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ON THE 3-RANK OF THE IDEAL CLASS GROUP OF QUADRATIC

FIELDS

Yasuhiro Kishi

Abstract

As for Scholz’ inequalities sa ra sþ 1 with respect to the 3-rank of the ideal

class group of quadratic fields, we give a criterion to be r ¼ sþ 1. From this, we give

a new family of imaginary quadratic fields whose ideal class groups have 3-rank at least

two.

1. Introduction

Let d be a square-free positive integer and denote r and s the 3-ranks of the
ideal class groups of the imaginary quadratic field Qð

ffiffiffiffiffiffiffi
�d

p
Þ and the real quadratic

field Qð
ffiffiffiffiffiffi
3d

p
Þ, respectively. Then by Scholz [6], we have inequalities

sa ra sþ 1:ð1:1Þ

This article has two goals. The first is to prove the following theorem which
is a criterion for (1.1) to be r ¼ sþ 1.

Theorem 1. Let dð0�1Þ be a square-free positive (resp. negative) integer
with 3F d. Let r and s denote the 3-ranks of the ideal class groups of Qð

ffiffiffiffiffiffiffi
�d

p
Þ

and Qð
ffiffiffiffiffiffi
3d

p
Þ (resp. Qð

ffiffiffiffiffiffi
3d

p
Þ and Qð

ffiffiffiffiffiffiffi
�d

p
Þ), respectively. Then the following are

equivalent:
(I) r ¼ sþ 1 (resp. r ¼ s);
(II) There does not exist a cubic field K satisfying the following three

conditions:
(II-1) K=Q is not normal;
(II-2) The galois closure K of K=Q contains Qð

ffiffiffiffiffiffiffi
�d

p
Þ and K=Qð

ffiffiffiffiffiffiffi
�d

p
Þ

is a cyclic cubic extension unramified outside 3;
(II-3) v3ðDKÞ ¼ 4, that is, the discriminant DK of K is exactly divisible

by 34;
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(III) There exists a cubic field K satisfying the following three conditions:
(III-1) K=Q is not normal;
(III-2) The galois closure K of K=Q contains Qð

ffiffiffiffiffiffi
3d

p
Þ and K=Qð

ffiffiffiffiffiffi
3d

p
Þ is

a cyclic cubic extension unramified outside 3;
(III-3) v3ðDKÞ ¼ 3, that is, the discriminant DK of K is exactly divisible

by 33;
(IV) There does not exist a triple ðu; v;mÞ A Z3 ðuvm0 0Þ satisfying the

following three conditions:
(IV-1) 3v2d ¼ u2 � 4m3;
(IV-2) ðu;mÞ ¼ 1;
(IV-3) m1 1 ðmod 3Þ, u2 1 1; 7 ðmod 9Þ;

(V) There exists a triple ðu; v;mÞ A Z3 ðuvm0 0Þ satisfying the following
three conditions:
(V-1) �v2d ¼ u2 � 4m3;
(V-2) ðu;mÞ ¼ 1;
(V-3) One of the following six conditions holds:

(a) 3 jm, u2 1 4; 7 ðmod 9Þ;
(b) 3Fm, u1 3; 6 ðmod 9Þ;
(c) m1 2 ðmod 3Þ, u2 1 1; 4 ðmod 9Þ;
(d) m1 1 ðmod 9Þ, u2 1 13; 22 ðmod 27Þ;
(e) m1 4 ðmod 9Þ, u2 1 4; 22 ðmod 27Þ;
(f ) m1 7 ðmod 9Þ, u2 1 4; 13 ðmod 27Þ.

This is proved by using some properties with respect to cubic polynomials
which are stated in the next section.

The second goal is to prove the following theorem which gives a family of
imaginary quadratic fields whose ideal class groups have 3-rank at least two.

Theorem 2. Let n and q be odd positive integers with nb 3 or 3 j q. Then

the 3-rank of the ideal class group of Qð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 27nq6n

p
Þ is at least 2.

This is an expansion of the following:

Theorem 3 ([4, Theorem 3]). For an odd integer nb 3, the 3-rank of the

ideal class group of Qð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 27n

p
Þ is at least 2.

The idea of the proof of Theorem 2 is very simple. Put k :¼
Qð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 27nq6n

p
Þ, k 0 :¼ Qð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3ð4� 27nq6nÞ

p
Þ and denote r and s the 3-ranks

of the ideal class groups of k and k 0, respectively. Under the situation of
Theorem 2, we prove

r ¼ sþ 1ð1:2Þ

and

sb 1:ð1:3Þ
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Then we obtain rb 2. By using Theorem 1, equation (1.2) will be proved. In
order to prove inequality (1.3), it is su‰cient to show that the class number of k 0

is divisible by 3. We will give a cubic polynomial whose splitting field over Q is
an unramified cyclic cubic extension of k 0.

Remark 1.1. The condition that 4� 27nq6n is square-free is not necessary.
It is hard to determine when it holds.

2. Cubic polynomials

In this section, we introduce some properties of cubic polynomials which are
used for the proof of our theorem.

Let dð0�1Þ be a square-free integer with 3F d and put k :¼ Qð
ffiffiffiffiffiffiffi
�d

p
Þ,

k 0 :¼ Qð
ffiffiffiffiffiffi
3d

p
Þ. Define the subset Rk (resp. R 0

k) of the integer ring Ok of k (resp.
Ok 0 of k 0) by

Rk :¼ fg A Ok jNðgÞ A Z3g

ðresp: Rk 0 :¼ fg A Ok 0 jNðgÞ A Z3gÞ:

Moreover, for g A Rk (resp. g A Rk 0 ) with

g ¼ uþ v
ffiffiffiffiffiffiffi
�d

p

2
; NðgÞ ¼ m3 ðu; v;m A ZÞ

ðresp: g ¼ uþ v
ffiffiffiffiffiffi
3d

p

2
; NðgÞ ¼ m3 ðu; v;m A ZÞÞ;

define the polynomial fg by

fgðXÞ :¼ X 3 � 3mX � u

and denote by SplQð fgÞ the minimal splitting field of fg over Q. For the
irreducibility of fg, the following holds:

Proposition 2.1 ([1, Lemma 1]). For g A Rk (resp. g A Rk 0 Þ, fg is irreducible
over Q if and only if g is not a cube in Ok (resp. in Ok 0 ).

Next, define the subset R 0
k of Rk (resp. R 0

k 0 of Rk 0 ) by

R 0
k :¼ fg A Rk j ðNðgÞ;TrðgÞÞ ¼ 1; g B O3

kg

ðresp: R 0
k 0 :¼ fg A Rk 0 j ðNðgÞ;TrðgÞÞ ¼ 1; g B O3

k 0 gÞ:

For g A R 0
k (resp. g A R 0

k 0 ), fg is irreducible over Q by Proposition 2.1, and
SplQð fgÞ is an S3-field containing k 0 (resp. k) because the discriminant discð fgÞ of
fg is
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discð fgÞ ¼ 4ð3mÞ3 � 27u2 ¼ 27v2d ¼ 3d � ð3vÞ2

ðresp: discð fgÞ ¼ 4ð3mÞ3 � 27u2 ¼ �81v2d ¼ �d � ð9vÞ2Þ:

Moreover, the following holds:

Proposition 2.2 ([2, Proposition 6.5]). (1) For g A R 0
k, SplQð fgÞ is a cyclic

cubic extension of k 0 unramified outside 3 and contains a cubic field K with
v3ðDKÞ ¼ 1 or 3. Conversely, let L be an S3-field containing k 0 and a cubic field
K with v3ðDKÞ ¼ 1 or 3 which is a cyclic cubic extension of k 0 unramified outside
3. Then there exists g A R 0

k so that L ¼ SplQð fgÞ.
(2) For g A R 0

k 0 , SplQð fgÞ is a cyclic cubic extension of k unramified outside
3 and contains a cubic field K with v3ðDKÞ ¼ 0 or 4. Conversely, let L be an
S3-field containing k and a cubic field K with v3ðDKÞ ¼ 0 or 4 which is a cyclic
cubic extension of k unramified outside 3. Then there exists g A R 0

k 0 so that
L ¼ SplQð fgÞ.

In the final of this section, we state a theorem with respect to the ramifica-
tion of the prime 3.

Proposition 2.3 ([5, Theorem 1, Theorem 2]). Suppose that the cubic
polynomial

hðX Þ ¼ X 3 � aX � b; a; b A Z

is irreducible over Q, and that either v3ðaÞ < 2 or v3ðbÞ < 3 holds. Let y be a root
of hðX Þ ¼ 0, and put K ¼ QðyÞ. Then the following holds:

(1) The prime 3 is totally ramified in K=Q if and only if one of the following
three conditions holds:
(i) 1a v3ðbÞa v3ðaÞ;
(ii) 3 j a, 3F b, a2 3 ðmod 9Þ, b2 2 aþ 1 ðmod 9Þ;
(iii) a1 3 ðmod 9Þ, 3F b, b2 2 aþ 1 ðmod 27Þ.

(2) The condition v3ðDKÞ ¼ 3 holds if and only if one of the following three
conditions holds:
(iv) v3ðaÞ ¼ v3ðbÞ ¼ 1;
(v) 3 j a, 3F b, a2 3 ðmod 9Þ, b2 2 aþ 1 ðmod 9Þ;
(vi) a1 3 ðmod 9Þ, b2 1 4 ðmod 9Þ, b2 2 aþ 1 ðmod 27Þ.

(3) The condition v3ðDKÞ ¼ 4 holds if and only if one of the following two
conditions holds:
(vii) v3ðaÞ ¼ v3ðbÞ ¼ 2;
(viii) a1 3 ðmod 9Þ, 3F b, b2 2 4 ðmod 9Þ:

3. Proofs of Theorems

3.1. Proof of Theorem 1. The equivalently of (I), (II) and (III) immedi-
ately follows from [2, Theorem 7.1]. We will prove that ðIIÞ , ðIVÞ and
ðIIIÞ , ðVÞ.
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ðIVÞ ) ðIIÞ: Suppose that there exists a cubic field satisfying the conditions
(II-1), (II-2) and (II-3). Then by Proposition 2.2 (2), there exists an element
g A R 0

Qð
ffiffiffiffi
3d

p
Þ such that fg satisfies one of the conditions (vii) and (viii) of

Proposition 2.3 (3). Express

g ¼ uþ v
ffiffiffiffiffiffi
3d

p

2
; NðgÞ ¼ m3 ðu; v;m A Z; ðu;mÞ ¼ 1Þ:

It is clear that both of (IV-1) and (IV-2) hold. Noting that

fgðXÞ ¼ X 3 � 3mX � u;

we have

fg satisfies ðviiÞ , 3 jjm; 32 jj u;

fg satisfies ðviiiÞ , 3F u; 3m1 3 ðmod 9Þ; u2 2 4 ðmod 9Þ:

By ðu;mÞ ¼ 1, we see that the condition (IV-3) holds.
ðIIÞ ) ðIVÞ: Suppose that there exists a triple ðu; v;mÞ A Z3 ðuvm0 0Þ

satisfying the conditions (IV-1), (IV-2), (IV-3). Put g :¼ ðuþ v
ffiffiffiffiffiffi
3d

p
Þ=2. By the

condition (IV-1), we have

m3 ¼ u2 � 3v2d

4
;

and so NðgÞ A Z3. Moreover, ðNðgÞ;TrðgÞÞ ¼ 1 follows from the condition
(IV-2). To prove g B O3

Qð
ffiffiffiffi
3d

p
Þ, assume on the contrary that g A O3

Qð
ffiffiffiffi
3d

p
Þ. Then we

can express

uþ v
ffiffiffiffiffiffi
3d

p

2
¼ aþ b

ffiffiffiffiffiffi
3d

p

2

 !3
ða; b A ZÞ:ð3:1Þ

On the one hand, we have

4u ¼ a3 þ 9ab2dð3:2Þ

by comparing the traces of both sides of (3.1). On the other hand, we have

m3 ¼ a2 � 3b2d

4

� �3
by taking the norm of both sides of (3.1). Then we have

4m ¼ a2 � 3b2d:

From this together with (3.2), we obtain the relation

u ¼ a3 � 3am:

Then by the condition (IV-3), we have

a3 � a1 1; 4; 5; 8 ðmod 9Þ:
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However, no rational integer satisfies this congruence. Therefore we get a
contradiction, and hence we have g B O3

Qð
ffiffiffiffi
3d

p
Þ. Thus we obtain g A R 0

Qð
ffiffiffiffi
3d

p
Þ.

Then by Proposition 2.2 (2), the cubic field K contained in SplQð fgÞ satisfies (II-1)
and (II-2). Moreover, it follows from the condition (IV-3) that fg satisfies (viii).
By Proposition 2.3 (3), therefore, the cubic fields contained in SplQð fgÞ satisfy the
condition (II-3).

ðIIIÞ ) ðVÞ: Suppose that there exists a cubic field satisfying the conditions
(III-1), (III-2) and (III-3). Then by Proposition 2.2 (1), there exists an element
g A R 0

Qð
ffiffiffiffiffi
�d

p
Þ such that fg satisfies one of the conditions (iv), (v) and (vi) of

Proposition 2.3 (2). Express

g ¼ uþ v
ffiffiffiffiffiffiffi
�d

p

2
; NðgÞ ¼ m3 ðu; v;m A Z; ðu;mÞ ¼ 1Þ:

It is clear that both of (V-1) and (V-2) hold. Noting that

fgðXÞ ¼ X 3 � 3mX � u;

we have

fg satisfies ðivÞ , 3 jj u; 3Fm;

fg satisfies ðvÞ , 3F u; 3m2 3 ðmod 9Þ; u2 2 3mþ 1 ðmod 9Þ;

fg satisfies ðviÞ , 3m1 3 ðmod 9Þ; u2 1 4 ðmod 9Þ; u2 2 3mþ 1 ðmod 27Þ:

From these, we get the conditions ðaÞ@ðfÞ in (V-3).
ðVÞ ) ðIIIÞ: Suppose that there exists a triple ðu; v;mÞ A Z3 ðuvm0 0Þ

satisfying the conditions (V-1), (V-2), (V-3). Put g :¼ ðuþ v
ffiffiffiffiffiffiffi
�d

p
Þ=2. By the

condition (V-1), we have

m3 ¼ u2 þ v2d

4
;

and so NðgÞ A Z3. Moreover, ðNðgÞ;TrðgÞÞ ¼ 1 follows from the condition
(V-2). To prove g B O3

Qð
ffiffiffiffiffi
�d

p
Þ, we assume on the contrary that g A O3

Qð
ffiffiffiffiffi
�d

p
Þ.

Then we can write

uþ v
ffiffiffiffiffiffiffi
�d

p

2
¼ aþ b

ffiffiffiffiffiffiffi
�d

p

2

 !3

ða; b A ZÞ:ð3:3Þ

On the one hand, we have

4u ¼ a3 � 3ab2dð3:4Þ

by comparing the traces of both sides of (3.3). On the other hand, we have

m3 ¼ a2 þ b2d

4

� �3
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by taking the norm of both sides of (3.3). Then we have

4m ¼ a2 þ b2d:

From this together with (3.4), we obtain the relation

u ¼ a3 � 3am:ð3:5Þ
Here we assume that m and u satisfy the condition (a) of (V-3). Then by

(3.5), we have

a3 1 2; 4; 5; 7 ðmod 9Þ:
However, no rational integer satisfies this congruence. Therefore we get a
contradiction, and hence we have g B O3

Qð
ffiffiffiffiffi
�d

p
Þ. Similarly, if m and u satisfy

the conditions ðbÞ@ðfÞ in (V-3), we can get a contradiction from (3.5), and hence
we have g B O3

Qð
ffiffiffiffiffi
�d

p
Þ. Thus we obtain g A R 0

Qð
ffiffiffiffiffi
�d

p
Þ. Then by Proposition 2.2 (1),

the cubic field K contained in SplQð fgÞ satisfies (III-1) and (III-2).
Moreover, we easily verify that

m and u satisfy ðbÞ ) fg satisfies ðivÞ;
m and u satisfy ðaÞ or ðcÞ ) fg satisfies ðvÞ;

m and u satisfy ðdÞ or ðeÞ or ðfÞ ) fg satisfies ðviÞ:

By Proposition 2.3 (2), therefore, the cubic fields contained in SplQð fgÞ satisfy the
condition (III-3). This completes the proof of Theorem 1.

3.2. Proof of Theorem 2. First, we prove (1.2). Express

4� 27nq6n ¼ �v 02d;

where d is a square-free positive integer. Put u ¼ 4, v ¼ 2v 0, m ¼ 3nq2n; we can
verify that u, v and m satisfy the following conditions of Theorem 1:

ðV-1Þ u2 � 4m3 ¼ 22ð4� 27nq6nÞ ¼ �v2d;

ðV-2Þ ðu;mÞ ¼ 1;

ðV-3Þ ðaÞ 3 jm; u2 1 7 ðmod 9Þ:

Since d is positive, therefore, (1.2) follows from Theorem 1.
Next, we prove (1.3). Define the element a A Ok by

a :¼ 3ðnþ1Þ=2qnð3nq2n � 2Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 27nq6n

p
2

:

Then we have

NðaÞ ¼ ð3nq2n � 1Þ3;

TrðaÞ ¼ 3ðnþ1Þ=2qnð3nq2n � 2Þ;
and hence
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ðNðaÞ;TrðaÞÞ ¼ 1;

NðaÞ A Z3:

To prove a B O3
k , let us apply Proposition 2.1 to

faðX Þ ¼ X 3 � 3ð3nq2n � 1ÞX � 3ðnþ1Þ=2qnð3nq2n � 2Þ:
By putting t :¼ 3ðn�1Þ=2qn, we get

faðX Þ ¼ X 3 � 3ð3t2 � 1ÞX � 3tð3t2 � 2Þ:
Now we assume that fa is reducible over Q. Then there exists a rational number
x such that

x3 � 3ð3t2 � 1Þx� 3tð3t2 � 2Þ ¼ 0:ð3:6Þ
Here we take a change of variables by

x ¼ 3y� 2l;

t ¼ l � y

and substitute them into (3.6). Then we have

9y3 � 9ly2 þ l 3 þ 3y ¼ 0:

Multiplying both side of this by 33=y3 and putting p :¼ �3l=y, s :¼ 32=y, we
have

s2 ¼ p3 � 34p� 35:

This is a contradiction because the elliptic curve

Y 2 ¼ X 3 � 34X � 35

has no solution in Q. Hence fa is irreducible over Q. Then by Proposition
2.1, we have a B O3

k . Hence, we get a A R 0
k. By Proposition 2.2 (1), therefore,

SplQð faÞ is a cyclic cubic extension of k 0 unramified outside 3. Now we recall
the assumption ‘‘nb 3 or 3 j q’’. Under this assumption, fa does not satisfy any
of the conditions (i), (ii), (iii) of Proposition 2.3 (1). Then the prime divisor of 3
in k 0 is unramified in SplQð faÞ. Therefore SplQð faÞ is an unramified cyclic cubic
extension of k 0, and hence we obtain (1.3). Theorem 2 is now proved.

4. Some known results

In this section, we give an alternative proof of some known results by using
Theorem 1. For two quadratic fields Qð

ffiffiffiffi
D

p
Þ and Qð

ffiffiffiffiffiffiffiffiffiffi
�3D

p
Þ, let r denote the

3-rank of the ideal class group of the imaginary quadratic field, and let s denote
the one of the other.

Theorem 4 ([3, Theorem 1]). Let a and b be rational integers with 3F b and
put D :¼ �4a3 þ 9b2. Suppose that D is square-free. Then we have

r ¼ s; if D > 0;

sþ 1; if D < 0:

�
ð4:1Þ
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Proof. Since D is square-free, we have 3F a and hence we also have
3FD. Put u ¼ 3b, v ¼ 1, m ¼ a and d ¼ �D. Then ðu; v;mÞ satisfies (V-1),
(V-2) and (b) of (V-3) in Theorem 1. Thus we get (4.1). r

Theorem 5 ([7, Theorem 2, Theorem 4]). Let A and B be positive integers
and put D :¼ A6 þ 4B6. Suppose that D is square-free. Then we have

r ¼ s; if 3FB;

sþ 1; if 3 jB:

�

Proof. We easily have 3FD and D > 0. Put d ¼ �D. In the case 3FB
and 3 jA, it is easily verified that ðu; v;mÞ ¼ ð4B3; 2;�A2Þ satisfies (V-1), (V-2)
and (a) of (V-3). Then we have r ¼ s. In the case 3FB and 3FA, ðu; v;mÞ ¼
ðA3; 1;�B2Þ satisfies (V-1), (V-2) and (c) of (V-3). Then we also have r ¼ s. In

the case 3 jB, we put u ¼ A6 þ 6A4B2 þ 6A2B4 � 2B6, v ¼ AðA2 þ 2B2Þ and
m ¼ ðA2 þ B2Þ2. Noting that 3FA, we see that ðu; v;mÞ satisfies (IV-1),
(IV-2) and (IV-3). Therefore we have r ¼ sþ 1. r
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[ 6 ] A. Scholz, Über die Beziehung der Klassenzahl quadratischer Körper zueinander, J. Reine

Angew. Math. 166 (1932), 201–203.

[ 7 ] D. Shanks and P. Weinberger, A quadratic field of prime discriminant requiring three

generators for its class group, and related theory, Acta Arith. 21 (1972), 71–87.

Yasuhiro Kishi

Department of Mathematics

Aichi University of Education

1 Hirosawa, Igaya-cho

Kariya-shi Aichi 448-8542

Japan

E-mail: ykishi@auecc.aichi-edu.ac.jp

283ideal class group of quadratic fields


