CONTACT METRIC STRUCTURES ON S³

MICHAEL MARKELLOS AND CHARALAMBOS TSICHLIAS

Abstract

In this paper, we construct a new family of contact metric structures on the unit sphere S^3 . Especially, the above family has the property that $\nabla_{\varepsilon\tau} = 2\alpha\tau\phi$.

1. Introduction

Chern and Hamilton ([6]) introduced the torsion $\tau = \mathcal{L}_{\xi}g$, where \mathcal{L}_{ξ} is the Lie derivative of g with respect to the characteristic vector field ξ , in their study of compact contact three-manifolds. G. Calvaruso and D. Perrone ([4]) proved that a 3-dimensional contact metric manifold is locally homogeneous if and only if it is ball homogeneous and, moreover, satisfies the condition

$$(1.1) \nabla_{\ddot{\varepsilon}\tau} = 2\alpha\tau\phi,$$

where α is a constant. Here, the composition $\tau\phi(X,Y)$ has to be interpreted as $\tau(\phi X,Y)$. Especially, the condition (1.1) with $\alpha=0$ is equivalent to the condition that at a given point, the sectional curvature of all planes perpendicular to the contact subbundle, are equal ([14]). These manifolds are said to be $3-\tau$ manifolds ([7]).

On the other hand, D. E. Blair ([1, pp. 133–137]) constructed examples of conformally flat contact metric three-manifolds which do not have constant sectional curvature. G. Calvaruso ([3]) pointed out that Blair's examples satisfy the condition (1.1) with α smooth function which is constant along the geodesic foliation generated by ξ . The same author proved that a conformally flat contact metric 3-manifold satisfying condition (1.1) with $\alpha = const. \neq 2$, has constant sectional curvature 0 or 1. More generally, the authors in ([8]) investigated conformally flat contact metric 3-manifolds satisfying the condition (1.1), where α is a smooth function constant along the flow of ξ . A contact metric manifold satisfying the condition (1.1), where α is an arbitrary smooth function, is called $3 - \tau - \alpha$ manifold ([8]).

In contact metric geometry, there are few examples of compact contact metric manifolds. These examples include the odd dimensional spheres, the

¹⁹⁹¹ *Mathematics Subject Classification*. Primary 53C15; Secondary 53C25. *Key words and phrases*. Contact metric manifolds, 3-τ-α-manifolds.

Received May 1, 2012; revised August 28, 2012.

unit tangent sphere bundle over a Riemannian manifold and some of the 3-dimensional unimodular Lie groups, endowed with a left-invariant metric, listed in Table I of [2]. On the contrary, the previously mentioned Blair's examples are non compact conformally flat and $3 - \tau - \alpha$ manifolds. To this direction, the authors in [8], proved that the solid torus $S^1 \times D^2$ is a conformally flat, semi-K contact, $3 - \tau - \alpha$ manifold. In this paper, we prove that the unit sphere S^3 , equipped with a specific family of contact metric structures (η, ξ, ϕ, g_f) , is a $3 - \tau - \alpha$ manifold (see Theorem 3.1). More precisely, this family of contact metric structures on S^3 depends on a differentiable function f of S^3 which satisfies a particular partial differential equation. Furthermore, we give special solutions of this differential equation (see Examples 3.1 and 3.2). Also, we clarify that this family of structures on S^3 isn't invariant for D-homothetic deformations (see Remark 3.5). Additionally, we thoroughly investigate some curvature properties of the contact metric manifold $[S^3, (\eta, \xi, \phi, g_f)]$ (see Theorem 3.2 and Theorem 3.3). Finally, we point out that in the case which the function f is non-constant, $[S^3, (\eta, \xi, \phi, g_f)]$ is not a generalized (κ, μ) -contact metric manifold (see Remark 3.3).

2. Contact metric manifolds

We start with some fundamental notions about contact Riemannian geometry. We refer to [1] for further details.

A differentiable (2n+1)-dimensional manifold is called *contact manifold* if it admits a global 1-form η such that $\eta \wedge (d\eta)^n \neq 0$ everywhere on M. It is well known that a contact manifold admits an almost contact metric structure (η, ξ, ϕ, g) , i.e. a global vector field ξ , which is called the *characteristic vector field* or the *Reeb vector field*, a tensor field ϕ of type (1,1) and a Riemannian metric g (associated metric) such that

(2.1)
$$\eta(\xi) = 1$$
, $\phi^2 = -Id + \eta \otimes \xi$, $g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y)$,

for all vector fields $X,\ Y$ on M. Moreover, the structure (η,ξ,ϕ,g) can be chosen so that

(2.2)
$$d\eta(X,Y) = g(X,\phi Y),$$

for all vector fields X, Y on M. The manifold M together with the structure tensors (η, ξ, ϕ, g) is called a *contact metric manifold* (c.m.m., in short) and is denoted by $[M, (\eta, \xi, \phi, g)]$. We denote by ∇ the Levi-Civita connection, and by R the corresponding Riemann curvature tensor field given by

$$R(X, Y) = [\nabla_X, \nabla_Y] - \nabla_{[X, Y]}$$

for all vector fields X, Y on M. Moreover, we denote by S the Ricci tensor and by r the scalar curvature.

We define on M the operators l, h and τ by

$$lX = R(X, \xi)\xi, \quad hX = \frac{1}{2}(\mathcal{L}_{\xi}\phi)X, \quad \tau(X, Y) = (\mathcal{L}_{\xi}g)(X, Y)$$

where \mathcal{L}_{ξ} is the Lie differentiation in the direction of ξ . The tensors h and τ are symmetric and satisfy ([9]):

(2.3)
$$h\xi = 0, \quad \text{tr } h = \text{tr } h\phi = 0, \quad h\phi = -\phi h,$$
$$\tau = 2g(\phi \cdot, h \cdot), \quad \nabla_{\xi}\tau = 2g(\phi \cdot, \nabla_{\xi}h \cdot)$$

for all vector fields X on M.

The tensor l is symmetric and satisfies ([1, p. 111]):

(2.4)
$$\phi l \phi - l = 2(\phi^2 + h^2), \quad \nabla_{\xi} h = \phi - \phi l - \phi h^2.$$

Combining relations (2.4), we get

$$(2.5) l\phi - \phi l = 2\nabla_{\varepsilon} h.$$

A contact metric manifold for ξ being a Killing vector field is called a *K-contact manifold*. It is well known that a contact metric manifold is *K*-contact if and only if h = 0. (or, equivalently, $\tau = 0$).

A contact structure on M gives rise to an almost complex structure on the product $M \times \mathbf{R}$. If this structure is integrable, then the contact metric manifold is said to be *Sasakian*. Equivalently, a contact metric manifold is Sasakian if and only if

$$R(X, Y)\xi = \eta(Y)X - \eta(X)Y$$

for all vector fields X, Y on M.

Every Sasakian manifold is K-contact, but the converse is true only in the three dimensional case.

The sectional curvature $K(X,\xi)$ of a plain section spanned by ξ and a vector field X orthogonal to ξ is called ξ -sectional curvature. The sectional curvature $K(X,\phi X)$ of a plain section spanned by the vector field X (orthogonal to ξ) and ϕX is called ϕ -sectional curvature.

A c.m.m. $[M, (\eta, \xi, \phi, g)]$ is said to be η -Einstein if the Ricci tensor S is of the form

$$(2.6) S = aq + b\eta \otimes \eta,$$

where a and b are smooth functions on M. Every K-contact metric 3-manifold is η -Einstein and the Ricci tensor is given by ([14])

$$S = \left(\frac{r}{2} - 1\right)g + \left(-\frac{r}{2} + 3\right)\eta \otimes \eta.$$

A connected c.m.m. $[M, (\eta, \xi, \phi, g)]$ of which the Riemann curvature tensor satisfies the relation

$$(2.7) R(X,Y)\xi = \kappa(\eta(Y)X - \eta(X)Y) + \mu(\eta(Y)hX - \eta(X)hY),$$

with κ , μ smooth functions on M and every vector fields X, Y on M, is called *generalized* (κ, μ) -c.m.m. ([11]). Especially, if the functions κ , μ are constants

on M, the c.m.m. $[M, (\eta, \xi, \phi, g)]$ is called (κ, μ) -c.m.m. ([2]). Generalized (κ, μ) -c.m.m. not (κ, μ) -c.m.m. appear only in dimension 3 ([11]).

We call $3-\tau-\alpha$ manifold a 3-dimensional c.m.m. satisfying $\nabla_{\xi}\tau=2\alpha\tau\phi$, where the composition $\tau\phi(X,Y)$ has to be interpreted as $\tau(\phi X,Y)$ and α is an arbitrary smooth function. We mention that every generalized (κ,μ) -c.m.m. is a $3-\tau-\alpha$ manifold with $\alpha=\frac{\mu}{2}$ ([11]).

Let $[M, (\eta, \xi, \phi, g)]$ be a 3-dimensional contact metric manifold. Let U be the open subset of M where $h \neq 0$ and V the interior of U^c . Then $U \cup V$ is an open and dense subset of M. For every $p \in U$ there exists an open neighborhood W of p and a vector field e defined on W such that $he = \lambda e$ and $h\phi e = -\lambda \phi e$, where λ is a non-vanishing smooth function of U. We call the local orthonormal frame field $\{e, \phi e, \xi\}$ a h-basis.

Combining relations (2.3) and (2.5), we have the following Proposition:

PROPOSITION 2.1. Let $[M, (\eta, \xi, \phi, g)]$ be a 3-dimensional contact metric manifold. Then, $[M, (\eta, \xi, \phi, g)]$ is a $3 - \tau - \alpha$ manifold if and only if $l\phi - \phi l = 4\alpha h\phi$.

3. New contact metric structures on S^3

We consider the unit sphere

$$\mathbf{S}^{3} = \left\{ p = (x_{1}, x_{2}, x_{3}, x_{4}) \in \mathbf{R}^{4} \middle| \sum_{i=1}^{4} (x_{i})^{2} = 1 \right\}$$

embedded in \mathbb{R}^4 . The orthonormal vectors

$$e_1((x_1, x_2, x_3, x_4)) = (-x_2, x_1, -x_4, x_3)$$

$$e_2((x_1, x_2, x_3, x_4)) = (-x_3, x_4, x_1, -x_2),$$

$$e_3((x_1, x_2, x_3, x_4)) = (-x_4, -x_3, x_2, x_1)$$

are orthogonal to $x = (x_1, x_2, x_3, x_4) \in \mathbf{S}^3$ with respect to the Euclidean metric and linearly independent everywhere on \mathbf{S}^3 . Hence, they define the tangent space $T_x\mathbf{S}^3$ ([13, page 259]). We easily get

$$[e_1, e_2] = 2e_3, \quad [e_2, e_3] = 2e_1, \quad [e_3, e_1] = 2e_2.$$

Let f be an arbitrary smooth function of S^3 non-vanishing everywhere on S^3 which is a solution of the following partial differential equation:

$$(3.2) -x_2 \frac{\partial f}{\partial x_1} + x_1 \frac{\partial f}{\partial x_2} - x_4 \frac{\partial f}{\partial x_3} + x_3 \frac{\partial f}{\partial x_4} = 0,$$

or, equivalently, $e_1(f) = 0$. Let g_f , ϕ be the Riemannian metric and the tensor field of type (1,1) given by

$$g_f = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{f^2} & 0 \\ 0 & 0 & f^2 \end{pmatrix}, \quad \phi = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -f^2 \\ 0 & \frac{1}{f^2} & 0 \end{pmatrix},$$

with respect to the basis $\{e_1, e_2, e_3\}$. We denote by η the 1-form defined by $\eta(W) = g_f(W, e_1)$ for every $W \in \mathcal{X}(\mathbf{S}^3)$. Then η is a contact form since $\eta \wedge d\eta \neq 0$ everywhere on \mathbf{S}^3 . Using the definition of η and the linearity of

 $\eta \wedge u\eta \neq 0$ everywhere on S. Using the definition of η and the linearity of ϕ , $d\eta$ and g_f , we easily obtain that $\eta(e_1) = 1$, $d\eta(Z, W) = g(\phi Z, W)$ and $g_f(\phi Z, \phi W) = g_f(Z, W) - \eta(Z)\eta(W)$ for every vector fields Z, W on S^3 . Hence $[S^3, (\eta, e_1, \phi, g_f)]$ is a c.m.m. Since $g_f(e_1, e_1) = 1$, $g_f(e_2, e_2) = \frac{1}{f^2}$, $g_f(e_3, e_3) = f^2$ and $g_f(e_i, e_j) = 0$ for all $i \neq j$, we easily get that the set $\left\{ w_1 = e_1, w_2 = fe_2, w_3 = \frac{1}{f}e_3 \right\}$ is an orthonormal frame field globally defined on S^3 . Using relations (3.1) and (3.2), we easily obtain that their Lie brackets are given by:

(3.3)
$$[w_1, w_2] = 2f^2 w_3, \quad [w_1, w_3] = -\frac{2}{f^2} w_2,$$
$$[w_2, w_3] = 2w_1 - \frac{e_3(f)}{f^2} w_2 - e_2(f) w_3.$$

Let ∇ be the Levi-Civita connection corresponding to g_f . By using the Koszul's formula

$$2g(\nabla_{Y}Z, W) = Yg(Z, W) + Zg(W, Y) - Wg(Y, Z) - g(Y, [Z, W]) - g(Z, [Y, W]) + g(W, [Y, Z]),$$

and (3.3), we calculate

$$\nabla_{w_1} w_1 = 0, \quad \nabla_{w_2} w_1 = \left(-1 - f^2 + \frac{1}{f^2}\right) w_3, \quad \nabla_{w_3} w_1 = \left(1 - f^2 + \frac{1}{f^2}\right) w_2,$$

$$\nabla_{w_1} w_2 = \left(f^2 + \frac{1}{f^2} - 1\right) w_3, \quad \nabla_{w_2} w_2 = \frac{e_3(f)}{f^2} w_3,$$

$$\nabla_{w_3} w_2 = \left(f^2 - 1 - \frac{1}{f^2}\right) w_1 + e_2(f) w_3,$$

$$\nabla_{w_1} w_3 = \left(1 - f^2 - \frac{1}{f^2}\right) w_2, \quad \nabla_{w_2} w_3 = \left(1 + f^2 - \frac{1}{f^2}\right) w_1 - \frac{e_3(f)}{f^2} w_2,$$

$$\nabla_{w_3} w_3 = -e_2(f) w_2.$$

From the definition of the tensor field h and relations (3.3), we get that $hw_1 = 0$ and

(3.5)
$$hw_2 = \frac{1}{2} (\mathscr{L}_{w_1} \phi) w_2 = \frac{1}{2} \{ [w_1, w_3] - \phi [w_1, w_2] \} = \left(f^2 - \frac{1}{f^2} \right) w_2.$$

Similarly, we obtain that

(3.6)
$$hw_3 = \left(\frac{1}{f^2} - f^2\right)w_3.$$

As a consequence, $\{w_1, w_2, w_3\}$ is a globally defined *h*-basis. Furthermore, combining relations (3.2), (3.4), (3.5) and (3.6), we obtain

(3.7)
$$(\nabla_{w_1} h) w_1 = 0,$$

$$(\nabla_{w_1} h) w_2 = 2 \left(f^2 - \frac{1}{f^2} \right) \left(f^2 + \frac{1}{f^2} - 1 \right) w_3,$$

$$(\nabla_{w_1} h) w_3 = 2 \left(f^2 - \frac{1}{f^2} \right) \left(f^2 + \frac{1}{f^2} - 1 \right) w_2.$$

In the sequel, we compute the tensor field $\tau\phi$ of \mathbf{S}^3 with respect to the contact metric structure (η, ξ, ϕ, g) . We remind that the tensor field $\tau\phi$ is given by $\tau\phi(X,Y) = \tau(\phi X,Y)$, for all $X,Y \in \mathcal{X}(\mathbf{S}^3)$. Indeed, by using relations (2.3), (3.5) and (3.6), we have

$$\tau\phi(w_1, w_1) = 0, \quad \tau\phi(w_1, w_2) = 0, \quad \tau\phi(w_1, w_3) = 0,$$

$$(3.8) \qquad \tau\phi(w_2, w_1) = 0, \quad \tau\phi(w_2, w_2) = -2\left(f^2 - \frac{1}{f^2}\right), \quad \tau\phi(w_2, w_3) = 0,$$

$$\tau\phi(w_3, w_1) = 0, \quad \tau\phi(w_3, w_2) = 0, \quad \tau\phi(w_3, w_3) = 2\left(f^2 - \frac{1}{f^2}\right).$$

Now, combining relations (2.3), (3.7) and (3.8), we have

$$\nabla_{w_1} \tau = 2\alpha \tau \phi,$$

where $\alpha = 1 - f^2 - \frac{1}{f^2}$. As a consequence, we yield the following Theorem:

THEOREM 3.1. Let S^3 be the 3-unit sphere and f be an arbitrary smooth function of S^3 , non-vanishing everywhere on S^3 which is a solution of the following partial differential equation:

$$-x_2 \frac{\partial f}{\partial x_1} + x_1 \frac{\partial f}{\partial x_2} - x_4 \frac{\partial f}{\partial x_3} + x_3 \frac{\partial f}{\partial x_4} = 0.$$

We consider the quadruple (η, ξ, ϕ, g_f) given by

$$g_f = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{f^2} & 0 \\ 0 & 0 & f^2 \end{pmatrix}, \quad \phi = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -f^2 \\ 0 & \frac{1}{f^2} & 0 \end{pmatrix}, \quad \xi = e_1, \quad \eta(W) = g_f(W, e_1),$$

with respect to the basis $\{e_1, e_2, e_3\}$ and for all $W \in \mathcal{X}(\mathbf{S}^3)$. Then $[\mathbf{S}^3, (\eta, \xi, \phi, g_f)]$ is a $3 - \tau - \alpha$ manifold with $\alpha = 1 - f^2 - \frac{1}{f^2}$.

Remark 3.1. We choose $f \equiv 1$ on S^3 . In this case, relations (3.5) and (3.6) give h = 0 i.e. $[S^3, (\eta, \xi, \phi, g_f)]$ is a K-contact metric manifold or, equivalently, a Sasakian manifold. Furthermore, if we choose $f \equiv -1$ on S^3 , then we get again a Sasakian structure on S^3 . We mention that these two Sasakian structures are the only Sasakian structures of Theorem 3.1.

In the sequel, we thoroughly investigate some curvature properties of $[S^3, (\eta, \xi, \phi, g_f)]$. More precisely, we have

Theorem 3.2. Let S^3 be the 3-unit sphere and f be an arbitrary smooth function of S^3 , non-vanishing everywhere on S^3 which is a solution of the partial differential equation (3.2). Then, $[S^3, (\eta, \xi, \phi, g_f)]$ is a (κ, μ) -c.m.m. if and only if $f = c = const. \neq 0$. Especially, if $f = \pm 1$, then we get the standard Sasakian structure on S^3 . If $f = c = const. \neq \pm 1, 0$, then $\kappa = 3 - c^4 - \frac{1}{c^4}$ and $\mu = 2\left(1 - c^2 - \frac{1}{c^2}\right)$.

Proof. We assume that $[S^3, (\eta, \xi, \phi, g_f)]$ is a (κ, μ) -c.m.m. or, equivalently, relation (2.7) holds for the real constants κ and μ . Furthermore, the Jacobi operator l of a (κ, μ) -contact metric manifold is given by ([2])

$$(3.10) l = -\kappa \phi^2 + \mu h.$$

Combining relations (3.5) and (3.10), we have

(3.11)
$$l(w_2) = \left[\kappa + \mu \left(f^2 - \frac{1}{f^2} \right) \right] w_2.$$

On the other hand, by using relations (3.2), (3.3) and (3.4), we straightforward calculate

(3.12)
$$l(w_2) = R(w_2, w_1)w_1 = \nabla_{w_2}\nabla_{w_1}w_1 - \nabla_{w_1}\nabla_{w_2}w_1 - \nabla_{[w_2, w_1]}w_1$$
$$= \left[3 - 3f^4 + 2f^2 - \frac{2}{f^2} + \frac{1}{f^4}\right]w_2.$$

Comparing relations (3.11) and (3.12), we easily conclude that $f=c=const. \neq 0$. Conversely, we assume that $f=c=const. \neq 0$. In the case which $f=\pm 1$, we get the standard Sasakian structure on S^3 (see Remark 3.1). In the following, we deal with the case $f=c=const. \neq \pm 1,0$. Setting now, $\kappa=3-c^4-\frac{1}{c^4}$, $\mu=2\left(1-c^2-\frac{1}{c^2}\right)$ and using the relations (3.3), (3.4), (3.5) and (3.6), we easily deduce that

$$R(w_2, w_1)w_1 = \left[3 - 3c^4 + 2c^2 - \frac{2}{c^2} + \frac{1}{c^4}\right]w_2$$

$$= \kappa(\eta(w_1)w_2 - \eta(w_2)w_1) + \mu(\eta(w_1)hw_2 - \eta(w_2)hw_1),$$

$$R(w_3, w_1)w_1 = \left[c^4 - \frac{3}{c^4} + 3 + \frac{2}{c^2} - 2c^2\right]w_3,$$

$$= \kappa(\eta(w_1)w_3 - \eta(w_3)w_1) + \mu(\eta(w_1)hw_3 - \eta(w_3)hw_1),$$

$$R(w_2, w_3)w_1 = 0$$

$$= \kappa(\eta(w_3)w_2 - \eta(w_2)w_3) + \mu(\eta(w_3)hw_2 - \eta(w_2)hw_3).$$

By direct calculation, these relations yield:

$$R(Z, W)\xi = \kappa[\eta(W)Z - \eta(Z)W] + \mu[\eta(W)hZ - \eta(Z)hW],$$

for all vector fields Z, W on \mathbf{S}^3 . Hence, it has been shown that $[\mathbf{S}^3, (\eta, \xi, \phi, g_c)]$ is a (κ, μ) -c.m.m.

Remark 3.2. The (κ, μ) -structures on S^3 (which is diffeomorphic with the Lie group SU(2)), described in Theorem 3.2, coincide with the ones given in the main Theorem of [2]. Moreover, we explicitly exhibit the structure tensors (η, ξ, ϕ, g_c) on these structures.

Remark 3.3. Let f be a non-constant smooth function of S^3 non-vanishing everywhere on S^3 which additionally satisfies the partial differential equation (3.2). Then, $[S^3, (\eta, \xi, \phi, g_f)]$ is a $3 - \tau - \alpha$ c.m.m. which is not a generalized (κ, μ) -c.m.m. Indeed, if it were a generalized (κ, μ) -c.m.m., then using relation (13) of [12] with $\lambda = f^2 - \frac{1}{f^2}$ (in the case which $\lambda > 0$), we would get

$$(3.13) [w_2, w_3] = -\frac{\left(1 + \frac{1}{f^4}\right)e_3(f)}{f^2 - \frac{1}{f^2}}w_2 + \frac{\left(f^2 + \frac{1}{f^2}\right)e_2(f)}{f^2 - \frac{1}{f^2}}w_3 + 2w_1.$$

Comparing relations (3.3) and (3.13), we obtain that $e_2(f) = 0$. Since $e_1(f) = 0$, using relations (3.3), we have that $e_3(f) = 0$ i.e. f is a constant which is a

contradiction. We mention that every generalized (κ, μ) -contact metric manifold is a $3-\tau-\alpha$ manifold ([10], [11]). Analogously, we work in the case which

Theorem 3.3. Let S^3 be the 3-unit sphere and f be an arbitrary smooth function of S^3 , non-vanishing everywhere on S^3 which is a solution of the partial differential equation (3.2). Then, the following conditions are equivalent: (i) $[S^3, (\eta, \xi, \phi, g_f)]$ has constant ξ -sectional curvature. (ii) $[S^3, (\eta, \xi, \phi, g_f)]$ is η -Einstein. (iii) $f = \pm 1$ and $f(S^3, (\eta, \xi, \phi, g_f))$ is a Sasakian manifold.

Proof. (i) \mapsto (iii) We assume that $[S^3, (\eta, \xi, \phi, g_f)]$ has constant ξ -sectional curvature equals to \bar{c} . This implies that

(3.14)
$$g_f(R(\xi, w_2)w_2, \xi) = \bar{c} \text{ and } g_f(R(\xi, w_3)w_3, \xi) = \bar{c}$$

We will prove that $\lambda = f^2 - \frac{1}{f^2} \equiv 0$ on S^3 . On the contrary, we assume that there exists a point $p \in \mathbf{S}^3$ such that $\lambda(p) \neq 0$. Hence, we have either $\lambda(p) > 0$ or $\lambda(p) < 0$. We deal with the case $\lambda(p) > 0$. Since the function λ is continuous, there exists an open neighborhood W of p such that $\lambda(q) > 0$ for all $q \in W$. Combining relations (2-15) of [9] (see also [5]), (3.4) and (3.14), we get

(3.15)
$$-2\left(f^2 + \frac{1}{f^2} - 1\right)\lambda - \lambda^2 + 1 = \bar{c},$$

(3.16)
$$2\left(f^2 + \frac{1}{f^2} - 1\right)\lambda - \lambda^2 + 1 = \bar{c},$$

on W. Subtracting the relations (3.15) and (3.16), we get $\left(f^2 + \frac{1}{f^2} - 1\right) \cdot \left(f^2 - \frac{1}{f^2}\right) = 0$. Since $f^2(z) + \frac{1}{f^2(z)} - 1 \neq 0$ for every $z \in \mathbf{S}^3$, we deduce that $f^2 - \frac{1}{f^2} = 0$ on W, which is a contradiction. As a consequence, $\lambda = f^2 - \frac{1}{f^2} \equiv$ 0 on S^3 or, equivalently, $f = \pm 1$. Applying Theorem 3.2, $[S^3, (\eta, \xi, \phi, g_f)]$ is a Sasakian manifold. Similarly, we deal with the case $\lambda(p) < 0$.

(ii) \mapsto (iii) We assume that $[S^3, (\eta, \xi, \phi, g_f)]$ is η -Einstein. We will prove that $\lambda = f^2 - \frac{1}{f^2} \equiv 0$ on S^3 . On the contrary, we assume that there exists a point $p \in \mathbf{S}^3$ such that $\lambda(p) \neq 0$. Hence, we have either $\lambda(p) > 0$ or $\lambda(p) < 0$. We deal with the case $\lambda(p) > 0$. Since the function λ is continuous, there exists an open neighborhood W of p such that $\lambda(q) > 0$ for all $q \in W$. By using the h-basis $\{w_1, w_2, w_3\}$ and combining relations (2-18) of [9] (see also [5]), (2.6) and (3.4), we obtain

$$\frac{r}{2} - 1 + \lambda^2 - 2\left(f^2 + \frac{1}{f^2} - 1\right)\lambda = \frac{r}{2} - 1 + \lambda^2 + 2\left(f^2 + \frac{1}{f^2} - 1\right)\lambda,$$

on W. Equivalently, $\left(f^2 + \frac{1}{f^2} - 1\right) \left(f^2 - \frac{1}{f^2}\right) = 0$. Since $f^2(z) + \frac{1}{f^2(z)} - 1$ $\neq 0$ for every $z \in \mathbf{S}^3$, we deduce that $f^2 - \frac{1}{f^2} = 0$ on W, which is a contradiction. As a consequence, $\lambda = f^2 - \frac{1}{f^2} \equiv 0$ on \mathbf{S}^3 or, equivalently, $f = \pm 1$. Applying Theorem 3.2, $[\mathbf{S}^3, (\eta, \xi, \phi, g_f)]$ is a Sasakian manifold. Similarly, we deal with the case $\lambda(p) < 0$.

(iii) \mapsto (i), (ii) We assume that $f = \pm 1$. By using relations (3.4), we deduce that $[S^3, (\eta, \xi, \phi, g_{\pm 1})]$ is a space of constant sectional curvature equals 1. Hence, $\bar{c} = 1$ and S = 2g.

Remark 3.4. By using relations (3.4), the ϕ -sectional curvature of $[S^3, (\eta, \xi, \phi, g_f)]$ is given by

$$\begin{split} K(w_2,\phi w_2) &= g_f(R(w_2,w_3)w_3,w_2) \\ &= -fe_2(e_2(f)) + \frac{1}{f}e_3\left(\frac{e_3(f)}{f^2}\right) - \left(\frac{e_3(f)}{f^2}\right)^2 - (e_2(f))^2 \\ &- \left[\left(1 + f^2 - \frac{1}{f^2}\right)\left(1 - f^2 + \frac{1}{f^2}\right) + 2\left(1 - f^2 - \frac{1}{f^2}\right)\right]. \end{split}$$

Let $[M, (\eta, \xi, \phi, g)]$ be a contact metric 3-manifold. A *D*-homothetic transformation ([2], [11]) is the transformation:

(3.17)
$$\bar{\eta} = t\eta, \quad \bar{\xi} = \frac{1}{t}\xi, \quad \bar{\phi} = \phi, \quad \bar{g} = tg + t(t-1)\eta \otimes \eta$$

at the structure tensors where t is a positive constant. It is well known [11] that $[M, (\bar{\eta}, \bar{\xi}, \bar{\phi}, \bar{g})]$ is also a contact metric manifold. Moreover, the curvature tensor R and the tensor h transform in the following manner ([2], [11]):

$$(3.18) \bar{h} = \frac{1}{t}h$$

and

$$t\overline{R}(X,Y)\overline{\xi} = R(X,Y)\xi + (t-1)^{2}[\eta(Y)X - \eta(X)Y] - (t-1)[(\nabla_{X}\phi)Y - (\nabla_{Y}\phi)X + \eta(X)(Y+hY) - \eta(Y)(X+hX)].$$

Moreover, it is well known [1, p. 94] that every 3-dimensional contact metric manifold is a contact strongly pseudo-convex integrable CR manifold, or, equivalently, satisfies the condition

$$(\nabla_X \phi) Y = q(X + hX, Y)\xi - \eta(Y)(X + hX).$$

Using the above relations we finally obtain that

$$\overline{R}(X,Y)\overline{\xi} = \frac{1}{t}R(X,Y)\xi + \frac{t^2 - 1}{t}[\eta(Y)X - \eta(X)Y] + \frac{2(t-1)}{t}[\eta(Y)hX - \eta(X)hY].$$

Hence, by using relations (2.1), we get

(3.19)
$$\overline{l}(X) = \frac{1}{t^2}l(X) - \frac{t^2 - 1}{t^2}\phi^2 X + \frac{2(t - 1)}{t^2}hX.$$

PROPOSITION 3.1. Let S^3 be the 3-unit sphere and f be an arbitrary smooth function of S^3 , nonvanishing everywhere on S^3 , which is a solution of the partial differential equation (3.2). For any positive parameter t, the corresponding D-homothetic transformation of (η, ξ, ϕ, g_f) yields a $3 - \tau - \alpha$ contact metric structure on S^3 .

Proof. Let \mathbf{S}^3 be the 3-unit sphere and f be an arbitrary smooth function of \mathbf{S}^3 , non-vanishing everywhere on \mathbf{S}^3 which is a solution of the partial differential equation (3.2). Applying Theorem 3.1, we have that $[\mathbf{S}^3,(\eta,\xi,\phi,g_f)]$ is a $3-\tau-\alpha$ manifold with $\alpha=1-f^2-\frac{1}{f^2}$. Furthermore, applying Proposition 2.1 we deduce that

$$(3.20) l\phi - \phi l = 4\alpha h\phi.$$

Applying a *D*-homothetic transformation on $[S^3, (\eta, \xi, \phi, g_f)]$, we obtain a new contact metric structure on S^3 which is denoted by $[S^3, (\bar{\eta}, \bar{\xi}, \bar{\phi}, \bar{g}_f)]$. Combining (3.17), (3.18), (3.19), (3.20) and the fact that h anticommutes with ϕ , we get

$$\overline{l}\overline{\phi} - \overline{\phi}\overline{l} = \overline{l}\phi - \phi\overline{l} = 4\frac{\alpha + t - 1}{t}\overline{h}\overline{\phi}.$$

Therefore, by Proposition 2.1, we easily conclude that $[S^3, (\bar{\eta}, \bar{\xi}, \bar{\phi}, \bar{g}_f)]$ is a $3 - \bar{\tau} - \bar{\alpha}$ manifold with $\bar{\alpha} = \frac{\alpha + t - 1}{t}$.

Remark 3.5. The family of contact metric structures on \mathbf{S}^3 described in Theorem 3.1 isn't invariant for *D*-homothetic transformations because the Reeb vector field $\bar{\xi}$ isn't the same with the initial Reeb vector field ξ . We remind that $\bar{\xi} = \frac{1}{t}\xi$. On the contrary, $[\mathbf{S}^3, (\bar{\eta}, \bar{\xi}, \bar{\phi}, \bar{g}_f)]$ remains a $3 - \tau - \alpha$ manifold.

Example 3.1. We consider the smooth function f on S^3 given by:

$$f(x_1, x_2, x_3, x_4) = \begin{cases} e^{-1/(x_1^2 + x_2^2 - x_3^2 - x_4^2)}, & x_1^2 + x_2^2 > x_3^2 + x_4^2, \\ 1, & x_1^2 + x_2^2 \le x_3^2 + x_4^2 \end{cases}$$

Obviously, the function f satisfies the differential equation (3.2). Hence, applying Theorem 3.1, we get that $[\mathbf{S}^3, (\eta, \xi, \phi, g_f)]$ is a $3 - \tau - \alpha$ manifold. Furthermore, the set $C = \{(x_1, x_2, x_3, x_4) \in \mathbf{S}^3 : x_1^2 + x_2^2 < x_3^2 + x_4^2\}$ equipped with the structures tensors (η, ξ, ϕ, g_f) is a Sasakian manifold and the set $\mathbf{S}^3 - \overline{C} = \{(x_1, x_2, x_3, x_4) \in \mathbf{S}^3 : x_1^2 + x_2^2 > x_3^2 + x_4^2\}$ equipped with the structures tensors (η, ξ, ϕ, g_f) is not a Sasakian manifold.

Example 3.2. Let p be a positive real constant. We consider the differentiable function f_p on S^3 given by:

$$f_p(x_1, x_2, x_3, x_4) = \begin{cases} e^{-1/(x_1^2 + x_2^2 - x_3^2 - x_4^2)} + p, & x_1^2 + x_2^2 > x_3^2 + x_4^2, \\ 1 + p, & x_1^2 + x_2^2 \le x_3^2 + x_4^2 \end{cases}$$

Obviously, the function f_p satisfies the partial differential equation (3.2). Hence, applying Theorem 3.1, we get that $[\mathbf{S}^3, (\eta, \xi, \phi, g_{f_p})]$ is a $3 - \tau - \alpha$ manifold. Furthermore, by using Example 3.2, the quadruple $[C, (\eta, \xi, \phi, g_f)]$ (mentioned in Example 3.3) is a non-Sasakian (κ, μ) -c.m.m. with $\kappa = 3 - (1+p)^4 - \frac{1}{(1+p)^4}$ and $\mu = 2\left(1 - (1+p)^2 - \frac{1}{(1+p)^2}\right)$ and the quadruple $[\mathbf{S}^3 - \overline{C}, (\eta, \xi, \phi, g_f)]$ is not a (κ, μ) -c.m.m.

Remark 3.6. Examples 3.1 and 3.2 are never $3 - \tau$ since their function α cannot vanish. Additionally, applying Theorem 3.3, the ξ -sectional curvature of these Examples is never constant.

Remark 3.7. Let f be a differentiable function of \mathbf{S}^3 which satisfies the partial differential equation (3.2). We suppose that the closed set $A=\{p\in\mathbf{S}^3:f(p)=0\}$ is non-empty. Using the notations of Theorem 3.1, the quadruple $[A^c,(\eta,\xi,\phi,g_f)]$ is a $3-\tau-\alpha$ c.m.m. However, this structure (η,ξ,ϕ,g_f) cannot be extended to an open set W of \mathbf{S}^3 such that $A^c\subset W$ and $W\cap\partial A\neq\emptyset$. On the contrary, we assume that the quadruple $[A^c,(\eta,\xi,\phi,g_f)]$ is extended to the quadruple $[W,(\overline{\eta},\overline{\xi},\overline{\phi},\overline{g})]$. Let $p\in W\cap\partial A$. Then, there exists a sequence $a_n\in A^c$ such that $\lim a_n=p$. Then, $g_{f|a_n}(e_2,e_2)=\frac{1}{f^2(a_n)}$. Using the fact that the \overline{g} is a tensor field and the quadruple $(\overline{\eta},\overline{\xi},\overline{\phi},\overline{g})$ is an extension of the quadruple (η,ξ,ϕ,g_f) , we have $\overline{g}_p(e_2,e_2)=\lim \overline{g}_{a_n}(e_2,e_2)=\lim g_{f|a_n}(e_2,e_2)=\lim \frac{1}{f^2(a_n)}=+\infty$. As a consequence, the quadruple (η,ξ,ϕ,g_f) cannot be extended in the previous meaning.

Acknowledgment. The authors wish to thank the referee for useful comments on the manuscript.

REFERENCES

- [1] D. E. BLAIR, Riemannian geometry of contact and symplectic manifolds, Progress in math. **203**, 2nd ed., Birkhäuser, Boston, 2010.
- [2] D. E. BLAIR, TH. KOUFOGIORGOS AND B. PAPANTONIOU, Contact metric manifolds satisfying a nullity condition, Israel J. Math. 91 (1995), 189–214.
- [3] G. CALVARUSO, Einstein-like and conformally flat contact metric 3-manifolds, Balkan J. Geom. Appl. 5 (2000), 17–36.
- [4] G. CALVARUSO AND D. PERRONE, Torsion and homogeneity on contact metric three-manifolds, Ann. Mat. Pura Appl. 178 (2000), 271–285.
- [5] G. CALVARUSO AND D. PERRONE, Semi-symmetric contact metric three-manifolds, Yokohama Math. J. 49 (2002), 149–161.
- [6] S. S. CHERN AND R. S. HAMILTON, On Riemannian metrics adapted to three-dimensional contact manifolds, Lect. notes in math. 1111, Springer-Verlag, 1985, 279–305.
- [7] F. GOULI-ANDREOU AND PH. XENOS, On 3-dimensional contact metric manifolds with $\nabla_{\xi}\tau = 0$, J. Geom. **62** (1998), 154–165.
- [8] F. GOULI-ANDREOU, J. KARATSOBANIS AND PH. XENOS, Conformally flat $3 \tau \alpha$ manifolds, Differ. Geom. Dyn. Syst. **10** (2008), 107–131.
- [9] F. GOULI-ANDREOU AND E. MOUTAFI, Two classes of pseudosymmetric contact metric 3-manifolds, Pacific J. Math. 239 (2009), 17–37.
- [10] J. KARATSOBANIS AND PH. XENOS, On a new class of contact metric 3-manifolds, J. Geom. 80 (2004), 136–153.
- [11] TH. KOUFOGIORGOS AND C. TSICHLIAS, On the existence of a new class of contact metric manifolds, Canad. Math. Bull. 43 (2000), 440–447.
- [12] TH. KOUFOGIORGOS AND C. TSICHLIAS, Generalized (κ, μ) -contact metric manifolds with $\|\text{grad }\kappa\| = \text{const.}$, J. Geom. **78** (2003), 83–91.
- [13] M. NAKAHARA, Geometry, topology and physics, 2nd ed., Graduate student series in physics, Taylor and Francis Group, 2003.
- [14] D. Perrone, Torsion and critical metrics on contact three-manifolds, Kodai Math. J. 13 (1990), 88–100.

Michael Markellos
Frederick University
General Department (Math.-Phys. group)
7 Gianni Frederickou str
Palouriotissa 1036 Nicosia
Cyprus

E-mail: mmarkellos@hotmail.gr

Charalambos Tsichlias University of the Aegean Department of Mathematics 83200 Karlovassi, Samos Greece

E-mail: tsichlias@aegean.gr