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CONTACT METRIC STRUCTURES ON S3
MICHAEL MARKELLOS AND CHARALAMBOS TSICHLIAS

Abstract

In this paper, we construct a new family of contact metric structures on the unit
sphere S3. Especially, the above family has the property that Vet = 2014

1. Introduction

Chern and Hamilton ([6]) introduced the torsion v = %:g, where ¥%: is the
Lie derivative of g with respect to the characteristic vector field &, in their study
of compact contact three-manifolds. G. Calvaruso and D. Perrone ([4]) proved
that a 3-dimensional contact metric manifold is locally homogeneous if and only
if it is ball homogeneous and, moreover, satisfies the condition

(1.1) Vet = 2019,

where o is a constant. Here, the composition t¢(X, Y) has to be interpreted as
7(¢X,Y). Especially, the condition (1.1) with o =0 is equivalent to the condi-
tion that at a given point, the sectional curvature of all planes perpendicular to
the contact subbundle, are equal ([14]). These manifolds are said to be 3 —7
manifolds ([7]).

On the other hand, D. E. Blair ([1, pp. 133-137]) constructed examples of
conformally flat contact metric three-manifolds which do not have constant
sectional curvature. G. Calvaruso ([3]) pointed out that Blair’ s examples satisfy
the condition (1.1) with o smooth function which is constant along the geodesic
foliation generated by ¢&. The same author proved that a conformally flat
contact metric 3-manifold satisfying condition (1.1) with o = const. # 2, has
constant sectional curvature 0 or 1. More generally, the authors in ([8]) inves-
tigated conformally flat contact metric 3-manifolds satisfying the condition (1.1),
where o is a smooth function constant along the flow of £. A contact metric
manifold satisfying the condition (1.1), where « is an arbitrary smooth function, is
called 3 — 7 — o manifold ([8]).

In contact metric geometry, there are few examples of compact contact
metric manifolds. These examples include the odd dimensional spheres, the
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unit tangent sphere bundle over a Riemannian manifold and some of the
3-dimensional unimodular Lie groups, endowed with a left-invariant metric,
listed in Table I of [2]. On the contrary, the previously mentioned Blair’s
examples are non compact conformally flat and 3 — 7 — o« manifolds. To this
direction, the authors in [8], proved that the solid torus S' x D? is a conformally
flat, semi-K contact, 3 — 7 — o« manifold. In this paper, we prove that the unit
sphere S*, equipped with a specific family of contact metric structures (77, &, @, gr)s
is a 3 — 7 — o manifold (see Theorem 3.1). More precisely, this family of con-
tact metric structures on S* depends on a differentiable function / of S* which
satisfies a particular partial differential equation. Furthermore, we give special
solutions of this differential equation (see Examples 3.1 and 3.2). Also, we
clarify that this family of structures on S°® isn’t invariant for D-homothetic
deformations (see Remark 3.5). Additionally, we thoroughly investigate some
curvature properties of the contact metric manifold [S°, (7, ¢, ¢, gy)] (see Theorem
3.2 and Theorem 3.3). Finally, we point out that in the case which the func-
tion f is non-constant, [S*, (,&,¢,g,)] is not a generalized (i, x)-contact metric
manifold (see Remark 3.3).

2. Contact metric manifolds

We start with some fundamental notions about contact Riemannian geo-
metry. We refer to [1] for further details.

A differentiable (2n + 1)-dimensional manifold is called contact manifold if
it admits a global 1-form # such that 5 A (dy)" # 0 everywhere on M. It is
well known that a contact manifold admits an almost contact metric structure
(n,&,¢,9), i.e. a global vector field &, which is called the characteristic vector field
or the Reeb vector field, a tensor field ¢ of type (1,1) and a Riemannian metric g
(associated metric) such that

Q1) &) =1, ¢ =-ld+n®& g($X,¢Y)=g(X,Y)—n(X)n(Y),

for all vector fields X, ¥ on M. Moreover, the structure (,&,¢,g) can be
chosen so that

(2.2) dn(X,Y) =g(X,¢Y),

for all vector fields X, ¥ on M. The manifold M together with the structure
tensors (77,&,¢,g) is called a contact metric manifold (cm.m., in short) and is
denoted by [M, (n,&,¢,9)]. We denote by V the Levi-Civita connection, and by
R the corresponding Riemann curvature tensor field given by

R(X7 Y) = [VX7 VY] - V[X‘ Y]
for all vector fields X, ¥ on M. Moreover, we denote by S the Ricci tensor and
by r the scalar curvature.
We define on M the operators /, & and 7 by

IX = ROVQE HX = (L)X, (X, ¥) = (£g)(X,Y)
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where % is the Lie differentiation in the direction of £. The tensors / and t are
symmetric and satisfy ([9]):

(2.3) =0, trh=trh¢ =0, hp=—¢h,
T= 2g(¢'7h')v VCT = 2g(¢'7 Vih)

for all vector fields X on M.
The tensor / is symmetric and satisfies ([1, p. 111]):

(2.4) Glp —1=2(¢>+h*), Veh=¢— ¢l — ph’.
Combining relations (2.4), we get
(2.5) g — ¢l = 2V:h.

A contact metric manifold for ¢ being a Killing vector field is called a
K-contact manifold. 1t is well known that a contact metric manifold is K-contact
if and only if 7 =0. (or, equivalently, 7 = 0).

A contact structure on M gives rise to an almost complex structure on the
product M x R. If this structure is integrable, then the contact metric manifold
is said to be Sasakian. Equivalently, a contact metric manifold is Sasakian if
and only if

R(X, Y)E=n(Y)X —n(X)Y

for all vector fields X, Y on M.

Every Sasakian manifold is K-contact, but the converse is true only in the
three dimensional case.

The sectional curvature K(X, &) of a plain section spanned by & and a vector
field X orthogonal to ¢ is called &-sectional curvature. The sectional curvature
K(X,¢X) of a plain section spanned by the vector field X (orthogonal to &) and
¢X is called ¢-sectional curvature.

A cmm. [M,(n,¢,¢,9)] is said to be #-Einstein if the Ricci tensor S is of the
form

(2.6) S=ag+bn®n,

where @ and b are smooth functions on M. Every K-contact metric 3-manifold
is #-Einstein and the Ricci tensor is given by ([14])

r r
S<2—l>g+<—2+3)n®n.

A connected c.m.m. [M, (n,&, ¢, g)] of which the Riemann curvature tensor
satisfies the relation

(2.7) R(X,Y)E=rm(Y)X —n(X)Y) +u(n(Y)hX —n(X)hY),

with x, 4 smooth functions on M and every vector fields X, Y on M, is called
generalized (rc,u)-c.m.m. ([11]). Especially. if the functions x, u are constants
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on M, the cm.m. [M,(n,&,¢,9)] is called (x, u)-c.mm. ([2]). Generalized (x, u)-
c.m.m. not (x,u)-c.m.m. appear only in dimension 3 ([11]).

We call 3 —7— o manifold a 3-dimensional c.m.m. satisfying V:7 = 2014,
where the composition t¢(X,Y) has to be interpreted as t(¢X,Y) and o is an
arbitrary smooth function. We mention that every generalized (i, u)-c.m.m. is a

3 — 7 — o manifold with oczg (11]).

Let [M,(n,&¢,¢,9)] be a 3-dimensional contact metric manifold. Let U
be the open subset of M where & # 0 and V' the interior of U¢. Then UUV
is an open and dense subset of M. For every pe U there exists an open
neighborhood W of p and a vector field e defined on W such that he = le and
hge = —Age, where A is a non-vanishing smooth function of U. We call the local
orthonormal frame field {e, ge, &} a h-basis.

Combining relations (2.3) and (2.5), we have the following Proposition:

ProrosiTiION 2.1. Let [M,(n,¢,¢,9)] be a 3-dimensional contact metric

manifold.  Then, [M,(n,& ¢,9)] is a 3 —1— o manifold if and only if l¢ — ¢l
= 4ahg.

3. New contact metric structures on S3

We consider the unit sphere

S = {1’ = (X1, X2,X3,X4) € R*

Z(x,-)z = 1}

embedded in R*. The orthonormal vectors

81((X1,X2,X3,X4)) = (_Xvala —X4,X3)
er((x1,x2,x3,X4)) = (—X3, X4, X1, —X2),
e3((x1,x2,x3,x4)) = (—x4, —X3, X2, X1)
are orthogonal to x = (x, X3, X3, X4) eS® with respect to the Euclidean metric

and linearly independent everywhere on S*. Hence, they define the tangent
space T,S® ([13, page 259]). We easily get

(3.1) e1,e2] = 2e3, [e2, €3] = 2e1, ez, e1] = 2e2.

Let / be an arbitrary smooth function of S® non-vanishing everywhere on S*
which is a solution of the following partial differential equation:

of of of of
(3.2) X3 o + x1 . X4 xs + X3 F 0,



158 MICHAEL MARKELLOS AND CHARALAMBOS TSICHLIAS

or, equivalently, e¢;(f) =0. Let gy, ¢ be the Riemannian metric and the tensor
field of type (1,1) given by

1 0 0 0 0 0
! 0 0 —f2
qf—0ﬁ0,¢: 1f,
0 0 g 0720

with respect to the basis {e;,e;,e3}. We denote by 7 the 1-form defined by
n(W)=gr(W,e|) for every W eZ(S?). Then 5 is a contact form since
nAdy#0 everywhere on S°. Using the definition of # and the linearity of
¢, dn and gr, we easily obtain that z(e;) =1, dn(Z, W)-g(qﬁZ W) and
gf(qﬁZ oW) = gf(Z W) —n(Z)n(W) for every vector fields Z, W on S*. Hence
S, (r,e1.4.97)) s & c.mm. 1

Since gr(er,e1) =1, gr(er,e2) = 7 gr(es,e3) = f? elmd gr(ei,e;) = 0 for all
i # J, we easily get that the set ¢ wy = ey, wy = fey, w3 = —6’3} is an orthonormal

/
frame field globally defined on S*. Using relations (3.1) and (3.2), we easily

obtain that their Lie brackets are given by:

(3.3) [wi, wa)] = 2f2ws,  [wy,w3] = —

2
72"
e3(f)
f

5o wa — ea(f)ws.

[wa, w3] = 2w; —

Let V be the Levi-Civita connection corresponding to gr. By using the Koszul’s
formula

2g(VyZ, W) = Yg(Z, W) +Zg(W’ Y) - VVQ(Y, Z) - g(Y’ [27 W])
—9(Z,[Y, W]) +g9(W,[Y,Z]),

and (3.3), we calculate

Viwr =0, V,,w = ( 1 —f2 f2> w3,  Vyw = <1 —f2 f2>w2’

ej}(-{) w3,

le Wy = (f +—= f2 1> w3, Vn’z Wy =

(34) Vi W2 = <12 -1- —) wi + ex(f)ws,

f2
le w3 = < fz f2) wa, VWZW3 — (1 + f'2 _ %) Wy — e}f(—{)w2,

Vi,ws = —ea(f)wa.
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From the definition of the tensor field /# and relations (3.3), we get that hiw; =0
and

—_—

(3.5) hw, = 5(3‘“‘ P)wy = %{[wl,wﬂ —dwi,wa]} = < f2>W2

Similarly, we obtain that
1
(3.6) hws = (72 — f2> w3,

As a consequence, {wj,wy,w3} is a globally defined A-basis. Furthermore,
combining relations (3.2), (3.4), (3.5) and (3.6), we obtain

(leh)wl = 0,
(3.7) (Vi l)wa = 2<f2 f2> (f +—= f2 1>W3’

(Vi h)ws = 2<f2 f2> (f +]Tz - 1>W2.

In the sequel, we compute the tensor field 7¢ of S® with respect to the contact
metric structure (17,¢,4,9). We remind that the tensor field 7¢ is given by
(X, Y) =1(pX,Y), for all X,Y e Z(S?). Indeed, by using relations (2.3),
(3.5) and (3.6), we have

p(wi,wi1) =0, Th(wi,wp) =0, td(wi,w3) =0,

, 1
(3.8) p(wa, wi1) =0,  Th(wo, wp) = =2 (fz - ]T2>7 (w2, w3) = 0,
1
d(wy,wi) =0, td(wi,wy) =0, td(ws,w3) = 2<f2 - ]‘2)
Now, combining relations (2.3), (3.7) and (3.8), we have
(3.9) Vi, T = 201,
where o =1— f2 — F As a consequence, we yield the following Theorem:

THEOREM 3.1. Let S* be the 3-unit sphere and f be an arbitrary smooth
function of S, non-vanishing everywhere on S* which is a solution of the following
partial dlﬁ”erenllal equation:
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We consider the quadruple (n,&,¢,qr) given by

1 0 0 0 0 0
1 0 0 —f2
o= 7= O 4= 1 T, e=an aw)=g(w,e),
0 0 s 0 7 0

with respect to the basis {e1,es,e3} and for all W e Z(S?).  Then [S*, (1, ¢, 6, 97)]
1

7

Remark 3.1. We choose f =1 on S’ In this case, relations (3.5) and (3.6)
give h =0 i.e. [S3, (n,¢,4,9r)] is a K-contact metric manifold or, equivalently, a
Sasakian manifold. Furthermore, if we choose f = —1 on S*, then we get again
a Sasakian structure on S°.  We mention that these two Sasakian structures are
the only Sasakian structures of Theorem 3.1.

is a 3 —1— o manifold with oo =1 — f? —

In the sequel, we thoroughly investigate some curvature properties of
[S3, (i, &, 0, gr)]. More precisely, we have

THEOREM 3.2. Let S* be the 3-unit sphere and f be an arbitrary smooth
function of S*, non-vanishing everywhere on S® which is a solution of the partial
differential equation (3.2). Then, [S3,(77,§, b,9r)] is a (x,p)-c.m.m. if and only
if f=c=const. #0. Especially, if f = +1, then we get the standard Sasakian

1
structure on S°. If f =c=const. # +1,0, then K:3—c4——4 and u=
1 ¢
2

Proof. We assume that [S*, (7, &, 4, gr)] is a (x,u)-c.m.m. or, equivalently,
relation (2.7) holds for the real constants ¥ and u. Furthermore, the Jacobi
operator / of a (x,u)-contact metric manifold is given by ([2])

(3.10) | = —k¢> + pih.

Combining relations (3.5) and (3.10), we have

(3.11) I(wy) = [Kw(ﬁ—%ﬂwz.

On the other hand, by using relations (3.2), (3.3) and (3.4), we straightforward
calculate

(3.12) I(wa) = R(wa, wi)wi = Vy,, Viy wi =V, Vi, w1 = Vi, i

= [33f4+2f2%+%]vv2.
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Comparing relations (3.11) and (3.12), we easily conclude that f = ¢ = const. #
0. Conversely, we assume that f = ¢ = const. #0. In the case which f = +1,
we get the standard Sasakian structure on S* (see Remark 3.1). In the follow-
1

1 e
u= 2(1 e c_z) and using the relations (3.3), (3.4), (3.5) and (3.6), we easily

deduce that

ing, we deal with the case f = ¢ = const. # +1,0. Setting now, x =3 — ¢* —

[ 2 1
R(Wz, Wl)Wl =[3-3¢* + 20% — E + C_‘J w»

= x(n(wi)wa — n(w2)wr) + u(n(wi)hwz = n(w2)hwy),

[ 3 2
R(ws, w)wy = |c* — F—’_ 3+ 2 202} w3,

= x(p(wi)ws — g(ws)wr) + w(m(wi)hws — n(ws)hwy),
R(wy,w3)w; =0
= k(p(w3)wa — n(w2)ws) + w(n(ws)hwy — n(wa)hws).
By direct calculation, these relations yield:
R(Z, W)E = kln(W)Z = n(Z)W] + uln(W)hZ — n(Z)hW],
for all vector fields Z, W on S®. Hence, it has been shown that [S37 (n,&,4,90))

is a (i, u)-c.m.m. U

Remark 3.2. The (i, u)-structures on S* (which is diffeomorphic with the
Lie group SU(2)), described in Theorem 3.2, coincide with the ones given in
the main Theorem of [2]. Moreover, we explicitly exhibit the structure tensors
(n,&,¢,9.) on these structures.

Remark 3.3. Let f be a non-constant smooth function of S* non-vanishing
everywhere on S® which additionally satisfies the partial differential equation
(3.2). Then, [S* (17,4, 4,97)] is @ 3—17— o c.m.m. which is not a generalized
(r,p)-cm.m. Indeed, if it were a generalized (rc,u)-c.m.m., then using relation

1
(13) of [12] with A= f? e (in the case which A > 0), we would get

1 1
(145 )etn  (£43)e
(3.13) [wa, w3] = — A A
f f
Comparing relations (3.3) and (3.13), we obtain that e;(f) = 0. Since ¢;(f) =0,
using relations (3.3), we have that e3(f) =0 ie. f is a constant which is a

wy + w3 + 2wy.
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contradiction. We mention that every generalized (x, u)-contact metric manifold
is a 3 — 7 — o manifold ([10], [11]). Analogously, we work in the case which
A<0.

THEOREM 3.3. Let S* be the 3-unit sphere and f be an arbitrary smooth
function of S*, non-vanishing everywhere on S* which is a solution of the partial
differential equalzon (3.2). Then, the following conditions are equivalent:

(i) [S (1,¢, 4,97)] has constant E-sectional curvature.

(i) [S*, (n,¢, 9, g/)] is n-Einstein.

(iii) /= +1 and [S*,(n,&,$,9/)] is a Sasakian manifold.

Proof. (i) v (iii) We assume that [S?, (1, &,4,gs)] has constant ¢-sectional
curvature equals to ¢. This implies that

(3.14) gr(R(E,wwr, &) =¢ and  gr(R(E w3)ws, &) =¢

. , , 1
We will prove that 1= f2 — — =0 on S®. On the contrary, we assume that

there exists a point p € S* such that A(p) # 0. Hence, we have either A(p) > 0
or A(p) <0. We deal with the case A(p) > 0. Since the function 1 is con-
tinuous, there exists an open neighborhood W of p such that A(g) >0 for all
g € W. Combining relations (2-15) of [9] (see also [5]), (3.4) and (3.14), we get

(3.15) —2(f2 f2_ )i—,12+1=5,

(3.16) 2(] +F‘ )i—/12+1=c‘,

1
on W. Subtracting the relations (3.15) and (3.16), we get (f2+—— )

12
(j2 - JTZ) =0. Since f*(z)+ —1#0 for every zeS?, we deduce that

1
13(2)
1 S o 1
12— —5 =0 on W, which is a contradiction. As a consequence, 1= f 2 F =
0 on S* or, equivalently, f = +1. Applying Theorem 3.2, [S*, (1,&, 4, g/)] is
Sasakian manifold. Similarly, we deal with the case A(p) < 0.
(ii) > (iii) We assume that [S®, (7, ¢,9/)] is #-Einstein. We will prove

o

. 1 .
that 4= f? —— =0 on S3. On the contrary, we assume that there exists a

point p e S such that A(p) # 0. Hence, we have either A(p) >0 or A(p) < 0.
We deal with the case A(p) > 0. Since the function A is continuous, there exists
an open neighborhood W of p such that A(g) > 0 for all ge W. By using the
h-basis {w,ws, w3} and combining relations (2-18) of [9] (see also [5]), (2.6) and
(3.4), we obtain

r_ 2 2, - _r_ 22 L
7 1+ A7 — (f +f2 ))L— 1+ 4 +2<f +f2 1)/1,
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1
on W. Equivalently, <f2 +—— ) <f2 ——) =0. Since f*(z)+-—5——1
I I &+ 70
# 0 for every z € S®, we deduce that 2 — F =0 on W, which is a contradiction.

1 .
As a consequence, A = 2= =0 on S® or, equivalently, f = +1. Applying

Theorem 3.2, [S*, (17,¢,4,97)] is a Sasakian manifold. Similarly, we deal with
the case A(p) < 0.

(iii) — (i), (ii) We assume that f = +1. By using relations (3.4), we deduce
that [S*, (,&,4,941)] is a space of constant sectional curvature equals 1. Hence,
c=1 and S =2g. O

X Remark 3.4. By using relations (3.4), the ¢-sectional curvature of
[S°, (n,¢,4.97)] is given by
K (w2, ¢w2) = gr(R(w2, w3)ws, w2)

1 : 2
fereaf) + s (3}" ))—("’3}{ )) ~(alf))?

A r =) (o) ool -5

Let [M,(n,¢,4,9)] be a contact metric 3-manifold. A D-homothetic trans-
formation ([2], [11]) is the transformation:

S
(3.17) n=u, ¢=-& $=¢ g=1g+ii—1)n®y

at the structure tensors where 7 is a positive constant. It is well known [11] that
[M,(7,&,¢,G)] is also a contact metric manifold. Moreover, the curvature tensor
R and the tensor / transform in the following manner ([2], [11]):

(3.18) ;;:%h

and
(R(X,Y)E=R(X, V) + (t— 1)’ [n(Y)X —n(X)Y]
— (= D[(Vx@)Y — (Vyh)X +1(X)(Y +hY) = n(Y)(X + hX)].

Moreover, it is well known [1, p. 94] that every 3-dimensional contact metric
manifold is a contact strongly pseudo-convex integrable CR manifold, or, equiv-
alently, satisfies the condition

(Vx@)Y = g(X +hX,Y)é —n(Y)(X + hX).

Using the above relations we finally obtain that
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12

RO, Y)E= L ROE V) + 5 ()X — ) Y]

2(t—1)
t

+ (Y)hX —n(X)hY].

Hence, by using relations (2.1), we get

1 -1

1_21<X)_t—2 2(t-1)

PX +=——hX.

(3.19) I(X) =

PROPOSITION 3.1. Let S* be the 3-unit sphere and f be an arbitrary smooth
function of S*, nonvanishing everywhere on S°, which is a solution of the
partial differential equation (3.2). For any positive parameter t, the corresponding
D-homothetic transformation of (n,¢,4,qgr) yields a 3 —t—o contact metric
structure on S°.

Proof. Let S* be the 3-unit sphere and / be an arbitrary smooth function
of S*, non-vanishing everywhere on S which is a solution of the partial dif-
ferential equation (3.2). Applying Theorem 3.1, we have that [S*, (5, &, ¢, gs)] is

a 3 — 17— o manifold with ¢ =1 — 12 — % Furthermore, applying Proposition
2.1 we deduce that
(3.20) l¢p — ¢l = 4ahd.

Applying a D-homothetic transformation on [S3,(r],£,¢,gf;)],_ we obtain a new
contact metric structure on S* which is denoted by [S?, (7, &, @, gr)].  Combining
(3.17), (3.18), (3.19), (3.20) and the fact that /s anticommutes with ¢, we get

Therefore, by Proposition 2.1, we easily conclude that [S?,(7,&,4, gr)l is a

3_ % 5 manifold with z = > .~ 1. 0

Remark 3.5. The family of contact metric structures on S* described in
Theorem 3.1 isn’t invariant for D-homothetic transformations because the Reeb
vector field & isn’t the same with the initial Reeb vector field &, We remind that

_' - . .
&= ?é. On the contrary, [S37 (#,¢,6,9;)] remains a 3 — 7 — o manifold.

Example 3.1. We consider the smooth function f on S° given by:

(24222
e Vit =x5=x) 32 4 x2 > x2 4 a2,
1, x%—i—x%éx%—ﬁ—xf

S(x1,x2,x3,X4) = {
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Obviously, the function f satisfies the differential equation (3.2). Hence,
applying Theorem 3.1, we get that [S° (1,¢,4,9s)] is a 3 — 7 — o manifold.
Furthermore, the set C = {(x1,X2,X3,x4) € S” : X7 +x3 < x7 + x3} equipped with
the structures tensors (#,&,¢,¢gr) is a Sasakian manifold and the set S*-C=
{(x1,x2,x3,x4) € S?: x12 + x% > x% + xi} equipped with the structures tensors

(n,¢,4,97) is not a Sasakian manifold.

Example 3.2. Let p be a positive real constant. We consider the differ-
entiable function f, on S* given by:

—1/(x2+x2-x2-x32) 2 2 2 2
e IVITRTRTN 4 py XT Xy > X5 4 X,
So(x1, X2, X3,x4) =
b ) 1+ p, x4+ x3 < x3 47
Obviously, the function f, satisfies the partial differential equation (3.2). Hence,
applying Theorem 3.1, we get that [S°, (n,¢,6,91,)] is a 3 — 17— o manifold.
Furthermore, by using Example 3.2, the quadruple [C, (1,¢, ¢, gr)] (mentioned in

Example 3.3) is a non-Sasakian (x,u)-c.m.m. with =3 — (1 + p)* — ﬁ
+p
1 _
and u=2(1-(1 —i—p)2 — ﬁ) and the quadruple [S®— C,(n,¢&, 9, gr)] is
+p
not a (x, g)-c.m.m.

Remark 3.6. Examples 3.1 and 3.2 are never 3 — 7 since their function «
cannot vanish. Additionally, applying Theorem 3.3, the &-sectional curvature of
these Examples is never constant.

Remark 3.7. Let f be a differentiable function of S® which satisfies the
partial differential equation (3.2). We suppose that the closed set A ={pe S3:
f(p) =0} is non-empty. Using the notations of Theorem 3.1, the quadruple
[4¢,(n,¢,¢,97)] s @ 3 — 7 —a cmm. However, this structure (,&, ¢, gr) cannot
be extended to an open set W of S3 such that 4= W and WNoA #0. On
the contrary, we assume that the quadruple [4¢, (#,¢,4,gy)] is extended to the
quadruple [W,(#,&,¢,3)]. Let pe WN0oA. Then, there exists a sequence

1
f/ 2an)
the g is a tensor field and the quadruple (7,&,¢,5) is an extension of the
quadruple (7,¢,4,97), we have g,(ex,ex) = lim g, (e2,e2) = lim gy, (€2,€2) =

a, € A such that lim a, = p. Then, gy, (e2,€2) =

Using the fact that

. 1
lim f—2 (a):+oo. As a consequence, the quadruple (7,&,¢,gr) cannot be
extended in the previous meaning.

Acknowledgment. The authors wish to thank the referee for useful com-
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