tm1; ð1� tÞf0 þ tf1Þ:

For every p� 1 < b < p by strict concavity of the function t 7! tp�b we have

jftj
p

m
b
t

¼ ð1� tþ tcÞp�b jf0j
p

m
b
0

> ð1� tÞ jf0j
p

m
b
0

þ tcp�b jf0j
p

m
b
0

¼ ð1� tÞ jf0j
p

m
b
0

þ jf1j
p

m
b
1

:

2.2. Hidden convexity. The next convexity principle has been probably
first identified by Benguria in his Ph.D. dissertation in the case p ¼ q ¼ 2 and
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HðzÞ ¼ jzj2, see [5]. See also [3] and [27] for some generalizations in the case
q ¼ p.

Proposition 2.6 (General hidden convexity). Let 1 < p < y and 1 < qa p.
Let H : RN ! ½0;þyÞ be a positively p-homogeneous convex function. For every
pair of di¤erentiable functions u0; u1 b 0, we define

stðxÞ ¼ ½ð1� tÞu0ðxÞq þ tu1ðxÞq�1=q t A ½0; 1�; x A W:

Then there holds

Hð‘stÞa ð1� tÞHð‘u0Þ þ tHð‘u1Þ; t A ½0; 1�:ð2:4Þ

Proof. The proof for the case p ¼ q can be found for example in [7]. In
order to consider the case q < p, we observe that by Lemma 2.1, the function
F ¼ Hq=p is a positively q-homogeneous convex function. Then the first part of
the proof implies

Fð‘stÞa ð1� tÞF ð‘u0Þ þ tFð‘u1Þ;

and by raising to the power p=q and using the convexity of t 7! tp=q, we end up
with (2.4). r

Remark 2.7. We remark that neither strict convexity of H nor strict
positivity of the functions is needed in the previous result, unless one is interested
in identification of equality cases in (2.4). Moreover, H is only required to be
only positively homogeneous, i.e. it is not necessarily even.

Remark 2.8 (Sharpness of the condition on q). Again, the condition qa p
is vital. Indeed, by taking a non-constant u0 0 0 and u1 ¼ cu0 for c > 1, then
we have

stðxÞ ¼ ðð1� tÞuq
0 þ tu

q
1 Þ

1=q ¼ ðð1� tÞ þ tcqÞ1=qu0;
and

Hð‘stÞ ¼ ðð1� tÞ þ tcqÞp=qHð‘u0Þ > ð1� tÞHð‘u0Þ þ tHð‘u1Þ;

by strict concavity of t 7! tp=q.

2.3. Picone inequalities. We now prove a general version of the so-called
Picone inequality. The usual one, i.e.

j‘ujp�2‘u;‘
vp

up�1

� �� �
a j‘vjp; vb 0; u > 0;

proved by Allegretto and Huang, see [2, Theorem 1.1] corresponds to taking
p ¼ q and HðzÞ ¼ jzjp in (2.5) below.
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Proposition 2.9 (General Picone inequality). Let 1 < qa p and let H : RN

! ½0;þyÞ be a C1 positively p-homogeneous convex function. For every pair of
positive di¤erentiable functions u, v with u > 0, we have

1

p
‘Hð‘uÞ;‘ vq

uq�1

� �� �
aHð‘vÞq=pHð‘uÞðp�qÞ=p:ð2:5Þ

Proof. Let us start with the case p ¼ q. We use the convexity inequality

HðzÞbHðwÞ þ h‘HðwÞ; z� wi;

with the choices

z ¼ ‘v and w ¼ ‘u
v

u

� �
:

By using the p-homogeneity of H we then get

Hð‘vÞb v

u

� �p
Hð‘uÞ þ h‘Hð‘uÞ;‘vi v

u

� �p�1

� h‘Hð‘uÞ;‘ui v

u

� �p

¼ h‘Hð‘uÞ;‘vi v

u

� �p�1

� 1� 1

p

� �
h‘Hð‘uÞ;‘ui v

u

� �p

¼ 1

p
‘Hð‘uÞ;‘ vp

up�1

� �� �
;

which concludes the proof of (2.5) for q ¼ p.
We now take 1 < q < p and set

FðzÞ ¼ HðzÞq=p; z A RN ;

which is convex and positively q-homogeneous4, then the first part of the proof
implies

1

q
‘F ð‘uÞ;‘ vq

uq�1

� �� �
aF ð‘vÞ:

Observe that if Hð‘uÞ ¼ 0, then we have ‘Hð‘uÞ ¼ 0 as well (see Lemma 2.2)
and (2.5) holds true. Thus we can assume Hð‘uÞ0 0. The previous inequality
is equivalent to

1

p
Hð‘uÞðq�pÞ=p ‘Hð‘uÞ;‘ vq

uq�1

� �� �
aHð‘vÞq=p:

If we multiply the previous by Hð‘Þðp�pÞ=p we eventually attains the conclusion.
r

4Also observe that F A C 1ðRNÞ. It is su‰cient to check that F is di¤erentiable at the origin and

that its di¤erential vanishes at z ¼ 0. Indeed, by using homogeneity we have

FðhÞ � Fð0Þ ¼ HðhÞq=p ¼ jhjqH h

jhj

� �q=p
¼ oðjhjÞ; h A RNnf0g such that jhjf 1:
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Remark 2.10 (Equivalent form of the Picone inequality). For p0 q, as a
plain consequence of Young inequality, (2.5) implies

1

p
‘Hð‘uÞ;‘ vq

uq�1

� �� �
a

q

p
Hð‘vÞ þ p� q

p
Hð‘uÞ:ð2:6Þ

Observe that for q ¼ 1, the previous inequality reduces to

Hð‘uÞ þ h‘Hð‘uÞ;‘v� ‘uiaHð‘vÞ;
which just follows from the convexity of z 7! HðzÞ. On the other hand, by
applying (2.6) with the choices (here e > 0)

U ¼ ðeþHð‘uÞÞ�1=p
u and V ¼ ðeþHð‘vÞÞ�1=p

v;

we get

1

p
ðeþHð‘uÞÞðq�pÞ=pðeþHð‘vÞÞ�q=p ‘Hð‘uÞ;‘ vq

uq�1

� �� �
a 1:

By multiplying the previous by ðeþHð‘uÞÞðp�qÞ=pðeþHð‘vÞÞq=p and then letting
e goes to 0, we get (2.5).

Remark 2.11 (Non-homogeneous functions). All the convexity principles
considered in this section have been proven under the assumption that H is
positively p-homogeneous. Nevertheless, the results are still true for some H
violating this condition. This is the case for example of the anisotropic function

HðzÞ ¼
XN
i¼1

HiðziÞ; where HiðtÞ ¼ jtjpi ;

and 1 < p1 a � � �a pN . Namely, by applying (2.5) to each Hi and then sum-
ming up, we get

XN
i¼1

juxi j
pi�2

uxi
vqi

uqi�1

� �
xi

a
XN
i¼1

jvxi j
qi=pi juxi j

ðpi�qiÞ=pi ;

for every q1; . . . ; qN such that 1 < qi a pi. In the very same way from (2.4) we get

XN
i¼1

jðstÞxi j
pi a ð1� tÞ

XN
i¼1

juxi j
pi þ t

XN
i¼1

jvxi j
pi ; t A ½0; 1�;

where st ¼ ðð1� tÞuq þ tvqÞ1=q and 1 < qa p1. From Proposition 2.3 we can
infer the convexity of the function

ðm; fÞ 7!
XN
i¼1

jfjpi
mbi

; ðm; fÞ A ð0;þyÞ � RN ;

for every b1; . . . ; bN such that 0 < bi a pi � 1.
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3. Equivalences

In this section we will show that the three convexity principles proved in the
previous section are indeed equivalent. In other words, they are just three
di¤erent ways to look at the same principle.

3.1. Kinetic energies and Hidden convexity. Let u be a di¤erentiable
function on an open set WHRN , which is everywhere positive. We first observe
that if in the generalized kinetic energy of Proposition 2.3 we make the choice

m ¼ u and f ¼ ‘u;

then we obtain the functional

u 7! Hð‘uÞ
ub

:

which is convex in the usual sense, provided that 0 < ba p� 1, thanks to
Proposition 2.3. This convexity is indeed equivalent to (2.4), as we now show.

Indeed, let us pick two di¤erentiable functions u, v which are everywhere
positive. We observe that by setting U ¼ uq, V ¼ vq and gt ¼ ð1� tÞU þ tV ,
we get by Proposition 2.3

Hð‘gtÞ
g
b
t

a ð1� tÞHð‘UÞ
U b

þ t
Hð‘VÞ
V b

:

By using the homogeneity of H, the previous is equivalent to

Hð‘gðp�bÞ=pÞa ð1� tÞHð‘U ðp�bÞ=pÞ þ tHð‘V ðp�bÞ=pÞ:
If we now choose b in such a way that5

p� b

p
¼ 1

q
; i:e: b ¼ p 1� 1

q

� �
;

we see that the previous inequality becomes

Hð‘stÞa ð1� tÞHðuÞ þ tHðvÞ;
where st ¼ g

1=q
t ¼ ðð1� tÞuq þ tvqÞ1=q as always.

3.2. Hidden convexity and Picone. We first show that

ðHidden convexityÞ ) ðPiconeÞ:
As before, given u, v positive di¤erentiable functions with u > 0, we set

stðxÞ ¼ ½ð1� tÞuðxÞq þ tvðxÞq�1=q t A ½0; 1�; x A W:ð3:1Þ

5Observe that such a choice is feasible, since

p 1� 1

q

� �
a p� 1 , p

p� 1
a

q

q� 1
, pb q:
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Then by using the convexity of t 7! Hð‘stÞ, we easily get

Hð‘stÞ �Hð‘uÞ
t

aHð‘vÞ �Hð‘uÞ:

Observe that again by convexity, the incremental ratio on the left-hand side is
monotone, then there exists the limit for t monotonically converging to 0, i.e. we
obtain

d

dt
Hð‘stÞ

� �
jt¼0

aHð‘vÞ �Hð‘uÞ:ð3:2Þ

The previous is indeed equivalent to (2.5). To see this, it is su‰cient to compute
the derivative on the left-hand side. We have

‘st ¼ s
1�q
t ½ð1� tÞ‘uuq�1 þ t‘vvq�1� and

d

dt
st ¼

1

q
s
1�q
t ðvq � uqÞ;

so that we can compute

d

dt
‘st ¼ ð1� qÞs�q

t ½ð1� tÞ‘uuq�1 þ t‘vvq�1� d
dt
st

þ s
1�q
t ½‘vvq�1 � ‘uuq�1�:

Finally, we get

d

dt
‘st

� �
jt¼0

¼ �ðq� 1Þ‘u
u

d

dt
st

� �
t¼0

þ ‘v
v

u

� �q�1

� ‘u

¼ � q� 1

q

� �
‘u

v

u

� �q
� 1

� �
þ ‘v

v

u

� �q�1

� ‘u:

We can now compute the left-hand side of (3.2) and obtain

d

dt
Hð‘stÞ

� �
jt¼0

¼ ‘Hð‘stÞ;
d

dt
‘st

� �
jt¼0

¼ ‘Hð‘uÞ;‘vh i v

u

� �q�1

� pðq� 1Þ
q

Hð‘uÞ v

u

� �q
� p

q
Hð‘uÞ:

By inserting this in (3.2), observing that

1

q
‘Hð‘uÞ;‘ vq

uq�1

� �� �
¼ ‘Hð‘uÞ;‘vh i v

u

� �q�1

� pðq� 1Þ
q

Hð‘uÞ v

u

� �q
;

and multiplying everything by q=p, we eventually get

1

p
‘Hð‘uÞ;‘ vq

uq�1

� �� �
a

q

p
Hð‘vÞ þ p� q

p
Hð‘uÞ:
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For p ¼ q this is exactly Picone inequality (2.5), while for q < p we just have to
observe that by Remark 2.10 the previous is equivalent to (2.5).

Let us now show that

ðPiconeÞ ) ðHidden convexityÞ:

As we said, inequality (2.5) is actually equivalent to (3.2), for every v, u and st
curve of the form (3.1) connecting them. We now fix u, v and st, then by (3.2)
we get

Hð‘vÞ �Hð‘stÞb
d

ds
Hð‘~sssÞjs¼0;

and

Hð‘uÞ �Hð‘stÞb
d

ds
Hð‘ŝssÞjs¼0;

where s 7! ~sss and s 7! ŝss are the curves of the form (3.1) connecting st to v and
st to u respectively. In other words, we have

~sss ¼ ½ 1� t� sð1� tÞð Þuq þ tþ sð1� tÞð Þvq�1=q ¼ stþsð1�tÞ; s A ½0; 1�;
and

~sss ¼ ½ 1� tþ stð Þuq þ t� stð Þvq�1=q ¼ st�st; s A ½0; 1�:
Thus we get

Hð‘vÞ �Hð‘stÞb
d

ds
Hð‘~sssÞjs¼0 ¼

d

ds
Hð‘stþsð1�tÞjs¼0

¼ d

ds
Hð‘ssÞjs¼tð1� tÞ

and similarly

Hð‘uÞ �Hð‘stÞb� d

ds
Hð‘ssÞjs¼tt:

Keeping the two informations together, we finally get

Hð‘stÞ �Hð‘uÞ
t

a
Hð‘vÞ �Hð‘stÞ

1� t
;

which is equivalent to Hð‘stÞa ð1� tÞHð‘uÞ þ tHð‘vÞ.

4. The discrete case

We now prove analogous results for functions which are not necessarily
di¤erentiable. Roughly speaking, we are going to replace derivatives by finite
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di¤erences. For 1 < p < y and 0 < s < 1, the resulting convexity properties
have applications to nonlocal integrals of the typeð

RN

ð
RN

juðxÞ � uðyÞjp

jx� yjNþsp
dxdy; ðGagliardo seminormÞ;

or

sup
0<jhj

ð
RN

juðxþ hÞ � uðxÞjp

jhjsp dx; ðNikolskii seminormÞ;

and more generallyðy
0

sup
0<jhjat

ð
RN

juðxþ hÞ � uðxÞjp

tsp
dx

 !r=p
dt

t
; pa r < y; ðBesov seminormÞ:

Proposition 4.1 (Discrete hidden convexity). Let 1 < p < y and 1 < qa p.
For every u0; u1 b 0, we define

stðxÞ ¼ ½ð1� tÞu0ðxÞq þ tu1ðxÞq�1=q t A ½0; 1�; x A RN :

Then we have

jstðxÞ � stðyÞjp a ð1� tÞju0ðxÞ � u0ðyÞjpð4:1Þ

þ tju1ðxÞ � u1ðyÞjp; t A ½0; 1�; x; y A RN :

Proof. The proof is as in [19], which deals with the case p ¼ q. We
observe that

st ¼ kðð1� tÞ1=qu0; t1=qu1Þklq ;

where we set kzkl q ¼ ðjz1jq þ jz2jqÞ1=q for z A R2. The triangular inequality
implies that

j kzkl q � kwkl q jq a kz� wkq
l q ; z;w A R2;

and by using this with the choices

z ¼ ðð1� tÞ1=qu0ðxÞ; t1=qu1ðxÞÞ and w ¼ ðð1� tÞ1=qu0ðyÞ; t1=qu1ðyÞÞ;

we get

jstðxÞ � stðyÞjq a ð1� tÞju0ðxÞ � u0ðyÞjq þ tju1ðxÞ � u1ðyÞjq:

By raising both sides to the power p=q and using the convexity of t 7! tp=q, we
get (4.1). r

Proposition 4.2 (Discrete Picone inequality). Let 1 < p < y and 1 < qa p.
Let u, v be two measurable functions with vb 0 and u > 0, then
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juðxÞ � uðyÞjp�2ðuðxÞ � uðyÞÞ vðxÞq

uðxÞq�1
� vðyÞq

uðyÞq�1

" #
ð4:2Þ

a jvðxÞ � vðyÞjqjuðxÞ � uðyÞjp�q:

Proof. We notice at first that is su‰cient to prove

juðxÞ � uðyÞjq�2ðuðxÞ � uðyÞÞ vðxÞq

uðxÞq�1
� vðyÞq

uðyÞq�1

" #
a jvðxÞ � vðyÞjq;ð4:3Þ

since (4.2) then follows by multiplying the previous inequality by juðxÞ � uðyÞjp�q.
At this aim, let us start by observing that if uðxÞ ¼ uðyÞ, inequality (4.3) is

trivially satisfied. We take then uðxÞ0 uðyÞ and we can always suppose that
uðxÞ < uðyÞ, up to exchanging the role of x and y. We further observe that if
vðyÞ ¼ 0, inequality (4.3) is again trivially satisfied, since

juðxÞ � uðyÞjq�2ðuðxÞ � uðyÞÞ vðxÞq

uðxÞq�1
� vðyÞq

uðyÞq�1

" #
a 0:

We can thus suppose that vðyÞ0 0, then we rewrite the left-hand side of (4.3) as

juðxÞ � uðyÞjq�2ðuðxÞ � uðyÞÞ vðxÞq

uðxÞq�1
� vðyÞq

uðyÞq�1

" #

¼ uðxÞq vðyÞ
uðyÞ

� �q
1� uðyÞ

uðxÞ

� �q�1
vðxÞuðyÞ
vðyÞuðxÞ

� �q
� uðyÞ

uðxÞ

� �" #

while the right-hand side of (4.3) rewrites as

jvðxÞ � vðyÞjq ¼ uðxÞq vðyÞ
uðyÞ

� �q
vðxÞuðyÞ
vðyÞuðxÞ

� �
� uðyÞ

uðxÞ

����
����
q

:

Then if we set

A ¼ vðxÞuðyÞ
vðyÞuðxÞ and t ¼ uðyÞ

uðxÞ ;

the previous manipulations show that (4.2) is equivalent to the following

ð1� tÞq�1ðAq � tÞa jA� tjq; for 0a ta 1;

The previous elementary inequality is true (see [17, Lemma 2.6]), thus we get the
desired conclusion. r

5. Some applications: local integrals

5.1. Positive eigenfunctions. In what follows, we denote by WHRN an
open connected set such that jWj < y. For 1 < p < y, as it is customary we
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denote by W
1;p
0 ðWÞ the closure of Cy

0 ðWÞ with respect to the Lp norm of the
gradient. We also take H : RN ! ½0;yÞ to be a C1 convex p-homogeneous
function such that

1

C
jzjp aHðzÞaCjzjp; z A RN ;

for some Cb 1. Then for 1 < qa p, we set

lp;qðWÞ ¼ min
u AW 1; p

0
ðWÞ

ð
W

Hð‘uÞ dx : kukLqðWÞ ¼ 1

� �
:ð5:1Þ

Theorem 5.1 (Uniqueness of positive eigenfunctions). Let 1 < p < y and
1 < qa p. Let l > 0 be such that there exists a non trivial function u A W

1;p
0 ðWÞ

verifying

� 1

p
div ‘Hð‘uÞ ¼ luq�1; ub 0; in W:

Then we have

l

ð
W

jujq dx
� �ðq�pÞ=q

¼ lp;qðWÞ;ð5:2Þ

and v ¼ ukuk�1
LqðWÞ is a minimizer of the variational problem in (5.1).

Proof. We first observe that u > 0 almost everywhere6 in W, by the strong
minimum principle (see for example [28, Theorem 1.2]). We also notice that the
case p ¼ q is now well-established (see for example [2, 7, 21, 27]), we limit
ourselves to consider the case q < p.

The proof is just based on an application of Proposition 2.9. We observe
that v is a solution of

� 1

p
div ‘Hð‘vÞ ¼ lkukq�p

LqðWÞv
q�1; v > 0; in W:

Moreover, v is admissible for the variational problems defining lp;qðWÞ, thus by
testing the previous equation with v itself and using the homogeneity of H, we
get

lkukq�p
LqðWÞ b lp;qðWÞ:

6Actually, the much stronger result

inf
K

ub
1

CK

; for every compact K T W;

holds. Here we want to point out that the weaker information ‘‘u > 0 almost everywhere’’ su‰ces for

this argument to work.
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Let u1 A W
1;p
0 ðWÞ be a function achieving the minimum in the right-hand side of

(5.1). Then we have

lkukq�p

LqðWÞ ¼ lkukq�p

LqðWÞ

ð
W

u
q
1 dx ¼ lkukq�p

LqðWÞ

ð
W

vq�1 u
q
1

vq�1
dx

¼ 1

p

ð
W

‘Hð‘vÞ;‘ u
q
1

vq�1

� �� �
dx

a

ð
W

Hð‘u1Þq=pHð‘vÞðp�qÞ=p
dx:

If we now apply Hölder’s and Young’s inequality and use the equation solved by
v, the previous gives the desired result. r

Remark 5.2. Of course, a completely equivalent proof of the previous result
could use Proposition 2.6, as in [7]. As remarked in the Introduction, we believe
that a direct application of hidden convexity provides a cleaner justification of
the result, while on the other hand Picone inequality o¤ers a quicker proof. An
alternative proof can be found in [24], later refined by Kawohl and Lindqvist
in [20].

Remark 5.3 (Sharpness of the condition qa p). For a general open set W
with finite measure, the previous result can not hold true for q > p. Indeed, let
us consider an annular domain T ¼ fx A RN : 1 < jxj < rg and take HðzÞ ¼ jzjp,
then the problem

lrad
p;q ðTÞ ¼ min

W
1; p
0

ðTÞ

ð
T

j‘ujp dx : u radial function; kukLqðTÞ ¼ 1

� �
;

admits a minimizer u0 A W
1;p
0 ðTÞ, which is a positive solution of

�Dpu ¼ lrad
p;q ðTÞuq�1; in T ; with

ð
T

jujq dx ¼ 1:

On the other hand, Nazarov in [23, Proposition 1.2] has proved that if q > p one
can always take r su‰ciently close to 1 such that minimizers of (5.1) are not
radial. This clearly means that

lrad
p;q ðTÞ > lp;qðTÞ:

5.2. Hardy-type inequalities. As another application of the general Picone
inequality (2.5), we have the following family of sharp inequalities.

Theorem 5.4 (Weighted Hardy inequalities with general norms). Let
F : RN ! ½0;þyÞ be a C1 strictly convex norm. Let 1 < p < N, for every
g > p�N we have
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N þ g� p

p

� �pð
RN

jvjpF�ðxÞg�p
dxð5:3Þ

a

ð
RN

Fð‘vÞpF�ðxÞg dx; v A C1
0 ðRNnf0gÞ;

where F� is the dual norm defined by

F�ðzÞ ¼ sup
x00

x

FðxÞ ; z
� �

; z A RN :

Proof. We start proving (5.3) for positive C1
0 ðRNnf0gÞ functions. We take

b > 0 and set

uðxÞ ¼ F�ðxÞ�b; x A RNnf0g:

Observe that u is a C1 function in RNnf0g such that

�divðF�ðxÞgF ð‘uÞp�1‘F ð‘uÞÞð5:4Þ

¼ b p�1½N � p� bðp� 1Þ þ g�up�1F�ðxÞg�p; in RNnf0g:

Indeed, we recall the following relations between F and F� (see [26] for example)

F ð‘F�ðxÞÞ ¼ 1 and ‘Fð‘F�ðxÞÞ ¼
x

F�ðxÞ
; x0 0:ð5:5Þ

Of course

‘u ¼ �bF�ðxÞ�b�1‘F�ðxÞ; x0 0;

by using (5.5) and the homogeneity of F we get

F ð‘uÞp�1 ¼ b p�1F�ðxÞ�ðbþ1Þðp�1Þ ¼ bp�1F�ðxÞ�bpþb�p;

and still by (5.5) and the fact that ‘F is 0-homogeneous, we also have

‘Fð‘uÞ ¼ �‘Fð‘F�ðxÞÞ ¼ � x

F�ðxÞ
; x0 0:

Thus we get

�divðF�ðxÞgF ð‘uÞp�1‘Fð‘uÞÞ ¼ b p�1 divðF�ðxÞ�b pþb�pþg
xÞ

¼ b p�1½N � bpþ b � pþ g�F�ðxÞ�bðp�1Þþg�p;

as desired, where we used that

h‘F�ðxÞ; xi ¼ F�ðxÞ; x0 0;

again by homogeneity. Finally, by using the definition of u, we get

F�ðxÞ�bðp�1Þþg�p ¼ up�1F�ðxÞg�p:
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Then u verifies

bp�1½N � bpþ b � pþ g�
ð
RN

up�1F�ðxÞg�pj dx

¼
ð
RN

F�ðxÞgFð‘uÞp�1h‘F ð‘uÞ;‘ji dx; j A C1
0 ðRNnf0gÞ:

We test the previous equation with j ¼ vpu1�p, where v A C 1
0 ðRNnf0gÞ is positive.

We get

b p�1½N � bpþ b � pþ g�
ð
RN

vpF�ðxÞg�p
dx

¼
ð
RN

F�ðxÞgF ð‘uÞp�1 ‘F ð‘uÞ;‘ vp

up�1

� �� �
dx:

We can now use Proposition 2.9 with the choice HðzÞ ¼ FðzÞp, so to obtain

bp�1½N � bpþ b � pþ g�
ð
RN

vpF�ðxÞg�p
dxa

ð
RN

F ð‘vÞpF�ðxÞg dx

In order to conclude, it is now su‰cient to observe that the function

b 7! bp�1½N � bpþ b � pþ g�;
is maximal for b ¼ ðN þ g� pÞ=p. The previous argument gives (5.3) for a
positive v A C1

0 ðRNnf0gÞ. Of course, the previous proof is still valid for posi-
tive Lipschitz functions supported in RNnf0g. The result for a general v A
C1

0 ðRNnf0gÞ then follows by writing v ¼ vþ � v� and observing that vþ, v� are
positive Lipschitz functions with support in RNnf0g. r

Remark 5.5. By taking g ¼ 0 in (5.3), we have the usual Hardy inequality
on the whole space with respect to a general norm, i.e.

N � p

p

� �pð
RN

jvj
F�ðxÞ

� �p
dxa

ð
RN

Fð‘vÞp dxð5:6Þ

A di¤erent proof of (5.6) (based on symmetrization techniques) can be found in
[29, Proposition 7.5]. For g0 0 and F being the Euclidean norm, a related
inequality can be found in [1].

6. Some applications: nonlocal integrals

6.1. Positive eigenfunctions. We denote by WHRN an open connected set,
which is now supposed to be bounded. Let 1 < p < y and 0 < s < 1, in what
follows we denote by W

s;p
0 ðWÞ the completion of Cy

0 ðWÞ with respect to the norm

kukW s; p
0

ðWÞ ¼
ð
RN

ð
RN

juðxÞ � uðyÞjp

jx� yjNþsp
dxdy

 !1=p
:
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As before, for 1 < qa p we introduce the first eigenvalue

ls
p;qðWÞ ¼ min

u AW s; p
0

ðWÞ
fkukp

W
s; p
0

ðWÞ : kukLqðWÞ ¼ 1g;ð6:1Þ

the reader is referred to [8, 19, 22] for a more detailed account about the case
q ¼ p. We notice that a minimizer u of the previous problem is a weak solution of

ð�DpÞsu ¼ ls
p;qðWÞjujq�2

u; in W;

which means thatð
RN

ð
RN

juðxÞ � uðyÞjp�2ðuðxÞ � uðyÞÞ
jx� yjNþsp

ðjðxÞ � jðyÞÞ dxdy ¼ ls
p;qðWÞ

ð
W

jujq�2
uj dx;

for every j A W
s;p
0 ðWÞ.

Theorem 6.1 (Uniqueness of positive eigenfunctions). Let 1 < p < y,
0 < s < 1 and 1 < qa p. Let l > 0 be such that there exists a non trivial
function u A W

s;p
0 ðWÞ verifying

ð�DpÞsu ¼ ljujq�2
u; ub 0; in W:

Then we have

l

ð
W

jujq dx
� �ðq�pÞ=q

¼ l s
p;qðWÞ;ð6:2Þ

and v ¼ ukuk�1
LqðWÞ is a minimizer of the problem in (6.1).

Proof. At first, it is again crucial to observe that u > 0 almost everywhere
in W, thanks to the minimum principle of Theorem A.1. Then the result for the
case p ¼ q follows by using [19, Theorem 4.1]. We now consider the case q < p.

Again, we observe that v solves

ð�DpÞsv ¼ lkukq�p

LqðWÞv
q�1; u > 0; in W:

and since v is admissible for the variational problems defining ls
p;qðWÞ we get

lkukq�p

LqðWÞ b ls
p;qðWÞ:

Let u1 A W
s;p
0 ðWÞ be a function achieving the minimum in the right-hand side of

(6.1). Then again we have

lkukq�p

LqðWÞ ¼ lkukq�p

LqðWÞ

ð
W

vq�1 u
q
1

vq�1
dx

¼
ð
RN

ð
RN

jvðxÞ � vðyÞjp�2ðvðxÞ � vðyÞÞ
jx� yjNþsp

u1ðxÞq

vðxÞq�1
� u1ðyÞq

vðyÞq�1

" #
dxdy

a

ð
RN

ð
RN

ju1ðxÞ � u1ðyÞjq

jx� yjNðq=pÞþsq

jvðxÞ � vðyÞjp�q

jx� yjNððp�qÞ=pÞþsðp�qÞ dxdy

791convexity properties and picone-type inequalities



where we used Proposition 4.2. If we now apply Hölder’s and Young’s
inequalities with exponents p=q and p=ðp� qÞ, the previous gives the desired
result. r

6.2. Hardy-type inequalities. As in the local case, by means of the discrete
Picone inequality (4.2) we can prove a nonlocal Hardy inequality, like in [17].
The idea is still to look at power-type positive solutions of

ð�DpÞsu ¼ lup�1; in RNnf0g:

The latter is the content of the next technical result.

Lemma 6.2. Let 1 < p < y and b; r > 0. Then the function

f ðxÞ ¼
ð
RN

j jxj�b � jyj�bjp�2ðjxj�b � jyj�bÞ
jx� yjNþr

dy; x A RN ;

is radial and bð1� pÞ � r homogeneous.

Proof. Let us pick x10x2 such that jx1j ¼ jx2j. Let us set call R : RN ! RN

the linear isometry defined by the reflection in the hyperplan

p ¼ fx A RN : hx; x1 � x2i ¼ 0g:

Then by changing variables we have

f ðx1Þ ¼
ð
RN

j jx1j�b � jRzj�bjp�2ðjx1j�b � jRzj�bÞ
jx1 � RzjNþr

dz

¼
ð
RN

j jx2j�b � jRzj�bjp�2ðjx2j�b � jRzj�bÞ
jRx2 � RzjNþr

dz

¼
ð
RN

j jx2j�b � jzj�bjp�2ðjx2j�b � jzj�bÞ
jx2 � zjNþr

dz ¼ f ðx2Þ;

where we used that Rx2 ¼ x1, that jRzj ¼ jzj and the linearity of R. This shows
that f is radial.

For the second part, it is su‰cient to observe that

f ðtxÞ ¼
ð
RN

jt�bjxj�b � jyj�bjp�2ðt�bjxj�b � jyj�bÞ
jtx� yjNþr

dy

¼ t�bðp�1Þ�N�r

ð
RN

j jxj�b � jzj�bjp�2ðjxj�b � jzj�bÞ
jx� zjNþr

tN dz

¼ t�bðp�1Þ�rf ðxÞ; x A RN ;

for all t > 0, which gives the desired conclusion. r
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We then have the following sharp Hardy inequality for the fractional Sobolev
space W s;p, first proved in [17].

Theorem 6.3 (Fractional Hardy inequality). Let s A ð0; 1Þ and 1 < p < y
such that sp < N. Then there exists a constant C ¼ CðN; s; pÞ > 0 (see equation
(B.2) below) such that

C

ð
RN

jvjp

jxjsp dxa

ð
RN

ð
RN

jvðxÞ � vðyÞjp

jx� yjNþsp
dxdy;ð6:3Þ

for all v A Cy
0 ðRNnf0gÞ.

Proof. We recall that a positively a-homogeneous function u which is
radially simmetric, that is

uðxÞ ¼ jðjxjÞ x A RN ;

is uniquely determined modulo a multiplicative constant, namely uðxÞ ¼ jð1Þjxja.
By this elementary observation, we can deduce from Lemma 6.2 that the function
uðxÞ ¼ jxj�b is a solution ofð

RN

ð
RN

juðxÞ � uðyÞjp�2ðuðxÞ � uðyÞÞ
jx� yjNþsp

ðjðxÞ � jðyÞÞ dxdy

¼ CðbÞ
ð
RN

up�1jxj�sp
jðxÞ dx; for all j A Cy

0 ðRNnf0gÞ;

where

CðbÞ ¼ 2

ð
RN

j jxj�b � jyj�bjp�2ðjxj�b � jyj�bÞ
jx� yjNþsp

dy; x A SN�1;

and the previous integral is constant for x A SN�1, thanks to Lemma 6.2. Then,
if one picks v A Cy

0 ðRNnf0gÞ positive and plugs in j ¼ vpu1�p as a test function
in the previous equation, it turns out that

CðbÞ
ð
RN

jvjpjxj�sp
dxa

ð
RN

ð
RN

jvðxÞ � vðyÞjp

jx� yjNþsp
dxdy:ð6:4Þ

An optimization over b leads to the desired result, see Appendix B for more
details. r

Appendix A. A minimum principle for positive nonlocal eigenfunctions

In the following, we provide a proof of a minimum principle for positive
weak supersolutions to equation

ð�DpÞsu ¼ 0; in W; u1 0 in RNnW:
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i.e. for functions u A W
s;p
0 ðWÞ such thatð

RN

ð
RN

juðxÞ � uðyÞjp�2ðuðxÞ � uðyÞÞ
jx� yjNþsp

ðjðxÞ � jðyÞÞ dxdyb 0;

for all j A Cy
0 ðWÞ; jb 0:

Let x0 be any fixed point in W, and for every r > 0 let Brðx0Þ denote the ball of
radius r centered at x0. The main ingredient of our result is the following
lemma, which is a consequence of a more general logarithmic estimate recently
established by Di Castro, Kuusi and Palatucci in [13].

DKP Logarithmic Lemma. Let 1 < p < y, s A ð0; 1Þ and u A W
s;p
0 ðWÞ be a

supersolution such that ub 0 in B2rðx0Þ T W. Then for every 0 < d there holdsð
Br

ð
Br

log
dþ uðxÞ
dþ uðyÞ

� �����
����
p

1

jx� yjNþsp
dxdyðA:1Þ

aCrN�sp d1�prsp
ð
RNnB2r

u�ðyÞp�1

jy� x0jNþsp
dyþ 1

( )
;

where u� ¼ maxf�u; 0g and C ¼ CðN; p; sÞ > 0 is a constant.

We then have the following minimum principle.

Theorem A.1. Let WHRN be an open bounded set, which is connected.
Let s A ð0; 1Þ, 1 < p < y and u A W

s;p
0 ðWÞ be a weak supersolution such that ub 0

in W. Let us suppose that

u2 0 in W:ðA:2Þ

Then u > 0 almost everywhere in W.

Proof. We first prove that for every K T W compact connected, if

u2 0 in K ;ðA:3Þ

then u > 0 almost everywhere in K .
Let K T W be a connected compact set, then KH fx A W : distðx; qWÞ > 2rg

for some r > 0. We then observe that K can be covered by a finite number of
balls Br=2ðx1Þ; . . . ;Br=2ðxkÞ such that xi A K and

jBr=2ðxiÞVBr=2ðxiþ1Þj > 0; i ¼ 1; . . . ; k � 1:ðA:4Þ

Let us now suppose that u ¼ 0 on a subset of K with positive measure. Then for
some i A f1; . . . ; k � 1g, we have that the set

Z :¼ fx A Br=2ðxiÞ : uðxÞ ¼ 0g;
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has positive measure. We define

FdðxÞ ¼ log 1þ uðxÞ
d

� �
; x A Br=2ðxiÞ;

for d > 0 and claim that the following Poincaré inequality holds trueð
Br=2ðxiÞ

jFdjp dxa
rNþsp

jZj

ð
Br=2ðxiÞ

ð
Br=2ðxiÞ

jFdðxÞ � FdðyÞjp

jx� yjNþsp
dxdy:ðA:5Þ

Indeed, observe that

FdðxÞ ¼ 0 for every x A Z;

hence for every x A Br=2ðxiÞ and y0 x with y A Z, we get

jFdðxÞjp ¼
jFdðxÞ � FdðyÞjp

jx� yjNþsp
jx� yjNþsp:

Now integrating with respect to y A Z gives

jZj jFdðxÞjp a max
x;y ABr=2ðxiÞ

jx� yjNþsp

 !ð
Br=2ðxiÞ

jFdðxÞ � FdðyÞjp

jx� yjNþsp
dy;

which proves (A.5) up to an integration with respect to x A Br=2ðxiÞ.
We now observe that

log
dþ uðxÞ
dþ uðyÞ

� �����
����
p

¼ FdðxÞ � FdðyÞj jp;

thus if we combine (A.5), (A.1) and observe that u� 1 0, we getð
Br=2ðxiÞ

log 1þ u

d

� �����
����
p

dxaC
r2N

jZj ;ðA:6Þ

with C independent of d. By letting d go to 0 in (A.6), we can then infer

u ¼ 0 almost everywhere in Br=2ðxiÞ:

By using property (A.4), we can repeat the previous argument for the balls
Br=2ðxi�1Þ and Br=2ðxiþ1Þ and so on, up to obtain that u ¼ 0 almost everywhere
on K . This clearly contradicts (A.3), thus u > 0 almost everywhere in K .

Let us now assume (A.2). Since W is connected, there exists a sequence of
connected compact sets Kn T W such that

jWnKnj <
1

n
and u2 0 in Kn:

Then, by the first part of the proof u > 0 almost everywhere on each Kn. By
letting n go to y, we get the conclusion. r
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Appendix B. Optimal constant for the fractional Hardy inequality

In Section 6 we used that uðxÞ ¼ jxj�b is a solution of

ð�DpÞsu ¼ CðbÞ u
p�1

jxjsp ; in RNnf0g:

In this appendix we discuss some features of the constant

CðbÞ ¼ 2

ð
RN

j jxj�b � jyj�bjp�2ðjxj�b � jyj�bÞ
jx� yjNþsp

dy; x A SN�1;

and determines the best constant in (6.3), see equation (B.2) below. Compu-
tations are very much the same as in the paper [17] by Frank and Seiringer, up to
some simplifications. For simplicity we focus on the case Nb 2 and sp < N.

Lemma B.1. Let Nb 2, 0 < s < 1 and 1 < p < y. For every 0 < % < 1 the
function

GðbÞ ¼ ½1� %N�sp�bðp�1Þ�½1� %b�p�1; b > 0;

is maximal for b ¼ ðN � spÞ=p.

Proof. We just have to di¤erentiate the function G. Indeed, we have

G 0ðbÞ ¼ ðp� 1Þ log %%N�sp�bðp�1Þ½1� %b�p�1

� ðp� 1Þ%b log %½1� %N�sp�bðp�1Þ�½1� %b�p�2;

so that

G 0ðbÞb 0 , %N�sp�bðp�1Þ½1� %b� � %b½1� %N�sp�bðp�1Þ�a 0

that is if and only if b is such that

%N�sp�bð p�1Þ
a %b:

By passing to the logarithm, we obtain the assertion. r

We can then determine the maximal values of CðbÞ.

Lemma B.2. Let Nb 2, 0 < s < 1 and 1 < p < y. For every b > 0 we have

0 < CðbÞaC
N � sp

p

� �
:

Proof. We recall that

CðbÞ ¼ 2

ð
RN

j jxj�b � jyj�bjp�2ðjxj�b � jyj�bÞ
jx� yjNþsp

dy; for every x A SN�1;
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and the right-hand side is independent of x A SN�1. Thus we have

CðbÞ ¼ 2

HN�1ðSN�1Þ

ð
SN�1

ð
RN

j jxj�b � jyj�bjp�2ðjxj�b � jyj�bÞ
jx� yjNþsp

dydHN�1ðxÞ:

We observe that for every y A RNnf0g we can write

SN�1 ¼ 6
t A ½�1;1�

StðyÞ;

where

St ¼ x A SN�1 : x;
y

jyj

� �
¼ t

� �
F

ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p
SN�2:

By using this and exchanging the order of integration, we then obtain

CðbÞ ¼ 2

HN�1ðSN�1Þ

ð
RN

ð
SN�1

j jxj�b � jyj�bjp�2ðjxj�b � jyj�bÞ
jx� yjNþsp

dHN�1ðxÞ dy

¼ HN�2ðSN�2Þ
HN�1ðSN�1Þ

ð
RN

"
j1� jyj�bjp�2ð1� jyj�bÞ

�
ð1
�1

ð1� t2ÞðN�3Þ=2

ð1� 2tjyj þ jyj2ÞðNþspÞ=2 dt

#
dy

where we used that

jx� yj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2tjyj þ jyj2

q
; for every x A St:

We now set

Fð%Þ ¼ HN�2ðSN�2Þ
ð1
�1

ð1� t2ÞðN�3Þ=2

ð1� 2t%þ %2ÞðNþspÞ=2 dt;ðB:1Þ

then by using polar coordinates we get

CðbÞ ¼ 2

ðy
0

%N�1j1� %�bjp�2ð1� %�bÞFð%Þ d%

¼ �2

ð1
0

%N�1j1� %�bjp�1Fð%Þ d%

þ 2

ðy
1

%N�1j1� %�bjp�1Fð%Þ d%:

We now perform the change of variable % ¼ r�1 in the second integral and
observe that

Fð1=rÞ ¼ rNþspFðrÞ:
Thus we obtain
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CðbÞ ¼ �2

ð1
0

%N�1j1� %�bjp�1Fð%Þ d%þ 2

ð1
0

%�1þspj1� %bjp�1Fð%Þ d%

¼ �2

ð1
0

%N�1�bðp�1Þj%b � 1jp�1Fð%Þ d%þ 2

ð1
0

%�1þspj1� %bjp�1Fð%Þ d%

¼ 2

ð1
0

%sp�1½1� %N�sp�bðp�1Þ�j1� %bjp�1Fð%Þ d%:

We now observe that the term into square brackets is positive if

ba
N � sp

p� 1
:

Moreover, thanks to Lemma B.1 the integrand is maximal for

b ¼ N � sp

p
;

and thus we get the conclusion. r

Remark B.3. Observe that we have

C
N � sp

p

� �
¼ 2

ð1
0

%sp�1½1� %ðN�spÞ=p�pFð%Þ d%;ðB:2Þ

where the function F is defined in (B.1). Thus this is the best constant in the
Hardy inequality (6.3) (see [17, Section 3.3] for more details).
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