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CONVERGENCE OF A PARAMETRIC CONTINUATION METHOD
MaROJU PRASHANTH AND DHARMENDRA K. Guptaf

Abstract

The aim of this paper is to establish the semilocal convergence of a parameter based
continuation method combining the Chebyshev’s and the Super-Halley’s methods for
solving nonlinear equations in Banach spaces. The parameter o € [0, 1] be such that for
o = 0 it reduces to the Chebyshev’s method and for o« = 1 to the Super-Halley’s method.
This convergence is established using recurrence relations under the assumption that the
second order Fréchet derivative satisfies the w-continuity condition. This condition is
milder than the Lipschitz and the Holder continuity conditions used for this purpose.
A numerical example is given to show that the second order Fréchet derivative satisfies
the w-continuity condition even when it fails to satisfy the Lipschitz and the Holder
continuity conditions. A number of recurrence relations are derived based on two
parameters. The existence and uniqueness regions along with a closed form of the
error bounds in terms of a real parameter « € [0, 1] for the solution x* is given. Two
numerical examples are worked out to demonstrate the efficacy of the method. It is
observed that our method gives better existence and uniqueness regions of the solution
for both the examples when compared with the results obtained in [4] for both the
Chebyshev’s method (« = 0) and the Super-Halley’s method (o = 1).

1. Introduction

Let X and Y be (real or complex) Banach spaces, Q = X an open subset and
let F: Q< X — Y be a nonlinear operator with a second order Fréchet deriv-
ative on Q. The problem of approximating a solution x* of nonlinear equation

(1) F(x)=0

is one of the most interesting problems in numerical analysis and scientific
computing. With the development of fast, reliable and efficient computers, this
problem has further gained an added importance. There exists a large number
of applications that give rise to thousands of such equations depending on one or
more parameters. For example, dynamical systems are mathematically modeled
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by difference or differential equations and their solutions usually represent the
equilibrium states of the systems obtained by solving nonlinear equations.
Newton’s method is the well known quadratical convergent iterative method
for solving (1). But, recently a lot of research has been carried out to provide
improvements in these methods. As a result, many iterative methods along with
their local, semilocal and global convergence analysis are discussed in [12, 15].
The semilocal convergence analysis use conditions on F and the initial approx-
imation xg. If we use conditions only on F then the convergence analysis is
global. The local convergence analysis uses conditions only on x*. The con-
vergence analysis is done either by using majorizing sequences or recurrence
relations under various continuity conditions on the first/second order Fréchet
derivatives of the involved operator. The well known third order iterative
methods for solving (1) are the Halley’s, the Chebyshev’s and the Super-Halley’s
methods. These methods are useful in solving stiff systems of equations, where a
quick convergence is required. The main difficulties in these third order iterative
methods is to evaluate the second order Fréchet derivative of the operator F. In
fact, a very restrictive condition of one point iteration of order N is that they
depend explicitly on the first N — 1 derivatives of F. This implies that their
informational efficiency is less than or equal to unity. Candela and Marquina [2]
discussed the semilocal convergence of the Chebyshev’s method using recurrence
relations under the assumption that the second order Fréchet derivative satisfies
the Lipschitz continuity condition. Herniandez and Salanova [9] studied the
semilocal convergence of the Chebyshev’s method under the assumption that
the second order Fréchet derivative satisfies the Holder continuity condition.
The semilocal convergence analysis of Super-Halley’s method with second order
Fréchet derivative satisfying the Lipschitz continuity condition using recurrence
relations is described in [7]. Prashanth and Gupta [14] established the semilocal
convergence of the Super-Halley’s method using recurrence relations under the
assumption that the second order Fréchet derivative satisfies the Holder conti-
nuity condition. Xintao and Chong [16] discussed the family of deformed Euler-
Halley iterations with second order Fréchet derivative satisfying the Holder
condition. However, the Lipschtiz and Holder continuity conditions on F” may
be violated by many problems.

Example. Consider the following nonlinear integral equation of mixed type

[5]:
m_ b
F(x)(s) = x(s) + ZJ ki(s, 0)l;(x(2)) dt — u(s), se€]a,b]
i=1 Ja

where —o0 < a < b < o0, u, l;, and k;, for i = 1,2, ... m are known functions and
x is a continuous function.

If I"(x(¢)) is L;-Lipschitz continuous in Q, L; >0, for i =1,2,...,m, then
F” does not satisfy Lipschitz condition, where sup-norm is considered. In this
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case

IF"(x) = F" () =Y Lilx = yll, xyeQ.
i=1

Similarly, if 7/(x(¢)) is (L;, p;)-Holder continuous in Q, L; >0, p; € (0,1] for
i=1,2,...,m, then we have

m
IF"(x) = F" () = > Lilx =y, x,yeQ.
i=1

Here also, F” is not Holder continuous, when sup-norm is used.

A continuation method is a parameter based method giving a continuous
connection between two functions f and ¢g. Mathematically, a continuation
method between two functions f,g: X — Y, where X and Y are Banach spaces
is defined as a continuous map /4 :[0,1] x X — Y such that Ao, x) = of (x) +
(I —a)g(x), a«€[0,1] and #h(0,x) =g(x), h(1,x)= f(x). The continuation
method was known as early as 1930s. It was used by Kinemitician in the
1960s for solving mechanism synthesis problems. It also gives a set of certain
answers and a simple iteration process to obtain solutions more exactly. For
further literature survey on it, one can refer to the works of [1, 11]. Recently,
Gupta and Prashanth [6] discussed the semilocal convergence analysis of a con-
tinuation method using recurrence relations under the assumption that the second
order Fréchet derivative satisfies the Holder continuity condition. Ezquerro and
Hernandez [4] have considered the w-continuity condition on F” given by

2) 1F"(x) = F" )l < o(llx = yl),  x,y€Q,

where, w(x) is a nondecreasing continuous real function for x > 0, such that
w(0) > 0, to study the semilocal convergence of a family of third order iterative
method. Parida and Gupta [13] established the convergence analysis using recur-
rence relations of the Chebyshev method under the w-continuity condition on
F”. The semilocal convergence using recurrence relations of the Super-Halley’s
method under the w-continuity condition on F” is also established by them.
The aim of this paper is to establish the semilocal convergence of a
parameter based continuation method combining the Chebyshev’s and the Super-
Halley’s methods for solving nonlinear equations in Banach spaces. The pa-
rameter (x € [0, 1]) be such that for o = 0 it reduces to the Chebyshev’s method
and for o =1 to the Super-Halley’s method. This convergence is established
using recurrence relations under the assumption that the second order Fréchet
derivative satisfies the w-continuity condition. This condition is milder than the
Lipschitz and the Hoélder continuity conditions used for this purpose. A nu-
merical example is given to show that the second order Fréchet derivative satisfies
the w-continuity condition even when it fails to satisfy the Lipschitz and the
Holder continuity conditions. A number of recurrence relations are derived
based on two parameters. The existence and uniqueness regions along with a



CONVERGENCE OF A PARAMETRIC CONTINUATION METHOD 215

closed form of the error bounds in terms of a real parameter « € [0, 1] for the
solution x* is given. Two numerical examples are worked out to demonstrate
the efficacy of the method. It is observed that our method gives better existence
and uniqueness regions of the solution for both the examples when compared
with the results obtained in [4] for both the Chebyshev’s method (« = 0) and the
Super-Halley’s method (« = 1).

This paper is organized in five Sections. Section 1 is the introduction. In
Section 2, the continuation method combining the Chebyshev’s method and the
Super-Halley’s method to solve nonlinear equations in Banach spaces and a
number of recurrence relations based on two parameters are derived. The con-
vergence analysis for the continuation method under the assumption that the
second Fréchet derivative satisfies the w-continuity condition is established in
Section 3. An existence and uniqueness theorem along with the estimation of
a priori error bounds in terms of a real parameter o € [0, 1] is provided. The
R-order of the method is also analyzed. In Section 4, two numerical examples
are worked out to demonstrate the efficacy of our convergence analysis. Finally,
conclusions form the Section 5.

2. Recurrence relations

In this section, we shall first describe the continuation method combining
the Chebyshev’s method and the Super-Halley’s method to solve (1) and then
derive a family of recurrence relations based on two parameters. Let F'(xo) ' €
BL(Y,X) exist at some point xy € Q, where BL(Y,X) be the set of bounded
linear operators from Y into X. The Chebyshev’s method and the Super-
Halley’s method used for solving (1) are defined for n=0,1,2,... by

(3) Xn1 = Jo(xn) = x, — [I +%Lp(x,,)] F'(xp) " F(x,)
and

(4) Xpr1 = J1(x0) = X, — {I"‘%LF(M)([ - LF(xn))_l}F/(xn)_]F(xn)

where, I is identity operator and Lp(x,) is the linear operator given by
() Lp(xn) = F'(x) " F"(x)F'(x) "' F(x), X € X.

If F'(x,0) ' eBL(Y,X) for Xy,0 €Q, a€[0,1], then the continuation method
between (3) and (4) can be defined by

(6) Xonr1 = o1 (Xgn) + (1 = ) Jo(xy,n) n>0.
Replacing x, by x, , in (3), (4) and (5) and substituting expressions for Jo(x,,,)
and Ji(x, ,) into (6), we get

1 _
(7) Xo,n+1 = Xoon — ]+§LF<x1,n)Ga(xa,r1) F/(xa,n) lF(xa,n)
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where,

(8) Go(Xyn) = I 4 0tLp (X, ) Hy (X, n)
H,(x50) = (I = Li(x,0)) ™

and

Li(Xyn) = F'(Xyn) " F" (X)) F' (Xen) " F (%)

Simplifying (7), the continuation method can be given as follows. Starting with
a suitably chosen x, o, define

Yoan = Xoon — F/(xx,11)71F(xa,n)
) 1
xoc,n-H = yoc,n +§LF(xon1)Go<(xo<,n)(ya,n - xoz,n)

forn=0,1,2,... and G,(x,,,) given by (8). Let the following assumptions hold.

CL [|F'(xy0) "' || < 5,
C2. ||F'(x40) " F(xa0)ll < 71,
C3. |[F'(x)| <M, VxeQ,
(10) C4. [[F"(x) = F"(P)Il < o(llx — y|l), Vx,y € Q, where w: Ry — Ry
is a continuous and nondecreasing function such that w(0) >0,

C5. There exists a continuous and nondecreasing function
h:[0,1] — R, such that, w(tx) < h(f)w(x),
with 7€ [0,1] and xeR,.

The condition C4 of (10) is milder than the Lipschitz/H6lder continuity condition
as this condition reduces to the Lipschitz and the Hoélder continuity conditions
for w(x) = Nx and w(x) = Nx”, pe(0,1], respectively. Also, note that the
condition C5 of (10) does not involve any restriction, since, as a consequence
of w be a nondecreasing function, there always exists a function / such that
h(t) =1. We can consider h(f) = sup,., w(¢x)/w(x) to sharpen the error bounds
for a particular case. Forn=0,1,2..., define the real sequences {a,}, {b,} and
{cn} for

(11) Cn = f(an)g(anabn)a ap+1 = anf(an)cnv bn+1 = bnf(an)cnh(cn)
where,
B 2(1 — x)
(12) f(x)72—4x+x2—(oc—1)x3
ox? o—1)x
(13) g(x,y) =30 _x)+Ay(1(Jlr(_x) D)

x2(1 + (o — 1)x) N X (14 (2 —1)x)?
2(1 = x) 8(1 - x)*

+
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for A defined by
1

(14) A= J h(t)(1 — 1) dt.
0

Let ap = Mpy and by = fnw(n) are two parameters and y, o€ Q exists since
Iyo= F’()c%())_l exists. For y,o€Q, we get

[ Lr(xz,0)ll < ML ol [T 0F (Xa,0) || < MPn = ao <1

By Banach Lemma, we get

1
| H o)l < 5

“a
and
1+ (O( — l)ao
(15) |G = HE= D,
0
This gives
(2 —ap + (x = 1)ag)
_ < B

e = aoll < 2(1 — a) | 2,0 = Xu0]|

and

ITs0ll 1y,0 = Xa0ll([[ y2.0 = Xa0ll) < Breo(n).
Under the assumptions (10), the following inequalities hold for n > 1.

(D) [ITsull = I1F (o)~ Il < f(@n-1) T
) [ya,n = Xonll = [ TonF (xa,m)|| < f(@n-1)g(an—1, ba—1)l|To,nF (xo,n)]],
L) ||Le(Xon)ll < M|Toull 1Yo — Xunll < an,
V) ([Tl [ Yan = Xonllo([| Yoon = Xa.nl]) < bu
(2—ay+ (0 —1)a?)
2(1 — ay)
We shall use mathematical induction to prove (I)-(V). Assume that
Xy,1 €Q and 0 < ap <rg. From

(
(

16
()(
(

V) HxO(,H+l - xot,n” < ||y0(,” - xOC-,nH'

ap(2 — ap + (o — 1)ag)

HI - Fom,OF/(xogl)H < MH|ra,0H ||Xa<‘0 - xa.,l“ < <L

2(1 - Clo)
Using Banach Lemma, I', | = F '(M.,l)fl exists and
[ Ta,0]l

17 Ll < :
(7 el < T30, o e — ]

2(1 — ao)

I
T 2—day+ai — (x—1)ag 1ol

< f(ao)|[Ts,oll
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Now, y, 1 exists as I, | exists and

1
Xo,n+1 — Van = ELF(XO(‘}'!)GOC(XOC,”)(J}O(,H - xot,n)'

Expanding F(x, ,+1) by using Taylor’s theorem, we get

Xot, nt1

F(xot‘nﬂ) = F(yot,n) + F/(yoc‘n)(xa,nJrl - yoc,n) +J F//(x)(xot,nJrl - )C) dx
Yoyn

1
= JO [F”<xo<.n + l(yec,n - xa,n)) - F”(X%H)](l - Z) lez(xa,n)(ya,n - xa,n)z

1

+ F”(XOC,H + l(yot,n - xac.n))(l - t) dt(l - Ga(xa,n))(yoc,n - xx,n)z
0

1

+ F”(xoc,n + l(yoa,n - xsc.n)) dl(yoc,n - xoc,n)(xa,n+l - yx,n)

0

1

+ F”(yoc,n + t(xm.,n+l - ya,n))(l —1) dt(xoz.,nﬁ—l - ya,n)z-
0

Taking norm on both sides, this gives
M
(18)  F (xone) | < 5 I = Galxon) 1| (v = o)

1
+ | 000 =501 = 0 G ) 1 = 00) P

M an = %) it = il
M 2
T [CHTRAI [

From (18) for n =0, we get

Moag (1+ (o — ao)n*
(19) [1F(xa1)]| < m’?z‘h‘lw(’?) (0= a)
Mn?ay(1 + (« — 1)ap) M n*a2(l+ (o — ao)*
2(1 — ay) 8 (1 —ap)?

and

(20) T FOx ) < [Tl 1 ()
< f(@o) 1Tz o]l {1 (xz, 1)l



CONVERGENCE OF A PARAMETRIC CONTINUATION METHOD 219

aa? Abo(1 + (o — 1)ay)
2(1 — ap) (1 —a)

< f(ao)

a(1+ (o — )ag) N ad(1 4 (« — Dap)?
2(1 = ao) 8(1 — ap)*

< f(ao)g(ao, bo)n < con.

(21) 1Lr (X0, )| < M| T, 1 || 1T, 17 (,1) |
< Mf (ao)||Ts,0ll.f (a0)g (a0, bo) | T, 0 F (Xs,0) |
< Mpnf(ao)f(ao)g(ao, bo) = aof(ao)co = ai,
(22) ITo, 1l | ye,1 = X 1 lleo([[ ya, 1 — X, 1))
< f(@o)[ITs,0ll.f (a0)g(ao, bo)
ITo,0F (x,0)l|(f (a0)g(a0, bo)) [T o, 0F (x2,0)|]
< bo f(ao)coh(co) = b1,
and
1+ (= Da)
(23) |Gy (x:,1)] < Tl—a)

Now, from (23) we get

2—a;+ (¢ —1)a})
2(1 —al)

(24) ||xm2 - xagl” < ||ra<,1F(xoc,1)||'

Using (17) and (20) to (24), the inequalities (I)—(V) hold for n = 1. Assume that
they hold for some n = k. Proceeding similarly as above, we easily prove that
the conditions (I)-(V) also hold for n =k + 1. Hence by induction they hold for
all n>1.

3. Convergence analysis

In this section, the convergence analysis of the continuation method (9)
is established. Let ry = 0.380778 be the smallest positive zero of the polynomial
given by  d(x) =2(x — 1)x® — (¢ + 20 — 3)x° + 2(92 — 8)x* — (8 + 1)x> —
(40— 9)x> —32x +8, x€[0,1]. The following Lemmas will be used to prove
the convergence theorem.

LemMa 1. Let a€[0,1] and the real functions f and g be given by (12) and
(13) respectively. Then, for x € (0,ry),
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(i) f is a increasing function and f(x)>1 in (0,r).
(i) g is a increasing in both arguments for y > 0.
(i) f(yx) < f(x) and g(yx,yy) < 7g(x, y).

Proof. The proof is simple and hence omitted here.

LemMa 2. Let f and g given by (12) and (13) and h(t) <1 Vie[0,1].
Define

2135) 20— 1)x® — (0 + 20— 3)x +2(90 — 8)x* — (8o + 1)x? — (4o — 9)x? — 32x+ 8
(x) = 8A(1+ (a—1)x)(1 —x)

If ap € (0,r0] and 0 < by < D(ay), then
(1) Cnf(an) S 1;

(1) {an}, {bu}, and {c,} are decreasing and a, <1, ¢, <1 Vn.

Proof. This Lemma can be proved by induction. From f and g, we
get

enf (an) = f(an)zg(an;bn) <l

iff
4(1 — ay)? o’ Ab,(1 + (o — 1)ay)
R +
(2—4a,+a— (o—1)a)) 2(1 — ay) (1 —ay)
2 _ 3 _ 2
+an(1 + (e —Da,) a,(1+ (« lza,,) 1
2(1 - an) 8(1 — Cln)
or,
b < 2(a—1)2ab — (22 420 — 3)a’ +2(90 — 8)a?* — (80 + 1)a — (40— 9)a? — 32a, + 8
" 8A(1+ (a— Day)(1 —ay)
or,

b, < ®(ay)
Thus, cof(ap) <1 for 0 <ap <ryp and 0 < by < O(ap). Using (11), we get
a; = apf(ap)co < ap < 1
Now, for f(x)>1 in (0,r] and h(z) <1 we get
by = bof (ao)coh(co) < bof(ao)co < bo

and

a1 = f(a)g(ai, br) < f(ao)g(ao, bo) = co < cof(ap) < 1
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Thus, the lemma holds for »=1. Assume that (i) and (ii) hold for some
n=k. Proceeding similarly as above, we can easily prove that (i) and (ii) hold
for n=k+1.

Lemma 3. Let ape (0,1), 0<by<®(ay), and h(t) <1 Vtel0,1]. If
y=ai/ay then fOI]' n=>1, we have
1) a, <9*" a,_1 <y*"lag, where, inequality strictly hold for n > 2,

(il) by < 2" byt <7 by,
(i) v < 7*"/f (ao)

Proof. The induction will be used to prove (i) and (ii). From a; = yay and
a; < ap from Lemma (ii), we get y < 1. Hence,

by = bof (ao)coh(co) = bo f (ao)*g(ao, bo)h(co) < f(ao)*g(ao, bo)bo = ybo
Thus, (i) and (ii) hold for n = 1. Assume that (i) and (ii) hold for some n = k.
Then, by Lemma 1 we get

ars1 = af (ar)er = ai f (ar)*g(ax, by)
< Vzkilakflf(yzkilakfl)2(1(3’2#101(71, Vzkilbkfl)

k-1
< i fla-)?

k-1

k
g(ak—labk—l) = Vz 73

Also, from f(x) > 1 in (0,ry), we get

it = bif (@)ech(e) < bif (@)ex = b= <77y

This leads to

21\' Zk zk—l 20 2/{+1_1
A1 <P7 A <y= 7 -y a0 =7 do.

and

k 2/c—l

k Kl
bt < p2 b <y*y 271y,

0
<y by =1y

Hence, (i) and (ii) hold for n>1. From y=aj/ay= f(ao)*g(ao,bo), we
get

en = fan)g(an ba) < f(r* 'ao)g(y* ag, y*"'b)

< 7% f (a0)g(a0, bo) = y*" /f (ao)
Hence, (iii) holds. Thus the Lemma 3 is proved.
: 2—ay+ (x—1)ad _
Let y=ai/ay, A=1/f(ay), R= and H(x,0,Rn) =
y=ai/a /f (ao) 20— )1 —7A) (x50, Ri7)

{xeX;|lx —x0ll <Ry} = Q and H(x,0,Ry) ={xe X;||x — x,0|| <Ry} = Q
are closed and open ball with center x, o and radius Ry.




222 MAROJU PRASHANTH AND DHARMENDRA K. GUPTA

THEOREM 1. Let X and Y be two Banach spaces and F : Q< X — Y be a
twice Fréchet differentiable nonlinear operator on a nonempty open convex domain
Q. Let us assume that Ty exist at some xy o and the assumptions (C1)—(C5) are
satisfied.  Suppose 0 < ay <ry and 0 < by < ®(ag). Then, the sequence {x, .}
defined in (9) and starting with initial approximation x, o has at least, R-order two
and converges to a solution x* of F(x) =0. In that case, the solution x* and the
iterates X, , and y , belong to ,@(xmo,Rn) and x* is the only solution of F(x) =0

2
in e%(xx.o,—

% ﬁ_ Ry |NQ.  Furthermore, a priori error bounds are given by

2—apy? '+ (= Dyt Ay

(26) ||‘x - xavnH =< 2(1 - ))2”71610) (1 B VZnA)

Proof. To prove that {x,,} is convergent, it is sufficient to prove that the
sequence {x, ,} is a Cauchy sequence. We have by = ®(ap) =0 and ¢y f(ap) =1
for ap =ry. Hence, from (11), ay=a,_1=---=ap, cpx=cp_1 =---=¢p and
by =by_1---=byp=0. Now, from (16), we have

Hyoc,n - xomn” < Cn71||ya<,n71 - xa,nfln = C()Hyam,nfl - xa,nfln

<= Cg||ya,0 — Xy0l = A"y

and
2 —a, + (o0 — 1)a? 2—ay+ («— a2
[amin =5l £ 2 Ay, x| < 22O gy
Thus,
(27) onc,m+n - xoc,m” < onc,m+n - Xfx,m+n71|| +--+ ||xo<,m+1 - xa,m”

2- —a?
< 7N + (OC )ao [Ai7z+n—1 N Am]ﬂ

B 2(1 = ao)
2—ag+ (x—1)ag /(1 —A"
_ 0 ( )OA n
2(1 — ag) I—A

For m = 0, this gives x, , € A (x40, Ryy). Similarly, it can be proved that y, , €
B(x40,Ry). Hence, {x,,} is a Cauchy sequence from A =1/f(ap) <1 and
(27). Let 0 <ap <rp and by < ®(ap). Now, from (16) and Lemma 3(iii) for

n>1, we get

| Yan = Xonll < utll Yan-1 = Xon1]|

n—1 n—1

< < ymo—xaoll [T < TTG* A =»"""a",
0

where, y =a;/ap <1 and A =1/f(ap) < 1. Hence,
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||xo<,m+n - xo@m“
< Hxaz,men - xrx,m+nfl|| +---+ ||xot,m+1 - xot,m”

2 —apiny + (2= 1a?

S ) et = Sl

2—apy+ (a—1)

612
m
44 —
2(1 flm) ||y:x,m ot,m”

2
2 — Apn—1 + (Of - 1)am+n—1 yZ’”*"*lflAnH-n—l

2(1 = Gpn—1)
2—ay+ (0= Dak
2 LA
LR TS 7 e !
2— am + (OC — l)af%’l 2mnt 1 A n—1 2n-1
Am An P
( e [y +o T
2
< (A O D) o yppare gt 2R
2(1 — ay)

By Bernoulli’s inequality, for every real number x > —1 and every integer k > 0,
we have (1 +x)" —1>kx. Thus,

2 - a0y2”171 + (OC - 1>a§yZM7l 2”’—1Am 1 - yz’"nAn
21— apy”™ ) / (T—y7A)"

(28) HMMH—me<(

For m =0, we obtain

2—ap+ (a—1)ag 1 —y"A"
R
201 — ay) 1—ya T

Hence x,, € B(xy0,Rn). Also yy, € B(xy0,Rn), is evident from

(29) [|%,n — X0 <

| Vo,nt1 — Xooll < | Yayni1 — xa,nH” + | Xenp1 — xot,n” +- 4+ ||Xa,1 — X0l

2 —a,+ (o —1)a?
2(1 —a ) ||y“’” 7x057n||
n

< ||yot,n+1 - xaz,n+1|| +

2—ap+ (0 —1)ad
2(1 _ao) Hyoc,O_xac,OH

2—dayi1 + (0 — a2,
on — Xo,n+1
2(1 _an+l) ||y ,n+1 + ||

2—ag+ (0 —1)ad
2(1 _aO) Hyoc,O_xot,()”

2—ap+ (a—1)ad 1 —yr+iAm!
2(1 — ap) 1 —yA

n <Ry
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Taking limit as n — co in (27) and (29), we get x* € %(x,0,Ry). Now we
have to show that x* is a solution of F(x)=0. We have |[F(x,,)| <
|1F' (Xo, )| ||/ To,nF (x,)|| and the sequence {||F’(x,,)||} is bounded as

I ()| < F' (x0) | + Mlxn = xol| < [|F”(x0)[| + MRy.

Now taking limit as n — oo, we get F(x*) =0 as F is continuous. To show
the uniqueness of the x*, let us consider p* be another root of (1) in
B(x4,0,2/MpB — Ry)NQ. Then

0=F(")-FKx") = J Fi(x"+1(y" = x7)) di(y™ — x7)
0

We have y* =x* if the operator P = jol F'(x* +t(y* —x*)) dr is invertible.
From

1
Fo . [F'(x* +1(y* = x*)) = F'(xo)] dt
1

< MB | |Ix*+t(y* —x") — xol| dt
0
1

< Mp 0((1 = Dllx" = xol| + [y = xoll) dr

MB 2
— | Rp+-——Rp | =1
(g 2 )

and by Banach’s theorem [10], P is invertible. O

I = TPl = ITo(F(x0) Pl =|

3.1. On (2+ p) R-order convergence of the method
We shall establish the R-order convergence of the method equals to (2 + p)
as the method is itself of third-order. For A(f) =, p € (0,1], we get from (14)

1
A= [ 000 di=
Hence, from (11), the sequence {b,} satisfies
(30) bust = buf (@) g(an, ba) ™"
with
(31) g(x, ») :2(ixx—2x)+(1 _y(;)a(il)zxi . xz(lzz(fx)l)x)
1+ (2= D)’
8(1—-x)*

This gives g(dx,0""'y) < 6”tg(x, y), for x € (0,ry) and o € (0,1).
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LemMa 4. Let 0 <ag<ry, 0<by<®y(ag), h(t)<t? <1 and y = ai/ao.
For n>1 we get
(1) a, < y(2+p) 1 < y((2+p) *1)/(14’]7 ao for n > 2
(i) b, < (y*" )”Pb L1 <y Ny for n>2
y(2+p)”
(iii) ¢, <

"7 f(ao)

Proof. We can prove (i) and (ii) by using induction. Since a; = yay and
a; < ag, we get y < 1. Using (i) of Lemma 1, we get,

l

,n>0

I+p
a
by = bof(a0)” g(a, bo)"*" < (f(a0)*g(ao, by)) by = (a_(l)) by = y"h,

Thus, (i) and (ii) hold for n=1. Suppose (i) and (ii) hold for some n =k,
then

k-1 k-1 k—1
k1 = ar f(ak) g(ae, b)) <y a1 f(aro1) g E P gy, (FT) )
k-1 k=1 k
<y g flar )2 Y gl biy) = 9P g

Hence,

ey < 20 g < @) @ g <@ @) )

= 4 D)

From f(x)>1 in (0,ry], we get

bt = bif ()" P glag, b)) < bi(f (ar)*glar, bi))""
a ptl k
= by (%) < (Pt
Hence,
b = ()b < (P TP )y = 2

Thus, (i) and (ii) hold for n > 1. (iii) follows from
en = fan)g(an, by) < f(PF2" =0/ g0y g (p((PH2" =1/ (1) g ) (p2)" =1y

< e L) 20 1

as y=a/ay = f(ao)zg(ao,bo). Now,

n
| Vo,n = X < (

J

1

|
—_

n

f(a/)g(ajvbj)>’7 < [P Ay =y =0/ A

Il
o
~

Il
o

and



226 MAROJU PRASHANTH AND DHARMENDRA K. GUPTA

Hxa,ern - xa,m”

2—a +(OC—1)a2 m+n—=2 m—l
= imay | @ty L@t b

m /:0 /:0

2 —a, — a2 . )

az(l—'__(O; ) )a,, [y((2+p) + 1,1)/(1+p)Am+n71 4 +y<<2+p) 71)/(1+p)Am]
m
2 m
(2 - am;(-l(i; 1))am)A @) D AT L (24) ")),

(2 — amy((2+p>”171)/(l+p) + (o{ — 1)aiy(<2+P)1”71)/(1+P))Am
2(1 — amy((zJFP)m*U/(lJrP))

x p(@2)"=1)/(1+p) [y(2+p>’"[(2+17>”"71]/(1+p)An71
RN y(2+P)m[<2+P)*1]/(1+P)A+1];7
By Bernoulli’s inequality, we get

(2 — @y @2 =D/4p) 4 (5 — 1)aiy(<2+p>"ul)/<1+p>)Am
2(1 — @, y(@2)"=1)/(1+p))

| — @) npn
XN\ |7
( 1 —y@)"A )

Now, a priori error bounds for {x, ,} are given by

(32) ||xot,m+n - xoc,m” <

(2 — y((2+p)n_l)/(l+]7)a0 + (o{ — 1)y(<2+p>”_l)/(l+17)ag)
2(1 — y((zﬂ’)"*l)/(l*‘”)ao)

(33) [x* — Xyl <

y((2+17)"—1)/(1+17)A”,7

X 1 _y(2+ﬁ)”A

4. Numerical examples

In this section, two numerical examples are worked out for demonstrating
the efficacy of the continuation method used to solve (1).

Example 1. Let X = C[a,b] be the space of continuous functions on [a, b]
and consider the problem of finding the solutions of nonlinear integral equations
F(x) =0 of mixed type [5], given by

b
(34)  F(x)(s) = x(s) — f(s) — /IJ G(s, )[x())*" + x(1)’] dt, pe(0,1], 2R
where f, x are continuous functions such that f(s) > 0, s € [a, b], and the Kernel
G is continuous and nonnegative in [a,b] X [a, b].
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Solution. Using norm as sup-norm and G(s,7) as the Green’s function

[(b=9)(—a)/(b—a), <5,
G(s,t)—{(S_a)(b_t)/(b—a), s<

we compute the scalars M, f, # and the function w(x). The first and second
derivatives of F can easily be obtained and given by
b
F'(x)u(s) = u(s) — AJ G(s,)[2+ p)x(O)"7 + 3x(0) u(t) d, ueQ
b
F"(x)(uv)(s) = —AJ G(s,0)[(1 + p)(2+ p)x(6)” + 6x(2)](uv) () dt, u,veQ

a

For p e (0,1), we must note here that the second derivative F” does not satisfy
the Lipschitz/Holder continuity conditions as

1F"(x) = F" ()l

b
2| 6011+ P2+ P = 3(07) + 6(x(0) ~ (1) d

a

< [4] max [(T+ )2+ p)lIx(0)" =y + 6llx() = p(D)]]

s€(a,b]

< AN+ P2+ p)llx = ylI” + 6llx =yl Vx,yeQ,

Jh G(s,t) dt

a

where

Jb G(s,t) dt

a

I = max
s€la,b]

However, it satisfies the w-continuity condition given by
IF"(x) = F'"D)l < o(llx = yl),  Vx,yeQ,
where, w(x) = [A|||/||[(1 + p)(2+ p)x? + 6x]. This leads to w(tx) < #w(x), for
1
pe(0,1) and r€(0,1]. Hence, h(t) = ¢*, and K = fol h(t)(1 —1) dl+§f01 h(t) dt
p+4

=————— It is easy to compute
2(p+1)(p+2)

1F (o)l < 12,0 = £+ A0 27 + 12,01 ]
and
IF" )l < [AHIZNIL + p)(2 + p)|Ix]|1” + 6]|x]]
This gives M = [Z|[IZ||[(1 + p)(2 + p)l|x[|” + 6]|x]]]. Also

17 = F'(xa0)ll < |22 + p)llxsoll ™7 + 31011
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35

S—((RGN+1)
30

25 @(ao(s) - bO

20¢

-l | 2 3 4 5 6

FiGUure 1. Conditions on the parameter S for « =0

Now, if |4 [|Z]I[2 + p)llxx0ll"™ + 3||xx0[/*] < 1, then by Banach’s theorem [10],
we obtain

1
L= 2N + p)llxsoll ™ + 31,011

-1
ITa0ll = [1F"(x20) " [l < =5

and

5,0 = S1L+ LN X,01 7 + 1%5,0]1)
L= PN + p)llxsoll 7 + 315,011 ]
For a =0 and b =1, we get

ICwoF (eno)]] < |

=n

R
A

J; G(s,t) dt

For A=1/3, p=1/2, f(s) =1, and initial point x, ¢ = xo(s) =1 in [0,1], we
get [Ty oll < B =1.2973, ||Tyo0F(xy0)| <7 =0.108108, w(y)=0.0784017 and
by = Pnow(n) = 0.0109957. The conditions of Theorem 1 requires to find the
values of a parameter S such that Se %(x,o,Ry) € Q. The values of Se
(1.11205,6.06526) are obtained from Figure 1| for o=0 such that
S—(R(S)n+1)>0 and D(ap(S)) —bo <0. Also, ay(S) <ry=10.380778 if
and only if S < 898651. Hence, if we choose S =35 then we have
Q=4%(1,5), M =1.59939, ay=0.224311 and by = 0.0109957 < ®(0.224311).
Thus, the conditions of the Theorem 1 are satisfied. Hence, a solution of
equation (34) exists in the ball #(1,0.128752) = Q and unique in the ball
%(1,0.950051)NQ. Now, for « =1 we get S e (1.11205,6.06256) from Figure
2. Again for S=5, we get ap = 0.321311 < 0.380778 and by < ®(ap) and a

1)) = max
sel0,1]

=1/8
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wooe (RSN +1) i

0+ PP R T T I B

‘/‘\\‘ PR NS -10¢ 90(510(5)—1)0

FiGure 2. Conditions on the parameter S for o« =1

solution of (34) exists in %(1,0.141648) = Q and is unique in the ball
2(1,0.948604) N Q. On the other hand from [4], we get 4 and W(x) as 4 =

P 1 C2(x*-3x+1)
bt =0t = ey ¥ ="
orem 2.6 [4], it is necessary that % (xo, Ry) < Q. For this, it is sufficient to check
S—(R(S)n+1) >0 and ¥(ayp(S)) — by > 0. This gives S € (1.4689,11.9076) as
is evident from Figure 3. Also, ay(S) < (3 —+/5)/2 if and only if S < 9.0172.
Hence, if we choose S = 5 then we get Q = #(1,5), M = 1.599385, ay = 0.22431
and by =0.0109957 < W(ap). Thus, in this case also, the conditions of
the Theorem 1 are satisfied. Hence, a solution of (34) exists in the ball
%(1,0.12862) = Q and unique in the ball #(1,0.8529)NQ. From this, we
observe that our convergence analysis gives better existence and uniqueness
ball than that of [4].

Now, to get S from The-

o S— (RSN +1) 0

020 @(ao(S) — b
0151

0101

FiGure 3. Conditions on the parameter S
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Example 2. Let X = C[0,1] be the space of continuous functions on [0, 1]
and let us consider the integral equations F(x) =0 on X, where

1
x(0)**7 dt,

s
F = x(s) — f(s) — A
(39) (39 =)~ 1)~ 2]
with s € [0,1], x, f € X, p€ (0,1) and A is a real number. These types of integral
equations are known as Fredholm type (cf. Davis [3]).

Solution. Here, norm is taken as the sup-norm. Now, it is easy to find the
first and second Fréchet derivatives of F as

1

F'(x)u(s) = u(s) — A2 + p)J %x(l)lﬂu(t) dt, ueQ
0

1

F"(x)(uv)(s) = —A(1 + p)(2 + p) Jo ﬁx(t)l’(uv)(t) dt, u,veQ

Clearly, F" does not satisfies the Lipschitz continuity condition as for p e (0,1)
and for all x,yeQ

1

IF"0) = )l = 2+ 1+ 5) | w07 = o] a

1

s
J dt
0S+[

< |42+ p)(1 + p) log 2||x — y|I”

<42+ p)(1+p) max,

Ix(0)” = y(@)"|l

However, it satisfies the Holder continuity condition for pe (0,1] and N =
|2(2+ p)(1 4+ p) log2. To obtain a bound for I'; o, we find

1F Ges o)l < llxs0 = Sl + 4] Tog 2[|xa,0]|”
and

17 = F'(x0) | < 1412 + p) log 2]1x5,0])
Now, if |A|(2+ p) log 2[|x,.0/|'™ < 1, then by Banach Lemma, we get
1

ITsoll = |1F' (xs0) 'l < =
’ 1 — (22 + p) log 2|0l

B

Also,
[F"(x)] < 212+ p)(1 + p) log 2||x||”
Hence,

32,0 — f1I + 2] log 2||x, 0]l
1 — [2](2 + p) log 2|jx,,0] "

||Fa,OF(X1,0) H <
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Now, for 2 =1/10, p =1/2, f(s) = 1, and initial point xy = xo(s) = 1 in the
interval [0,1], we get |y ol < f=1.20961, |[ToF(xo)| <#n=0.0838437, N =
0.25993 and by = fnw(n) = 0.00763322. The conditions of Theorem 1 requires
to find the values of a parameter S such that S e #(x,.0, Ry) < Q. The values
of Se(1.08521,102.403) are obtained from Figure 4 for o =0 such that
S—(R(S)n+1)>0 and D(ag(S)) — by <0. Also, ay(S) <ry=0.380778 if
and only if S < 208.651. From M = M(S) = 0.25993S?, ay = ap(S) = M(S)pn
= 0.0263616S? for S =90, we get Q= %(1,90), M = 2.46591, ay = 0.250088,
by = 0.0076332 < 0.404481 = ®(0.250088). Thus, the conditions of Theorem 1
are satisfied. Hence, a solution of (35) exists in #(1,0.1091953) < Q and is unique
in the ball %(1,0.662196) NQ. Now, for o = 1, we get S € (1.08521, 102.403) from
Figure 5. Again taking S =90 then ay = 0.250088 < 0.380778 and by =
0.0076332 < 0.404481 = ®(0.250088), we find that a solution of (35) exists in
2(1,0.111992) < Q and unique in the ball #(1,0.661123) N Q. On the other hand

from [4], we get 4 and ¥(x) as AIO](II)IP(I‘*‘P;@‘FP)’ ¥(x) =

o S—RON+1 ©(aog(S) — by

S—RE)N+1) ¥ 0(ay(S) — by

FIGURe 5. Conditions on the parameter S for o =1
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sl 0261

S—(ROn+1 s

or ¢(ao(S) — by
024}
4L
03}
r 02}
2 4 6 g 10 2 3 6 i?\{o
FIGURE 6. Conditions on the parameter S
2(x>—3x+1 o
% Now, to get S from Theorem 2.6 [4], it is necessary that
—X

A(xo, Ry) = Q. For this, it is sufficient to check S — (R(S)yp+1) >0 and
W(ag(S)) —bo > 0. This gives S € (1.08523,198.695) as is evident from Figure
6. Also, ap(S) < (3 —+/5)/2 if and only if S < 209.955. Hence, if we choose
S=90 then we get Q=%(1,90), M =2.46591, ay=0.250088 and by =
0.0076332 < W(ap). Thus, in this case also, the conditions of the Theorem 1
are satisfied. Hence, a solution of equation (35) exists in the ball Z(1,0.103038)
< Q and unique in the ball %(1,0.661874)NQ. From this, we observe that our
convergence analysis gives better existence ball but not good uniqueness ball than
that of [4].

5. Conclusions

In this paper, the semilocal convergence of a parameter based continuation
method combining the Chebyshev’s and the Super-Halley’s methods for solving
nonlinear equations in Banach spaces is described. The parameter « € [0, 1] be
such that for o = 0 it reduces to the Chebyshev’s method and for oo =1 to the
Super-Halley’s method. This convergence is established using recurrence rela-
tions under the assumption that the second order Fréchet derivative satisfies the
w-continuity condition. This condition is milder than the Lipschitz and the
Holder continuity conditions used for this purpose. A numerical example is
given to show that the second order Fréchet derivative satisfies the w-continuity
condition even when it fails to satisfy the Lipschitz and the Holder continuity
conditions. A number of recurrence relations are derived based on two param-
eters. An existence-uniqueness theorem is also established to show that the
R-order convergence of the method is (2 + p), p € (0, 1] along with the estimation
of a priori error bounds. Two numerical examples are worked out to demon-
strate the efficacy of the method. It is observed that our method gives better
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existence and uniqueness regions of the solution for both the examples when
compared with the results obtained in [4] for both the Chebyshev’s method
(¢ =0) and the Super-Halley’s method (o = 1).

(10]
(11]
(12]

(13]

(14]

(15]

(16]

(17)
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