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Abstract

Eigenvalues of the Laplace-Beltrami operator on a spherical cap is considered under
the homogeneous Robin condition. The asymptotic behavior of eigenvalues and the
influence of the eigenvalues by the boundary conditions are discussed as the cap becomes
large so that the domain covers almost the whole sphere.

1. Introduction

In this paper we study the linear eigenvalue problem

{Av+2v:0 inQ, cS",

1.1
(L1 (cos g)0pv+ (sino)p =0 on IQ,,

where A is the Laplace-Beltrami operator on the unit sphere S"(c R""!), n > 2,
Q, is the spherical cap centered at the North Pole (0,0,...,0,1) of its geodesic
radius 7w — ¢, ¢ > 0, 0, is the derivative in the direction of the outer unit normal
to 0Q,, g€ [0,7/2] and 1> 0 are parameters. We investigate the behavior of
the eigenvalues of —A as ¢ — +0. The investigation of the behaviors of the
eigenvalues is fundamental and important. Once we know the exact information
on the eigenvalues, we can consider the nonlinear elliptic problem

Au+Ju+u)”lu=0 inQ, c8S",
(cos @)0nu + (sing)u =0 on 0Q,,
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and discuss the local bifurcation from the trivial solution # = 0 in a forthcoming
paper.

In the closely related papers by Bandle, the first and the last authors of
this paper [6] and by the third author [11], the distribution of the eigenvalues
of the Laplace-Betrami operator was discussed. In [6], (1.1) under the Neumann
condition (¢ = 0) was considered and in [11] the two dimensional Dirichlet case
(6 = =/2) was done. In this paper, we focus on the effect of the presence of the
parameter o. It is plausible that the dependence of the eigenvalues on o is
continuous, however, how is the influence of o¢?

As for the pioneering works on the dependence of the eigenvalues concerning
the domain perturbation, there are results due to Ozawa [16, 17, 18, 19]. In [17],
the relationship between the capacity of the small domain which was rid out
from the fixed domain and the behavior of the eigenvalues was discussed. On
manifolds under the Dirichlet boundary condition, the estimates of the perturbed
eigenvalues were obtained by Courtois [10] also in the context of the capacity.
Some results for simple eigenvalues in planar domains with holes under the
Neumann condition are found in Lanza de Cristoforis [12].

In recent years such problems have been investigated on more general
Riemannian manifolds. Results for radial solutions in geodesic balls in spaces of
constant curvature (spheres or a domain on the hyperbolic space) are found in
Bandle, Brillard and Flucher [4], Bandle and Peletier [7], Bandle and Benguria
[3], Brezis and Peletier [9] and the references quoted therein.

We shall treat problem (1.1) as a perturbation in ¢ of the problem

Au+Au=0 1in S".

In this case, all the spectra are completely understood. In fact (cf. i.e.
Shimakura [21]) the k-th eigenvalue (counting from zero) of —A on S” is

k(k+n—1)
and its multiplicity is

(k+n-2)
(n— Dkl

The eigenfunctions are expressed in terms of the associated Legendre polyno-
mials. In case of k =0, the constant 1 is the corresponding eigenfunction.
This paper is devoted to study of the asymptotic behavior of the eigenvalues
in Q, for small &. Concerning the Neumann boundary condition, the detailed
properties of the associated Legendre functions or the Gauss hypergeometric
functions are used in [6]. As for the Dirichlet problem, the third author of this
paper [11] also investigated the behavior of eigenvalues and showed their asymp-
totic behavior in the case of n =2 by using the knowledge of the zeros of the
associated Legendre functions as discussed in Baginski [1, 2] and Macdonald [13].
In contrast to the Dirichlet case or the Neumann case, very little is known
for the Robin problem. Although we can consider (1.1) in any dimension which

2k+n-1)
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is greater than one, however, we give here results in the cases n =2 and n = 3.
General cases will be discussed in a forthcoming paper.
The main results are as follows.

THEOREM 1.1. Let n=2. Fix o€ (0,n/2). For any keN, there exist
(k+1) distinct eigenvalues ek mo (m=0,1,...,k) of —A exist near k(k+ 1).
As ¢ — +0, the following asymptotic expansion hold.

dokomo — k(4 1) = ¢t g 263D g(gmaxZmdly gy —0,1,2,... k),

where

(2k + 1)(m + k)!

— m N k
4m k 119! [ — I,z’ 37 , K,
Cka”77772 — k ( ”l)-”l.(”l—l).
Z ’ m = 0.

Moreover, the multiplicity of Acj.mo is 2 if m>1 and that of A, k0., Is 1.

Remark 1.1. In n=2 case, if m > 1, then the leading term is exactly the
same as that obtained in [6] under the Neumann condition. However, if m = 0,
the difference from the Neumann condition case appears since tan ¢ = 0. In this
case, the order is &> by [6].

The relationship between the Dirichlet case and the Neumann case will be
seen in (3.17) in Section 3. We can deduce the same order and the same
coefficient as those obtained in [11]. However, for m = 0, the ¢ dependence is
observed.

THEOREM 1.2. Let n=3. Fix o€ (0,n/2]. For any keN, there exist
(k+1) distinct eigenvalues 2. x40 (q=0,1,...,k) of —A exist near k(k +2).
As ¢ — +0, the following asymptotic expansions hold:

(i) o€ (0,7/2):

/1671(7%0_ _ k(k+ 2) _ Ck’q’g738max{2q+l,2} + 0(8max{2q+1,2})

with
22050 (k 4+ Dg(k + g+ 1(g!)° 4> 1
Chnos = (k—){2(¢+ D}~ 777
14,0, -
2(k+1)2tana7 =0,
T
(i) o =m/2:

Jokge—k(k+2) = i go38" + 0(247))
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with

22D (ke 1) (g + Dk + g+ 1)l(g!)’
ard =TT g 2(g + DY(29)'n

Moreover, the multiplicity of Ask,q0 is 2q+1) if ¢ >1 and that of A x0,s is 1.

Remark 1.2.  Similarly to Theorem 1.1, when ¢ > 1, the leading term in the
right-hand side is not dependent on ¢ € [0,7/2). When ¢ = 0, the leading term
of eigenvalues depends on ¢. If ¢ =0 and ¢ =0 (the Neumann condition), the
asymptotic order is & by [6].

In Theorems 1.1, 1.2, the case of kK = 0 also holds true for m =0 and ¢ = 0,
respectively.

Remark 1.3. Theorems 1.1 and 1.2 show that the domain-monotonicity
property (see e.g. pp. 2-5 of Ni [15]) does not necessarily hold under the Robin
condition, either.

Remark 1.4. 1t is known by Tichmarsh [22, 23] that there exist no eigen-
values other than those obtained by the separation of variables.

This paper is organized as follows. In Section 2, we review several fun-
damental properties of the special functions: the Gauss hypergeometric functions,
the Gamma function and the psi (di-Gamma) function. In Section 3, we discuss
the two dimensional case and in Section 4, we consider the three dimensional
case. We use the properties of the associated Legendre functions and the Gauss
hypergeometric functions. The analysis of those functions are essential in this

paper.

2. Review of the Gauss hypergeomtric functions and the associated
Legendre function

To investigate the eigenfunctions of the Laplace-Beltrami operator we need
to use the spherical harmonic functions and the related special functions. In this
section we collect the properties of special functions, the Gauss hypergeometric
function F(a,b,c;z), the Gamma function I'(z) and the psi function ¥(z) used in
the successive sections.

Note that all the special functions listed in this section are analytic except for
their poles. If the remainder terms of those functions are of O(|z|*) order, then
their derivatives are of O(|z|*™").

The definition of the Gauss hypergeomtric function F(a,b,c;z) is as follows:

I'(c) i Ta+nT(b+n) z"

(2.1) F(a,b,c,z) = T(c+n) 7l

b
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with a,b,ce C\{—1,-2,-3,...} and z is a complex variable. If |z| is very
small, we have

(2.2) F(a,b,c,z) =1 +%z+ o(z)%).

For the Gauss hypergeometric functions, the following conversion formula is
useful (see pp. 270-274 in Beals and Wong [8]). Let a, b, ¢ be real numbers such
that none of ¢, a+b+1—c and ¢+ 1—a— b is a non-positive integer. Then
for x e (—1,1), there holds
(2.3)  F(a,b,c;x)

I'(e)I'(c—a—b)

=—————*F(ab b+1—¢l—
I'(c—a)l(c—b) (@batbtl-cl-x

M(l_x)c_”_bF(c—a,c—b,l—i—c—a—b;l—X)-

I'(a)T(b)
The associated Legendre function is defined by
et 1+ r\"? 1 —1
py _ _
(2.4) PX(1) T—n (I—Z) F< v+ 11—y 5 >

in the interval (—1,1). If u is a non-negative integer m, then it is also expressed
by

F(1+V+m) 2\m/2 1 —1
2.5) Pt = 1—1¢ F — 1,1 — .
25) P m!2’”F(1+v—m)( ) m—v,m+v+11+m—

We recall that this function P = P" is a solution of the associated Legendre
differential equation

2
(2.6) (1 — 2)P"(r) — 2tP'(1) + (V(v +1)— lm—lz>P —0.
The recursion formula is given by

(2.7) (1= 2) S Pt = (0 VPO — (v — o+ DPL ()

For the Gauss hypergeometric function, there is a conversion formula, which is
useful for the analysis on the three dimensional case.
We introduce the psi (or di-Gamma) function y(z) defined as
I'(z)
l//(z) - r(Z) .

The psi function has the following property:

(2.8) Y(iz+1)=y(z) +1.

z
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The limiting behavior of the Gamma function and the psi function are as fol-
lows (see pp. 19-34 in [8] or pp. 2-11 in Moriguchi, Udagawa and Hitotsumatsu
[14]).

LEMMA 2.1. Let n be a positive integer. Then there hold
(_l)nJrl
n

(i) 113% t(—n—1)=

(i1) lirré w(—n—1) =1
Also, the power series representation of y is useful.

Lemma 2.2. The following expansion holds

w(x):_y_iccj—n_nj—l)’

n=0

where y is the Euler number defined as

. n 1
yz)gr;(ZE—logn).

m=1

Let o, f be non-integer values and / be a positive integer. The function
U(a,p,/,x) is defined as

(29) Ul p.t:x)

_ (1) |
Tl OT(F+ 1= = 1) [F<°"ﬁ’ /;x) log x

+§:(a)n(ﬁ)nw(a+n>+¢(ﬂ+n) —Y(n+ 1) = Y/ +n)}x"

n=0 (/>"n'
L= R0, (B0,
F@rp) = (2=7),n! ’

n

where (o), =oa(a+1)(a+2)---(a+n—1)=T(e+n)/T(n) and we agree that
the last term in (2.9) is void if /=1 (see [8, Section 8.4 (pp. 274-276)]). It is
known that U(x,f,/;x) solves the hypergeometric differential equation

(2.10) x(l—x)%+{/—(oc+[)’+l)x}€;—;]—ocﬁU:0
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and is linearly independent of F(a,f,/;x), which is also a solution to (2.10). If
o+ f+1—/ is a non-positive integer,
(211) F(a,ﬂ,/;x)ZF(/)U(oc,ﬂ,oH—ﬁ—i—l—/;1—x)
by [8, p. 276].
We often use the following formula:
(2.12) I'(z+1)==zI(2),
T
2.1 rzra-z)= .
(2.13) (N1 —2) =
3. In case of n =2
In this section, we treat the S* case. We use the polar coordinates:
X1 = cos ¢ sin 0,
Xp = sin ¢ sin 6,
X3 = cos 0.
Then Q, is expressed as
Q={00,¢)|0<0<n—¢0<¢<2n}
and the Laplace-Beltrami operator A yields to
0%v w1 0%
Av=—+cotl—-+———.
00? 20 sin* 0 04°
The eigenvalue problem (1.1) is reduced to
v v 1 %
3.1 —tcotl—-+———+iwv=0
31 00* 30 sin? 0 0¢°
and (3.1) can be solved by the separation of variables.
Let v(0,¢) = ®(0)¥(4). Then we have
) \P//
sin” 0{®" () + (cot )’ (0) + 1D} = — (9) =m?
¥ (9)
with m =0,1,2,.... Hence we have ¥ (¢) = ¢; cos m¢ + ¢, sin m¢. In case of
m =0, we agree that ¥(¢) = 1. Also, @ satisfies
m2
(3.2) @"(0) + (cot O)@'(0) + </1 - #>CD =0.
sin® 0

By letting ¢t = cos 8 and ®(6) = P(¢), we have

(3.3) (1 — 2)P" (1) — 2P'(1) + (z _m )p =0.
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As seen in Section 2, the associated Legendre function P!(cos 6) is the regular
solution of (3.2) where A = v(v+ 1) with v > 0. The constant v is determined by
the boundary condition

cos O’%PC’I(COS Nyp—p_. + sin aP(cos(m —¢)) = 0.

Using the recursion formula (2.7), we have

DtPA(t) — (v — 1)P*
%P{,‘(cos 9)z%P{,‘(t)(—ﬁ):_<v+ )P (1) l(‘i 12“"' )P»H(I).

Thus the Robin boundary condition can be rewritten as

(3.4) {(v+1) cos g cos(n — &) — sin o sin ¢} P (cos(n — ¢))

=(Wv—m+1)cosaPl

vi1(cos(m —¢)).

First we show the existence of an eigenvalue near k(k + 1) to (3.2) under the
condition
(3.5) cos o®@'(n — &) + sin a®@(n — &) = 0.

Note that (3.2) is equavalent to

2

(3.6) {(sin 0)®'}’ + /(sin 6)® — SII,Z—HCD —0.

LeEmMA 3.1.  For each k € N, there exists a unique eigenvalue ., i m » to (3.6)
with (3.5) near k(k+ 1) for any small ¢ > 0.

Proof. We use the Priifer transform. Let

@ = p(6) cos s(0),
(3.7) { —(sin O)®' = p(0) sin s(0).

Substituting (3.7) for (3.6), we have
2

m
_ I o3 _ ! _ =
(3.8) p' sin s — p(cos §)s" + Ap cos s singP o8 0
and
sin §
3.9 " cos s — p(sin s)s’ = —L200
(3.9) p' cos s — p(sin s)s Sn 0

Multiplying (3.8) by coss and (3.9) by sins, summing them up, we obtain
2 2

ds sin“s  m
1 2 s 2o 0 7 costs.
(3.10) 70 Asin 0 cos” s+ sn g ©O ¢
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We take $(0) = 0 and p(0) = 0 when m > 1 if otherwise, (3.6) cannot be solvable
due to the singularity. While m = 0, we take s(0) =0 and p(0) = 1. Thus, to
satisfy the boundary condition, s(6) must satisfy

(3.11) cos g sin s(m — &) = sin ¢ sin o cos s(n — &).

By the Priifer comparison theorem [20] (or see Theorem 3 in Section 41 of
Yosida [24]; the Priifer theorem is applicable to (3.6)), it is well known that
s(0) is monotone increasing with respect to A for any fixed 0 e [0,x), that
lim;_,,, s(0) = oo and that s(0) <0 by (3.10). Note that k(k + 1) is an eigen-
value of —A on S?, that is, sin s(z) =0 since on the whole sphere, ® must
satisfy ®'(n) = 0 (otherwise, it cannot be an eigenfunction). By the continuity
of solutions to (3.10) with respect to 0, sin s(z —¢) is also close to 0. If ¢ >0
is sufficiently small, then by the continuity of solutions with respect to the
parameter A, and the monotonicity with respect to 4, by (3.11), there must exist
unique A, i m . near k(k+1). O

Proof of Theorem 1.1. The existence of eigenvalues is assured by Lemma
3.1. We prove the asymptotic behavior of the eigenvalue A= /. i mo=
v(e)(v(e) + 1) near k(k+ 1) for k € N, the condition for m and the multiplicity
of eigenvalues.

We use the expression of P!(¢) as (2.5). Since 1+m— (m—v)—
(m+v+1)=-m<0, P/'(¢) is singular at ¢t = —1 as in the following proposition:

ProrosiTION 3.1 (cf. [14]). Let o, B, y be real numbers such that o+ f —y

> 0 and let k be the greatest integer which does not exceed oo+ f —y. Then there
holds

lim (F(oc,ﬁ, P X)

x—1-0

- O‘ + ﬂ — 7 n)F(y) n+y—o—
DY e L I SEICEV XIEE G
_Irly—a—p

Ly =)y - )

However, in our case, a =m—v, f=m+v+1 and y =m+ 1, which yield
y—oa—ff=—m. Hence, I'(y —a—p) in the right-hand side is not defined (its
absolute value is infinity). Thus, to analyze the eigenvalue problem beyond this
difficulty we use U(o,f,/,x). In our case, o=m—v, f=m+v+1,{=m+1
and x = (1 —¢,)/2 with ¢, = cos(zr —¢&). Thus, (2.5) can be written as

rt+v+mI(m+1)
m2"T'(1 +v —m)

t.+1
P(1,) = <1—z§)m/2U(m_vm+v+1 1! )

Then the boundary condition (3.4) yields
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Ir'(l+v+m)

—{(v+1) cos g cos ¢ + sin  sin 3}m

t.+1
XU( —vm+v+1,m+1; 8; >

r2+v+m) Lt 1
H2+v—m)UQn_v_’ ekl )

and after some elementary calculation, we have

=(v—m+1)cosa

. . t:+ 1
(3.12) —{(v—|—1)cosocoss+51n051ns}U< m—v,m+v+1l,m+1; 8—21_ )

t 1
:(v+m+1)cosaU(m—v—1,m+v+2,m+1; 8;_ )

Substituting « =m—v, f=m+v+1 and / =m+1 for (2.9), we get
(3.13) Um—v,m+v+1,m+ 1;x)

-1 m+1
:F(i)l“()wrl)m! {F(m_v’m”“vmﬂsx) log x
+Z m+l+v+l) < {(m—v+n)

n=0

Yy L n) = (n+ 1) = Ylm+ 1+ m)}”

( _1) mm] v+ n .n
T CEONCES TSN Z; T—mnl

n=»

and
(3.14) Um—v—1m+v+2,m+ 1;x)

(_1)111+1
= Fm—-v—1 2 I;x)1
l"(—v—l)l"(v+2)m![ m—v—1m+v+2,m+1;x) log x

< (m—v—1)
B

n=

+Wm+wd+m—wm+m—ww+1+mhﬂ

(m_l)' —m

V—l V—|—2)n n
x".
F(mfvfl)l"(m+v+2

+ )l

:M§

Recall that the last terms in (3.13) and (3.14) are void if m = 0.
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Let us consider the case where m is a positive integer. Substituting x =
(t, +1)/2 = &2 /4 + O(e*), we have

t+1
2

Thus the first terms in (3.13) and (3.14) are not dominant as ¢ — 4+0. Set v =
v(e) and consider the value of v(0) as ¢ — +0. If »(0) is not an integer, then we
reach a contradiction. Indeed, if v(0) is not an integer, then the last terms in
(3.13) and (3.14) are dominant and U(m —v,m+v+1,m+1,(z,+1)/2) and
Um—v—1,m+v+2m+1,(t,+1)/2) are of the same order ¢ 2" as ¢ — +0
according to (3.12). Thus the leading terms of the each side must satisfy

(A Dm=DL (N dma Dm=1 (5
(3.16) BCEDICE R (E) CT(m—v—1)(m+v+2) (2) :

This leads to v+ 1 =v —m+ 1, which contradicts the assumption m # 0.
If m > k, then (3.16) also implies the contradiction. Thus m=1,2,... k.
Summarizing the above argument, we can expect that

v=(e) =k +v(e), vi(e)=0(E"), m=1.2,...k,

(3.15) F<mv,m+v+l,m+1; >1+6162+0(64).

where v*(¢) may be of smaller order than that of &

In the next step we determine the constant lim, ..o e >"v*(¢). Among the
terms in the parenthesis [ | of (3.13) and (3.14), we need to find a term which
becomes large as ¢ — +0. Lemma 2.1 implies that I'(z) has a pole of order 1
when z is a negative integer. Thus, ['(m —v), I'(m — v — 1) and I'(—v) become
large as ¢ — +0. At the same time, we note that the function y/(z) also becomes
large as z converges to a negative integer.

First, the term

t.+1 t.+1
F(mv,m+v+1,m+l; + >10g +

2 2

in (3.13) is neglected since the coefficient of this term has I'(—v) in the deno-
minator if m > 1. In (3.13),

i m+v+1) 1//(m—v+n)<t‘9;_1>n

g m+1

can be large as v — k. Since {(,+1)/2}" = (¢/2)”" + O(e¥**2), then the first
term in the sum is the leading term. By Lemma 2.1, we note that

b))

IRV k+1 |
v—k F(—V) ( 1) fel.

The same arguments in this paragraph apply to (3.14). Then, finally, we see that
(3.12) yields
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—{(v+1) cos g cos & + sin ¢ sin &}

_(—1)m+lw(m—v) (m—1)! e\ 2" s
8 _F(—v)F(v + 1)m! + C(m—v)T(m~+v+1) {(§> + O0(e™? Z)H
=(Wv+m+1)coso

-(—1)m+lx//(m—v—l) (m—1)!

I'(—v—-DI'v+2)m! T'm—v—1DI'(m+v+2)

L o))

As ¢ — 40, there holds

sino .
—| cosaocose+ sin &

v+1
(_1)m+k+2k! (_1)k7m+1(m_ 1)'(k—m)' o
X { klm! ™ (m+k)! 4" ¢k . 6,2(8) + O(e)
v+m+1
:V—F—l COS o
(=D B G+ DU (=D — DIk +1-m)!
X { (k+ 1)'1’)’!' + (Wl +k+ 1)' 4 Ck,m,o,Z(S) + 0(8) s
where v¥(e) = Ck.m.0.2(¢)e?™ + O(e?1).  Then we see that
1 COSO'—i——Sing sin o
x _ k41 k+1 (m+k)!
CAD - Gemo2le) = sin ¢ e —mymim =11 T 0@
cos o +

sin o

k+1 k+1
Taking the limit as ¢ — 40 in (3.17), we conclude that the limit lim ¢k 5 2(¢)
exists as e t0

(m+k)!
k —m)lm!(m — 1)!

Ckm,0,2 °= rliIEO Ek,m,J,Z(E) = _4m(
g—

if 0el0,7/2) and

- "~ lim ¢ (e) = (m+k)!
ck,m.n/2‘2 = sirE() Ck,m,n/Z,Z &) = 4m(k — m)'m'(m — 1)|7

if 0 =n/2, which coincides with a result in [11].
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Next we consider the case m = 0. In this case, the situation is different
from the case m > 1. In (3.13), log(cos(m —¢) +1)/2 may not be neglected.
Although (v + 1), ¥(v+2) are uniformly bounded, they cannot be neglected
and so cannot be (1) either.

Indeed, as v — k, the leading terms are as follows and they must satisfy

COS 0 COS & + sin @ sin ¢
o Y
k+1 t.+1 t.+1
1 — Fl — 1,1; 1
(3.18) N EINCES)) { < S

+ (=) Fy(v+1) = 29(1) + 0(82)}

cos o t.+ 1 t.+ 1
- Fl—v—1,v+2,1; 1
F(—v—l)F(v+2){ ( o hvts Ty )Og 2

(v =1) + (v +2) = 2y(1) + 0(82)}

with 7, = cos(m — &) = —1+¢2/2+ O(&*). 1In this case, we need to determine c;
in (3.15) exactly and there hold

F(—v,v+ P P 1) —1 _W(J + 0@

2

and

F(—v—l,v+2,1;t‘7;1>:1—%824_0(84).

Thus, we see

sin )
v+18+ O(e )>

{1 V(v;rl)gz}logG)z

+ (=) + (v + 1) = 2¢(1) + O(&?)

]

+y(—v =1 +y(v+2) —2¢(1) + 0(?) |,

(3.19) —<cosa+

which implies
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(Er00)
<|fr-tey 1og(§>2 ) P+ 1) = 20(1) + 0)

2
_ { ARG 1og(§) (v = 1)+ ()

—yO+2)+y(v+1)+ 0(82)} cos .

Using
1
v+ 1’

Y(=v) =d(=v-1) -

we obtain

(320) - (im T+ 0(&))

lp(v+2):lp(v+l)+v+1

+ (v +1) = 2¢4(1) + O(e?)

~ 2cosg  (v+1)(v+2)cosa , e\’ 2
= 3 & log 5 + O(&7).

Thus, we see that

gsin o 2coso
s a1 V) = g e

As before, since (z) has a pole of order one at a negative integer and there
exists a precise expansion of \ (see Lemma 2.2). Substituting v =k + v*(¢) in
Lemma 2.2 as ¢ — 40, we see that y(—k —v*(¢)) ~ 1/v*(¢). If o€ (0,7/2), we
obtain

vi(e) tang

lim = = Ck.0,5.2-
>0 & 2 e

We remark the behavior for the Dirichlet boundary condition ¢ = z/2. From
(3.20), we have

log@z () = 0(1).
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Then we have

1

vi(e) = Toge(l +o(1)),

which is the same result as [11, 13].
We conclude that v=v(g) =k + Gk 026" + 0(e*") for some constant
Ck.m 02 and that for each m e [1,k],
Wk, m, ) (€08 0)(c1 cos m¢ + c3 sin m¢)
are a pair of the eigenfunctions corresponding to the eigenvalue
A=v(e)(v(e) + 1) = k(k + 1) + (2k + 1)é.m.0. 26" + O(e*™2)

with m=1,2,3,... k.
In case of m =0, Pf?(kvo_’g)(cos 0) is the eigenfunction corresponding to

A=v(e)(v(e) + 1) =k(k+ 1)+ (2k + 1)Ck 0,5,26 + 0(¢).

The multiplicity of eigenvalues is obvious from the expressions above. Thus, we
take ¢ m.o.20 = (2k + 1)Ck m.02 and the conclusion follows. O

4. In case of n =3

As in Section 3, we also use the polar coordinates:
X1 = cos ¢ sin ¢ sin 6,
Xy = sin ¢ sin ¢ sin 6,
X3 = cos ¢ sin 0,
X4 = cos 0.

Here the domain Q, is expressed as
Q. ={00,9,9)|0<0<7-60<9=<n0<¢<2n}

and so is Av as

Av = L (sin2 6@> + _ e <sin @> + _ 6_21;
sin 0 00 d0)  sin* 0 sin g 0p Yop) " sin? 0 sin? 0 0P
Then separating variables

v(0,9,¢) = UO)V (9) W (4),

we get
1 o0 (.,,0U N
U@(Sm 0E>+Zsm 0="1¢,
4.1 )
— ! i(s.in 6_V>_71 _6 W—/
V sin ¢ O¢ (pﬁ(/) W sin? ¢ 0¢> ’
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for some constant /. Again, the second equation of (4.1) is reduced to

sin go% (sin go%—Z) +/(sin® p)V = LV,

orw
— s =LW,
o

for some constant L. Since W is periodic, L = m? with m = 0,1,2,... and thus

(4.2)

W = ¢ cos m¢ + ¢, sin mg.

We set W =1 when m=0. Then V satisfies

mz
(4.3) V" (@) + (cot @) V' (p) + (/ ~ i q)) V=0.

Put t=cos¢ and P(r) = V(p). It is a solution of the associated Legendre

differential equation (2.6). Let / =w(v+1). Then its solution is expressed as
P(t) = P}'(t). Since the solutions are regular at t = 1, ¥ is a positive integer ¢ and

(4.4) q =m.
By (4.1) with £ =¢q(q+ 1), U satisfies

(4.5) U”(0) + 2(cot O)U'(0) + {;v - "iiqnjel) } U=0,

which is called the “hyper-sphere differential equation”. As in Section 3, (4.5) is
equivalent to
(4.6) {(sin® )®'} + A(sin® O)D — g(q + 1)@ = 0.

Let 1 =cos @ and U() = U(1)/(1 —*)"*. Then U(r) satisfies the associ-
ated Legendre differential equation

(4.7) (1 —2)U"(t) —2tU' (1) + {}.4—%— W} U(t) = 0.

We see that U(t) is expressed as U(f) = P*(t) with

3, 1 :
V(V"r‘l)—i-i-z, o —q(q+1)+z—<q+§)

Then U can be written as

U(0) = P (cos 6)
B Vsin 0 .

Thus the eigenfunctions of (1.1) are of the form

(4.8) Y O X))
’ v/sin 0

P} (cos p)(c1 cos mg + c3 sin me).
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Similarly to (3.4), we determine v = v(¢) as a function of & so that the Robin
boundary condition is satisfied, i.e.

cos a% UO)|y_p+sincU(n—¢) =0.

Consequently, we have

d
) — 1/2
—cos g sin”(n — ¢) %Pv a1/ >(t)|t:cos(7zfx)

COS 9 p(g+1/2)

v

- (cos(m — &)) cos(m — &)
+ sin g sin(z — &) P, 4+ (cos(n — ¢)) sin(n — &) = 0.

From this relation and the recursion formula (2.7) with u = —(g+ 1/2), we get
(4.9) { (V + %) cos g cos(n — &) — sin o sin(n — 8)}Pv(q+1/2) (cos(m — ¢))

3 —(4
= (v +q+ 5) cos anJr({H/Z)(cos(n —e)).

We express P¥ in terms of the Gauss hypergeometric functions as

(410) e(q+1/2)nip;(q+l/2)([)

1 141 ‘W“/z)/zF g3t
= -,V ——
T(q+3/2) \1—1 T RAT )

using (2.4) with 4= —(g¢+1/2). As in Section 3, we first show the existence of
eigenvalues. Parallel to Lemma 3.1, we have the following.

Lemma 4.1.  For each k € N, there exists a unique eigenvalue A, i m o to (4.6)
with (3.5) near k(k +2) for any small ¢ > 0.

Proof. As in the proof of Lemma 3.1, we use the Priifer transform

@ = p(0) cos s(0),
(4.11) { —(sin® 0)®' = p(0) sin s(0).

Substituting (4.11) for (4.6), we have

(4.12) —p' sin s — p(cos s)s’ 4 Ap sin® s cos s — g(q + 1)p cos s = 0
and
(4.13) p’ cos s — p(sins)s’ = _pems

sin” 0
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Multiplying (4.12) by cos s and (4.13) by sins, we obtain

sin? 5(0)
sin®

(4.14) % = /A sin? 0 cos® s(6) + —q(q +1) cos® s(0).

The boundary condition yields
cos o sin s(m — &) = sin ¢ sin’(7 — &) cos s(n — &).

The Priifer comparison theorem is applicable to (4.14) and the rest part of proof
is proved as in the proof of Lemma 3.1. O

Proof of Theorem 1.2. As in the proof of Theorem 1.1, the existence of
eigenvalues is ensured by Lemma 4.1. We consider the asymptotic behavior.
From (4.9) and (4.10) we deduce that

3 . . 31
(4.15) {—(erz) cosacosa—smosma}F(—v v+ 1, q+2 T)

3 31—
<v+q+2)cosaF((v+1)v+2q+27 5 )

Since the hypergeometric functions in the above equation are singular at r = —1,
we use the following identity (see (2.3) in Section 2)

31—1¢
4.1 F 1, —
(4.16) < v,V + q+2 3 )

= g +39)T(g+) F(—v,v—i—l q—i—l t,+1>

T(g+v+3)T(g—v+3) 5
+F(Q+§)F(—ql—)§) (ls-zi-l)qﬂ/z

I'(—v)I'(v+
3 1 36+1
xF(q+v+§,q—v+27q+2 2 )

Assume that v(e) = v(0) + o(1) and let us take the limit as ¢ — +0 in (4.16).
Since F(—v(0),v(0) +1,—¢+4%;0) =1, F(g+v(0)+3,4—v(0) +1,4+3;0) =1
and ¢+3/2—{—v+(v+1)}=¢q+1/2>0, we find

T(q+3)T(g+3)
(g +v(0) +3/2)T (g —v(0) +1/2)"

F(—v(0),v(0)+ 1,g+3/2;1) =

If ¢g—v(0)+ 1/2 is not a negative integer, then we will have a contradiction.
Indeed, suppose that ¢ — v(0) + 1/2 is not a negative integer. The second term
n (4.16) vanishes as ¢ — +0 and (4.16) leads to
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(o +3) Tl rle s
2) T(g+v(0) +3)T (g = v(0) +3)

_ 3 C(g+3)
- <V(O) * ‘”2) Fa v 13T

for ¢ =0. The formula (2.12) implies

v(O)—i—%:v(O)-l-%—q

provided I'(¢ — v(0) + 1/2) # oo and thus ¢ = —1, which contradicts (4.4). Thus
the only possibility for the above equation to hold is that T'(g — v(0) + 1/2) = oo,
namely, ¢ —v(0) + 1/2 is a non-positive integer. We may take

1
V(O) :k+§

where k e NU{0} and ¢ < k. Combining (4.15) and (4.16), we obtain

3 . .
(4.17) {—(v—&—z) COS g COS ¢ — sin ¢ sin e}

3 1
F(q+§)l“(q+2) 1 F<—v,v+1,—q+1;t”+ 1>
(g —v+3) 2

(g +)T (g 1Y) (1, +1\"2
+ 1"(—12))1"(v+1)2 ( 2 )

1 3 :+1
2

3
XF<Q+V+§>CI—V+—,CI+§» 2

3
=<v+q+§) cos g

1 t,+1
)F<—(v+1),v+2,—q+; * >

o= Ia—) (i 1)
I'(—v—-1HI'(v+2)\ 2

5 1 36+1
XF<(]+V+§7‘]_V_§»q+§» 2 )

with ¢, = cos(m — ¢). Note that both sides become small as ¢ — +0. If ¢ > 1,
then dividing the two sides of (4.17) by &%, we obtain
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(4.18) —{ (v—i—%) COS 0 COs & + sin ¢ sin e}
DT YT+~ )l 000
I'lg+k+2)

g+ Hr(- -}
A DR )

< 3)
+q COos o

VI (g + DT (g +Y) (k+ 1 )16k 4.0.3(2)
C(g+k+3)

I (=g -3)

Rt 00

_|_

I\)\w +
\_/ )

(_

where

1
v=v(e) =k + 5T Cr.g.03(e)e? ™ 4 O(212).
Substituting these relation for (4.18), we have

(4.19) { (v + ;) COS 0 COs & + sin ¢ sin 8}{5k.q,a,3(6) — A+ 0(e)}

= <v+ q +;> cos G{M&(‘Wﬁ@) — A+ 0(8)},

where
(=D (—g - DT+ k +2)
D@+ )k —gR2Hn

Here we used the recursion relation (2.13). Applying the recursion formula
(2.12) several times and T'(1/2) = /7, we have

(4.20) r<m _ 1> _ 1y g 22050 (g 4 1)1

2 Ve T(meg) = g

for any nonnegative integer m. This implies that

_ 22 (g + 1)(g + k4 1)i(gh?
(k—q){2(q + 1)}'(29)!n
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y (4.19), we have

3 . ) k+1-— +q+3) cos
{(v+§> €08 0 COS & + 8in g sin & — ( (C]I)ﬂ(:}k Jrq2 ) J}Ek,q,a.S(S)

3 . . 3
= {(V+§) COS 0 COS &+ SIN 7 SIN & — <v+q+§> cosa}A—i—O(s),

which implies
(421)  Crgoa(e)

3 . . 3
<v+2) cosa+smasms—(v+q+2> Ccos o

= A+ O(e).
3 , , (k+1-¢q)(v+q+3)cosa ©)
V+ =) Ccosg+sinaosin € —
2 qg+k+2
Thus we obtain
2k 4 g+ DY '>2 [o z)
(k—a){(2(¢ + 1) }!(29)! '2)’

(4.22) 51“],0,3 = lim 51(7(1.0,3(8) =
&e—+0

T
, 0= 5

22 g+ 1)(g +k+1)(g )
(k—q){2(¢ + D}H(2q)!n
If ¢ =0, then formally we have ¢ 0,3 =0 for 6 €[0,7/2) and ¢ 053 #0

for o =n/2. Thus, the order must be smaller than ¢ if o € [0,7/2) and ¢ = 0.
In this case, (4.17) yields

(4.23) —cos o cos g — 0l 513n ¢
v+ 2

rGr(-4) [(a+1\"? 3 134,41
+F(i)l“(v+21)< 2 ) F(”E"”E’ 2 )
= 2)F<—(v+1),v+2—'

3 1/2
. CAr(~1) cosa (1,+1 /F SR O /S 2
v—DL(v+2)\ 2 2 2'2°7 2

and we need more exact calculations.

Now we write v =k +1+v*(¢). In this case, we use the approximation
cose=1—¢2/2+ O(c*). Slnce I'(=v+1/2) and I'(—v—1/2) has a zero of
order v*(¢) at e =0, we only need
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F(—V,v—l—l,—l ﬂ):1+0(82),

2’72
1 7.+1 )
Fl-(v+1),v+2,-;—— | =1+ 0().
27 2
However, for other F’s, we use the following expansions:
3 13 7,+1\ . ey 3t +1
F<v+§,—v+§,§, 3 )—F<k+2+v(£), k v(s),z, 7 )
k(k+2
:1_g82+0(84)
5 13 ,+1\ . w3 t+1
F<v+2,v2,2, 7 >F<k+3+v(e),k1v (6),5, > )

_ ke Dk+3) 1)6(k 32 4 o).

Using (2.12) and (2.13), we have
3 1 1 1 1 (v+3)m
C(v+2)0(—v+2) = )r(v+2 )0 —v4z)=——"2.
(”2) <v+2> (”2) <v+2> <v+2> sin(v + )z

Similarly we obtain

r(g)r(%) _ sin(v —&-%)n F(%)F(— %) ~ invn
C(v+3)r(—v+1) 2v+1 7 T(=nT(v+1) ’
rOr@  _ sin(v+yz L=y . -

F(v+3)T(—v-1 2v+3 7 T(—v—-DI(v+2)

Then the following part of (4.23) can be calculated as

singsine) () (-1) 3 13 ¢+1
4.24 — — 2 2 _F 2o, 2T
( ) (cosocose v+% )F(—v)F(erl) <v+2, v+2,27 5 )

_rr((_%ir_(I)%r)(ﬁ;)FoJr;’_V_;’;tb; 1)
:loosa(F(v—F;,—v—%%;tg—;l)

_F(v—&—%, ;7%;1,42— ) 0S €

Sinvg—:i%MF(er%,v+%%;[H2rl> sm<k+%+v*(e))n
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= [cos a{l - %ékmsz + 0(eh

_ (1 _ k(k6+ 2) 2 7%82 i 0(84)>}

_smas13ng(1 —k(k+2)52+0(54))
V+§ 6

15 g o
:<_4( llzj;m +0(82)>

On the other hand, the rest of (4.23) becomes
rG)rQ)coss
F(v+3)T(-v-1

sin o sin ¢ I(
—| —cos o cose—
v+3 JT(v+3

1 t,+1
><F<v,v+l, ; +>

(—1)* sin(% + v*(e))n

(4.25) )F<—(v+1),v+2,—; d

N =
Al
o[+
—_
N—

2" 2

cos o sin(v +4)7m 1 t,+1
= ROV T R (v 1), v+ 2,5
2V+3 ( (V+ ),V+ 727 2

sin o sin ¢ | sin(v+ 1)z
—| —cos o cos e — .
V"‘j 2V+ 1

1 t,+1
X F(—v,v+ 1,—§;T>
1
:COS“[z(k+ Dk +2)
Substituting the above terms (4.24) and (4.25) for (4.23), we have

(_1)k+1

+ 0(5)] (=) sin v*7.

(—l)kﬂa sin ¢ o) e |
4.26 (=l) éesma e R .
( ) ( k+2 + 0(¢”) P COSJZ(k+1)(k+2)+O(6) sin v
Thus we get
k+1
G0y — lim g2y () = K H 1 @no
' e—+0 .

Finally, as in Section 3, we have

p=vleR +v -3 = (0 +3) (40 - 3) = e+ 24 @D+ v )
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Thus the desired constant in Theorem 1.2 is determined by ¢k 44,3 =
2(]{ + 1)5/(,,1’(713.

The multiplicity of the eigenvalue comes from the construction of eigen-
functions. That is, in (4.8), m varies from 0 to ¢g. If m =0, we see

P (cos 0)
1 Vsin 0
and this has a one dimensional space and for each m > 1, the set of the eigen-

functions in (4.8) is two dimensional. Hence, 1+ .7 2 =2¢+1 is the total
multiplicity. O

_ 0
d=c P, (cos p)

Remark 4.1. The order of v*(¢) is also obtained by the following way. Let
the eigenvalue 4 be determined as

Now take & > 0 so that

fz—lzi:<v(£)+§) (v(s)—%).

Then it follows that £ =k + 1+ v*(¢). Hence

0) = sin &6

[1]

sin 0
is a regular solution to
AE+1E=0
in Q, =S® We seek the condition of v*(¢) so that
(cos 0)E'(m —¢) + (sin 6)E(w — &) = 0.
By the direct calculations, we see that
(427) (k+1+v*(e)) tan(z —¢) = (1 —tan o tan¢) tan{(k + 1 +v*(¢))(x — ¢)}

is the condition for v*(¢). Expanding the both sides in the Taylor series and we
pick up the order up to &2, we have

—(k+14+v*(e))(e+ O(e?)) = —(k + 1)e + nv*(g) — tan o tan ¢ tan(k + 1)e
+ 0(&3 +v* (e)e).
Then, the ¢ order terms vanish and we obtain
¥ (e) = (k + 1)(tan 0)e? 4+ O(&%).

Thus, we obtain the same order and the same coefficient as above.
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