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A MYERS THEOREM VIA m-BAKRY-EMERY CURVATURE
Lin FENG WANG

Abstract

In this paper, we prove that a complete manifold whose m-Bakry-Emery curvature
satisfies

Ko

Ricy p(x) = —(m—1) W

for some constant K, < —% should be compact. We also get an upper bound estimate
for the diameter.

1. Introduction

Let (M, g) be an n-dimensional complete manifold and f* a smooth potential
function on M. We use du = e dV to denote the weighted measure, where dV/
is the classical Riemann-Lebesgue measure. Then the weighted Laplacian is
defined by

Ap=A—=Vf-V,

which is symmetric with respect to the weighted measure du. In fact, it is easy
to verify that

J Vu'Vvd,u:—J ulpv du
M M

holds for any u,ve Cy(M). )
When studying the weighted Laplacian, we always use the m-Bakry-Emery
curvature
df ®df

Rics ,, = Ric + Hess [ — ——
: m—n
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to replace the Ricci curvature, where m >n and m =n if and only if f is
constant. This curvature relates to the weighted Laplacian via the following
weighted Bochner formula [3, 5, 9]

1 .
5 O 1Vul® = [V2ul® + Vu - VAu -+ Rien (Vu, Vu) (Vf - V).

+
m-—n
Myers’ theorem is a beautiful result, which states that the manifold is
compact if the Ricci curvature has a positive lower bound. This theorem has
been generalized by many people in various situations. The authors of [2] prove
a Myers theorem when the Ricci curvature is bounded from below by

. Ky
1.1 Ric(x) > —(n—1)—5—
(1) () = (= 1) s
for r(x) >d >0, where Ko < —4 and r(x) is the geodesic distance function
associated with some fixed point. A counterexample given in [2] shows that
Myers’ theorem may not be true if Ky = —%. Further refinements are given in
[7], where the authors prove that Myers’ theorem holds when the Ricci curvature

is bounded from below by

1 Ky

(1.2) Ric(x) = (1 =) | 2505 ~ 20 n ()

for r(x) >d >0 and Ko < —}. We should point out that all these discussions
rely on the using of the classical index lemma [1]. 1In [9], Qian proves a Myers
theorem when the m-Bakry-Emery curvature is bounded from below by a positive
constant. Recently, the authors of [12] also get a Myers theorem when the oo-
Bakry-Emery curvature

Ricy = Ric + Hess f

with a bounded potential function is bounded from below by a positive constant.
The method they used is the excess function. For other Myers’ theorems see [4,
6, 8, 13].

We call the m-Bakry-Emery curvature almost positive at infinity if for some
Ky < — ‘1—‘,

Ky
(1+r(x))*

holds for any x e M. Now we state the main result in this paper.

(1.3) Rics p(x) = —(m —1)

THEOREM 1.1. We assume that the m-Bakry-Emery curvature satisfies (1.3)
for some constant Ky < —%. Then the manifold is compact and the diameter
satisfies

(1.4) diamy < 2(e*7/K — 1),
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where

(1.5) K=1/-Koy—-.

Remark 1.2. Note that the assumption in Theorem 1.1 has a different form
from (1.1). This difference is unessential if one is interested only in the compact-
ness, but only bring different expressions for the diameter estimate.

We always use the index lemma [1] to prove Myers’ theorem in the Ricci
curvature case. However it seems that the index lemma is not easy to be
generalized to the Bakry-Emery curvature case. So we shall prove Theorem 1.1
by using the weighted Laplacian comparison theorem and the excess function.
In this paper, we always use r,(x) = dist(p,x) to denote the geodesic distance
function determined by p € M. In particular, for a given fixed point O € M, we
let r(x) =ro(x).

2. Weighted Laplacian comparison theorem

The Laplacian comparison theorem is a fundamental tool in geometric
analysis [10]. The weighted Laplacian comparison theorem can be found in [3,
5, 11]. Let To(M) be the tangent space at O. For r >0 and a unit tangent
vector v e To(M), we use

dV(exp(rv)) = J(O,r,v) drdv

to denote the volume form in geodesic coordinate centered at O. It is easy to see
that if x e M is any point such that x = expy(rv) [10], then

H(r(x)) = Ar(x) = %
and
Ji(O,r,v)
Hy(r(x)) = Apr(x) = ma

where Jy(O,r,v) drdv is the weighted volume form in geodesic coordinate,
H(r(x)) is the mean curvature of the geodesic sphere with inward pointing
normal vector and H(r(x)) is the mean curvature associated with the weighted
measure du=e~/ dV.

We first introduce the following weighted Laplacian comparison theorem,
which can be found in [3, 5, 11].

LEmMA 2.1. We assume that

2.1 Ricy m(x) = —(m — 1)K(r(x)),
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where K(r(x)) is a function of r(x). If ax solves the following Riccati equation

dag az
K = DK —

(2.2) o~ m = DK0) -2
lim rax =m —1,
™0

then

(2.3) Arr(x) < ag(r(x))

holds at x ¢ Cut(0).

Remark 2.2. In order to solve (2.2), we first solve the following differential
equation

(2.4) 9" (r) = K(r)o(r)

with the initial value

It is easy to see that

solves (2.2) if ¢(r) solves (2.4).
The following two lemmas are useful for proving Theorem 1.1.

LEMMA 2.3. We assume that the m-Bakry-Emery curvature satisfies (1.3) for
some constant Ko < —1.  Then

(2.5) Asr(x) < r;”x)% G + K cot(K In(r(x) + 1)))
holds for x e M satisfying

0<rx)< ™K 1,
where K is defined in (1.5).

Proof:  When K, < —%, we can verify easily that
p(r) = Vr+ 1sin(K In(r + 1))
and
o(r) = Vr+1cos(K In(r + 1))

are two solutions of

(2.6) p'(r) - —
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Hence

o(r) = ”I; L sin(R In(r+ 1))

is a solution of (2.6) with initial value ¢(0) =0, ¢’(0) = 1. Lemma 2.3 follows
from Lemma 2.1 and Remark 2.2. O

LEMMA 2.4. We assume that the m-Bakry-Emery curvature satisfies (1.3) for
some constant Ky < —%. Let ro = r(p) for some fixed p # O. We consider a
minimizing geodesic y jointing O and p. Then

L m=-1 {_lﬂgcot(gm Hm)]
1 +ro—ry(x) 2 1 +rg—ry(x)

holds for x €y satisfying
0<r(x) <(l+r)(l— e’”/k).

2.7 Br(rp)(x)

Proof. Note that r(x) =ro—r,(x) for xey. As before, we solve
el
with initial value ¢(0) =0, ¢’(0) =1, where
0<r<(1+r)(l—eK).
If we let

p(r) = /1 +ro—r[Cy sin(K In(1 4+ rg — r)) + G5 cos(K In(1 + ro — r))].

Then the initial value condition tells us that

C) = —%\/1 + 19 cos(K In(1 + rp))

and
G :%m sin(K In(1 + rg)).
Then
o =R R ),
Lemma 2.4 follows from Lemma 2.1 and Remark 2.2. O

We also need the following result.
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LEMMA 2.5. We assume that the m-Bakry-Emery curvature satisfies (1.3) for
some constant Ky < —i. Let y(t) be a minimizing geodesic ray starting from O
and yy, y, €y satisfying B=r(y;) —r(y1) > 0. Then

(Wl - I)K()B
() + D(r(y2) + 1)

(2.8) Ap(r)(p2) < 8 (r) () +

Proof. By the Riccati inequality

2
(Ar) < f% — Ric(or, or),
we get that [3]
(L) o
(Opr)' < — pr Ricy , (0r, Or).
Hence,
- 1)Ko

) < = Do,

(Dr(r) e
Integrating this inequality from r(y;) to r(y2) leads to (2.8). O

3. Proof of Theorem 1.1

We introduce the definition of excess function.

DermNiTiON 3.1. For p,qge M, the excess function associated with p, ¢ is
defined by
(3.1) E) 4(x) = rp(x) +ry(x) —1p(q).

LEMMA 3.2. We assume that the m-Bakry-Emery curvature satisfies (1.3) for

some constant Ky < —%. Then for all p e M, the geodesic distance from O to p is
bounded by

(3.2) r(p) < K .

Proof. If Lemma 3.2 is not correct, then for all

0e <0,£)7
K
there exists some point p e M so that
(3.3) r(p)=ry>L*4+2L =e* —1,

where

L=L(0) =e"—1.
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Let y(f) be a minimizing geodesic jointing O and p so that y(0) = O and
y(ro) = p. Since ry satisfies (3.3), we can choose ¢i,¢2 €y, so that

Then
r(q2) —r(q1) =

Lemma 2.5 tells us that
(m— 1)Ko(ro — (L*> +2L))
(L+1)(ro+1)
Recall that for O and p, the excess function is
E(x) = r(x) 4+ rp(x) — ro.

By the triangle inequality we know that E(x) > 0. It is also easy to see that
E(x) =0 for xey. Hence E(x) achieves its minimal value on y, which implies
that As(E)(y(f)) = 0, in particular,

(3-5) 0 < Ar(r)(g2) + Ar(rp)(g2)-

Since

(3-4) Ar(r)(g2) < 8 (r)(qr) +

r(ql) =L < En/k —1.
Lemma 2.3 tells us that

(3.6) Lr(r)(qr) < 2?27+11) [1+ 2K cot(K In(L + 1))]
:Lzl)ﬂ(l +2K cot(K0)).
Note that
rp(q2) = 1o —r(g2) = L(LLJII) < (ro+ 1)(1 —e7X)
and
L +r0=15(q2) :VLOLI

Hence Lemma 2.4 tells us that

(3.7 Ar(rp)(g2) < % [—1+ 2K cot(K In(L + 1))]
_(m— e’

=TT (—1+ 2K cot(K0)).
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Plugging (3.4), (3.6) and (3.7) into (3.5) leads to
Ko(l’o — (L2 + ZL)) e !

. < — (1 + 2K cot(K
(3.8) 0< ESCE + (14 2K cot(K0))
69 = —0
—(—-1+2K K©0)).
+2(r0+1)( + 2K cot(K0))
It is easy to see that
lim cot KO = —o0.
0,/n/K

Hence the right side of (3.8) tends to —oo as 6 %, which shows that

r(p)=ro = /K _

can not happen and then Lemma 3.2 holds. O
Now we give the proof of Theorem 1.1.

Proof. By the triangle inequality, we conclude that for all p,qe M, the
geodesic distance between p and ¢ satisfies

r(p.q) <r(p) +r(q) < 2% —1).
This finishes the proof of Theorem 1.1. O
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