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CONVERGENCE RATE IN THE WEIGHTED NORM FOR A SEMILINEAR
HEAT EQUATION WITH SUPERCRITICAL NONLINEARITY

YUK1I NAITO

Abstract

We study the behavior of solutions to the Cauchy problem for a semilinear heat
equation with supercritical nonlinearity. It is known that two solutions approach each
other if these initial data are close enough near the spatial infinity. In this paper, we
give its sharp convergence rate in the weighted norms for a class of initial data. Proofs
are given by a comparison method based on matched asymptotics expansion.

1. Introduction

We consider the Cauchy problem

u = Au+ u’'u, xeRV, >0,
u(x,O) :uo(X), XGRNa

(1.1)

where u = u(x, t), A is the Laplacian, p > 1 and u is a given continuous function
on RY that decays to zero as |x| — .

We first recall some known facts concerning positive solutions of the elliptic
equation

(1.2) Ap+¢” =0 in RY
with N > 3. It is well known that there exists a classical positive radial solution

of (1.2) if and only if p > (N +2)/(N —2). (See, e.g., [1, 4].) We denote by ¢,
a solution of the problem

N -1
¢,.,+T¢,.+¢p20 for r > 0,

#(0)=0o and ¢,.(0)=0.
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If p>(N+2)/(N—2) then, for each >0, ¢,(r) is positive and strictly
decreasing for r > 0, and satisfies ¢,(r) — 0 as r — oo.
Define the exponent p. by
(N-2)"—4N+8VN — 1
Pe = (N—2)(N—10) '
o0, 3< N <10.

N > 11,

The exponent p. has appeared in several different studies of (1.1) and related
problems, see, e.g., [8, 11, 5, 6]. It was shown by Wang [11] that, for (N +2)/
(N —2) < p< p. each pair of positive radial solutions of (1.2) intersect each
other, and that, for p > p., these solutions are strictly ordered such that ¢,(r) is
strictly increasing in o for each r and satisfies

lim ¢,(r) = ¢,.(r) for r>0,

where ¢ a singular solution given by
¢, (r)=Lr™" for r>0
with
_ 2 _ (r-1)
m—ﬁ and L=(m(N—2—m))/"7),
It was also shown in [5] that, for p > p., the solution ¢, has the expansion
(1.3) $,(1x1) = LIx| ™" + a(@)lx] ™" +o(Ix| ") as |x] — oo,
where A; is a positive constant given by
N=2=2m—/(N=2—m)*—8(N —2—m)
) )

i] = }vl(N,p) =
and a(a) is a positive number. Note that 4; is a smaller root of the quadratic
polynomial

22— (N—=2-2m)i+2(N—2—-m)=0.
We denote by

N—2—2m+\/(N—Z—m)z—S(N—Z—m)
2

/12 = )Q(N, p) =

a larger root of the quadratic polynomial.
For />0, we define the weighted norm

Wil = sup (1 + [x]) [ (x)].

xeRY

where y be a continuous function on RY. Tt is clear that |- ||, = || - || oY) if
¢/ =0.
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The following results have been proved by [5, Theorem 1.15] and [6,
Theorem 2].

THEOREM A. Let p > p. and o > 0.

(i) The stationary solution ¢, is stable with respect to |- ||, , that is, for
any & >0 there is 6 > 0 such that, if |luo — ¢,l|,,,, <0, then the solution
u of (1.1) satisfies |lu(-,t) — @,ll,,.,, <& for all t>0.

(i) Let /e (m+ Ai,m+ A2 Then ¢, is stable with respect to | -||, and
there exists 6 > 0 such that, if ||uy — ¢,||, < 0, then the solution u of (1.1)
satisfies |u(-,t) — ¢,|l,, — 0 as t — oo for any /' € (0,7).

Polacik and Yanagida [10] improved the above results and proved that the
solutions approach a set of stationary solutions for a wide class of initial data.
Later, Fila, Winkler and Yanagida [3] and Hoshino and Yanagida [7] studied
more general problem. Denote by u and # solutions of (1.1) with initial data
ug and g, respectively. In [3, 7] they showed that how fast two solutions u and
# approach each other as t — oo if uy and iy are close enough near the spatial
infinity. Clearly, in the case #y(x) = ¢,(|x|), the rate of approach of these
solutions corresponds to the convergence rate to the steady state. Precisely, the
following results were shown by [3, 7].

THEOREM B. Let p> p. and m+ Ay </ <m—+ Ay +2. Assume that uy and
uy satisfy

(1.4) ~¢,(Ix) <ug(x), do(x) < ¢, (|x]) for xeRY
with some o> 0. If

(1.5) lim sup |x|”uo (x) — o (x)] < o0,

|x]—c0
then the solutions u and u of (1.1) satisfy

limsup /=42

[ful-, 1) = al, )| Lo mvy < 0.
t— o0
In this paper, we consider the optimal rate of approach of these solutions in
the weighted norm || - ||,, and verify that the rate depends on the order /. We
also show the stability of solutions with respect to the norm | - ||, for m+ 4; <
/< m+ A+ 2.
Our first result is the following.

THEOREM 1.1. Let p>p. and (€ (m+ A,m+ Ay +2). Assume that
up,iip € C(RN) satisfy (1.4) with some o >0. If (1.5) holds, then, for
/' €10,7), the solutions u and u of (1.1) satisfy

(1.6) limsup #"|u(-, ) —a(-,0)||,» < oo,

— o0
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where

(1.7) v:{({)_m_il)/2 if 0</' <m+ A,

(¢ —11)2 if mai <l </

Furthermore, for any constants ¢ >0 and p > 1/2, the solutions u and @ satisfy

(1.8) lim sup z<”’>ﬂ< sup (14 |x|)" u(x, ) — a(x, z)|> < 0.
\

t— o0 x| =cth

The next result shows that the upper estimates given in Theorem 1.1 are
optimal.

THEOREM 1.2. Let p>p. and (€ (m+A,m+2a+2). Assume that
up, iip € C(RY) satisfy

(1.9) ¢ (X)) < dio(x) < uo(x) < ¢ (Ix]) for x e R¥\{0}
with some o > 0. If
(1.10) ITH\EHf X" (uo(x) — ito(x)) > 0,

then, for (' €[0,/), the solutions u and u of (1.1) satisfy
(1.11) li¥ninf t'|lu(-,t) —a(-, 0|, >0,

where v is the constant defined by (1.7). Furthermore, the following (i) and (ii)
hold.
(i) For any constant ¢ > 0, the solutions u and @ satisfy

(1.12)  liminf z</mm/z< inf (14 [x])" " u(x, 1) — a(x, t)l) > 0.

t— 00 x‘gctl/l

(i) Let /' €[0,/). For any constants ¢ > 0 and p > 1/2, the solutions u and

u satisfy
(1.13) liminf /=% sup (1+ |x)" u(x,?) — @(x,1)| | > 0.
= x| > et

Remark 1.1. In Theorem 1.2, we also assume that uy(x), #y(x) < ¢5(|x|) for
x € RY with some & > o, and that (1.5) holds. Then, by applying Theorem 1.1
with « = &, we obtain (1.6) with (1.7) and (1.8). Thus, from (1.6) with /' =
m + A1, we obtain, for any constant ¢ > 0,

(1.14)  limsup t(/"1/11>/2< sup (14 [x])"™ ™ (u(x, 1) — a(x, t))) < 0.
|

t—0 x| <ct!/?
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Thus, in the range |x| < ct!/?, the solutions u and @& approach uniformly in the
senses (1.12) and (1.14). In particular, for any constant ¢ > 0, we have

0 < liminf (/=m=4)/2 ( inf (u(x, 1) — a(x, t)))

1= [x[<e

< limsup t(/"”-”/z(sup (u(x, 1) —alx, t))) <%

t—0o0 [x|<e

On the other hand, in the range |x| > c¢t# with u > 1/2, the solutions approaches
each other in the different rate by (1.8) and (1.13). In particular, for any constant
¢ >0, we obtain

0<nmmfﬂﬁm<sm>a+pﬂﬁm%g—m%og

= [x]>cr!/?

< limsup t(/ﬂm( sup (14 |x|)(’(u(x, t) — u(x, t))) < 0.
\

1= x| =ct/?

Note here that the constant v defined by (1.7) fulfills the property that v =
min{(¢/ —m—21)/2,(¢ —¢")/2}.

We consider the stability of solutions with respect to the norm | -||,.

THEOREM 1.3. Let p> p. and /€ (m+ i,m+ 1 + 2).

(i) Assume that uy,iip € C(RY) satisfy (1.4) with some o> 0. For any & > 0
there exists 0 > 0 such that, if ||uo(-) — ()|, <, then the solutions u
and 4 of (1.1) satisfy ||lu(-,t) —a(-,0)||, <e for all t > 0.

(i) Assume that uy and ty satisfy (1.9) with some o> 0. If (1.10) holds,
then the solutions u and u satisfy

(1.15) lim inf [Ju(-,£) — a(-, ]|, > 0.

Let us consider the convergence rate of solutions to the steady state.
Assume that uy € C(RY) satisfies

(1.16) —¢..(x) < up(x) < ¢, (x) for xe RV\{0}.
and
(1.17) liln‘lsup x| Juao (x) = ,(|x1)] < o0

with some o > 0. Then there exists # > « such that —¢s(x) < up(x) < ¢g(x) for
xeRY. Applying Theorem 1.1 with o = f8 and iy = ¢,, and Theorem 1.2 with
iy = ¢,, we obtain the following
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CoroLLARY 1.1. Let p>p. and (/€ (m+ A,m+ Ay +2). Assume that
up € C(RN) satisfies (1.16) and (1.17) with some o> 0. Then the solution u
of (1.1) satisfies

(1.18) lu(-,0) = ¢,(I- DIl =0 as 1 — o0
for any (' €[0,/). Precisely, the solution u satisfies

limsup #"||u(-, 1) — ¢,(] - )|, < o0,

t— o0

where v is the constant defined by (1.7). Furthermore, if uy satisfies up(x) >
¢,(]x|) for xe RN and

(1.19) lim inf |x|” (o (x) — 4,(|x])) > 0,

|x|—00
then the solution u satisfies

liminf ¢"[u(-, 1) — ¢,(| - )|, >0

t— o0

for (" €10,/) with the constant v defined by (1.7).

We consider the stability of the steady state with respect to the norm | - ||,
by applying Theorem 1.3. Let p > p. and « > 0. Put #>a. Then there exists
0 =9(p) >0 such that, if [[uo(-) — ¢,(| - ]Il, <J, then —g,(|x[) < uo(x) < ds(|x])
for xe RY. Applying Theorem 1.3 (i) with « = f8, iy = ¢,, and min{d,6} instead
of J, and Theorem 1.3 (ii) with %, = ¢,, we obtain the following

CorOLLARY 1.2. Let p> p., o> 0, and let £/ € (m+ Aj,m+ Ay +2). For
any & > 0 there exists 6 > 0 such that, if ||uo(-) — ¢,(| - ||, <9I, then the solution
u of (1.1) satisfy ||lu(-,t) — ¢,(|- DI, < e for all t = 0. Furthermore, if uy satisfies
up(x) > ¢,(|x|) for xe RN and (1.19), then the solution u satisfy

(1.20) timinf [Ju(-, 1) ~ (|- DI, > 0.

Remark 1.2. (i) By (1.20) we can not expect that (1.18) holds with /' = /.
(ii) It was shown in [9] that, for any ¢ > 0, there exists 6 > 0 such that, if

lim sup [x|""* [uo(x) — 4, (|x])] <6,

|x|— 00
then the solution u of (1.1) satisfies limsup, .. [[u(-, ) — @,(| - [)|l,s;, <& In the
case /> m+ A, it is an open and interesting question, for any & > 0, whether
there exists 6 > 0 such that, if

lim sup |x|”[uo(x) — @,(|x])] <9,

|x|— o0

then limsup,_,, ||u(-, 1) — ¢,(] - |)||, < & holds.
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For the attractivity property of steady states and its convergence rate in the
norm || - ||, with /=m+ 4;, we refer to [9].

Proofs of the above theorems are obtained by a comparison technique for
the linearized equation. Our approach is mainly based on the ideas of [3, 7], we
however need some additional ingredients to obtain the convergence properties in
the weighted norms.

This paper is organized as follows. In Section 2 we recall some results of
[11, 3] concerning super and sub-solution methods and certain linearized problems.
In Sections 3 and 4, we give the proof of Theorems 1.1 and 1.2, respectively,
by deriving suitable upper and lower bound for solutions of these linearized
problems. Finally, in Section 5, we prove Theorem 1.3.

2. Preliminary results

We first recall the definition of continuous weak super and sub-solutions to
the following general problem

{u,:Au+f(|x|,u), xeRY >0,

@1 u(x,0) = up(x), xeRY,

where f(r,u) is continuous on ([0, c0) x R), locally Hélder continuous in r € [0, o0)
locally uniformly with respect to u € R, and locally Lipschitz continuous in u
locally uniformly with respect to ». We say that u is a continuous weak super-
solution of (2.1) for 0 < ¢ < T if u is continuous on RY x [0, T, u(x,0) > up(x)
and satisfies, for any ¢e C>'(RY x [0,7]) with &> 0 and supp &(-,7) being
compact in RY for all 7€ (0, 7],

=T T/
zJ j (e )&+ A1) + £ (] ), ) e
=0 R’

0

J “u(x, 1)¢(x, 1) dx
R1\

for all 7/ € [0, T]. Continuous weak subsolutions are defined in a similar way by
reversing the inequalities. Consider the corresponding elliptic equation

(2.2) Au+ f(]x|,u) =0 in RY.

We call a function u a continuous weak supersolution of (2.2) in RY if u is
continuous in RY and satisfies, for any nonnegative function n e C3°(R"),

(23) |, w810 + (131, x) e < 0

Continuous weak sub-solutions are defined in a similar way by reversing the
inequality in (2.3).
The following results are shown by Wang [11].

LeEMMA 2.1.  Let @ and u be bounded continuous weak super and sub-solutions
of (2.1), respectively. Then (2.1) has a unique classical solution u with u < u <u
in RY x (0, 0).
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We say that u is a classical supersolution of (2.1) if # satisfies
i, > Ai+ f(|]x|,i1) for xeRY, #>0

and @(x,0) > up(x) for x e RY. Classical subsolutions are defined in a similar
way by reversing the inequalities.

By the similar argument as in [11, Proposition 3.8], we obtain the following
result.

LemMa 2.2. Let r(¢) € (0,00) be a continuous function for t >0, and define
Dy ={(x,1) eRY x [0,00) : |x| < r(t),t >0} and Dy = {(x,) e RY x [0, 00) : |x]|
> r(t),t = 0}.
(i) Suppose that uy(r,t) and uy(r,t), with r = |x|, are classical supersolutions
of (2.1) in Dy and Dy, respectively. Assume that wy = up and Ouy/or >
Oup/or at (r,t) = (r(t),t) for all t >0. For each t >0, put

i _ ul(rvt)v for OSI’SV([),
art) = { ur(r,t), for r>r(t).

Then i(|x|,t) is a continuous weak supersolution to (2.1) in RY x [0, o0).

(i) Suppose that vi(r,t) and vy(r,t), with r = |x|, are classical sub-solutions of
(2.1) in Dy and D,, respectively. Assume that vy = v, and 0vy/0r <
Ova/0r at (r,t) = (r(2),t) for all t >0. For each t >0, put

u(r ) = vi(r,t), for 0 <r<r(1),
va(r,t), for r>r(z).
Then u(|x|, 1) is a continuous weak subsolution to (2.1) in RY x (0, o0).
Proof. Since the proof of (ii) is similar to (i), we will show (i) only. Take

any ¢ e C>'(RY x [0, T]) with ¢ > 0 and supp &(-, 7) being compact in RY for all
te0,T]. For each i =1,2, u; = u;(x,1t) satisfies

(24)1 (ui)t = Aui + f(|x|7“i)a (X, t) €D,
Fix t€(0,7T) arbitrarily. Multiplying (2.4), by &(x,?), and integrating it on
{x:|x|] <r(r)}, we obtain
J (1), dx > J (Auy)¢ dx + J S(|x],ur)é dx.
|x|<r(f) |x|<r(f) |x|<r(f)
By using of the integration by parts, we have

aul 55
(B de = | (s—— u —) as+ | wagax
J Idl<r(1) =)\~ On on x| <r(®)

where n is the outward unit normal vector to |x| =r(¢) and dS denotes the
surface measure on |x| = r(¢). Thus we obtain
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Ou o
- J'x<"<’>(ul)té = Jx—r(t) (éﬁ o %> as

Multiplying (2.4), by ¢, and integrating by parts on {x:|x| > r(¢)}, we obtain

duy 8¢
2.6 J u ,fdxzj (—é—+u —) ds
(26) |x\>r(t)( 2) g\ on | dn

T j (88 + £ )8 d

Adding (2.5) and (2.6), we obtain

Jocaz | (GG as | @aa s ng

on on

Since Ou;/0r = duy/dr on r=r(t), we have du;/dn — duz/dn >0 on |x| = r(z).
Thus we obtain

j (@) & dv = j (@(AS) + f(|x|, @) dx.
R’ R’

Integrating by parts on ¢ e [0, 7'], we obtain

=T T
> J J V(L_t(|x|, O(E 4+ AE) (x, 1) + f(|x], @) (x, 1)) dxdt.
R’

=0 0

[t et s
.

Since u; and u, are classical supersolution of (2.1), we have a(|x|, 1) = ug(x) for
xeRY. Thus # is a continuous weak supersolution of (2.1). O

We next summarize previous results of [3] on the problem for a linearized
equation of (1.1) at a steady state ¢,. For o > 0 we define the linear operator P,
by

N-1 _
&U:MA_T—M+WNV1U

and consider the solutions U = U(r,t) of the problem

(2.7 U,(0,1)=0 for ¢ > 0,

{U,:P“U forr>0,1>0,
U(r,0) = Uy(r) forr =0,

where Up(r) is a continuous function decaying to zero as r — oo. By the
maximum principle, we see that U(-,¢) >0 for all >0 if Uy >0 and U, # 0.
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Let (r) satisfy

Py = fi ,
(2.8) { Yy=0 forr>0

Y(0)=1 and ,(0)=0,

and let ¥ denote the solution to

{Pa‘I’:lp for r > 0,
Y(0)=0 and ¥,0)=0.

We state some useful properties of ¥, which were proved in [3, Lemma 2.3].

(2.9)

LemmA 2.3. Let p > p. and o > 0. Then the solution  of (2.8) is given by
V(r) = 0¢,(r) /0o for r = 0, Y(r) is positive for all r > 0, and the solution ¥(r) of
9) is positive for all r > 0. Moreover, Y(r) is decreasing for r > 0 and satisfies

10) lim "My (r) = ¢,

r—0o0

(2.
(2.
for some positive constant c,.

We recall comparison results in [3, Lemmas 2.1 and 2.2]. Let u and @
denote solutions of (1.1) with initial data up, #, respectively.

LemMMa 2.4. Let p = p. and o > 0.
(i) Assume that uy and @y satisfy

_¢o¢(x) < uO(x)ﬂ}O(x) =< ¢a<(x) fO}’ X € RN-
If |uo(x) — iig(x)| < Up(|x|) for x e RN, then the solutions U of (2.7) and
u, u of (1.1) satisfy
(2.11) lu(x,t) —ii(x,t)| < U(|x|,1) for all xeR"Y, t>0.

(i) Assume that uy and iy satisfy

b,(1x]) < tio(x) < uo(x) < g, (Ix]) for x e R™\{0}.

If uo(x) — dig(x) = Up(|x|) = 0 for x e RN, then the solutions U of (2.7)
and u, u of (1.1) satisfy

(2.12) u(x, 1) —ii(x,t) = U(|x|,£) =0 for all xeR"Y, t>0.

3. Proof of Theorem 1.1

In the proof of Theorem 1.1, we construct suitable super- and subsolutions of
(2.7). We use the ideas presented in [3, 7], and this section is similar to Section 3
in [7]. But in order to obtain the convergence rate in the weighted norms, we
need some additional ideas.

We first construct a supersolution of (2.7). We recall the result by
[2, Lemma 3.1].
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LemMA 3.1, If m+ 41 < <m—+ Ay + 2, then there exists a positive solution
F of

N -1 n / pLP!
an+TF,I+§F,7+§F+ }72 F=0 forn>0
satisfying
(3.1) lin?) n"ME() = ag > 0
}7*)
and
(3.2) 0 < liminf »’F(y) < limsup ' F(y) < oo.
=0 n— 0

We construct an outer supersolution in the same manner as [7, Lemma 3.1].

LEMMA 3.2. Let m+ A </ <m+ A +2 Put
r
(t41)"*

where T >0 is a constant and F is the positive solution obtained in Lemma 3.1.
Then Uy satisfies (Ugut), = PyUout for all t >0 and r > 0.

(3.3) Uow(r, 1) = (t+17) "*F(y) with n =

Recall that  and W denote the solutions of (2.8) and (2.9), respectively.

LemmA 3.3. Let m+ A </ <m+ A +2, and set
(34) Un(r,1) = (t+7) W (r) — q(t+ 1) "W (r),

where q = (/ —m — 41)/2 and © > 0 is a constant. Define Uy by (3.3). Then
there are positive constants B, Cy, t9 and Ry with Ry < Bré/ 2 such that, for t > 1y,
the following inequalities hold.

(i) (Un), = PyUy for all t>0 and r > 0.

(i) Up(r,t) >0 for all t =0 and re |0, B(t + 1)1/2}.

(iii) Upn(r,t) > CoUow(r,t) at r = B(t + r)l/z for all t>0.

(iv) Upn(r,t) < CoUou(r,t) for all t >0 and r e [0, Ry).

Proof. For the proof of (i)—(iii), see [3, Lemma 3.2] and [7, Lemma 3.2].
We will show (iv). Put

Cp = inf{n™ ™" F(y):0 <y < B}.
From (3.1) we have Cp > 0. For all 1>0 and re [O,B(t-i-f)l/z], we have
Co Uout(r, t) = CO([ + T)—(/—m—zl)/zrfmﬂhnmwllF(r])

> COCB([+ T)—(/’—m—/ll)/zrfmfﬂll
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Choose Ry € (0, Bt'/?] such that CoCgR,™ ™ > (0). Then, for all >0 and
r € [0, Ry], we have

CoUou(r, 1) > (t+17)" """y (0).
Since (r) is decreasing and ¥(r) is positive for r > 0 by Lemma 2.3, we obtain
(140" TRY(0) 2 (14 0) TP () 2 Un(r, 1)
for r > 0. Thus (iv) holds. O

Assume that B, Cj, 79 and R( are constants given in Lemma 3.3. Let
7> 19, and define U,y and U, by (3.3) and (3.4), respectively. Put

r*(t) = sup{r > 0: Uin(p, 1) < CoUou(p, 1) for pe[0,r)}.

By Lemma 3.3, the function r*(¢) is well-defined and satisfies

(3.5) (1) € (Ro, B(t +7)'/?)  for all 1> 0.
For each ¢ > 0, define

Uin(r, 1) for 0 <r <r*(z)
3.6 Ut(rt) = ’
(36) (1) {couom(r, 1) for r> r(s).

We will show the following results.

LeMMA 3.4. Let /' €]0,/). Then the following (i) and (ii) hold.
(i) The function U™ satisfies

(3.7) 10 Lol = 0™ as t— o

where v is the constant defined by (1.7).
(ii) For any constants ¢ >0 and u > 1/2, the function U™ satisfies

(3.8) lim sup IW’W( sup (1 + |x|)”’|U+(|x|,z)|> < 0.

t—0 |x|>ctr

Proof. (i) First, we consider the case /' € (0,m+ 4;]. We will show that

(3.9) sup (1+ r)/, Ut(r,t) = O(7/=m=)/2) " as t — o0
r>r*(1)
and
(3.10) sup (1+1)/ Ut (r,t) = 0@ """12) a5 1 — o0
0<r<r#(r)

For each fixed ¢ > 0, from (3.5) we have,

sup (14+7)/ Ut (r, 1) < sup (14 )" CoUou(r, ) < sup Cr™ 4 Ugy(r, 1)

r>r*(t) r>Rg r=Ry
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with some constant C > 0. Observe that

P U (r, 8) = (14 7)) with g = — 5
(t+71)

It follows from (3.1) and (3.2) that sup,., n" M F(n) < oo. Then we obtain
(3.9). For each 7> 0, we have,

sup (1 +r)//U+(r, t) < sup (1 +r)//Uin(r, f)

0<r<rx(t) r>0

< sup(t+7) TR 40 ().

r=0

Since (1+7r) //lp(r) is bounded for » > 0 by (2.10), we obtain (3.10). Combining
(3.9) and (3.10), we obtain (3.7) with v=(/ —m — 11)/2.
Next, we consider the case /' € (m+ A;,¢). For each fixed > 0, we have

sup (1 +r)””U+(r, 1) < sup (1 + r)””Co Uoui(r, 1) < sup Cr’ Uow(r, t)

r>r (1) r>Ry =Ry
with some constant C > (0. Observe that
' Uout(r, 1) = (1 + 1)7(/7//)/217’7(17) with n = — 5
(t+1)
It follows from (3.2) that sup,., 7’ F() < oo. Then
(3.11) sup (141U (r)=00""%) asi— .

r>r*(t)

On the other hand, for each 7> 0, we have

(3.12) sup (1+0 ' UT(r)<  sup (147 Un(r, 1)

0<r<r(1) 0<r<B(1+1)'?

< sup (t+0) RO 40 ().
0<r<B(i+1)"?

By virtue of (2.10), there exist a positive constant C satisfying
1+ y(r) < C(1+r"""") for r>0.
Then it follows that
a —m=i\ _ (¢'—m—=11)/2
sup (1+n)"y@r) <C sup (1+r )=0((t+7) )
0<r<B(1+7)'? 0<r<B(t+1)"?
as t — oo. Thus, from (3.12), we obtain

(3.13) sup (1+1)/ Ut (r,t) =0 712) as 1 — 0.

O<r<r*(1)

Combining (3.11) and (3.13), we obtain (3.7) with v= (/ —/¢")/2.
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(i) First we show that

(3.14) sup (1+7)" Ugu(r, 1) = Ot~ ) as t — w0

r=ctt
for any constants ¢ >0 and x> 1/2. For r>1, we have
(141 Uou(r,0) < G (142) " P2F () = €y F)

with some constant C > 1. Note here that =~/ < ¢~~~ for r > ¢t
Thus, from (3.2), we obtain (3.14).

In the case u > 1/2, from (3.5), there exists #) > 0 such that ct* > r*(¢) for
t >t. Thus, from (3.14), we obtain

sup (1+ 1)/ U*(r, 1) = sup (1 + 1)’ CoUsui(r, 1) = Ot """ as 1 — oo.

r=cth r=ctt
In the case 4= 1/2, we observe that

(3.15) sup (1+ 1)/ U™ (r,1)

r=ct#
:mw{ sup u+o”mmn,mpu+m”qammn}
cth<r<r*(t) r=r*(t)
if ct* < r*(t), and that
sup (1+7)" Ut (r,1) < sup (147 CoUou(r,1),

r>ct# rZr*([)

if ct* > r*(f). Thus, in the case 4= 1/2, we may assume that ct* < r*(t) for
t >ty with some #) > 0. From ct* < r*(¢), we have

sup (1+ r)llU(,m(r7 t) < sup (14 r)// Uout(r, 1) for t > 1.

r>r(t) r>ctt
Thus, from (3.14), we obtain
(3.16) sup (1 —&—r)// Ugui(r, 1) = O(t~~"M") as t — 0.

r=r*(t)

From (3.5) it follows that
(3.17) sup  (1+ r)// Unn(r, 1) < sup (1+ r)/,(l + r)_(/_"’_il)/zlp(r)

et <r<re(1) ctt <r< B(t+7)"/?

for t > 1#p. Since Y(r) is decreasing and satisfies (2.10) by Lemma 2.3, we have
Ww(r) < y(ct*) for r = ct* and

Yleth) = O( Ay as 1 — oo,
Recall that 4= 1/2. Then it follows that
sup (1+0) (t+7) 20y = 0" ") as t — oo.

ctt <r<B(i+1)'?
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Thus, from (3.17), we obtain

(3.18) sup  (1+7) Un(r,t) =0 """ as 1 — o0,

cth <r<r*(t)
From (3.15) with (3.16) and (3.18), we obtain

sup (141 U (r,t) =0 """ as 1 — 0.

r>ctt

Thus we obtain (3.8). ]

Proof of Theorem 1.1.  Put Uy(r) = max,_|, [uo(x) — tio(x)| for r > 0, and let
U be a solution of (2.7). Then, by Lemma 2.4 (i), we obtain (2.11).

Define Ut by (3.6). By the definition of r*(¢), we see that U, = CyUsy
and 0Uj,/0r = 0(CoUow)/0r at (r,t) = (r*(¢),¢) for all ¢>0. Thus, if there
exists a constant C > 0 such that CU*(|x|,0) > Up(x) for x € RY, then CU™* is
a continuous weak supersolution to (2.7) by Lemma 2.2 (i).

Observe that r/ Uyy(r,0) = 5’ F(n) with n = r/t'/?. Then, by (3.2), we see

that
(3.19) lim inf U™ (r,0) = Gy ligni;qf n F(n) > 0.
From (1.5) the function Uy satisfies limsup, .., r’ Up(r) < co. Since U™ (r,0) > 0
for r > 0, there exists a constant C; > 0 such that Uy(r) < C;U(r,0) for r > 0.
Thus C,U™"(r,?) is a continuous weak supersolution to (2.7). Then, by applying
Lemma 2.1 with f(r,u) = p¢?~' (r)u, we obtain 0 < U(|x|,7) < C,U*(|x]|,) for
xeR and > 0. Thus, from (2.11), we obtain

(3.20)  |u(x,t) —@(x,1)| < U(|x|,£) < CtUT(|x|,#) for all xe RN, 1> 0.

By Lemma 3.4 (i) and (ii), we obtain (1.6) and (1.8), respectively. O

4. Proof of Theorem 1.2

In the proof of Theorem 1.2, we construct a subsolution of (2.7) by con-
necting inner and outer solutions. We give an inner solution Uj, in the same
way as [3, Lemma 4.1].

Lemma 4.1. Let £/ > m+ Ay, and put
(4.1) Unn(r, 1) = (1 + )72y, (5).
Then Ui, satisfies (Uy), < P,Uin for all t >0 and r > 0.

We construct an outer solution by following the idea presented in
[3, Lemma 4.2].
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LemMmA 4.2. Let 0 </ < N —2, and define Uy, by (4.1). Assume that k is a
constant satisfying

4.2) 0<k< min{l,N_zH}.

Put

_h 1/2
(43)  Uogu(r,t) = max{0,r " — b*(t + 0)"r "2y with b= <M> .

k

Then the following (1) and (ii) hold.
(i) In the range r> b(t+1)"*
Px Uout~
(i) Let B> b. Then there exist positive constants Cy and 1o such that, for
T > 19, Un(r,1) < CoUou(r,1) at r=B(t+1)"* for all t > 0.

, Uoui(r, 1) is positive and satisfies (Uoui), <

Remark 4.1. We see that m+ A, +2 < N =2 if p > p.. In fact, we have

N+24/(N=2—m)® —8(N —2—m)
3 .
Recall that N>11, m+ 4 <(N—2)/2 and A; >0. Then we have m <

(N-2)/2 and N—2-m> (N —2)/2>4. Since the function x*>—8x is
increasing for x > 4, it follows that

(N=2-—m)>—8(N—-2—m) < (N —2)"—8(N —2) < (N —6)~
Thus we obtain m+ 4, +2 < N — 2.

m+ i +2=

Proof. (i) In the range r> b(t+1)"/%, we compute

N -1
(Uout); - Poc Uout < (Uout)[ - (Uout)rr - T (Uout)r

= —kb* (1 + ) (N =2 )
— bRl 2U)(N =2 — £ = 2k) (1 + 1) P2
From (4.2) and r/(t+1)"* > b, it follows that
(Usut), — PyUput < —kb™ (1 + 7)1 4 (N =2 — £)r /2
— (kb (r/(t+ ) VK f(N =2 = )2
< (~kb> + /(N =2 —0)r "2 =0.

Thus we obtain (Usy), < Py Uy
(i) At r= B(t+1)"% we have

(44) Uou(r,1) = B~/ (B* —p™)(t4+ 1) >0
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and
Uin(r.1) = (04 1) 02y (B(1 4 )1/%)
for all #>0. From (2.10) there exist rp > 0 and ¢ > 0 such that
Y(r) < cr ™4 for r > ry.

Then there exists 7o > 0 such that, for 7 > 75, we have Br!/2

> rp and
(45)  Un(r,t) < B M (t4+1)""% at r=B(t+17)"* for all 1> 0.

From (4.4) and (4.5), there exists Cy > 0 such that U (r, 1) < CoUsy(r,t) at
r:B(t—kr)l/2 for all > 0. O

Assume that B, C; and 7¢ are constants given in Lemma 4.2. Let 7 > 79,
and define Uy, and U,y by (4.1) and (4.3), respectively. Put

r (&) = sup{r > 0: Ui(p,t) < CoUou(p,t) for pe[0,r)}.

By Lemma 4.2, the function r*(¢) is well-defined and satisfies

(4.6) r(t) e (b(t+1)"* B(t+1)'/*) for all t> 0.
For each ¢t > 0, define

_ Ui (1, 1) for 0 < r < r*(s),
4.7 U t) =
(“47) () {CoUout(r, 1) forr>r*(s).

We will show the following results.

LemMMmA 4.3. Let /' €[0,/). Then the following (i)-(iii) hold.
(i) There exists some constant ¢ > 0 such that

(4.8) WO, =ct™ for all t>0,

where v is the constant defined by (1.7).
(i) For any constants ¢ >0 and p > 1/2, the function U~ satisfies

(4.9) lim inf t(///)”<sup (1+ r)/IU’(r, t)) > 0.
=0 r>ctt
(i) For any constant ¢ > 0, the function U~ satisfies
(4.10) lim inf z</—m—*1>/2( inf (14" U (r, z)) > 0.
1= r<et!/?

Proof. (i) We see that
sup 1+ U ()= sup (147" Un(r,t) > (t+7)" """/ 2y(0).

0<r<r*(1) 0<r<rx(z)
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From (4.6) we have, for each 7> 0,

sup (1 + r)/,U’(r, N>Cy sup ' Usl(r,).
r>r*(1) r>B(1+1)/?

Recall that (4.4) holds at r = B(1+1)"*. Then it follows that

sup (1 + r)/IU*(r, 1) > CoB’'~/~*(B¥* — p¥)(1 + T)f(/ff’)/zo

r>r*(t)
Thus, if /' €[0,m + 4], we have

sup (1 +r)//U’(r, t)> sup (Il +r)//U’(r, = (t+r)7</7m*i])/2lp(0),

r>0 0<r<r#(r)

and, if /' € (m+ A1,¢), we have

sup (1 —H’)//U’(r7 1) > sup (1 +r)//U’(r, 1> c(t—&-r)f(f*/”/2

>0 r>r*(1)

with ¢ = CoB’~/~2(B* — p?*).  We therefore obtain (4.8) with the constant v
defined by (1.7).
(ii) Let x> 1/2. From (4.6), we see that

sup (1+1/ U (r,t)>  sup (147 CoUsu(r,?),

r=ctt

rzB(tJr‘t)l/2
if et < B(t+1)"?, and that
(4.11) sup (1+ r)//U’(r, t) = sup (1 + r)//CoUom(r, 1),
r=ct# r>ct#

if et > B(r+1)"2.

et > B(t+1)"?

Thus, we may assume that there exists 7y > 0 such that
for ¢t > ty. Observe that Uy, can be written by

(4.12) Uow(r,t) =17’ (1 — b <t:_—zf)k>

for r>b(t+1)"2 Then, for r> B(t+1)"?, we have Uyy(r,t) > c;r™ with
¢ =(1—(b/B))* >0. Thus we obtain

sup (1 + r)(, Uou(r, 1) > sup crr 1) = om0 =00,

r=ctt r=ctt
From (4.11) we obtain (4.9).
(iii) Put
(4.13) b* = liminf r*(¢)(r+ 1) /2.

—0o0
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Then b* > b by (4.6). We will verify that b* > b. Assume to the contrary that
b*=b. Then there exists a sequence {f#,} such that 7, — co and
(4.14) P ()t +7) 2 5 b as n— .

By the definition of r*(¢), we have Uy (r*(f),1) = CoUsw(r*(7),) for all > 0.
We see that

{—m—A
P (1) Uin(r* (). 1) = (M) P ()Y (1))
Then, it follows from (2.10) and (4.14) that
() Un(r*(tn), 1) — b’ "¢, >0 as n — 0.
On the other hand, it follows from (4.12) and (4.14) that
2%
r*<zn>”uom<r*<z,1)7zﬂ>:1—b2k<%> S0 as n— oo,

This is a contradiction. Thus we obtain b* > b.
We observe that

inf (141" U (r,1)

r<ect!/?

_min{ inf (14 7)™ Upn(r,1), inf (147" CoUou(r, z)},
r<r+(t) re(f)<r<ct'?

if ¢t'? > r*(¢), and that
inf (141" U (r,t) > inf (141" Uy(r,1),

r<ct!'’? r<r(t)

if ¢t'/> <r*(t). Thus we may assume that ct'/? > r*(t) for ¢ >ty with some
to > 0. We will show that

(4.15) inf( >(1 + )" U 8) > co(t+7) T2 for 1> 1
r<r*(t¢

and

(4.16) inf (14 7)" Ugu(r, 0) = 072 for t> 1

() <r<ct'/?

with some constants c¢g,c; >0 and ¢ > tp. Combining (4.15) and (4.16), we
obtain (4.10). For each ¢ >0, we have

inf (14 )" Upn(r,1) > inf (¢ + ) MmO )R (.
r>

r<r*(t)

From (2.10) we obtain (4.15) with some constant ¢y > 0. From (4.12) we see
that

12 2k
) t
(1 + r)m+M Uout(ra t) > Ver}'I Uout("; t) = 1"7(/7"17;4) (1 — bZk (7( + T) ) ) .

r
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Thus, for each ¢ > 0, we have

(4.17) inf (14 7)"" Upu(r, 1)

r*(n<r<ct'/?

(t + )1/2 2k
> inf prCm=i) [ 2k (LD .
() <r<al? V*(t)

From (4.13) with b* > b, it follows that

2k
ligglf(l — b (W) ) = (1—(b/b")*) >0.

Thus there exist constants ¢; > 0 and #; > o such that

2k
wf+0)"?
l—b W 26’2 fOftZl].

Then, from (4.17) we obtain, for ¢ > 1,

B (4 U ) 3 inE e ) 3
() <r<ct'/? re(n<r<ct'/?

with ¢; = c;¢""=*). Thus (4.16) holds. O

Proof of Theorem 1.2. Put Up(r) = min,_y (uo(x) — @io(x)) > 0 for r>0,
and let U be a solution of (2.7). Then, by Lemma 2.4 (ii), we obtain (2.12).

Define U~ by (4.7). By Lemma 2.2 (ii) we see that, if there exists a
constant C >0 such that CU(|x[,0) < Up(x) for xeR”, then CU~ is a
continuous weak subsolution to (2.7). From (1.10), the function U, satisfies
liminf,_, r/Uy(r) > 0. Since Uy(r) >0 for r >0 and

limsup /U~ (r,0) = limsup r’ Uyy(r,0) = 1,

F—o0 F—o0

there exists a constant C, > 0 such that CG;U (r,0) < Up(r) for r > 0. Then
C,U~(r,t) is a continuous weak subsolution to (2.7). Then, by Lemma 2.1, we
have U(r,t) > CU(r,t) for r >0 and ¢ > 0. Thus, from (2.12), we obtain

u(x,t) —ai(x,t) = U(|x|,t) = G;U (|x|,#) for all xe RY, t>0.

By Lemma 4.3, we obtain (1.11), (1.12) and (1.13). O

5. Proof of Theorem 1.3

Define U (r, ) as in the proof of Theorem 1.1, that is, U™ (r,?) is defined by
(3.6), where U,y and Ui, are given by (3.3) and (3.4), respectively. Note here
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that r*(¢) satisfies (3.5). By the similar arguments as in the proof of Lemma 3.4,
we see that (3.11) and (3.13) hold even if /' =/, that is,

sup (14+7)/ U (r,t)=0(1) and  sup (147 U*(r,1)=0(1) as t— o0.

r>r*(t) O<r<r*(1)
Then it follows that
sup(sup(l +nUt(r, t)> < 0.
t>0 \r=0
Put ¢; and ¢;, respectively, by
= sup(sup(l +r) U (r, z)) and ¢ = inf (14 7)/U*(r,0).
>0 \r>0 r=0
Then, by (3.19), we have ¢; > 0.
Lemma 5.1. For any ¢>0, put 0 = c¢/c >0 with ¢>c¢). Let U be a

solution of (2.7). If Uy satisfies ||Up(| - |)|l, <9, then U satisfies | U(|-|,1)|l, <e
for t > 0.

Proof. If ||Uy(]-|)ll, <, then it follow that
(1+7) Up(r) <o < 2(1 +r)U*(r,0) for r>0.

This implies that Uy(r) < (¢/c)U*(r,0) for r>0. Then (¢/c)U*(r,t) is a
continuous weak supersolution of (2.7). By Lemma 2.1 we obtain U(r,f) <
(¢/c)Ut(r,t) for all r >0 and ¢ > 0. Hence,

(14+1) U< =1+nU*(ri)<e forall r>0,1>0.

Q™

Thus we obtain ||U(]|-|,7)||, <& for 1 > 0. O

Proof  of Theorem 1.3. (i) Put Up(r) = max,_y (uo(x) — tio(x)) for r >0,
and let U be a solution of (2.7). Then, by Lemma 2.4 (i), we obtain (2.11).

For any ¢ > 0, put d = ¢z¢/c; > 0. Assume that ||ug(-) —#ip(-)||, <J. This
implies that ||Up(] - |)||, <6. By Lemma 5.1 we obtain ||U(]-|,#)||, < & for t > 0.
From (2.11) we conclude that |ju(-,t) —u(-,?)|, <& for ¢t > 0.

(ii) Define U~ (r,7) as in the proof of Theorem 1.2, that is, U~ (r,) is
defined by (4.7), where U, and U,y are given by (4.1) and (4.3), respectively.
For each fixed # > 0, observe that lim,_.,, 7’ Uyy(r,t) = 1. Then it follows that

sup(147) U (r,1) > Cy for all 1> 0.

>0

Thus we obtain [|[U (|- |,7)||, = Co > 0 for each 7> 0.
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Put Up(r) = min,_y (uo(x) — @ig(x)) > 0 for r > 0, and let U be a solution of

(2.7). Then, by Lemma 2.4 (ii), we obtain (2.12). By the similar argument as in
the proof of Theorem 1.2, there exists a constant C, > 0 such that C; U~ (r,0) <
Up(r) for r = 0. Then C,U (r,¢) is a continuous weak subsolution to (2.7).
Then, by Lemma 2.1, we have U(r,7) > Co,U (r,t) for r >0 and ¢ > 0. Thus,
from (2.11) we obtain

for

lu(- 1) —aC Oll, = (U0l = GIU([ - [,9ll, = C2Co >0
each fixed > 0. This implies that (1.15) holds. O
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