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A DECOMPOSITION THEOREM OF THE MOBIUS ENERGY I
DECOMPOSITION AND MOBIUS INVARIANCE

AYA ISHIZEKI AND TAKEYUKI NAGASAWA!

Abstract

The Mobius energy, defined for closed curves embedded in R”, is decomposed into
three parts. It is called the Mobius energy since it is invariant under Mobius trans-
formations. An alternative proof of the Mobius invariance is given using the decom-
position. Furthermore the invariance of each part of decomposition is discussed.

1. Introduction

Let f:R/LZ>5s+— f(s) eR" be a closed curve in R” with total length L,
where s is an arc-length parameter, ie., || f'(s)[|[g- = 1. We denote the distance
between f(s;) and f(s2) along the closed curve by Z(f(s1), f(s2)).

O’Hara [7] defined the Mobius energy & as

1 1
1 E(f) =p.v. — dsdsy,
( ) (f) p JJ(Hf(S])_f(SZ)hZI" Q(f(sl)vf(sz))2> o

where p.v. [[ = lim,_ ”\sl—.rzba is Cauchy’s principal value.

Remark 1.1. This is the original definition of O’Hara. In fact, the inte-
gration is not a principal value since the integrand is non-negative. However,
many quantities derived from the energy, for example the variational formulae,
contain terms each of which is not absolutely integrable. Therefore, when
deforming the expression of the energy, we always deal with it as Cauchy’s
principal value at first, and investigate its absolute integrability later.

Each term of the integrand in (1) is not integrable on (R/LZ)?. The
subtraction of the two terms leads to the integrability, and therefore it is not
easy to find the proper domain of £. Recently, Blatt [1] showed that £(f) < oo
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738 AYA ISHIZEKI AND TAKEYUKI NAGASAWA

if and only if fe X = H"*(R/LZ)N H3*(R/LZ) and it is bi-Lischitz. In this
paper, we establish a decomposition of &£ as

Ef)=&(f)+ &) +4,

where
&(f) = ” Mi(f) dsidsy
(R/LZ)*

and .#; is the energy density of &; (see the forthcoming Theorem 2.1). The first
part &£ is a positive definite functional whose form implies the proper domain of
€ 1is X. The second one, &>, has a determinant structure which characterizes the
cancellation of the integrand. Indeed each part &£ can be defined as an integral
functional on X, ie., whose integrand is absolutely integrable for f e X.

The energy & is called the M&bius energy since it is invariant under Mobius
transformations; this fact was shown by Freedman-He-Wang [3]. In section 3 we
give an alternative proof of this, and discuss the Mdbius invariance of each &;
in X (Theorems 3.1 and 3.2). After discussing our results with O’Hara, he
informed us that our second energy &, is the same as the O’Hara-Solanes energy
E., up to multiplication by a constant. The energy E_ was first defined in [8§]
and they established its Mobius invariance for sufficiently smooth f. Note that
C* is not dense in X.

Using our decomposition theorem, we can obtain explicit expressions of
variational formulae of £ with applicable estimates, which we will present in a
forthcoming paper.

Acknowledgment. The authors would like to express their gratitude to Pro-
fessor Jun O’Hara and Professor Philipp Reiter for discussions on their results.

2. The decomposition theorem

At a point where f is differentiable, we denote the unit tangent vector by
7= f'. Similarly x¥ =7’ stands for the curvature vector at a point where f is
twice differentiable.

THEOREM 2.1. Let f e X and suppose that there exists a positive constant

A such that | f(s1) — f(s2)lgr = A 2(f(51), f(52)). The energy E(f) may be
decomposed as

E(f) = ” (A (F) (51,52) + A2 (F)(s1,52)} dsydsy + 4,
(R/LZ)*
where

[7(s1) = 7(s2) |
M =
) 2[| £ (s1) —f(s2)|2

R”
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and
_ 2 z(s1) - 7(s2) (f(s1) = f(s2)) - z(s1)
)= £ (s1) = f(s2) ]I g det( (f(s1) = f(2)) - 2(s2)  [If(s1) = f(52) e )

Moreover, each M;(f) is absolutely integrable.

Proof. As we said in the Introduction, to deform the energy density, we
first consider the integration in the sense of Cauchy’s principal value, and show
the absolute integrability later. We differentiate

(51 — 52)° (S1 <s$ <8 +§ (mod E)),

D(f(s1), f(52))* =
(s1 — 5+ £)* <S1 +§ <s;<s1+L (mod£)>

with respect to s;. In the sense of distributions,
d log|x| v :
— x| =p.v.—,
dx 8 L

and therefore

2 —p.V.S ! g (sl < $ < 81 +§ (mod £)>,
1 — 82
6_32 log Z(f(s1), f(s2)) = 1 r
fp.V.m <S1 +§ <$H <85+ L (mod £)>

C . .
Here, the distribution p.v.— is given by
X

1
<p.V.—,(p> = lim J M dx
X e—+0 Ix|>e X

for p e C°(R) (see [6]). Using the periodicity of 2(f(s1), f(s2)), this equals

1
5 BRI —
0 1 =92 —
— log Z(f(s1), f(52)) =
AV 1
—p.v

(sz+§<s1 <s$+L (modﬁ))7

Q

(sz <51 <8 +§ (mod E))

s — 5

Regarding this as a distribution of sy, it is differentiable for sy # s, + £/2 in the
weak sense and we obtain
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e Tog Ff (50, £(52)

1 L
p‘v'm (SQ +§<51 SSz-‘r[, (m0d£)>7
- 1 L
p.V.m <S2 <5 <85+ E (mOd ,C))
1 =92
1

PV S

% log 2(f(s1), f(s2)) has a jump discontinuity at s, =
2

s1+ L£/2 with gap —4/L; that is,

As a function of s,

tim L log a(f(s). fls2) — lim T log a(f(s1). £(s2)) = &

s2—-51+L/240 08 s1—=51+L/2—0 08
i L
As functions of s, 35105 log||f(s1) — f(s2)|lg» is bounded at s, = s + 5 and

6_ log|| f(s1) — (SZ)HRM is continuous at the same points. Therefore we get

1

—
L<slsz££/2 D(f(s1), f(52))° ”

1
— lim — s
0=40 Jeclsi—s| </2-6 D(f (s1), £(52))

2

= lim
0—=+0 e<|s1—s2|<L/2-5 051052

. o
= lim
0=40 ) oclsy 52| < £/2-5 051082

log Z(f(s1), f(s2)) dsa

" <‘°g|f<s1> — )l —log LU0 f<Sz>|Rn) ds2

D(f(s1), f(s2))

82
- j log|l£(s1) — £(s2) [ ds2

<|s1—s2| < L/2 051082
— lim [ log £ (s1) = fSZ)HR”:|S2S18
o—+0[0s1 Z(f(51), f(52))

_ ||f(S1) (32) ||R":| sr=s1+L/2—0
()1—1310 [531 log Ni)

sr=s51—L/2+0

$r=S1+¢



A DECOMPOSITION THEOREM OF THE MOBIUS ENERGY 741

52
- logll (1) — /(52 e

<Isi—s:| <2 051082

0 ) = fs)llge ] 4
+—[asl log D(f (1), f(52)) }32 -

i

We integrate this with respect to s; and firstly note that

i Hf(sl) - f(S2)||R”:|SZSI+8
JR/LZ [8s1 log Z(f(s1), f(52)) s ds;

_ [ t(s) 1 r‘““ s
IRjcz | || f(s1) = f(s2 HR St=Sa
_ { s1+s 7(s) (f(sn—f(sl—e>>~r<s1>+g}d
= — 5 S1
wer | 160 - fou + ol 1760 - 76—l
_ { fls1+2) - 7s1) (f(S1+8)—f(S1))~r(S1+e)+2} i
= - > S1
wer | 170~ S+ RO
o 2f (51 +8) = fls1)) -7lo) | 2
= 1 . —rd
R/CZ{ o, ogll f(s1) = f(s1+¢&)||gr + ||f(51+8)—f(s1)|||21n —|—£} 51
foa Pt
ez [ NI+ 0) = flo0)llRe ¢

o d T b 077 o) d“] o

We have

1 1>
2¢ —
‘ va+@—f@mw e

2¢ s|+e psite
= 2| f (51 + &) — f(s1)||jn L L (1 —1(s3) - t(s4)) ds3dsy

1 J51+£ J~sl+a )
= lz(s3) — t(s54)|| g ds3dlsa
el f(si+2) = fs)lgeJs N

and using estimate || f(s; + &) — f(s1)||g» = 2~ '¢, along with a change in the order
of integration, we obtain
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1

JR/EZ&‘H flsi+€) — fs)pr J

/12 Si+é psit+e
= 3
€ R/[:Z S1 S1

S1

A
|

/12 Sa+e R
= 72‘[ J ||T(S3> - T(S4>HR” dS3dS4
& Ir/cz Jsy—e

S4+¢& 2
22 lzls3) = 2(sa)llr o e
= JR/EZ JS45 g(f(S3),f(S4))2 e

Since

T et — )

||121n dS3dS4dS1

ll2(s3) — 7(s4) | ds3dsadsy

/’\LZ S4+e 83 5
J J J lz(s3) — T(s4)||g» ds1ds3dss
R/LZ

2
[fl]i{l/z = JJ —||T(S3) T(S4)||R2n dS3dS4
(R/LZ)

2 D(f(s3), f(54))

is finite, the absolute continuity of integration yields

lim

e—+0 JR/LZ 8||f(S1 + 8) - f(S1)|

R V51 81

Slmllarly we have
J -+ 2— J‘xl 8
R/LZ ||f(s1 6) f(S])”lzlu S
JR + 1—
/LZ ||f(51 8)

N R OO -
<[l S oo =

(1 —2(s3) - z(s1))

S1+¢e

O J Iels2) =

Hence we obtain

$H=S1+¢&

lf(s1) = f(s2)|lgr ]’ _
JR/EZ[asll 9(f(Sl),f(Sz))] =0

which leads to the expression

Sr=S51—¢€

2

1 0
Ef)=pv. JJ (R/£Z)? (Hf(sl) (sz)||[2{” 05105 log[lf (s1) -

Manipulating the above log term, we obtain

et I R )

l%n dS3dS4dS1 =0.

dS3dS1

(s1)||gr dssdsi

as ¢ — +0.

as ¢ — 40,

f(s2) ||Rn> dsidsy + 4.
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L L+ (s1) - 2(s2)
(2) &(f)—4=pv. ”R/a {||f<s,> f(s2)lgn

2{(fs1) — £ls2)) - Tls)H S (1) — @ﬁ)dM}}ﬁdh
1£(s0) = Fls2) o

The density of this integral is expressed as

Ltels)-zls2)  2{(f(s1) = f(52) - 2(s) H(S (s1) = f(52)) - 2(s2)}

1f(s1) = £(52) 1o £ (s1) = £(s2) [
_ (i) -z(s2) N 22(s1) - T(s2)Lf (s1) — £(52) I
1£(s1) = £(52) | e £ (s1) = £(52) I
A1) = £(s2)) - 2(s) Hf (51) = f(52)) - 2(s52)}

£ (s1) = f(52)|rr
_ izt — 22l
201 £ (s1) = £(s2)Irr
2 7(s1) - (s52) (f(s1) — f(52)) - 2(s1)
+vmofwmbda<uwo—ﬂn»wm> £ (s1) = F52)lIRe )
= A (f) + A>(f)

and it remains to remove p.v. in front of the double integral in (2). To this end
it is enough to see

M (f) + Ao (f) = 0.
For a function v on R/LZ, we define Rv = Ru(sy,s;) by
_ |51 = saf((s1) — v(s2))
£ (s1) = f(52) | (51 — 52)
and observe that Rf is clearly a unit vector field. In addition, we define
Ve = Rf — (Rf . Tm)Tm-
Here, the vector 1, = 1,,(s1,52) is defined by
7(s1) + 7(s2)
[[7(s1) + 7(s2) |

if 7(s1) + z(s2) # o, and otherwise 7, is defined to be any unit vector satisfying
T, - 7(s1) = 0. First, we consider the non-negativity of the numerator of the
right-hand side of

m =

L+2(s1) - 2(s2) = 2(Rf - 7(s1))(Rf - 2(s2))

/4 81,8 M S1,82) =
1) (s1,52) + () (51, 52) 1f(s1) = £(s2)]1 20
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Note that we have

3) T T(51) = T - 7(52) =%Hf(81) +7(52)llrr-
Since v, L (z(s1) + z(s2)), we have

4) v (z(s1) +7(s2)) =0

and squaring both sides, we have

(5) (v - 7(51))” 4 200 - 7(51)) (0 - 7(s2)) + (v - 7(52))” = 0.
From (3), it follows that

Rf -(sp) = (Rf - t) (T (7)) + v - 7(s))
= Jlle(on) 52l (RS ) + 7. ().
Using this equation and (4)—(5), we get
(Rf - 2(s1))(Rf - 7(52))

= % HT(SI) + 7(52) H]ZQ” (Rf : Tm)z

) 252 o (RS -2 . - els1) + 2(s2))}
(o7l v, - 7(s2)
= ) () [ (RS ) 2 {00 2(s1)) + (. - 2(s2))?)
and therefore
1 (s1) = f(s2)llgn (AO(f) (51, 2) + Ao (f)(51,52))
= Jlie(sn) Fe(s2)l3e — 3 le(on) +2(s2) 3o (RS -2
+ (v 7(s1))” 4 (v - 2(s2))?

= 1) + o) e I (0, 2(51)” + (0. - 2(s2)) = 0

2

as desired.
Finally we show the absolute integrability of each .#;(f). The integrand
A (f) is non-negative and

2 7(s1) — 7(s2) |ge
ﬂ](f) dSldS2 < — —RdS1d32
2 2 2 2
(R/LZ) ®/c2)* D(f (1), f(s2))
yR
= _[f/bz’{l/? < 0,

2
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which shows the absolute integrability of .#(f). Both . (f) and . (f)+
A (f) are absolutely integrable, hence so is .#>(f). O

Remark 2.1. O’Hara kindly informed the authors that if f is sufficiently
smooth, then (2) can be shown by using the cosine formula [5].

3. Mobius invariance

In this section we discuss the invariance of .#; under Mobius transformations.
The invariance under dilation can be easily shown. In subsection 3.1, we
show the invariance of the sum &; + &, under the inversion
r(f -
If = el
with respect to the sphere with center ¢ and radius r. Note that we assume
neither the finiteness of energy £(f) < oo nor f(R/LZ) > ¢. Indeed we show the
invariance of the sum of measures (.#; + .#>) dsids,. This fact was shown by
Freedman-He-Wang [3] for f which are parameterized by arc-length, and here
we present an alternative proof. We discuss the invariance of each &; under the
inversion assuming the finiteness of energy and ¢ ¢ f(R/LZ) in subsection 3.2.
For the case c¢ f(R/LZ), see the final remark at the end of this section.

We now introduce the new symbol A which represents the difference between
the function value for s; and that for s; that is,

Af = f(s1) = f(s2), Ar=r1(s1) —2(s2), As=s51 — 5.

fop=c+

3.1. The invariance of the sum of energies
In this section we show the invariance of (.#) + .#>) ds;ds; and as a
consequence the invariance of the sum of energies follows. First we note

L) 7ls2)  2Af (1)) (ASf - 7(s2))
1Az IASf]Igr

Even if s is an arc-length parameter for f, it is not necessarily so for p.
Therefore we use a general parameter 0 instead of s, and the energy density with
respect to d6,df; is

(A (f) + AP O0)lge | F(02) g
_ O R £ 0)llre + £(O1) - £(05)
1£(01) = £(02) ][

+5 (357 Tosllr0) ~ 50113 ) (5 10el0) = £OI ).

Here f means the differentiation of f with respect to the general parameter, and
similarly for other functions.

AN(f) + A (f)




746 AYA ISHIZEKI AND TAKEYUKI NAGASAWA

THEOREM 3.1. Let

20

1Lf = cllgr
be an inversion with respect to the sphere with center ¢ and radius r. Then,
(6) (A (f) + ADIF O R f (02) |

— (A (p) + A(p)) || p(01)|lgn | P(02) || = O
holds for 0y and 0, such that

f(O0) # f(62), f(6)#¢ (i=1,2).

Proof. We decompose the difference between the density for f and that for
p as follows:

(A(f) + A () F(O1) oL f (02)]|
— (At (p) + A(p)) || P(0V) || g (| P(02) ||~
=Ji+ 1+ J5,

where

7 L O lre L 02)llrr 1Ol | (02) e
1£(01) = £O)llge lp(01) = p(O)[IRr

L — f00)-f(6)  p)-p(6a)
1£01) = £O)lre 12(01) = P(O2) IR

Jy = % { (a%l log||f(0;) — f(02)||§n> (a%z log|| £(01) — f(02)|121")

0 d
_ <a_91 log| p(01) — p(ez)Ili‘;n) (5—62 log|| p(0) — 17(92)”121") }
It holds that
1p(01) — p(02) 1R

Py —o  Pue) - o
1£(0)) —ellan 17(02) — ellan

-
ﬁ{ VA () R VA e B }
1LF(O) = el 1F01) = elRall £02) —ellpe [1£(62) — ellps
_ A0~ fO)re
1£(01) = ellgell£(02) = €l
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If we define the projection P.(0) and P}(6) for a vector v by

(SO = N fO)-c o
P = (o ) T el PO =T PO

then the derivative of p(6) may be expressed as

(0) = 1 [ FO)__204(0) - (f(0) = )}f(0) = 0
1£6) = el 1£6) = el
2
= (PHO) - P.(0)£(0),
) e, P 0= PLODS(O

and therefore

},4

1L (0) — ellgs
_ MOk
1£(0) ~ el

Using straightforward considerations,

1p(O)re = (1P (O£ O) e + | P(O)£(0) )

1BO) e 1pO)lre P ILFOD e P 1FO2)llre [LF(01) = ellrrll£(02) = ellge
1p(01) = p(O)lre  I1F(O1) = clign 1/ (02) = €llgn— r*1LF (1) = £(02)IRr
)

_ O Lf (02) |-
1£(01) — £(0) g0

and this demonstrates that J; =0. By a similar calculation

p(0h) - p(6a) {( =2P:(01))f(01)} - {( = 2P(02)) f(02) }

1p(01) — p(02)lge 1£(01) = £(02)l|e
holds. Observing that

Cap, (0 f(0) = f0) —2(- L0 =€ gy SO e
(1= 2800100 = 110 2(||f<9i>c||w f(g’)) 170 = el
= £10) (5, 10el(0) ~ el ) 0) - o

we may write
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1
I, —
L0 = £
9 {f(eo 0 {f(eo - (62 log]| £(61) — c||.%n) (f(01) - c)}
-{f'(ez) (62 log]L£(0) - c|Rn)<f(ez>—c>}]
B 1 0 5 N
= g LGy vl 0 i )00 -0 50
+ (g ol 0:) = el ) (702~ 0 F 1))
= (557 0ellr0) = el ) (55, Toelf(0) - el
{00~ &) (£(0) c>}} .
Using
(F(O) — ) F0) = (F(01) — F(02) + £(62) — ) - F(0)
= 5 20 A 0) = £O) e +117(0) — elfz)
and

(f(02) =€) - f(01) = (f(02) = £(01) + £(01) =€) - £(On)

(f
= 3 2 CIAO) = SO+ 1701 = el

we arrive at

0:)—¢)- F(O 1 0
|<|jf:(<ell)>—;<ef>(||§3__5@ el 00 102 e

L) - |-
2| £(0) = £(0s)||20 002

O

log||£(02) = €],

L O0) el 2
2| £(01) = £(02)]Ign 901

upon which our previous expression for J, becomes

log|| £ (01) — ¢|lg
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0
Sy ) <az log|.£(6) — clf{n) (6_02 log|| f(61) — f(02)||12<">
0 0
1l <ae log|| f(0;) — (02)||§n> <a_92 log|| f(0) — C||[2<")

1/ 0 0
4= <69 log|| £(0)) — c||§n)(69 log|| f(62) — cll§n>

o Nf(02) — cllge + (1) = ellge = 2(£(61) =€) - (f(62) — ¢)
LF(O1) = £(02)e

1 0 0
_ (60 logll£(61) - |2)(7 logllf(ﬁl)—f(ﬁz)llﬁn)

170 0
3 (55, Toelr ) = 1021 ) (55, toelr(00) - el )

1/ 0 2 0 2
+5 (357 1osllro0 el ) (55, toels 02 - el )
Finally,
0 2 0 2 2
= 1ogllp(00) — (02l = 5 (ogl(01) = FO)l. ~ logl (6 — el.)

and therefore

1/ 0 0
=3 (55 Toels 00 ~ el ) (5 ol @) - £01

1/ 0 0
+§(a_01 1og||f(01)—f(02)||§n) (ao log|| f(62) — clﬁu)

1/0 0
1 (o o0~ el ) (2 sl — el

COROLLARY 3.1. Let fe H“'(R/2rZ). Then it holds that
E1(f) + &) = &u(p) + &(p).
Remark 3.1. The corollary does not exclude that both sides are infinite.

Proof. First let f e H¥?>(R/2rZ). 1If the 2-dimensional Lebesgue measure
of

{(61,02) € (R/27Z)*| f(61) = £(62)}
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is positive, then so is that of

{(01,0:) € (R/22Z)* | p(61) = p(62)}.

Therefore £(f) = £(p) = oo and we have

E(f) +E&(f) =&i(p) + &2(p) = ©.

Thus, we assume that the 2-dimensional Lebesgue measure of

{(01,00) € (R/27Z)* | £(01) = f(02)}

is 0, and we claim that the measure of

{(61,02) € (R/20Z)* | f(01) = £(02) or f(01) = e or f(62) = c}

is also 0. In order to see this, considering f as a function of s on R/LZ, we
need to prove that

S={seR/LZ|f(s) =c}

is a finite set. Arguing by contradiction, we suppose that S is not a finite set and
using the compactness of R/LZ, there exists a sequence such that f(s;) = ¢ and
lim;_,, §; = s,. From

0= 1) = Sl = || 26) ) s

5y

1 (5+ (5+
(=) 5 [ o) = el e doas

5j Sj

it holds that

[ e g [
> 2 -

sy (s — S,)z sy (Sj41 =5

However, using that 7 € H'/?(R/LZ) and the absolute continuity of integral, this
leads to

22 m [ ] lets) = =)l o g,

=l Jy (s =)

which is obviously a contradiction. By these arguments we find that (6) holds

for #2-a.e. (0),0,) and the desired conclusion follows by integrating this.
Finally, we consider the case of f ¢ H*?(R/2nZ) which implies £(f) = oo,

and we will show £(p) = co. Again, arguing by contradiction, we suppose that
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&(p) < o from_which we know that p does not have self-intersections. Fur-
thermore p € leéz and we remark that p e H*? if p does not pass through the
point at infinity. If we turn p back by the inversion with respect to the sphere
with center ¢ and radius r, then it returns to f. Since f does not pass through
the point at infinity, p does not pass through ¢. Thereby the 2-dimensional
Lebesgue measure of

{(01,02) | p(01) = p(02), or p(01) = ¢ or p(02) = ¢}

is 0. This implies that (6) holds for #?-a.e. (0;,0,) and integrating this, we
get

Eif)+ &) =E1(p) + &(p) =E(p) —4 < .

However, from this we obtain oo = E(f) = &1(f) + E2(f) +4 < oo which s
obviously a contradiction. As a conclusion, &£(p) = co holds and therefore
E(f)+ E(f) =& (p) + Ep) = oo as desired. O

3.2. The invariance of each energy
We discuss here the invariance of each energy &; under the inversion f +— p.

THEOREM 3.2. Assume that the center ¢ of the inversion is not in the image
of f. We also assume the finiteness of energy E(f) < oo. Then

Ei(f)=&(p), &(f) = &E(p)
holds.

Proof. 1In view of Corollary 3.1, it is enough to prove &;(f) = £1(p). Let
J1 and J, be as defined in the proof of Theorem 3.1. It follows that

AN O) el £ 02) |re = 41 (p) | B(O1)]

We need to prove that the integration of this goes to 0. From now on, we use
the arc-length variable s;.

Since we are assuming &(f) < oo, we know that .4 (f) e L'((R/LZ)%)
holds. Since .#(p) >0, we may write

rellPO) g =T — T2 = — .

. Jy
£ - & =—1 - .
)=~ &ilp) = - iy, J J 1Ol 1£02)

dSl dS2 y

R
where |s; — 52| > ¢ is in the sense of mod £. Remarking that

1 0 0
Foe " a0

we get
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— lim ” Z dsyds»
=40 sz [LF(01) o L £ (602) || e

.1 0
= tim [ (G eeltsn — el ) (55 roelrton) - 0l )

0
. (i loglLf(s1) f<sz>||§~) (5— logl|(52) - c||§~)

5 0
_ (O_S] log||f(s1) — ellg ) ( 00,

() el )

1 L 0 ) s1+L—¢e 0 )
= i 1 n - 1 n
= Jim 5 |, 2y el o) el | 4 omlf) = £l dinds
+ lim lri log|| £ (s2) — e Jwgi log|L£(s1) — £(s2)||2 dsids
e—+0 2 0 £ 2 R" $r4e 651 £ ! 2/l 152

1(¢ o 5 £ 5 .
) Al - " l n .
2L oy, 108l (s1) = el ds L 55, loglf(52) — el s

It holds that

atte g ) = £ — DR
J o5y OEI5) = Sz = log T

Moreover, £(f) < oo implies that f e H3/*>(R/LZ) and thus

1f(s1) = fls1 % &) [r = & + (&)

uniformly with regard to s; as ¢ — +0. Therefore

s1+L—¢ 0 5
j 2 10g]Lf(51) = £ (52) o ds2 = log(1 + (1)) = o(1)

S1+é

holds uniformly with regard to s;. From this and the fact that f does not pass
through ¢,

L 0 ) s1+L—¢ 0 5
|| 2 toull o) —ellae | - ol flon) = fs2) o doads
0 asl s1+e aSZ
L 0 5
= o(1) | |2 togllfs1) = el ds
=o(1)
holds. Then we arrive at
lim r 7 Logll f(s1) — ell2 j““ilo 1£(s1) — F(s2)|20 dsadsy = O
e—+0 OaSI £ 51 Clirr s1+e 652 £ ! 2" =0
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and similarly we find that

s2+L—e

e—+0 Jo aSZ Syt 5S1

Finally, since f does not pass through ¢, we have

£ Lo
0 2 0 5 B
Jo 081 log||f(s1) — ellgn dsi Jo 00, log|| f(s2) — ¢|[gn ds2 =0

from which the desired conclusion &(f) = &(p) follows.

Remark 3.2. If f passes through ¢, then &£;(f) = £ (p) does not hold.
example, when f is a circle passing through ¢, then p is a straight line.

denotes the radius of f, then

pliz(s1) = z(s2)llrr = [1f (1) = £ (52)l[gr

and

1452 —
®/c2) 2% £ (s1) — £(52)]IR 2p?

R”
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N d
lim | togll ()~ llke | - ogllflsn) ~ fs2) e dindsa = 0.

For
If p

hold. On the other hand, the unit tangent vector of p is a constant vector.

This means .#,(p) =0 and consequently &;(p) = 0.

Remark 3.3. 1In general, if ¢ is in the image of f, then

Ei(p) = E1(f) —2n%, &(p) = E(f) +2n°

seem to hold. Indeed we can show this fact if fe CYY(R/LZ) and || f(s1) —

v = A" D(f(s1), f(s2)) for some positive constant A independent of

f(52)|

s and

s5.  The proof, however, needs quite long calculations, and therefore we present

it elsewhere.
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