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A CONSTRUCTION OF A COMPLETE BOUNDED NULL CURVE IN C?
LEONOR FERRER, FRANCISCO MARTIN, MASAAKI UMEHARA AND KOTARO YAMADA

Abstract

We construct a complete bounded immersed null holomorphic curve in C?, which is
a recovery of the previous paper of the last three authors on this subject.

Introduction

The study of global properties of complete complex null-curves is interesting
from different points of view. Firstly, the real and imaginary part of such a
curve are complete minimal surfaces in R>. Secondly, there exists a close
relationship between null curves in C* and surfaces of constant mean curvature
H =1 in hyperbolic 3-space.

An important problem in the global theory of complete null curves is the so
called Calabi-Yau problem, which deals with the existence of complete null-
curves inside a ball of C*. This problem was approached firstly in [5, Theorem
A] using similar ideas to those used by Nadirashvili in [7] to solve the Calabi-Yau
conjecture in R®. Unfortunately, the paper [5] has a mistake, and the first
examples of complete bounded null curves in C* were provided using other
approach, by Alarcon and Lopez [3]. Very recently, Alarcon and Forstneri¢
have got the most general results in this line (see [1, 2]).

The purpose of this paper is to show that similar ideas to those given in [5]
can be used to produce examples of complete bounded null holomorphic disks in
a ball of C*: 1In [5], Martin, Umehara and Yamada tried to construct a bounded
holomorphic curve in SL(2,C) and used this example to get the desired bounded
disk in C?. However, in this paper, we construct the bounded null curves
directly in C®. In this aspect, our strategy is similar to that used by Alarcén
and Lopez in [3]. Although, as we mentioned before, these examples have been
generalized in Alarcon and Forstneri€¢ [2] by using different (and powerful)
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methods, we think that the arguments and techniques exhibited in this paper are
different from [3, 1, 2], and might be of use in the solution of other questions
related to the Calabi-Yau problem in different settings.
As applications of Theorem A in [5], the following objects were constructed;
(1) complete bounded minimal surfaces in the Euclidean 3-space R® ([5,
Theorem A]),
(2) complete bounded holomorphic curves in C* ([5, Corollary B]),
(3) weakly complete bounded maximal surfaces in the Lorentz-Minkowski
3-space R; ([5, Corollary DJ),
(4) complete bounded null curves in SL(2,C) ([5, Theorem C]),
(5) complete bounded constant mean curvature one surfaces in the hyper-
bolic 3-space H? ([5, Theorem C]).
We also constructed higher genus examples of the first three objects in [6].
All of these applications in [5] and [6] are correct as a consequence.

1. The Main Theorem and the Key Lemma
We denote by (,) (resp. <, ») the C-bilinear inner product (resp. the

Hermitian inner product) of C*:
(1.1) (x,9) == x1p1 + X232 + X393, <%, ¥) = (%, §),
where x = (x1,x2,x3), ¥y = (¥1, y2, »3) € C*, and 7 denotes the complex conjugate

of y.

Remark 1.1. 1In this paper, we identify an element of C> with a column
vector when the matrix product is used.

The Hermitian norm of C® is denoted by |x|:=+/{x,x) for xeC*. In
particular, it holds that
(1.2) [(x, ) = [<x, §] < || |¥] = [x] [ y].

Let M(3,C) (resp. M(3,R)) be the set of complex (resp. real) (3 x 3)-matrices.
Moreover, we will use the following notation for the set of complex (resp. special)
orthogonal matrices

0(3,C) :={4eM(3,C); 4’4 = id},

(resp. SO(3) := {4 e M(3,R); 4’4 =id,det 4 = 1}),
where A’ means the transposed matrix of 4. As usual, we denote U(3):=

{4eM(3,C); A*A =id}, where A* is the conjugate transposed matrix of A.
For each 4 € M(3,C), we define the matrix norm as

Ax
(1.3) |4]| := sup u
xeC3\{0} |x|
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If 4eM(3,C) is a non-singular matrix,

(1.4) x| < |4x| < [[4]] [x]

1
(|4~
holds. It is well-known that

(1.5) [l = v/max{u, i, i} (4 € M(3,C))

holds, where ;€ R (j=1,2,3) are the eigenvalues of the positive semi-definite
Hermitian matrix 4*A4.

A holomorphic map F:D — C*, defined on a domain D < C, is a null
immersion if and only if

dF
(1.6) (¢p,pr) =0 and |€9F|2 =Lpp,0p) >0, where ¢ = ¢ 1= PR

and z is the canonical complex coordinate of C. In this case the pull-back of the
Hermitian metric of C* by F is expressed as

(17) dSi— = <dFadF> = |¢F|2|dz|27

which is called the induced metric of F. For a holomorphic null immersion
F:D — C?, the first equality of (1.6) implies that there exist a meromorphic
function g and a holomorphic function # such that

1 . . —
(18) ¢F:§(1—g2,1(1+g2),2g)f7 (1: _1)
We call (g,7) the Weierstrass data of F. Using these data, the induced metric
(1.7) is expressed as

1
(1.9) dsg. = 5 (1+[g|*) ||z

Throughout this paper, we denote the open (resp. closed) disc on C centered
at 0 with radius r by

(1.10)  D,:={zeC;|z| <r}, (resp. D,:={zeC;|z| <r}) (r>0).
The goal of this paper is to prove the following

THEOREM 1.2 (The Main Theorem). There exists a holomorphic null im-
mersion f : Dy — C> such that the induced metric dsf is complete, and the image
f(Dy) is bounded in C°.

Theorem A in [5] is the same statement as our main Theorem 1.2, and the
purpose of this paper is to give a correct proof of it as a recovery of the previous
proof given in [5]. As in [5, (3.1)], the transformation

T A{(x1,x2,x3) € C3;x3 #0} — {(y5) e SL(2,C); y11 # 0}
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defined by

1 1 X1 +ix;
T =— '
(x17X27x3) X3 (xl — 1Xp (X])2+ (x2)2+(x3)2>

maps null curves in C> to null curves in SL(2,C), where a holomorphic map
F :D; — SL(2,C) is called nu/l if the determinant of the matrix dF/dz vanishes.
By Theorem 1.2, there exists a complete bounded null immersion f : D; — C3.
We may assume that the image of f lies in {(x1,x2,x3) € C*;x3 #0} by a
suitable translation. Then 7 o f gives a bounded null immersed curve in
SL(2,C). Moreover, the pull-back metric of the canonical Hermitian metric
on SL(2,C) by o f is complete by [5, Lemma 3.1], which proves the assertion
(4) in the introduction. Applying the well-known Bryant representation formula
(cf. [5, Page 123]), the projection of 7 o f into the hyperbolic 3-space
H3 =SL(2,C)/SU(2) gives a complete bounded constant mean curvature one
immersed disc in A3, which proves the assertion (5) in the introduction. The
proofs given in [5, 6] of Assertions (1), (2), (3) in the introduction, as applications
of Theorem 1.2, are all correct without any modifications.

Theorem 1.2 can be proved by the following proposition in the same
way as [7, 4]. So, an iterative application of Proposition 1.3 for an initial
immersion fj : D; — C3, provides us a sequence of bounded null discs whose
intrinsic diameter goes to infinity. The desired immersion f is obtained as a
limit of such a sequence. The initial immersion of such an iteration can be
chosen arbitrarily. In fact, one can choose fy: D2z~ (z,iz,0) € C. If we
choose another initial immersion, one can expect a different complete null
immersion.

PROPOSITION 1.3. Let X : Dy — C? be a holomorphic null immersion of the
closed disc Dy = C into C>. Suppose that there exist positive numbers p and r
such that

(X-1) X(0) =0,

(X-2) (Dy,ds?%) contains the geodesic disc centered at 0 and of radius p,

(X-3) and |X| <r holds on Dy.

Then, for an arbitrary given positive numbers & and s, there exists a holo-
morphic null immersion Y : Dy — C> satisfying

(Y-1) |lpy — x|l <& and |Y — X| < & hold on D_,, where ¢y, =dX/dz and

Py = dY/dZ:
(Y-2) (Dy,ds%) contains the geodesic disc & centered at 0 with radius p + s,
(Y-3) and on the boundary 02 of the geodesic disc & in (Y-2), it holds that

Y| < Vr2+s2+e

This proposition is a consequence of the following Key Lemma. (The proof
of Proposition 1.3 is given in Section 4.) To explain it, we will define three
constants

N=N(p.r,u,v,s,8), Cir=Ci(v) and G = C(p)
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depending on six positive constants p, r, i, v, s, ¢ as follows (cf. (1.11), (1.13)-
(1.15)). Here p and r have been already given in (X-2) and (X-3), and we will
fix x, v in the statement of Lemma 1.4. The remaining two constants s, & are
arbitrary in the statement of Lemma 1.4, but will coincide with the corresponding
constants as in Proposition 1.3.

The constants C; and C, are set as

(1.11) Ci=g, Ci= 6(1% +2u+2).
Next, we set
2
e =612+ 12u+8, ¢ = 3u+w,
1

1.12 2
( ) soc—i—%—i—Zre—i—Zgz

c3 1= N/ (o0 :=ca+ S+ (r+ 2¢)\/2C,).

We then choose an integer N so that it satisfies the following three inequalities;

5 4
(1.13) N> max{%}vg,g’ (1202, {2 (3;:+a) (2 Lot 2g>] }

3v
ar wemaf2(EV (e D)) ()
(1.15) NZmax{ <C3j28>4, <1+62+86”+38>4}.

Lemma 1.4 (The Key Lemma). Assume a holomorphic null immersion
X : Dy — C* and positive real numbers p and r satisfy (X-1)-(X-3). We set

(1.16) vi=min|py| >0, u:= maX{l + max |py |, max |¢3(|},
D D, D,

where ¢y = X' =dX/dz and ¢ :=dpy/dz. For arbitrary positive numbers ¢
and s, we take positive constants Cy, Cy and a positive integer N as in (1.11),
(1.13)—(1.15). Then there exist a sequence {Fj};_o ,y ofholomorphze null immer-
sions F; : Dy — C* and a sequence {vj};21.on of unit vectors in C* which satisfy
the followmg assertions (K-0)—(K-6), where the compact set w; = C, an open
neighborhood w; of w; and the “base point” {; of w; are as in (A.8) and (A.9) in
Appendix A, and

(1.17) (o,:% (I=0,...,2N):
(K-0) Fp =X.
(K-1) F,(0)=0 (/=0,...,2N)
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&
- — < —
(K-2) o, — | < N2

(K-3) The inequality

holds on Dy\w, for each [ =1,...,2N.

9/4
1| > {?Nz/zt on o
1N on
holds for each 1 =1,... 2N, where %, is the closure of the w, see
Appendix A.
(K-4) |(vs,0)| = 1/NY* holds for each 1 =1,...,2N.
(K-5) |F11 ()] < 1/VN, or

’<M’vl>‘2 ! _% (on @)

holds for each I =1,...,2N.
(K-6) {Fi_1,v;y = <{F,v;y holds on Dy for each Il =1,... 2N.

In the proof of the Key Lemma 1.4, we use the notion of Gauss maps of
holomorphic null immersions: Let F : D — C> be a holomorphic null immersion
of a domain D = C. Then both the real part Re F' and the imaginary part Im F
give conformal minimal immersions into R with the same Gauss map. So we
call the Gauss map G: D — S? of both Re F and Im F the Gauss map of F,
where S2 = R? is the unit sphere. Then G is expressed as

—i(p x @ dF
(1.18) G=0x9) g ).p_scr <¢d—)’
|l z

because (1.6) implies that |p x @ = |p|>, where “x”’ denotes the complexification
of the vector product of R®. Using the Weierstrass data (1.8), G is expressed as

2Reg 2Imy |g|2—1
(119) GZ( 2 2 2 N
L+1g|" 1+1g]” 1+]g|

3

That is, g = ngo G, where ns:S> — CU{c0} is the stereographic projection
from the north pole.

2. Preliminary estimates

Let Fy = X : D; — C? be a holomorphic null immersion as in the assump-
tion of the Key Lemma 1.4. Here, we prepare some basic properties of
{Fj};.. oy in the conclusion of the Key Lemma 1.4.

Lemma 2.1. If (K-1) and (K-2) in the Key Lemma 1.4 are satisfied for
le{l,...,2N}, then

|Fi — Fiy| < on I_)l\wl-

&
N2
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Proof. Let peDj\w. Then there exists a path y in D;\z; joining 0 and
p whose Euclidean length is not greater than 1 +% (see Lemma A.2 in Appendix
A). Thus, we have

|Fi(p) — Fi-1(p)]

@) =01 @ (by (K-1)

< J lo)(2) — 91 (2)] |dz| < Lengthc(y)ziN2 (by (K-2))

T & & &
< — ] — < Pupe— .
_<1+ )2 5 <2533 = 3 (by (1.13)),

where Lengthc(y) is the length of y with respect to the metric |dz|* on C.

]
LemMA 2.2, Fix an integer j (1 < j<2N). If Fy,F,...Fi_y satisfy (K-0)
and (K-2) of the Key Lemma 1.4. Then
v _
91l = 5 and g <u (on Di\(@1U---Uwmj1)),
hold, where p and v are constants defined in (1.16).
Proof. By (K-0), (K-2), (1.16) and (1.13),
91l = ool = lo1 — ol — -+ = lpj_1 — ;0]
. (j— e € v
> rII_l)lln\(00|— w2V TN 23
holds on Dy\(wU---Uw;_1). On the other hand, we have
loji—1] < ool + loy — @ol + -+ lo;1 — 9;_5]
< max | |+(j71)6<max| |+8<max| |+1< O
= %o N2 23 ) N5 ) s M
Lemma 2.3.

Fix an integer j (1 < j<2N). If Fy,F\,...Fi_ satisfy (K-0)
and (K-2) of the Key Lemma 1.4.

Then for each p e w@;, it holds that

6 6 2
Fap) = Bl < 5, loi(n) — 00 (@) < 205

where (; is the “base point” of w; given in (A.9) of Appendix A.
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Proof. By Lemma A.3 in Appendix A, there exists a path y in %
joining {; and p such that Lengthc(y) <6/N. Since the image of y lies on
Di\(w1U---Uw;j_;), Lemma 2.2 implies that

=/

Fa(p) = Fa(6)] = | o111 < - Lensthe(s) <
On the other hand,
0;1(P) — 9;1(§)]
<lpi_1(p) — 9, 2(P)| + -+ 101 (p) — 0o (P)] + loo () — 90(L))]
+10-1(G) = 92 (G + -+ 01(§) — 0o (§)]

2(j —1)e 2¢
< —Snz - Tlee(p) = oGl < 5+ L po(2) dz (by (K-2))
2 / 2 2 6u
< N+J’|¢0(z)| |dz| < N—l—uLengthC(y) < N—’—N (by (1.16)). O

We fix j (1 <j<2N) and assume X = Fy,Fy,...F;_; are already con-
structed and satisfy (K-0)-(K-6). From now on, we give a recipe of construction
of F; and v; as an inductive procedure:

LEMMA 2.4. There exists a unit vector ue C* (i.e. |u| = 1) such that
(1) 6% := |(u,u)| = 1/N'/4,
@) I

(2.1) [E1(G)] =

it holds that

I
VN’

where ¢y is the constant given in (1.12).

Proof. When |F;_i({;)] < 1/VN, the unit vector u = (0,0,1) satisfies the
conclusions. (Note that the conclusion (2) is empty in this case.)
Now, we assume (2.1), and set

F_1(g)
2.2 =S
22) “ETEA )
By Lemma 2.3,
ou
(2.3) |Fj-1(p) — B (§)] <

N
holds for each p e ;. Then, for pe;, it holds that
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6

‘s:

[E1(p)] = [ ()] = [E-1(p) = F(§)] = [F(G)] = (by (2.3))

6u 6u
zm(c,n(l—m)zml@m -] by 2)

NN
— 1510 (1~ o) = 5151(0) (by (1.13).
Thus, using (2.1) again, we have
24 B 2 3150)| = 5= (rem).

Then by the relationship of the arithmetic mean and the geometric mean, we have

(61)°
N2

> |F1(p) — F1 () (by (2.3))

= [F1(p)]” + [Fo1(G)° = 2 Re<Fri(p), F-1(5))

~ B ([ D4 T - 2 re( D T )

\Y

Hence, by (1.13), we have

e ) =)
TR0 R T

N VNVN — VN

Case A. We consider the case |(mp,uo)| >1/N'/* 1In this case, we set
u =uy. Then the unit vector u satisfies (1) trivially. Moreover, (2.5) implies the
assertion (2) because c; in (1.12) satisfies ¢; > 6u°.

Case B. We next consider the case |(ug,up)] < 1/N'4. In this case, set

(2.6) wi="2 where i: =uy+—7

2
|’ NI
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To show (1) and (2), we set

(2.7) 85 = |(uo, mo)| << le)

Since ) is a unit vector, (2.6) yields

(2.8)  |(u,m)| =

4 4
(ll(),llo) +ﬁ(u_07u0) N1/4 (ll(),ll())

> o7l = )| = .0

4 4 4 5, 7
= 7~ % ( +m> > A~ 3% = gy (by (1.13), (7).

On the other hand, using (2.7) and (1.13) again, we have

4
(29) jl* = [uo|? +\/—| |’ +i7a Re(Cmo, 1))

4 4 4
*1+\/—N+W Re(up,mp) <1 +—=+——7

2
g4 A4 4 8 T

TUNTNAE TN TN S TN
Then (1) holds because of (2.8) and (2.9).
Finally, we prove (2). Let pe@;. Then we have

(2
|(Ej1(p); o) = |(Ej-1(p) = Ej1(&), m0) + (Fj1(G) o)
(

< 1F1(p) ~ Er(G).m)] + (B (G) o)

< 1F1(p) — F1 (6 ool + 10552 (6o, )] (by (1.2), (2.2)
< 1 () . ) (by (23))
< ¥ B ) < %4 ) (by (27))
=15 &) s+ N|F,-1<c,~>|>

< 1510 (7 + ) (by (21)

1 6u
|F ( )|N1/4 (1 +N1/4>

< 1F-1)l e (1+ 2% (by (113))
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Thus we have

(2.10)

On the other hand, since

(by (2.6))

~—~ —
= = =)
— ol —
N a N
S~— S~— S~—"
> > >
o O o
S~— S— S~—"
N
PR
(=]
IS
N e B
T
\MU;/\MU;/ T~ —
A A -~ n_l
= ERE sE o
S~ = 2| /I\|
= LI =R
271 S Ee =
Z ~ - ~— - L
| - i F]w
~ ~ |N
=~ ~E 7
| |

(

(by (2.4))

(1+ 3#)]

4
VN

(64> + 120 + 4))

— _
SIS
[ [ _

— — —
S~ ~—— ~—
Al A Il

1
VN

4
6u° + 1240+ 8) +ﬁ(6ﬂ2 + 12u +4)

(by (1.12))

<%

1—

6u’ + 124+ 8)

Thus we have the conclusion.
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3. The proof of the Key Lemma 1.4

To continue the procedure of the iterational construction of Fj, we prepare
the following lemma:

LEMMA 3.1.  For a unit vector u e C>, there exist P € SO(3) and € R such

that

0
(3.1) e "Pu=|isin0 | (i=v-1),

cos 0

where we consider elements in C* as column vectors (cf. Remark 1.1). Here, 0 is a
real number such that

cos 20 = cos® 0 — sin® 0 = |(u, u)| (0 <0< g)

Proof. Write u=x+iy (x,yeR?), and let zeR be

2
arctan RS0 (when |x| # |y])

2 2
x[” = [l

Ay O —

(when x| = |y]).

Then & := e '"u satisfies (Re &, Im &> = 0. Moreover, replacing ¢ with 7 +g if
necessary, we may assume

(3.2) Re @] > |Im 4]

without loss of generality. In particular, since |4| = 1, it holds that |Re @] > 0.
Hence there exists a matrix P; € SO(3) such that

0
PRei)=|0| (r>0).
t

Since P is a real matrix, Im(P&) is orthogonal to Re(Pia#). Hence, we have
iu1
Pi(a) =| i (uy,up, te Rt >0, (u1)2+(u2)2+t2: 1).
t

Moreover, £ > 1/ (u1)? 4 (12)* holds because of (3.2). Next, choose a real number
s such that

i 0
<C.OSS sms)<u1>< >, where u:=\/(u1)* + (u2)* > 0.
sins  coss /) \u u
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Set
coss —sins 0
P:=| sins coss O [-P;eSO(3).
0 0 1
Then
0

e "Pu=Pi=|iu (u,teRJZuZO,uz—i—tz:l).
t

. 7 . .
Hence there exists 0 € [O,Z] such that u =sin 6, t =cos §. In particular,

2

|(u,u)| = 1> — u* = cos® O — sin® 6 = cos 20

holds and thus we have the conclusion. O
We set
vV cos 2x 0 0
(3.3) A= 0 cosx —isinx |,
0 isinx cosx

where x € [O,ﬂ. Then A4 is non-singular if and only if x # % In this case,

(3.4) A e Vceos2x-0(3,0),
and

\Vcos 2x 0 0

0 cosx 1sinx

(3.5) A7 =

0 —isinx cosx

LemmA 3.2, Let x€ [0,%) be a real number. Then the matrix A in (3.3)
satisfies

. i 2
]| = cos x +sinx < V2, |41 =SSy V2

cos2x  ~ cos2x’
Proof. Since the eigenvalues of the matrix
cos 2x 0 0
A*A = 0 1 —1i sin 2x

0 1sin 2x 1
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are (cos x — sin x)%, cos 2x, and (cos x + sin x)?, (1.5) implies that || 4] = cos x +

sin x = v/2 sin (x + g) < V2. On the other hand, the eigenvalues of (47')"4~!
are

2 2

(cos x — sin x) (cos x + sin x)

an
cos? 2x " cos 2x’ cos? 2x
Hence
. €OsX-sinx V2
47 = < :
cos 2x cos 2x
which is the conclusion. O

We return to the construction of F;: Take w as in Lemma 2.4, and take
PeSO(3) and 7€ R as in Lemma 3.1, where 0 € [O,ﬂ is given by cos 20 =
|(u,u)]. Observe that by (1) of Lemma 2.4 we have

1
(3.6) 0:=Vcos 20 > G
and therefore 0 e [O,%). We set
- dF :
(37) F:= eITPF}'flv Q=0 =—F= €1TP(0]-71.

dz

Since P € SO(3) =« O(3,C), F is a holomorphic null immersion. On the other
hand, since P e SO(3) = U(3), F is congruent to F; ; in C*. In particular,
(3:8) ol = ol lola) = o(P)] = lo;-1(@) = 9;-1(P)]

hold for p,q e Dj.
Taking into account (3.6), we consider the matrix

5 0 0
(3.9) A= (@ a? a®) :=[0 cos§ —isinf |ed-0(3,C).
0 isinf cos@

In particular, by (3.1), it holds that

(3.10) a® = ¢t Pu = ¢ Pa.

By Lemma 3.2 and (3.6), it holds that

V2

(3.11) 4] < V2, (|47 < 5 < V2NYA
P
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Using the matrix 4 in (3.9), we set

E=(EV E® EO) .= 47'F = ¢"4~'PF,_,,
(3.12) JE ‘
W= i A lp = e”A’ngoj_l.

Since 4€d-0(3,C), E is a holomorphic null immersion although it is not
necessarily congruent to F;_;. Moreover, by (3.12), (1.4), (3.11) and (3.8), we
have

M: 7=
V2 V2

(3.14) W(q) —w(p)l =14""(p(q) — 0(p)| < |47 | lp(q) — 0(p)]
< V2N'"49;1(q) — 9,1 (p)].

1
3.13 Y| =479 > —|p| >
(3.13) | = | | HAIIH

LemmA 3.3. Let G= Gg:Dy — S be the Gauss map of E as in (3.12)
(¢f (1.18)). Then there exists a real matrix Q

1 0 0
4
(3.15) 0=]0 cos® —sin® [eSO(3), |0|<—
0 sin® cos ® VN
such that
1 0
3.16 dists:(QG(p), te3) > — e3:=10
( ) S (Q (p) 3) \/N 3 |

holds for each point p € @;, where dists: is the canonical distance function of the
unit sphere S* and G(p) e R® is considered as a column vector (cf. Remark 1.1).
In particular, as in (3.9), one has:

(3.17) the matrix A commutes with Q™1
and

3.18 oid) <10 < —
(3.18) 1o I <1©| TN
holds.

Proof. By (3.9) and (3.15), the equality (3.17) is trivial. Moreover, since

0 0 0
0 0 0 olo C) ¢)
0 '—id=]|0 cos®—1 sin ® = —2sin 3 S5 —Cos > ,
0 —sin® cos®—1

(C] .
0 cos 5 sin 5
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2
the maximum eigenvalue of (Q~! —id)"(Q~' —id) is (2 sin %) . Hence by (1.5),

lo™! —id| =2

)
—<10|.
sm2‘_|®|

holds, and thus we have (3.18).
So, to prove Lemma 3.3, it is sufficient to show (3.16) for suitable Q. The
Euclidean distance between G(p) and G({;) in R? can be estimated as

(p) x Up) W) x ¥(G)
W(p)® W)

__ v T e (e T i
w(p”zwj)lz!(w(p) )W = (&) x v &) ()]

1
)P E))?

+ (W(p) < Y(P) (P> = (W(&) x (&) W(p)I]

. o )
= T V@) X )G - WF)
)]

+ () ((p) x ¥(p) = w(G) x B (G
) < ¥ (p) —¥(&) x ¥(G)])
2

_ W@P (W E) — )|+ W
N W (p) P ()]

5 ([ W& = WD)+ W (p))

1G(p) = G(§)] =

(by (1.18))

|(W(p) x ¥ ()W) = (b(p) < ¥(p) W (p)I?

|w<<,)
+|w( ) x y(p) = Y(p) x ¥(&) +(p) x W(§) — (&) x ¥(E)))

S (W (&) = v (W (&) + v (p))

|w<cj>|
+ W (p) x W(p) = (&) + (W(p) — () x ¥(E)])

W (p) = (&I (p) = (&) + 2[(5)N)

W(p) — l//(Cj)I)
W (G)l

- 2
- |w<c~>|2
W(p) — ¥(C >|(2+

IW(C/)I

2v2 i V2l) = &)l
Sl@_l(éﬂlwp) w(g)|<2+ P ) (by (3.13))




A BOUNDED NULL CURVE 75

AN'g 1 (p) = 9,1 (§)] 2N 1 (p) = 0;1(5)]
. : 2 . by (3.14
ST @ T @ by B9
SNV4p. —o0. (¢ 4N /4
- |9, 1(1;) 9;-1(5)] (2+ —1911(p) _q,jl((;j)|> (Lemma 2.2)
/ /
< 8]\1}1 ' 6’”;\; 2 (2 +4Nvl : 6'“;\; 28) (Lemma 2.3)
11 [16(3u+e) ) 4(6p + 2¢)
_NN1/4( v < + N3/4y ))
1 1 [16(3u+e¢) 4(6u+ 2¢)
b (o y, s ) _
1 1 [16(3u+e) 6+ 2e 1
< \/—NNl/“( : (2+ . )) < 5% (by (1.13)).

Then we have
. A
(3.19) dists2 (G(p), G((;)) = 2 arcsm(z |G(p) — G(Cj)|)
< 216(p) = G(&)] <2|G(p) - G(G)| < —=.

Here we used the inequality arcsin x < zx/2 (0 < x <1). In particular, G(wy;) is
contained in the geodesic disc in the unit sphere S? centered at G({;) with radius

1/VN.

Case 1. Assume both dists:(G((j),e3) =2/v/N and distg2(G((), —e3) >

2/V/N hold, where e; = (0,0,1). Then for each pe %, (3.19) implies that

dists2(G(p), e3) > dists2 (G(()), e3) — dists2 (G(p), G(()))
2 2 1 1
> ——distx(G(p),G(()) = —=——==—.
\/N 1Sty ( (p) (CI)) \/ﬁ \/N \/N
Similarly dists2(G(p), —es) = 1/v/N holds. Then we have the conclusion (3.16)
for Q =id and ® = 0.

CASE 2. Assume

(3.20) dists2(G(;), e3) < %
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In this case, take the matrix Q as in (3.15) with
4

3.21 0:=—.

(3:21) Vi

Then
distg2(QG(p), e3)
> dists2(Qes, e3) — dist2 (QG(p). QG(())) — dists: (QG(()), Qes)

— o dist(QG(7). QG(G) ~ dist(QG((). 0ex)  (by (321)

_ % — dists: (G(p), G(&))) — dists2(G(5)), e3) (0eS0(3))
4
=UN f
On the other hand,
dists>(QG(p), )
< dist2(0G(p), 0G () + dists> (0G(S)), Oes) + distse (Qes, )

— distg:(G(()), e3) > (by (3.19), (3.20)).

Bl

= diss2(QG(7). QG(5) + dist (QG((). Oex) + = (by (3:21)
= distss (G(p). G(5) + distsn(G(G). ) + (050(3))
< e dist (G ) + (by (3.19))
1 2 4 7
<\/—N+\/—N+\/—N:—N (by (3'20))
and then,
dists2 (QG(p). —e2) = 7~ distsa(QG(p).e0) = 3~ >

because of (1.13). Thus, we have the conclusion (3.16).

Case 3. If distg:(G((;), —e3) < 2/V/N holds, then we have the conclusion by
the same way as in the previous case. O

Using PeSO(3), teR in (3.1), 4€6-0(3,C) in (3.9) and Q € SO(3) in
(3.15), we define

(3.22) E:=QE=B""F,, y:= d—E = 0y,
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where
(3.23) B= Y 5% %) = ("047'P) " € (e776) - O3, C).

Here, the elements of C? are considered as column vectors (cf. Remark 1.1).
Then E is a holomorphic null immersion which is congruent to E in (3.12).
Denote by (g,#) the Weierstrass data (cf. (1.8)) of E:

1 1

(3.24) b =50 =g%i(1+¢%).20)n, I =50 +g")lnl’.

|

Then we have

LemMMA 3.4. The meromorphic function g as in (3.24) satisfies

1 2V N
——— <|g| <2VN and 9 VN &=

> on i)

2VN Ll = Tran )
Proof. The Gauss map G of E is obtained by
| 2Reyg
G = 0G 2Imyg

=T 2
1+ 19| gl =1

Here, since G = QG satisfies (3.16) on ;, it holds that

2
. . —1 1
(3.25) dists: (G, e3) = arccos(G - e3) = arccos('g'2 ) > —,

. _ 1142 |
(3.26) distg2 (G, —e3) = arccos(G - (—e3)) = arccos( gl > >

9> +1)~ VN
on 5;, where - denotes the canonical inner product of R?. Since (3.25) implies
lgI* — 1
g>+1 "~ VN’
we have
1 4 cos |
9 < N _ oo L < vy’
1 —cos —
VN

Similarly, by (3.26), we have

lg|* > tan? L > <;>2
=N =)
Thus, we have the first inequality of the conclusion. The second inequality is
obtained immediately by the first inequality. O
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We set

(3.27) v = b,
where 5 is the third column of the matrix B as in (3.23).

Lemma 3.5. The vector v; in (3.27) is a unit vector satisfying |(vj,v;)| >
1/N'V4 Moreover, when (2.1) holds, that is, |Fi_y((;)| > 1/V/N, it holds that

Fi_1(p) G _
‘<|F.]/~1<p>|"’-’>‘21‘ﬁ for p €@,

where C, is the constant in (1.11).

Proof. Let e3 = (0,0,1). Since the matrix 4 and Q' commute (cf. (3.17)),
the third column of the matrix B is obtained as

b® = Bes = e P 140 les = e P10 de;  (by (3.23), (3.17))
=e P70 a¥ = PIQ7 (" PR)  (by (3.9), (3.10))
=P 'o7'Pa.
Taking into account that P and Q are real matrices, (3.27) implies that v; =

P7'Q7'Pu. Then by Lemma 2.4, we have |vj| = 1, |(v;, ;)| = 1/N'/*, because P,
Q €SO(3). Moreover, when |Fj_;({;)| > 1/V/N (ie. (2.1) holds),

)

_ ijl(P) -10-1py
- <|F,-1<p>|’P ¢ P>
- <|?i$|’””l( R ‘“”P”>
.
Fi1(p) 2 Fia(p) i1 ’
= <|Ff—1(p)|’ > ‘<|F,--1<p>|’P (@7 ~idF >‘
Fi_1(p) _ F/—l(l’). 1y n-1_:
= <|E_1<p>|’”> |F_,-_1<p>|’ IP7 (O™ —id)Pljul (by (1.4))
e
_ F}',l(p) _ -1 _
- <|13-1<p>|’”> lo™ —id] (PeSO(3))
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z’<ﬁﬁ,u>’_|®|z‘<m u>’_i (Lemma 3.3)

Fi1(p)l |Fi-1(p)|” VN
13 4 G
>l-—-—=1-— Lemma 2.4, (1.11)).
N VN TN ( ()
Thus we have the conclusion. O

Now, we apply the “Lopez-Ros deformation™ to the holomorphic null im-
mersion E. The following lemma is the straightforward conclusion of the classical
Runge’s theorem:

LemMmA 3.6. There exists a holomorphic function h on C which does not
vanish on C and satisfies

Y

{|h— 1| <e (on Di\wj)
h—TI<1 (on w)

where

(3.28) &= ¢

& 4 —max|p._,|, T=4N"2+1.
&+ 4v2u N Hj-1 = 91|

Using the function /# in Lemma 3.6 as a Lopez-Ros parameter, we produce
new Weierstrass data as follows:

. " | . . o~
(3.29) g::%, A=l Y= (1= g%i(1+4%), 2907
We denote
(3.30) E(z) = Jh ¥(z) dz, F, := BE,
0

where B is the matrix as in (3.23). By definition (3.29), gn = g5 holds. Thus, if
we write

b= %) and =G0,y ¢0),
then

(3.31) 5O = 0

holds.

By (3.30), the construction procedure of F; is accomplished. Thus, we
obtain a sequence {F;},_o; ,y of holomorphic null immersions and a sequence
{vj}=1__ow of unit vectors.

Now, we shall prove that {F;} and {v;} satistfy the conclusions (K-0)—(K-6)

of the Key Lemma 1.4.
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Lemma 3.7 ((K-6)). For each j=1,...,2N, {F;,v;> = {Fj_1,v;) holds.

Proof. By (3.31), we have

(332) (E,e3) = L O (w) dw = L GO (w)dw = (E,e3) (e = (0,0, 1)),

Let B be as in (3.23). Since Be (e7%9) - O(3,C),

(3.33) (Bx, By) = e %%9%(x, y)
holds. Then
(Fy 050 = (F, 9))
= (BE, ;) = (BE, b)) = (BE, Bes) (by (3.30),(3.27), (3.23))

= 872i152(EA~’ 83) = 6721152(E7 63) = <P}*17 vj> (by (333)a (332)) U

The properties (K-4), (K-5) and (K-6) in the Key Lemma 1.4 for / = j hold
by Lemmas 3.5 and 3.7. The property (K-1) holds trivially because of (3.30).
So we shall prove that F; (j =1,...,2N) satisfies (K-2), (K-3) of the Key Lemma
1.4.

Lemma 3.8.  The holomorphic null immersion F; as in (3.30) satisfies

e —
(3.34) lo; — @] < N2 on Di\w;,
C _
(335) |(ﬂj| = N on w;j,
. | = Cy on ;.
(3.36) lp;| = QLN j

where Cy is given in (1.11).

Proof. By the definitions (3.12), (3.22), (3.23) and (3.30), and noticing that
Q7! and 4 commute (cf. (3.17)), we have

g1 = TPTAQ T =PI QT AY,
g =e P40 =eT"P1O Ay
Then
(337) gl =14¥], gl = (49, || =14""Pg|, Wi =4""Py),
hold because P, Q € SO(3). By (1.4) and (3.11),
9 = 91| = 1AW =) < |4l = | < V2§ — I,

PO 1 PO 1
|§0j _¢j—l| = |A(lp_ W) = ||A,1H |lﬁ - lp| = \/§N1/4

(3.38)

| =yl
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hold. Here, by (3.24), (3.29) and (3.31), we have

=01 = 50~ 8 (= i1 + 690~ 1+ 7))

(L) a1 L)t )
:2‘(/1—1) (1 f)i(l—i))’?
"

2 2\1/2 ) 5
g 1 g g

< -lh—1 1+Z2|+1 -2

) _2|h ||;7|(‘ +h‘+‘ :

Q

L8]

/N =

1 g2 2
— -1 1+ 4
b ||77|<‘ TR

|g| |g\2

L)l \h |

)

Since /4 is taken as in Lemma 3.6 and P e SO(3),

=|4" IP(/’/ 1|W = ||A IH |P¢’/ 1|W (by (3.37), (1.4))
<\/_N1/4\(ﬂ, I‘W (by (3.11))
AN1/4,. _ & P
< \/_N ﬂj_l4,uj71N9/4 2\/§N2 (by (3 8))

holds on Dj\w;. Thus, by (3.38) |g; — ¢;_;| < V2l — Y| < &/(2N?), which is
(3.34).
Next, on %5, it holds that

1 A

(:39) ol =] > i = sl (by (337), (14), (D)
~ s 75
2Nll/4(l+lgl )17l (by (3.29), (1.9)).

Moreover
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;| = N1/4 lgn| = N1/4|gf7| (by (3.39), (3.31))
~ s g1 Hal el = ol 2 (by (3.24)
- ‘/§|AN11/I:¢J'“| 1+|g||g|2 > ﬁfﬁ ;11|| l+|g|g|2 (by (3.37), (14), PeSO(3))
> |](/\);1/14| 1_’|_Q| 7z |;\0]]1/14| 12_:_/;]\[ (by (3.11), Lemma 3.4)
v 2v/N v 1 \ C

2 INET+AN - NV AT I/N © 5N3A oA (hemma 22, (L1L).

Thus, we have (3.35).
Since w; = w;, we have on w; that

1

e 2N11/4<1 1P = 5 il (by (3:39)
=2N1/4 |l n| = 2]\(1/4 \}( 1+ g1l 1+|h||g2 (by (3.29))
- \@']}:,'1/4 |l/3|1+1|g|2 = f2|]hvl/4 47! ce,_lll;'g'z (by (3.24), (3.37))
= M”f%NWIP% '1+1 ks 2]|vhl|/4l %-llng'z (by (1.4), (3.11))
= 1|\il1|/4| /= 1‘1+14N > 21|\ill|/4 % I —1—14N (PeSO(3), Lemmas 3.4, 2.2)
= 4|z$|lv/4 siv son 7l = sgpver (7= 1= 7))
= 20]\/5/44]\77/2 5N9/4 = N (Lemma 3.6, (1.11)).

Hence we have (3.36). O

Thus we have {F;} and {v;} satisfying properties (K-0)—(K-6) in Lemma 1.4.

4. A proof of Proposition 1.3

In this section, we prove Proposition 1.3. We take the sequences {F;} and
{v;} as in the Key Lemma 1.4, and set

(4.1) Y ;= Fo.
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Recall that X = Fy by (K-0). Then we shall prove (Y-1)-(Y-3) in Proposition
1.3.

LemMA 4.1. It holds that
& e _
|€0y—¢x|ﬁﬁ, and \Y—X\SN on Di\(w U---Uwy),

where ¢y = dX/dz and ¢, = dY /dz.

Proof. By (K-2) of the Key Lemma 1.4,

P P
loy — ox| = lpany — 9ol < 0oy — Gon1| + -+ o1 — 9y SZNTNZZN

holds on Di\(ww;U---Uwyy). On the other hand, by Lemma 2.1,

& 2e

|Y—X|:|F2N—Fo|S|F2N—F2N_1|+"'+|F1—F0|S2N~N2:N

holds on ﬁ]\(W]U“'UwZN). U

COROLLARY 4.2 (the conclusion (Y-1)). It holds that
lpy —oy| <& and |Y —X|<é&e on Dj_,.

Proof. Note that we take the labyrinth as in Appendix A. Here, by
(1.14),

2 + L 24 : < 3 <
NTRN T N\" T8N SN =F
holds. Then by (2) of Lemma A.l in Appendix A, we have that

(4.2) D_ c l_)l\(wl Uu--- U‘ID2N).

Thus, by Lemma 4.1 and (1.13), it holds on D;_, that

& 2e
|¢Y_¢X|:|¢2N_¢O|§N<87 |Y—X|:|F2N—F0|SN<8 O

LemMma 4.3.  The function ¢y = @,y satisfies

loy| >
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Proof. On w;,
loyl = loan| = 19| = 0oy — Gon—1|l = = 91 — 9
2N —j+ 1)
> oo BN =+ e K-3), (K-2
> CiIN e (by (K-3), (K-2))
9/4 9/4 ¢
> C N/ N°/ (C N13/4>

On the other hand, on w;, we have

loy| = loan| = 0| = ooy — Gon_i|l = = |91 — 9
G (2N —j+ 1)
= N3/4 - IN2

C e 1 & Cy
ZW_N_W(CI_W>ZW (by (1.14)).

Finally, on Dy\(c; U---Uwy),

(by (K-3), (K-2))

loyl = loan| = ool — ooy — @an_1] =+ = o1 — 9ol
& &
> - e >y — - )
> o] =2V ey 2y (by (K2), (116))
& Cl

Hence we have the conclusion. O

COROLLARY 4.4 (the conclusion (Y-2)). The disc (Dy,ds}) contains a geo-
desic disc 9 centered at 0 with radius p + s.

Proof. The induced metric ds? is expressed as
2 12
dsy = |py|*|dz|".

Consider a Riemannian metric
N34\ 5 N34
ds* ;< G ) ds3 = 12|dz|?, (/1 ;Cl|¢y|>.

Then by Lemma 4.3, ds? satisfies the assumptions of Lemma A.4 in Appendix A.
Thus, we have

distg2 (0, 551) >N,
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where disty» denotes the distance function with respect to ds?>. Then by (1.14),

we have
C CIN4
dist, (0, oDy) > 2N3/4N 5 >p+s.

Hence we have the conclusion. O

By Corollary 4.4, one can take a geodesic disc Z of (Dy,ds3) centered at the
origin with radius p +s5. We fix ¢ € 2, and will prove (Y-3) of Proposition 1.3
from now on:

First, we assume ¢ € w; for some je {l,...,2N} (otherwise, the proof of
(Y-3) is rather easy). Since ¢ € 02, there exists a ds3-geodesic y joining 0 and ¢
with length p+s. Since ds3 is a Riemannian metric of non-positive Gaussian
curvature,

(4.3) an arbitrary subarc of y is the shortest geodesic.

Hence the image of y is contained in 2.

LEMMA 4.5. The Euclidean length of y satisfies

2
Length¢(y) < wNm.
I

Proof. Since the ds%-arclength of y is p+s, Lemma 4.3 implies that

C G
ps=] lonllde = | 5l = 5 Lenathe ().

Hence we have the conclusion. O

Now, take points ¢,g € & on the arc y such that
* ¢ € 0w; and the subarc of y joining ¢ and ¢ is contained in %;, namely, ¢ is
the final point where y meets J0w;,

+ and the subarc of y joining 0 and §gedD,_ 2 1 contained in ]_)1_%_;3;
8N B 8N
namely, ¢ is the first point where y meets (3D1 a1

See Figure 1. o

LEmMA 4.6. It holds that

(4.4) IF(q)| £r+% (I=0,...,2N),

(4.5) IF1(9)] <r—|—%

(46 Fanla) ~ @) < 22, 1P (@) — )| < .
@7) B (@) ~ @] <5+ 5725,

where ¢, is defined by (1.12).
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FIGURe 1. The curve y and points ¢, ¢

Proof. Since ¢ w U---Uwyy, Lemma 2.1 and the assumption (X-3) of
the Proposition 1.3 imply

IFi(@)] < [Fo(@) + [F1(q) — Fo(@)| + - + [Fi(q) — Fi-1(q)]

le 2¢
<r+ m <r+ N .
Hence we have (4.4). A similar reasoning proves (4.5).
If j=2N, (4.6) is obvious. When j<2N — 1, since g ¢ wj1 U---Uwmny,
Lemma 2.1 implies

|Fan(q) — Fi(q)| < [Fan(q) — Fan—1(q)| + - + |Fix1(q) — Fi(q)|
2N —jle 2
< 7( sz) < N

Then the first inequality of (4.6) holds. Similarly, we have the second inequality
of (4.6).

Let y, be the subarc of the geodesic y joining 0 and ¢, and let y, be the
line segment joining § and 0D; which is contained in the line {7g|¢e R}, see
Figure 1. Since y, Uy, is a path joining 0 and 0D, the assumption (X-2) and
(K-0) imply that

@8)  Lengthyg(yUr) = | lox(2)||del > disty (0.0D1) >
71U

where Lengthya (7, Uy,) is the length of the curve y; Uy, with respect to the
metric ds%. On the other hand, by (1.16), we have
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(49) Length, (72) = j 0x(2)|dz] < s Lengthe(rs)
72

2 1 u 1 3u
) =A< 2K
<N+8N3) ( +81\72>— N

Hence we have

N

3
(4.10) j |¢X<z>||dz|=j U |¢»x<z>|\dz|—j oy (@) 1dz] = p— 2.
al 1Yn 72

87

Since y, is contained in the subarc of y joining 0 and ¢, and taking into account

that Y = Foy (cf. (4.1)), we have

dist,: (0,4) > diste (0,4) = j iy (2)]|dz] (by (4.3))
71

~ [ Gor @1~ lox@Dlezl + | tox(a)l e

71

>~ [ lor(a) - pxlal ezl + | lor(@)]

N N

3u

> —| loy(z) —ox(@)lldz| +p = (by (4.10))
> — i|a’z| + e (Lemma 4.1)
B 71 N g N .
> —Lengthe(y) — + _ (7 =)
= —Lengthely N PN <V

2e(p+s) 3u 2e(p+s) 3u
= *W ,D*W = - CINA +p7N1/4 (Lemma 4.5)
B 1 2e(p+s)\ &)

Here, since ¢ lies on the geodesic y joining 0 and ¢, (4.3) implies
[Fan(q) — Fan(q)| < distyge (¢, ¢) = distye (0,¢) — distye (0,9)

= p+s—disty2 (0,9)

(&) (&)

Thus (4.7) is obtained.

We first consider the case that ¢ € w; and |Fi_{({;)| > 1/V/N.
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LemmA 4.7. When q e w; and |F;,-1((;)| > 1/VN,

C3
|Fi(q)| < V2+52+W

holds.
Proof. Let v; e C* be the unit vector as in (K-4)-(K-6), and denote
(vj)L := (the orthogonal complement of v»; with respect to <, )).

Then (v;)" is a (complex) 2-dimensional subspace of C*. Denote by II; the
orthogonal projection

(4.11) I : CPax i x— (xopv € (1)
with respect to the Hermitian inner product ¢, >. Then for any vector x € C,
(4.12) x> = |[<x, 0507 + T
holds. Thus, we have
I Fj(q)| < [T;Fj(q) — TF5(q)] + [T1;F5(q)]
= [I;(F5(q) — ()] + [T;F(9)]

< [Fj(q) = Fi(@)| + [T £5(q)] (by (4.12))
< [Fj(q) = Fi(@)| + [T;(F;(q) = F-1(9)| + T E51(g)]
< |F(q) = F(@)| + () — F1(9] + TLF-1(g)]  (by (4.12))

< [Fan(q) = Fan ()| + [Fan(q) — Fj(q)] + [Fan(q) — F5(q)]
+1F(q) = F1 ()] + [T F51(g)]

< 1) 2e 2
=\""NE)TN TN
+ |Fj(q) = F1 ()] + [T F5-1(q)] (Lemma 4.6)
4e

) € .
< (S+Nl/4> tytaz T [T F—1(q)] (Lemma 2.1)

1 4e & .
< S+N1/4 (Cz +N3/4 +N7/4) + |ij},1(q)|
¢+ Se

SS+W

+ T F-1(q)]-
Hence we have

¢ + S¢

(4.13) T F5(q)] SS+W

+ |G F5-1(g)]-
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Here, we assume Fj_;(g) # 0. Since ¢ € @;, we have

LE (@) = 1F1 @) — 1(F1(@), 5) (by (4.12))
- 2
o T
2
<@ (1—%) (by (K-5))
2
~1Ea@h 22 < @

2C 2e\ V2C
|Fi-1(9)] Nl/z S(r—i—N). N1/42 (by (4.4) in Lemma 4.6)
(r+2)v2C
TN

Then by (4.13), we have

(4.14) IIL;F(q)| < S+N1/4 (00:=cr + Se 4 (r + 26)/2C,)

when Fj_i(q) # 0. Otherwise, namely when F;_i(g) =0, (4.14) holds trivially.
Thus,

F@)| =/ [KE (@), 0 + I E(q) (by (4.12))

— VKB -1 (@), 0] + [ F () (by (K-6))

< \1E- @) + IE ()P

< ¢ (+fv) . (+N/> = s by @), @),

where

2

ﬂ::soc—i—( -

2 22 2
onia T C o= )SSO(+%+2V8+282=C3\/1’2+S2

N3/4 N7/4

and c; is the constant as in (1.12). Hence by the inequality /1 + x < 1+ (x/2),
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B

N <2t

DI<Vri+s N1/4r2+ 3 S r+s< N1/4r2+s2
N €3 2,2

<SVrits <1+N1/4m SVrets +N1/4

holds, which is the conclusion.

COROLLARY 4.8.

1Y (q)| = [Fan(q)

Proof.
2¢
1Fan(9)] < [Ei(@)] + | Fan (9) = Fi(@)] < |E5(9)l +
2e
ﬂ+ﬂ+NW+N
ST 1 2e
e 4s +N‘/4 C3—|—N3/4
1
7’2+S2+N1/4(C3+28) <Vrr+st+e

Under the assumption of Lemma 4.7, we have

| < Vr2+s>+e for ge (02 Nw;).

(by (4.6) in Lemma 4.6)

(Lemma 4.7)

(by (1.15)). O

Next we consider the case ¢ € w; and |Fj_1({;)| < 1/V/N.

Lemma 4.9.

1Y (q)| = |Fan(q)| <
holds.

Proof.  Since ¢ € 0w;,

Fav(@)] < |Fa(g) — Fax(@)] + [Fan(3)] < (s+

(“F N1/4) +1Fan(q) = Fi(9)] + |F5(9)]

N1/4

When |F;_1((;)| < 1/VN and g e (07 Nw)),

r?+s2+e

)+ Fav(@)] (by (4.7)

(by (4.6))

(Lemma 2.1)
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1 2 € 5
< i (0 vt ) +IBA@ - B @)+ 15 6)
1 2¢ & 6u
< s—i—N—l/ (cz +N3/4 +N7/4 +N3/4) + [Fi-1(¢)| (Lemma 2.3)

, 2¢ & 6u 1
sstymm\e T ya T yE T N T N

I+ ¢+ 6u+3
:s+% <s+e<Vrt+s2+e (by (1.15)).

Thus we have the conclusion. O
The remaining case is when

(4.15) g€ 02N (Di\(w1 U---Uway)).
Lemma 4.10. If q satisfies (4.15), then

|Fon(q)] < Vit +s2+¢
holds.

Proof. By the assumption (X-3), |X(¢)| = |Fo(q)] <r holds. Then by
Lemma 4.1 and (1.13), we have

2e
[Fan ()] < [Fo(q)] + [Fan(g) — Folg)| < rty Srtes rP+site O

Summing up, Corollary 4.8 and Lemmas 4.9 and 4.10 imply (Y-3) of the
Proposition 1.3.

Appendix A. Labyrinth

For the sake of completeness, we recall Nadirashvili’s labyrinth (for further
details we refer the reader to [7] or [4]).
For each number k =0,1,2,...,2N?, we set

k 1 2
m r0:1771:1—m,...,r2N2:1—N s

and take a sequence of domains

(Al) e == 1—

(A.2) D, ={zeC;lz| <n} (k=0,...,2N?).
Since {r;} is decreasing in k, it holds that

D,=D,>D,>---2D, , =D, 2.

oN?2 -~
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We denote the boundaries of D,, by

(A.3) Sy, = 0Dy, = {z € C;|z| = ri}.
We set
(A4) of = l_)l\Derz = l_)l\Dl_%
and
N2-1
A= U (DD ) = (D\D) U (D, \D) U U (D, D, )

N2-1

A~ = U (Dl‘zkﬂ \Dr2k+2) = (D"l \Drz) U (Dr3 \Dl‘4) U.--u (DI‘ZNZ,I\DQNz )
k=0

Next, let
N-1 N N-1 -
(AS) L= U len/N ﬂA, L= U 1(2_/‘+1)7z/N ﬂA7
J=0 Jj=0
where [, := {re';r > 0}, and set
_ 2N? N2
(A.6) H:=LULUS [(s:={JaD,={Js,]
k=0 k=0
We define
1
A. Q.= — | (H
(A7) A\ a1

where Ulg](B) denotes the e-neighborhood of the subset B = C (in the Euclidean
distance). Note that each connected component of Q has the width 1/(2N3).
For each number j=1,...,2N, we set
wj = (l]n/Nﬂ’/Q{>
U (the connected components of Q intersecting with /;;/y),

1 1
wj = U[—} (w)) = (the W-neighborhood of a)/),

(A.8)

8N3

7; := the closure of w;.
Finally we denote by {; the “base point” of w;:

(A.9) C1:<1_N—W>€IHJ/NEE)W/ (j=1,...,2N)

(see Figure 3).
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By definition, we have

LemvMa A.l. (1) For each j=1,...,2N, both w; and Di\w; are disjoint
compact subsets of C such that C\(w;U (Di\w;))) is connected.
(2) It holds that

Dl\DF%i;}leLJ”-UWQN.
Nsw

LEmMMA A2. Let je{l,...,2N}. Then for each p € Di\w;, there exists a
path y in Di\w; joining 0 and p whose length (with respect to the Euclidean metric
of C) is not greater than 1+ z/N.

Proof. By a rotation and a reflection on C = R?, we assume j = 2N and
p=re? (0<r<1, 0<0<n) without loss of generality.

If n/N < 6 <z, the line segment y joining 0 and p does not intersect with
wyy. Then p is the desired path.

Otherwise, both the line segment y, joining 0 and pg:=re’™" and the
circular arc y, joining po and p centered at 0 do not intersect with wyy. Then
the path y:=y, Uy, is the desired one. O

Lemma A3, Let je{l,...,2N}. Then for each p € @;, there exists a path
y in @; joining the base point {; and p whose length (with respect to the Euclidean
metric of C) is not greater than 6/N.

Proof We write p =rel’ e w;, where

21 a(j— 1) 7(j+1)
l-———-——=<r<1], — <0< ——-—.
NN STEY TN SUSTN

Then the line segment y, joining {; and p; := re!™/" lies in %, and its Euclidean

1
NTEN
arc y, centered at the origin joining p; and p does not exceed n/N. Then the
path y =y, Uy, joins {; and p in %, whose length does not exceed

length does not exceed On the other hand, the length of the circular

2 n 1 + 1 L 1 n - 1 2y 1 N - 6
N T 8N3 sN2 )= N s =N
Hence we have the conclusion. O

LemmA A4, Assume N >4, and let Q < Dy be the set as in (A.7). Note
that

ch1U~~~Uw2N.
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Consider a Riemannian metric ds® = 3°|dz|* on Dy such that

{/121 (on Dy)
A= N? (on Q).

Then for an arbitrary path ¢ in Dy joining 0 and 0Dy, it holds that | ds>N.

Proof. For k=0,...,N>—1, let y, be a subarc of ¢ joining dD,, and

1
It suffices to prove that Length,.(y,) > —. In

oD,,,,, contained in D,, \D,,,,- N

this case, since the path ¢ contains at least N2 such paths, we have

1
Length (o) :J ds > N? -N:N,

a

1 C .
In order to prove that Length,.(y;) = v We distinguish two cases. First we

1 . .
assume that Lengthq(y,) = N In this case by the assumption 41 >1 we have

Length. () =J ds :J Az)|dz| = J |dz| > i
Vk Vk Vk N

. . . .
On the contrary, if Lengthc(y,) < I it is not difficult to see that y, must be

2 L
%— ek Taking into account
the shape of the labyrinth, this implies that y, crosses a connected component
of Q transversely, and therefore the Euclidean length of y, NQ is greater than

1/(2N?). Hence by the assumption,

contained in a sector of D; of angle bounded by

1
Length,. (y,) = J ds > J ds = J Adz| = N3 — = O
Yk wnNQ

1 1
e N 27N
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