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BANACH SPACES OF BOUNDED DIRICHLET FINITE

HARMONIC FUNCTIONS ON RIEMANN SURFACES

Mitsuru Nakai

Abstract

The Banach space of bounded Dirichlet finite harmonic functions on an open

Riemann surface will be seen to be reflexive and also separable if and only if the

underlying Riemann surface does not carry any unbounded Dirichlet finite harmonic

function.

1. Introduction

There are many properties commonly considered for general Banach spaces
such as separability, reflexivity, uniform convexity, and many others. It is not
only interesting in its own right but also important and quite useful to know
whether a given special space enjoys these properties or not. Having the
intention to apply to the harmonic classification theory of Riemann surfaces
we have considered the separability and the reflexivity for the spaces HBðRÞ and
HDðRÞ (cf. [11], [12]) explained below.

We denote by HðRÞ the linear space of real valued harmonic functions u
on an open (i.e., noncompact) Riemann surface R ([1]). Two major important
linear subspaces of HðRÞ repeatedly considered thus far in the classification
theory of Riemann surfaces are HBðRÞ and HDðRÞ. The former space HBðRÞ
consists of bounded harmonic functions u on R and forms a Banach space under
the supremum norm kukHB, i.e.,

kukHB :¼ sup
z AR
juðzÞj:ð1:1Þ

The letter B in HBðRÞ is thus used to suggest the initial of boundedness. This
space is important in view of the normal family argument for harmonic functions.
The latter space HDðRÞ is the family of Dirichlet finite harmonic functions u
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on R, where a u A HðRÞ is said to be Dirichlet finite if the Dirichlet integral
Dðu;RÞ of u taken over R is finite, i.e.,

Dðu;RÞ :¼
ð
R

du5�du ¼
ð
R

j‘uðzÞj2 dxdy < þy ðz ¼ xþ iyÞ:ð1:2Þ

Then HDðRÞ forms a Banach space, and actually a Hilbert space equipped with
the inner product ðu; vÞHD for u and v in HDðRÞ given by

ðu; vÞHD :¼ uðaÞvðaÞ þDðu; v;RÞ;ð1:3Þ

where Dðu; v;RÞ is the mutual Dirichlet integral of u and v in HDðRÞ defined by

Dðu; v;RÞ :¼
ð
R

du5�dv ¼
ð
R

‘uðzÞ � ‘vðzÞ dxdy ðz ¼ xþ iyÞð1:4Þ

so that Dðu;RÞ ¼ Dðu; u;RÞ and a is an arbitrarily chosen and then fixed
reference point in R. The choice of a is not essential in the sense that the
change of a only produces the homeomorphically linear isomorphic Hilbert

space. Of course, the norm kukHD of u is given by kukHD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu; uÞHD

p
. The

letter D in HDðRÞ is used as in the case of HBðRÞ to suggest the initial D of
Dirichlet finiteness. This space is important in connection with the so called
Dirichlet principle in the harmonic function thory.

For these two spaces HBðRÞ and HDðRÞ we considered the separability and
the reflexivity as Banach spaces and we obtained the result as indicated in the
following table ([11], [12]).

Table 1.5

space HBðRÞ (dim < y) HBðRÞ (dim ¼y) HDðRÞ (dimey)

reflexivity yes no yes

separability yes no yes

Here, for example, HBðRÞ (dim < y) means that dim HBðRÞ < y, where dim X
for a linear space X is the linear dimension of X . Thus HDðRÞ (dimey)
means that dim HDðRÞey or equivalently that unconditional for the dimen-
sion of HDðRÞ. Recall that any general finite n dimensional (n A N: the set of
positive integers) Banach space is homeomorphically linear isomorphic to the n
dimensional Euclidean space Rn so that it is always separable and also reflexive.
One of our motivations of deriving the above table was to give a short, sim-
ple, and easy proof to the useful Masaoka theorem [6] that the identity
HBðRÞ ¼ HDðRÞ as sets holds if and only if dim HBðRÞ ¼ dim HDðRÞ < y.
The essential part of the proof of this result is the implication of the latter
assertion dim HBðRÞ ¼ dim HDðRÞ < y from the former condition of set iden-
tity HBðRÞ ¼ HDðRÞ. By the open mapping principle, HBðRÞ ¼ HDðRÞ assures
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that HBðRÞ and HDðRÞ are homeomorphically linear isomorphic as Banach
spaces and thus either parts of reflexivity or separability of the table 1.5 shows
that dim HBðRÞ ¼ dim HDðRÞ < y, as required. Our proof is thus ultrasimple.
And the more, as an e¤ect of our proof in [11] and [12], what we have really
proven above is the following generlization of the Masaoka result.

The following 3 conditions are equivalent by pairs: (i) the Banach spaces HBðRÞ
and HDðRÞ are isomorphic as topological linear spaces; (ii) HBðRÞ ¼ HDðRÞ as
sets; (iii) dim HBðRÞ ¼ dim HDðRÞ < y.

The significance of this generalization reveals itself in the fact that the method of
the original proof in [6] or that of relatively simplified proof of it in [8] cannot at
all take care of the above generalization.

In treating spaces HBðRÞ and HDðRÞ it is not only useful and convenient but
also important to consider the third Banach space

HBDðRÞ :¼ HBðRÞVHDðRÞ;ð1:6Þ

which forms a Banach space under the combined norm

kukHBD :¼ sup
z AR
juðzÞj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðu;RÞ

p
ð1:7Þ

for u A HBDðRÞ. Since, in general, we always have two inclusion relations
HBDðRÞHHBðRÞ and HBDðRÞHHDðRÞ, the condition HBðRÞ ¼ HDðRÞ is
identical with two inverse inclusions HBDðRÞ ¼ HBðRÞ and HBDðRÞ ¼ HDðRÞ.
In this sense the above Masaoka theorem falls in the category of the inverse
inclusion problem in the classification theory of Riemann surfaces.

The purpose of the present paper is to discuss the reflexivity and the
separability of the Banach space HBDðRÞ. Since the parents HBðRÞ and HDðRÞ
of their child HBDðRÞ have entirely opposite characters with respect to both of
reflexivity and separability, the question is which endowments of his (or her)
parents the child HBDðRÞ inherits more. Even for the simplest Riemann surface
D, the unit disc, it seems to be considerably hard to tell wether HBDðDÞ is
reflexive or not and also separable or not. The possibility of representing the
Banach aspace HBDðDÞ isometrically and linear isomorphically as the Banach
space of Borel functions f on qD with finite norm k f k, the supremum and
Douglas combined norm, given by

k f k :¼ ess: sup
qD

j f j þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2p

ð2p
0

ð2p
0

j f ðeisÞ � f ðeitÞj2

jeis � eitj2
dsdt

s
< y

does not seem to be too much helpful. We will establish a complete solution to
the question mentioned above for general Riemann surfaces R (cf. Theorem 2.8
in the next section 2). Based upon this general solution it turns out that the
following table 1.8 is obtained for the Riemann surface D (cf. Section 6).

17dirichlet finite harmonic functions



Table 1.8

space HBðDÞ HDðDÞ HBDðDÞ

reflexivity no yes no

separability no yes no

2. Prediction based upon examples

There is an open Riemann surface WB with the following two properties
([9]):

HBDðWBÞ ¼ HBðWBÞ;ð2:1Þ
dim HBDðWBÞ ¼y:ð2:2Þ

From (2.1), (2.2) and the table 1.5 it trivially follows the validity of the following
table.

Table 2.3

space HBðWBÞ HDðWBÞ HBDðWBÞ

reflexivity no yes no

separability no yes no

In contrast with the above WB we have also constructed an open Riemann
surface WD with the following two properties ([13]):

HBDðWDÞ ¼ HDðWDÞ;ð2:4Þ
dim HBDðWDÞ ¼y:ð2:5Þ

By the above conditions (2.4), (2.5) and Table 1.5 we can o¤ hand give the
following table.

Table 2.6

space HBðWDÞ HDðWDÞ HBDðWDÞ

reflexivity no yes yes

separability no yes yes

Constructing WD was really a painstaking task but that of WB was relatively
easy. Anyway, then, what is the essential distinction between WB and WD?
Clearly (2.4) is equivalent to saying that WD does not admit any unbounded
Dirichlet finite harmonic function on WD. On the other hand (2.1) means that
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HBðWBÞHHDðWDÞ. If the inclusion is not proper so that HBðWBÞ ¼ HDðWBÞ,
then by the Masaoka theorem stated and proved in Section 1 we must conclude

dim HBðWBÞ ¼ dim HDðWBÞ < y;

which yields dim HBDðWBÞ < y. This contradicts (2.2). Hence we can say
that WB admits an unbounded Dirichlet finite harmonic function on it. Let us
consider the condition

HDðRÞ ¼ HBDðRÞð2:7Þ
for general open Riemann surfaces R. Then WB (resp. WD) falls in the class of
open Riemann surfaces R for which (2.7) is invalid (resp. valid). Based upon
this observation accompanied with Tables 2.3 and 2.6 it may not be too bold
to conjecture that HBDðRÞ is (resp. is not) reflexive and also separable if the
condition (2.7) is (resp. is not) satisfied by R. Hereafter we proceed along this
line until we fortunately come to the stage that we can say the above conjecture is
certainly the case. For the sake of convenience for reference and also to make
the relevant situation impressive, we wish to propose in this occasion to call
Riemann surfaces R satisfying the condition (2.7) HD-singular, i.e., a Riemann
surface R is HD-singular if there is no unbounded Dirichlet finite harmonic
function on R. After all, we will prove the following result as the main assertion
of this paper.

Theorem 2.8 (The main theorem). The following three conditions are
equivalent by pairs:

(a) the Banach space HBDðRÞ is reflexive;
(b) the Banach space HBDðRÞ is separable;
(c) the base Riemann surface R is HD-singular: HDðRÞ ¼ HBDðRÞ.

In the next section 3 we will consider capacities capðKÞ for compact subsets K
of the Royden harmonic boundary d of the Riemann surface R. In terms of
capacities we consider one more condition on R

(d) inf z A d capðfzgÞ > 0
in addition to those (a), (b), and (c) above. In the later sections 4 and 5 we will
prove Theorem 4.1 maintaining the equivalence of (a), (c), and (d) above by pairs
and then Theorem 5.1 asserting the equivalence of (b), (c), and (d) above by
pairs, from which we can derive four conditions (a), (b), and (c) in the above
theorem and (d) just added above are altogether equivalent by pairs. The proof
of the above main theorem of this paper will be complete in this fashion.

3. The capacity on the Royden harmonic boundary

First we recall the definition of the capacity capðKÞ for compact subsets K
of the Royden harmonic boundary d of the Riemann surface R in question
and certain related properties of them. We call a function f belonging to
L1;2ðRÞVCðRÞ a Royden function on R, where L1;2ðRÞ is the Dirichlet space
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(cf. [4]) on R which consists of local Sobolev functions f A W
1;2
loc ðRÞ on R with

Dð f ;RÞ < y. The Royden compactification R� of R is the smallest compacti-
fication of R such that every Royden function on R can be uniquely extended to
R� so as to be a ½�y;þy�-valued continuous function on R� which is unique up
to homeomorphisms; we denote by

g ¼ gR :¼ R�nR
the Royden boundary of R and by

d ¼ dR

the Royden harmonic boundary of R which is the totality of regular points in g
with respect to the harmonic Dirichlet problem in the sense of the Perron-
Wiener-Brelot method; d is a compact subset of R� and d ¼ j if and only if R
is parabolic, R A OG in notation, characterized by the nonexistence of Green
functions on R (cf. e.g. [2], [14], [5], etc.). Hereafter, unless the contrary is
explicitly stated, we assume that R is hyperbolic, i.e., R B OG.

An end W of R is a subregion of R such that W ¼ RnR0 with R0 a regular
subregion of R, i.e., R0 is a relatively compact subregion of R whose relative
boundary qR0 consists of a finite number of mutually disjoint analytic Jordan
curves so that qW ¼ qR0 as sets and thus W is surrounded by the relative
boundary qW and the Royden boundary g of R. The relative class HDðW ; qWÞ
of the absolute class HDðRÞ is given by

HDðW ; qWÞ :¼ fu A HDðWÞVCðRÞ : ujRnW ¼ 0g;ð3:1Þ
which forms a Banach space and actually a Hilbert space equipped with the normffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dðu;RÞ
p

. The canonical isomorphism t of the relative class HDðW ; qWÞ to the
absolute class HDðRÞ is given by

ðtuÞjd ¼ ujdð3:2Þ
for every u A HDðW ; qWÞ. It is easily seen (cf. e.g. [1]) that t is bijective from
HDðW ; qWÞ to HDðRÞ; t and t�1 are linear isomorphisms between HDðW ; qWÞ
and HDðRÞ; t and t�1 are order preserving, i.e., tuf 0 on R if and only if uf 0
on R; t and t�1 are homeomorphisms between HDðW ; qWÞ and HDðRÞ, i.e.,
there exists a constant C A ½1;yÞ such that

C�2Dðu;RÞe ðtuÞðaÞ2 þDðtu;RÞeC2Dðu;RÞð3:3Þ
for every u A HDðW ; qWÞ. In short, Banach spaces HDðW ; qWÞ and HDðRÞ
are homeomorphically and linearly isomorphic by the canonical isomorphism t.
As the relative class corresponding to the absolute class HBDðRÞ we also consider
the class

HBDðW ; qWÞ :¼ fu A HBDðWÞVCðRÞ : ujRnW ¼ 0g;
which also forms a Banach space equipped with the norm (1.7). As above we
also conclude that Banach spaces HBDðW ; qWÞ and HBDðRÞ are homeomorph-
ically linear isomorphic by the canonical isomorphism t in (3.2).
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For a compact subset K H d the capacity capðKÞ of K relative to an end W
of R is given by

capðKÞ :¼ inf
f

Dð f : RÞ;ð3:4Þ

where f runs over every Royden function f on R such that f jKf 1 and
f jRnW e 0. Properties capðKÞ ¼ 0 or capðKÞ > 0 for any compact set KH d
do not depend upon the choice of W (cf. e.g. [10], [5]). It is easily seen (cf.
e.g. [10]) that there is a Cauchy sequence ðvnÞn AN in HDðW ; qWÞþ such that
0e vnjRe 1, vnjK ¼ 1, and

lim
n!y

Dðvn;RÞ ¼ capðKÞ:ð3:5Þ

Using this simple observation we can show the following fact.

Proposition 3.6. A compact subset K H d is of vanishing capacity, i.e.,
capðKÞ ¼ 0, if and only if there exists an h A HDðRÞ such that hjK ¼ þy.

Before giving a proof to the above assertion we add the following remark.
The spaces L1;2ðRÞVCðRÞ and HDðRÞ (and also HBDðRÞ) form vector lattices
(i.e., Riesz spaces) with respect to the usual function ordering. We denote by

f U g ¼ supð f ; gÞ and f V g ¼ infð f ; gÞ

the lattice operations in L1;2 VCðRÞ and by

u4v ¼ supðu; vÞ and u5v ¼ infðu; vÞ

in HDðRÞ (and also in HBDðRÞ) so that e.g. ð f U gÞðzÞ ¼ maxð f ðzÞ; gðzÞÞ for
every z A R but u4v is the least harmonic majorant of u and v and thus
ðuU vÞðzÞe ðu4vÞðzÞ for every u and v in HDðRÞ (and also in HBDðRÞ) and for
every z A R but ðu4vÞðzÞ ¼ ðuU vÞðzÞ for every z A d. We know (cf. e.g. [2], [4])
that

Dð f U g;RÞ þDð f V g;RÞ ¼ Dð f ;RÞ þDðg;RÞð3:7Þ

for every f and g in L1;2 VCðRÞ. From the above relation (3.7), by using the
Dirichlet principle, it follows that

Dðu4v;RÞ þDðu5v;RÞeDðu;RÞ þDðv;RÞð3:8Þ

for every u and v in HDðRÞ (and also in HBDðRÞ). Based upon (3.8) we can
replace h A HDðRÞ in the above proposition by h A HDðRÞþ since we only have
to take h40 because h40jd ¼ maxðh; 0Þ on d. We can also replace h A HDðRÞ
in the above proposition by h A HDðW : qWÞþ in view of (3.2) and the fact
Dðtu;RÞeDðu;RÞ for every u in HDðW ; qWÞ.

Proof of Proposition 3.6. Suppose first that capðKÞ ¼ 0 for a given compact
subset KH d. Then we can find a Cauchy sequence ðunÞn AN in HDðW ; qWÞþ
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such that unjK ¼ 1 ðn A NÞ and limn!y Dðun;RÞ ¼ capðKÞ ¼ 0. By choosing a
subsequence, if necessary, we can assume that Dðun;RÞe 1=4n ðn A NÞ so thatP

n AN un is convergent in HDðW ; qWÞ. Then u :¼
P

n AN un is locally uniformly
convergent on R and u A HDðW ; qWÞþ. For any z A K we have

uðzÞf
Xm
n¼1

unðzÞ ¼ m

for every m A N and therefore uðzÞ ¼ þy, i.e., ujK ¼ þy. Thus h :¼ tu A
HDðRÞþ is the required function.

Conversely suppose the existence of an h A HDðRÞ such that hjK ¼ þy.
Let u :¼ t�1h, which belongs to HDðW ; qWÞ and ujK ¼ hjK ¼ þy. Then uV n
is a Royden function on R with uV n ¼ 0 on RnW and DðuV n;RÞeDðu : RÞ.
Let vn be the harmonic part of the (relative) Royden decomposition of uV n with
respect to W (cf. [14]) so that vn A HDðW ; qWÞ, vnjd ¼ ðuV nÞjd ¼ minðujd; nÞ and
in particular vnjK ¼ n, and Dðvn;RÞeDðuV n;RÞeDðu;RÞ. Finally let un :¼
vn=n. Then un A HDðW ; qWÞ, unjK ¼ 1, and Dðun;RÞe n�2Dðu;RÞ. Thus un
is one of the competing functions determining capðKÞ so that we can conclude
that

capðKÞeDðun;RÞeDðu;RÞ=n2

for every n A N and a fortiori capðKÞ ¼ 0 as required. r

As a consequence of Proposition 3.6 we state the following characterization
of (2.7), i.e. the HD-singularity of R, in terms of the capacity on the harmonic
boundary d ¼ dR of R.

Proposition 3.9. The following four conditions are equivalent by pairs:
(a) HDðRÞ ¼ HBDðRÞ, i.e., R is HD-singular;
(b) HDðW ; qWÞ ¼ HBDðW ; qWÞ;
(c) capðfzgÞ > 0 for every z in d;
(d) inf z A d capðfzgÞ > 0.

Proof. The canonical isomorphism t of HDðW ; qWÞ onto HDðRÞ sends its
subspace HBDðW ; qWÞ onto HBDðRÞ and therefore the conditions (a) and (b)
are seen to be equivalent to each other by observing one more fact, the Royden-
Virtanen theorem that HBDðRÞ (resp. HBDðW ; qWÞ) is dense in the Hilbert
space HDðRÞ (resp. HDðW ; qWÞ). Proposition 3.6 assures the equivalence of
the conditions (a) and (c). It is trivial that (d) implies (c) and hence the proof
of the whole theorem will be over if we show that (c) implies (d). Contrariwise
we assume that inf z A d capðfzgÞ ¼ 0 although the condition (c) is supposed to be
valid. Then we can find zn A d for each n A N such that

0 < capðfzngÞ < ð1=2Þ � ð256Þ�n:

22 mitsuru nakai



As a competing function to determine capðfzngÞ we can find (cf. [10]) a un A
HDðW ; qWÞþ such that 0e un e 1 on R, unðznÞ ¼ 1, and Dðun;RÞ < ð256Þ�n.
Observe that

Dð4nun : RÞ ¼ ð16ÞnDðun;RÞe ð16Þn � ð256Þ�n ¼ ð16Þ�n

and clearly 4nunðznÞ ¼ 4n. We can define

u :¼
X
n AN

4nun

on R because the estimateffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðu;RÞ

p
e
X
n AN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dð4nun;RÞ

p
e
X
n AN

4�n ¼ 1=3 < y

assures that the above series defining u converges locally uniformly on R so that
u A HDðW ; qWÞþ. Observe that

uðznÞf 4nunðznÞ ¼ 4n

for every n A N and thus supR u ¼ maxd u ¼ þy. Then there exists a z A d
such that uðzÞ ¼ þy so that, again by Proposition 3.6, we must conclude that
capðfzgÞ ¼ 0, contradicting (c). r

4. Reflexivity

In this section we will prove that the Banach space HBDðRÞ is reflexive if and
only if the base Riemann surface R is HD-singular, i.e., there is no unbounded
Dirichlet finite harmonic function on R. We start by recalling the reflexivity
of Banach spaces. Let X be a Banach space and we denote by X � the dual
space of X , i.e., the space of bounded linear functional x� on X and the value
of x� at x A X is denoted by hx; x�i. An x A X can be viewed as a functional
x̂x on X � given by hx�; x̂xi :¼ hx; x�i for every x� A X �. We denote by X̂X :¼
fx̂x : x A XgHX �� and the isometric linear mapping x 7! x̂x of X into X �� is
referred to as the natural embedding of X into X ��, i.e., by identifying X̂X with
X we consider X HX ��. When X ¼ X ��, we say that the Banach space X is
reflexive. A typical situation occurs when X is a Hilbert space: a Hilbert space
X is always reflexive in view of its Riesz self duality: X ¼ X �. We will use the
following characterization of the reflexivity of X (see [3, p. 425]): X is reflexive
if and only if the closed unit ball in X is weakly compact. The main assertion
of this section is the following result.

Theorem 4.1. The following three conditions are equivalent by pairs:
(a) the Banach space HBDðRÞ is reflexive;
(b) the base Riemann surface R is HD-singular, i.e., HDðRÞ ¼ HBDðRÞ;
(c) the Royden harmonic boundary d of R satisfies inf z A d capðfzgÞ > 0.
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Proof. The equivalence of (b) and (c) is established in Proposition 3.9.
Suppose the validity of (b): HDðRÞ ¼ HBDðRÞ. Since the identity mapping
i : HBDðRÞ ! HDðRÞ given by iðuÞ ¼ u for every u A HBDðRÞ is clealy a linear
isomorphism of HBDðRÞ onto HDðRÞ. Since

kiðuÞkHD :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iðuÞðaÞ2 þDðiðuÞ;RÞ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uðaÞ2 þDðu;RÞ

q
e sup

R

juj þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðu;RÞ

p
¼: kukHBD

for every u A HBDðRÞ, i is a continuous bijective mapping of HBDðRÞ to HDðRÞ
so that the Banach open mapping principle assures that i�1 is continuous.
Hence the Banach space HBDðRÞ is homeomorphically linear isomorphic with
the Hilbert space HDðRÞ, which is reflexive and a fortiori HBDðRÞ is reflexive:
(b) implies (a). Conversely, supposing (a) is valid the proof will be complete if
we show the validity of (b), or equivalently, that of (c). We will show this by
contradiction so that we assume the existence of a point x A d with capðfxgÞ ¼ 0
in spite of that HBDðRÞ is reflexive, i.e., the closed unit ball HBDðRÞ1 of
HBDðRÞ is weakly compact in the Banach space HBDðRÞ.

For any open neighborhood V of x and for any positive number e, we
maintain the existence of u A HBDðRÞ with the following 4 properties: 0e ue 1
on R; uðxÞ ¼ 1; ujdnV ¼ 0; Dðu;RÞ < e. In fact, we first take a v A HBDðRÞ
such that 0e ve 1 on R, vðxÞ ¼ 1, and vjdnV ¼ 0. Since capðfxgÞ ¼ 0, there
exists a competing Cauchy sequence ðwnÞn AN HHDðW ; qWÞ for capðfxgÞ con-
verging to zero, i.e., limn!y Dðwn;RÞ ¼ 0. We can assume that 0ewn e 1 on
R and wnðxÞ ¼ 1. Then the sequence ðwnÞn AN also converges to zero locally
uniformly on R. Put fn :¼ wnv for each n A N. We see that 0e fn e 1 on R,
fnðxÞ ¼ wnðxÞvðxÞ ¼ 1, fnjdnV ¼ wn � ðvjdnVÞ ¼ 0, and

j‘fnjewnj‘vj þ vj‘wnjewnj‘vj þ j‘wnj
on R. Since w2

n ewn on R, we see that

Dð fn;RÞe 2

ð
R

wnj‘vðzÞj2 dxdyþ 2Dðwn;RÞ ðz ¼ xþ iyÞð4:2Þ

for every n A N. Since
Ð
R
1 � j‘vðzÞj2 dxdy ¼ Dðv;RÞ < þy, 0ewnðzÞe 1 on R,

and wnðzÞ ! 0 ðn!yÞ locally uniformly on R, the Lebesgue convergence
theorem assures that the first term of the right hand side of (4.2) tends to
zero as n!y. This with limn!y Dðwn;RÞ ¼ 0 implies that

lim
n!y

Dð fn;RÞ ¼ 0:ð4:3Þ

We denote by un the harmonic part and by gn the potential part of the Royden
decomposition (cf. e.g. [14]) of fn for each n A N so that fn ¼ un þ gn on R and
gnjd ¼ 0 or fnjd ¼ unjd. We can thus find an n A N such that Dðun;RÞ < e.
Then u :¼ un is a required one.

We denote by A the totality of open neighborhoods a of x A d. We make A
an ordered set by giving an order on A by a1 � a2 if a1 I a2. For each a A A
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we let 2ua be the function u constructed in the foregoing paragraph for V ¼ a
and e ¼ 1 so that ua A HBDðRÞ, 0e ua e 1=2 on R, uaðxÞ ¼ 1=2, uajdna ¼ 0,
and Dðua;RÞ < 1=4. In particular, kuakHBD e 1, i.e., the directed net ðuaÞa AA is
contained in the closed unit ball HBDðRÞ1 of HBDðRÞ, which is weakly compact
as a consequence of (a): the Banach space HBDðRÞ is reflexive. Therefore the
directed net ðuaÞa AA contains a weakly convergent subnet ðubÞb AB, where B is
a cofinal subnet of A so that B forms a base of neighborhood system of x
consisting of certain open neighborhoods b of x. We denote by �zz the Dirac
measure on R� having its support at z A d so that, as is easily seen, �zz A HBDðRÞ�.
Let h A HBDðRÞ be the weak limit of ðubÞb AB. Then

hðzÞ ¼ hh; �zzi ¼ lim
b

hub; �zzi ¼ lim
b

ubðzÞ

for every z A d, i.e., ðubÞb AB converges to h pointwise on d. If z A dnfxg, then
z B b for every b A B with b � b0 for some b0 A B. Hence hðzÞ ¼ 0 since
ubjdnb ¼ 0 ðb � b0Þ. Needless to say, ubðxÞ ¼ 1=2 for every b A B implies
that hðxÞ ¼ 1=2. In view of h A HBDðRÞ j dHCðdÞ with hjdnfxg ¼ 0 and hðxÞ ¼
1=2, we conclude that x is an isolated point in d. Hence hmðfxgÞ, the harmonic
measure of fxg, must be strictly positive. Since there exists a constant t A ð0;þyÞ
depending upon R and W such that

hmðKÞ2 e t � capðKÞ
for every compact subset KH d (cf. [10]), we must conclude that

0 < hmðfxgÞ2 e t � capðfxgÞ;
which contradicts the starting assumption of capðfxgÞ ¼ 0 in the present part
of proving the implication (b), or equivalently (c), from (a), by contradiction.

r

5. Separability

In this section we will prove that the Banach space HBDðRÞ is separable if
and only if the base Riemann surface R is HD-singular, i.e., there is no unbounded
Dirichlet finite harmonic function on R so that HDðRÞ ¼ HBDðRÞ. We have
seen in the foregoing section 4 as Theorem 4.1 that HBDðRÞ is reflexive if and
only if R is HD-singular. Therefore the result in this section assures that the
reflexivity and the separability are equivalent in the case of the Banach space
HBDðRÞ. Thus the proof of Theorem 2.8, the main assertion of this paper, will
also be completed in this section. Namely we will prove the following result as
the main assertion of this section.

Theorem 5.1. The following three conditions are equivalent by pairs:
(a) the Banach space HBDðRÞ is separable;
(b) the base Riemann surface R is HD-singular, i.e., HDðRÞ ¼ HBDðRÞ;
(c) the Royden harmonic boundary d of R satisfies inf z A d capðfzgÞ > 0.
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Proof. The equivalence of (b) and (c) is established in Proposition 3.9.
The condition (b) assures, as we saw in the proof of Theorem 4.1, that Banach
spaces HDðRÞ and HBDðRÞ are homeomorphically linear isomorphic. Since
HDðRÞ is separable (see [12]), we can conclude that HBDðRÞ is separable, i.e.,
(b) implies (a). To complete the proof we thus have to show that (a) implies
(b), or equivalently, the negation of (b), i.e., HDðRÞnHBDðRÞ0j, implies the
negation of (a), i.e., HBDðRÞ is not separable. Thus we assume the existence
of an h A HDðRÞ with supRjhj ¼ þy. Since HDðRÞ forms a vector lattice,
we can assume the existence of an h A HDðRÞþ with supR h ¼ þy. We say
ðe; aÞ A ð0;þyÞ � ð1;þyÞ is an admissible couple. When an admissible couple
ðe; aÞ is given, a pair ða; bÞ A R� R will be referred to as an ðe; aÞ-pair if it satisfies
the following three conditions:

a < a < 3a < b;ð5:2Þ
aþ b

2
A hðdÞ;ð5:3Þ

Dðh; fz A R : hðzÞ > agÞ < e;ð5:4Þ

where hðdÞ is the range set fhðzÞ : z A dg. We first show the existence of an ðe; aÞ-
pair ða; bÞ for any given admissible couple ðe; aÞ. Let Va :¼ fz A R : hðzÞ > ag
for any a A ða;þyÞ. In view of Va # j as a " þy, we see that Dðh;VaÞ # 0 as
a " þy. This shows the existence of an a A ða;þyÞ such that the condition (5.4)
is satisfied. Fixing the a A ða;þyÞ just found, we put Ka :¼ fz A d : hðzÞf 3ag.
Since h A HDðRÞþnHBDðRÞ, Ka is the closure of the nonempty open subset
fz A d : hðzÞ > 3ag of d and hence capðKaÞ > 0. Thus we see the existence of
an s A Ka such that 3ae hðsÞ < þy. Otherwise Ka H fz A d : hðzÞ ¼ þyg and
hence capðKaÞ ¼ 0 by Proposition 3.6, contradicting capðKaÞ > 0. Let

b :¼ 2hðsÞ � a > 2 � 3a� 3a ¼ 3a;

which satisfies (5.2), and moreover ðaþ bÞ=2 ¼ hðsÞ A hðdÞ, i.e., (5.3) is fulfilled.
We have thus established the existence of an ðe; aÞ-pair ða; bÞ.

Suppose an ðe; aÞ-pair ða; bÞ is given. We call the compact subset

E ¼ fz A d : ae hðzÞe bgð5:5Þ

of d the ða; bÞ-set. A function e A HBDðRÞþ will be referred to as an ða; bÞ-
function if it satisfies the following 4 conditions:

0e ejRe 1;ð5:6Þ
ejdnE ¼ 0;ð5:7Þ
1=4 A eðdÞ;ð5:8Þ
Dðe;RÞ < e:ð5:9Þ
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We now prove the existence of an ða; bÞ-function e for any given ðe; aÞ-pair ða; bÞ.
To begin with we consider the function

u :¼ ððhU aÞV b� aÞ � ðb� ðhU aÞV bÞ
ðb� aÞ2

ð5:10Þ

on R based upon h. On setting

f :¼ ððhU aÞV b� aÞ=ðb� aÞ and g :¼ ðb� ðhU aÞV bÞ=ðb� aÞ
on R, we see that 0e f e 1 and 0e ge 1 on R. Then u ¼ f � g on R and

j‘uj2 ¼ j‘ð f � gÞj2 e ð f j‘gj þ gj‘f jÞ2

e ð f þ gÞ2j‘ððhU aÞV bÞj2=ðb� aÞ2 e 4j‘ððhU aÞV bÞj2=ðb� aÞ2:

In view of b� af 3a� af 2, we have 4=ðb� aÞ2 e 1 and a fortiori

j‘uj2 e j‘ððhU aÞV bÞj2:
Hence, by (5.4), we conclude that

Dðu;RÞeDððhU aÞV b;RÞeDðhU a;RÞ ¼ Dðh;VaÞ < e:ð5:11Þ
By the existence of an s A d with hðsÞ ¼ ðaþ bÞ=2 A ða; bÞ, we see

uðsÞ ¼ b� a

2

� �2�
ðb� aÞ2 ¼ 1=4

so that we obtain

1=4 A uðdÞ:ð5:12Þ
Finally we let e be the harmonic part of the Royden decomposition of u on R so
that e A HBDðRÞ and

ejd ¼ ujd:ð5:13Þ
Since 0e ue 1 on R and then on R�, we have 0e ue 1 on d so that 0e ee 1
on d. The maximum principle (cf. [14]) yields that 0e ee 1 on R and a for-
tiori e A HBDðRÞþ and (5.6) is deduced. By the definition (5.10) of u we see
ujdnE ¼ 0 and thus, by (5.13), we infer (5.7). Conditions (5.12) and (5.13)
assures the validity of (5.8). The Dirichlet principle Dðe;RÞeDðu;RÞ and (5.11)
conclude (5.9). We have thus established the existence of an ða; bÞ-function e
for any ðe; aÞ-pair ða; bÞ.

We choose an arbitrary but then fixed sequence ðenÞn AN of strictly positive
numbers en such that X

n AN

ffiffiffiffi
en
p

< þy:ð5:14Þ

We also take arbitrarily and then fix a number b0 A ð1;þyÞ. Viewing ðe1; b0Þ
as an admissible couple, we take an ðe1; b0Þ-pair ða1; b1Þ. With respect to the
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new admissible couple ðe2; b1Þ we take an ðe2; b1Þ-couple ða2; b2Þ. Next for
the admissible couple ðe3; b2Þ we choose an ðe3; b2Þ-pair ða3; b3Þ. Repeating this
process, when an ðen; bn�1Þ-pair ðan; bnÞ is obtained, we produce an ðenþ1; bnÞ-pair
ðanþ1; bnþ1Þ. Inductively we have thus constructed two sequences ðanÞn AN and
ðbnÞn AN such that ðan; bnÞ is an ðen; bn�1Þ-pair for each n A N so that

b0 < a1 < b1 < a2 < b2 < � � � < an < bn < anþ1 < bnþ1 < � � � :ð5:15Þ

From (5.9) and (5.14) it follows that

Dðh; fz A R : hðzÞ > angÞ < en ! 0 ðn! þyÞ

so that we can conclude

lim
n!y

an ¼ lim
n!y

bn ¼ þy:ð5:16Þ

For each n A N we denote by En the ðan; bnÞ-set (cf. (5.5)) and by en an
ðan; bnÞ-function (cf. (5.6)–(5.9)) so that en A HBDðRÞþ, 0e enjRe 1, enjdnEn ¼ 0,
1=4 A enðdÞ, and Dðen;RÞ < en. Let I be the open interval ð0; 1ÞHR and

l ¼ 0:l1l2 � � � ln � � �ð5:17Þ

be the infinite dyadic fractional expression of l A I so that lj A f0; 1g for all j A N
and there are at least one lj ¼ 0 and infinitely many lj ¼ 1. For each l A I with
(5.17) we can define the function

fl :¼
X
j AN

ljejð5:18Þ

on R, which is in HBDðRÞþ and satisfies 0e fl e 1 on R. In fact, since

0e
X
jen

ljej e
X
jen

ej e 1

on R for every n A N and partial sums
P

jen ljej ðn A NÞ form an increasing
sequence ð

P
jen ljejÞn AN in HðRÞ, the Harnack principle assures that the seriesP

j AN ljej in (5.18) is locally uniformly convergent on R and defines a function fl
in HðRÞ with 0e fl e 1 on R. By virtue of (5.14), we infer thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dð fl;RÞ
p

e
X
j AN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðljej;RÞ

q
e
X
j AN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðej;RÞ

q
e
X
j AN

ffiffiffiffi
ej
p

< þy;

i.e., fl A HDðRÞ so that fl A HBDðRÞþ, as required. We denote by F the totality
of such fl, i.e.,

F :¼ f fl : l A Ig:

Choose any m A I di¤erent from l A I with (5.17) and let

m ¼ 0:m1m2 � � � mn � � �
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be the infinite dyadic fractional expression of m. Then l0 m is equivalent to the
existence of a j A N such that jlj � mjj ¼ 1. Then we see that

j fl � fmj ¼
X
i AN

jli � mijei f jlj � mjjej ¼ ej

on d and the maximum principle with (5.8) yields

sup
R

j fl � fmj ¼ sup
d

j fl � fmjf sup
d

ej f 1=4:

A fortiori we obtain that

k fl � fmkHBD f 1=4 ðl0 mÞ:ð5:19Þ

Finally we choose an arbitrary dense subset G of HBDðRÞ. Since the closure
of G in HBDðRÞ is HBDðRÞ, there is a g A G such that kg� flkHBD < 1=16 for
any fl A F , or rather for any l A I . We choose and then fix one such g and
denote it by gl A G so that kgl � flkHBD < 1=16. For any ðl; mÞ A I � I with
l0 m, we see, by (5.19), that

kgl � gmkHBD f k fl � fmkHBD � kgl � flkHBD � kgm � fmkHBD

f
1

4
� 1

16
� 1

16
¼ 1

8
:

This assures that the mapping l 7! gl of I to G is injective and therefore the
cardinal number aG of G is at least the cardinal number aI of I , which is the
cardinal number @ of continuum, i.e., aGf@. Thus we have seen that any
dense subset of HBDðRÞ cannot be countable so that HBDðRÞ is not separable,
which was to be shown. r

6. Surfaces of almost finite genus

In the introduction we stated that HBDðDÞ is neither reflexive nor separ-
able (cf. Table 1.8). In view of Theorems 4.1 and 5.1 the above assertion is
equivalent to the existence of a point of vanishing capacity in the Royden
harmonic boundary dD of D. Actually not only some single point but also every
point in dD is of vanishing capacity. In this section this fact is shown for a
certain class of Riemann surfaces including the unit disc D. In this fashion the
proof of Table 1.8 will also be complete in this last section 6.

A Riemann surface R is said to be of almost finite genus if there exists a
finite or countably infinite sequence ðAnÞn of relatively compact annuli An in R
such that

(a) An VAm ¼ j ðn0mÞ;
(b) Rn6

n
An is a planar subregion of R;

(g)
P

n 1=mod An < þy.
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By an annulus An on a Riemann surface R we mean a subregion which is
conformally equivalent to a doubly connected plane region so that, if both
components of qAn are nondegenerate continua, then it has the canonical
conformal representation f1 < jzj < mng and its modulus mod An ¼ log mn. The
notion for Riemann surfaces to be of almost finite genus was first introduced in
[7] as a generalization of surfaces to be of finite genus related to the classification
theory of Riemann surfaces. Thus surfaces of finite genus including those of
zero genus, of course, are of almost finite genus but our main concern related to
this notion lies in the nontrivial case of infinite genus. In this section we prove
the following result.

Theorem 6.1. Every point in the Royden harmonic boundary d of any open
Riemann surface R of almost finite genus is of vanishing capacity.

It is known (cf. [14]) that every point in d of R of almost finite genus is of
vanishing harmonic measure. Since we have (cf. Section 4) the inequality
hmðKÞ2 e k � capðKÞ for every compact subset K of d, where hmðKÞ is the
harmonic measure of K and k is a constant independent of K , the above theorem
6.1 is a generalization of our former result just stated above.

Proof of Theorem 6.1. We assume that the sequence ðAnÞn of annuli An

in R satisfying (a), (b), and (g) is infinite one so that ðAnÞn ¼ ðAnÞn AN. Each
argument in the proof we are going to develope in the case of infinite genus can
be easily or rather trivially modified so as to be applicable to the case of finite
genus. Thus the condition (g) above takes the following formX

n AN

1=mod An < y:ð6:2Þ

On replacing An by a bit smaller annulus in An for each n A N we may assume
that each component of qAn is an analytic Jordan curve. For each n A N we
take a nondividing analytic Jordan curve an HAn such that an separates one of
two disjoint components of qAn from the other. We denote by Anj ð j ¼ 1; 2Þ
two annuli which are two components of Annan. We could also have chosen an
so as to make the following relations hold:

mod Anj ¼
1

2
mod An ð j ¼ 1; 2Þ:

We then set

a :¼ 6
n AN

an:

By virtue of the condition (b) we see that Rna is a planar subregion of R, i.e.,
Rna can be embedded in the Riemann sphere ĈC ¼ CU fyg.
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In addition to the original sequence ðAnÞn AN we further take two more
sequences ðBnÞn AN and ðCnÞn AN of annuli Bn and Cn as follows. The curve an
is contained in Cn and an separates one component of qCn from the other;
Cn HBn and Cn separates one component of qBn from the other; Bn HAn and Bn

separates one component of qAn from the other. Thus we have

an HCn HCn HBn HBn HAn

for each n A N. We denote by ðAnnBnÞj the component of AnnBn contained in
Anj ð j ¼ 1; 2Þ and similarly we denote by ðBnnCnÞj the component of BnnCn

contained in Anj ð j ¼ 1; 2Þ. We could also have chosen the above Bn and Cn so
as to satisfy the following two relations:

modðAnnBnÞj ¼
1

4
mod An ð j ¼ 1; 2Þð6:4Þ

and similarly

modðBnnCnÞj ¼
1

8
mod An ð j ¼ 1; 2Þ:ð6:5Þ

For each n A N we take a function jn A CðRÞ such that jnjRnAn ¼ 0,
jnjBn ¼ 1, and jn A HðAnnBnÞ. By the choice of Bn satisfying (6.4), we have

Dðjn;RÞ ¼ Dðjn;AnnBnÞ ¼ 16p=mod An

so that by (6.2) we have

D
X
n AN

jn;R

 !
¼
X
n AN

Dðjn;AnnBnÞ ¼ 16p
X
n AN

1=mod An < þy:ð6:6Þ

Thus j :¼
P

n AN jn is a Royden function on R. Since
P

nem jn has a compact

support for every m A N and
P

nem jn " j on R locally uniformly and

D j�
X
nem

jn;R

 !
# 0

as m " þy, we conclude that j is a Royden potential (i.e., Dirichlet potential) on

R so that jjd ¼ 0 (cf. [14]). Clearly jj6
n AN Bn ¼ 1 and a fortiori jj6

n AN Bn ¼ 1.
Therefor we conclude that

6
n AN

Bn

 !
V d ¼ jð6:7Þ

in R�.
We repeat the same construction for BnnCn as we have done above for

AnnBn. For each n A N we take a function cn A CðRÞ such that cnjRnBn ¼ 0,
cnjCn ¼ 1, and cn A HðBnnCnÞ. By the choice of (6.5) we have

Dðcn;RÞ ¼ Dðcn;BnnCnÞ ¼ 32p=mod An
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so that by (6.2) we conclude that

D
X
n AN

cn;R

 !
¼
X
n AN

Dðcn;BnnCnÞ ¼ 32p
X
n AN

1=mod An < þy:ð6:8Þ

Thus c :¼
P

n AN cn is a Royden function on R. As in the case of j, sinceP
nem cn has a compact support in R for every m A N and

P
nem cn " c locally

uniformly on R and

D c�
X
nem

cn;R

 !
# 0

as m " þy, we can conclude that c is a Royden potential on R so that cjd ¼ 0.

Clearly cj6
n AN Cn ¼ 1. Let

w :¼ 1� c;ð6:9Þ

which will play very important role later based upon the properties

wja ¼ w

����6
n AN

Cn ¼ 0

and

wjd ¼ wjR
�

6
n AN

Bn ¼ wjR
�

6
n AN

An ¼ 1:

Let ðRnaÞ� be the Royden compactification of Rna as an abstract Riemann
surface. The surface Rna is a subregion of R� and we denote by Rna ¼ RnaR �

the closure of Rna as a subset of R�. On the other hand, since Rna is planar,
Rna may be viewed as a subregion of the Riemann sphere ĈC :¼ CU fyg and we
denote by Rna ¼ Rna ĈC the closure of Rna as a subset of ĈC. We need to know
the relations between ðRnaÞ� and RnaR � and also between ðRnaÞ� and RnaĈC.
We start from the former relation.

First we recall the following general observation (see [14, 5B–5E]). Let S be
a subregion of any open Riemann surface R in general, where we do not exclude
the case S ¼ R. We denote by S (or SR � if we need to be more precise) the
closure of S in R� and by S � the Royden compactification of S considered as
an abstract Riemann surface. As for the relation between S � and S ¼ SR � we
know the unique existence of the projection

j ¼ jðS �; SÞ : S � ! S

characterized by the following two conditions: j : S � ! S is a surjective con-
tinuous mapping; j fixes S pointwise, i.e.,

jjS ¼ id: ðthe identity mappingÞ:ð6:10Þ
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We distinguish a part of the boundary SnS as follows:

bS :¼ ðSnqSÞV g;ð6:11Þ
where qS is the relative boundary ðSnSÞVR of S relative to R and g ¼ gR ¼
R�nR, the Royden boundary of R. Then we see that

S U j�1ðbSÞAS U bS;ð6:12Þ
i.e., the projection j : S U j�1ðbSÞ ! S U bS is a homeomorphism (i.e., bijective
and bicontinuous mapping) so that j : S U j�1ðbSÞ ! S U bS and j�1 : S U bS !
S U j�1ðbSÞ are bijective and continuous.

We particularize the above general observation to our present situation of R
of almost finite genus and its subregion S :¼ Rna. Then clearly

S ¼ SR � ¼ RnaR� ¼ R�

and we see the unique existence of the projection

j : ðRnaÞ� ! R�;

which is a surjective continuous mapping with jjRna ¼ id:, the identity mapping.
In this case we see that

bS :¼ ðSnqSÞV g ¼ ðR�naÞV g ¼ gna
so that

j : ðRnaÞU j�1ðgnaÞ ! ðRnaÞU ðgnaÞ ¼ R�na
is a homeomorphism with jjRna ¼ id:, or equivalently

j�1 : R�na! ðRnaÞU j�1ðgnaÞH ðRnaÞ�ð6:13Þ
is a homeomorphism with j�1jRna ¼ id:

Having finished the clarification as (6.13) of the relation between ðRnaÞ� and
RnaR � , we turn next to the task of unravelling the relation between ðRnaÞ� and

RnaĈC by bringing the fact that Rna is a planar region into our consideration,
i.e., RnaH ĈC ¼ CU fyg. We use the proper coordinate z on ĈC so that ĈC ¼
fz : jzjeþyg and C ¼ fz : jzj < þyg. We denote by Dðc; rÞ the disc in ĈC with
radius 0 < r < y centered at c A ĈC so that Dðc; rÞ ¼ fz A C : jz� cj < rg for c A C
and Dðy; rÞ ¼ fz A ĈC : jzj > 1=rg. Hence 1=z is used as a local parameter at y.

We set Dðc; rÞ :¼ Dðc; rÞ ĈC. We denote by I the identity mapping of ĈC, i.e.,
IðzÞ ¼ z for z A ĈC. We maintain that the identity mapping I : Rna! Rna is
continued to a continuous surjective mapping

I : ðRnaÞ� ! Rna ĈC; I jRna ¼ I :ð6:14Þ
To see this fix an arbitrary point a A ðRnaÞVC and suppose Dða; rÞHRna
ð0 < r < yÞ. Let

TðzÞ :¼ r

z� a

33dirichlet finite harmonic functions



and G :¼ TðRnaÞ, a subregion of ĈC. By the conformal invariance of
Royden compactifications, T : Rna! G can be continued to a homeomorphism
T � : ðRnaÞ� ! G �. It is entirely clear that T�1 : G ! Rna can be continued to
a homeomorphism T�1 : G ĈC ! Rna ĈC. We denote by IG : G ! G the identity
mapping I . We show that IG can be continued to a continuous surjective
mapping IG : G� ! G ĈC. Observe that Dðy; 1ÞHG and therefore

DðIG;GnDðy; rÞÞ ¼ 2 AreaðGnDðy; rÞÞ < þy
for every 0 < r < 1. Hence IG can be modefied on Dðy; 1Þ as a function IG1
such that IG1jGnDðy; 1Þ ¼ I and IG1 is a Royden function on G. Thus IG1 is
continuous on G � and a fortiori IG is continuous on G �. Hence we have
seen that IG : G ! G can be continued to a continuous surjective mapping
IG : G � ! G ĈC. Hence we can conlude that

I ¼ T�1 � IG � T : Rna! Rna
can be continued to the continuous surjective mapping

I ¼ T�1 � IG � T � : ðRnaÞ� ! Rna ĈC

(cf. Fig. 6.15). Thus (6.14) is established.

Fig. 6.15

ðRnaÞ� ���!T �
G �

I

???y
???yIG

Rna ĈC  ���
T�1

G ĈC

Finally consider the mapping

J :¼ I � j�1 : R�na! Rna ĈC:ð6:16Þ
In view of (6.13) and (6.14), we see that the mapping J in (6.16) is continuous,
surjective, and JjRna ¼ id: Choose an arbitrary point z A d ¼ dR. Our plan in
the rest of this proof is to establish capðfzgÞ ¼ 0. Let x :¼ JðzÞ. Since fzg is
not Gd (cf. [14]) while every fzg with z A R is Gd, x cannot be in R because
JjRna ¼ id: By virtue of (6.7) we have

dHR�
�

6
n AN

Bn HR�na

and therefore x B a either, or more accurately x does not belong to any component
of the boundary ðRnaÞ ĈCnðRnaÞ of Rna lying over a. We fix a disc Dða; rÞ with
radius 0 < r < y centered at a point a A ðRnaÞV ĈC such that Dða; rÞHRna.
We choose two strictly decreasing zero sequences ðtiÞi AN and ðejÞj AN in the
interval ð0; 1Þ such that Dðx; t1ÞVDða; rÞ ¼ j. Define the function fij A CðĈCÞ
such that fijjĈCnDðx; tiÞ ¼ 0, fijjDðx; tiejÞ ¼ 1, and fij A HðDðx; tiÞnDðx; tiejÞ). Then
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Dð fij; ĈCÞ ¼ Dð fij ;Dðx; tiÞnDðx; tiejÞÞ

¼ 2p=modðDðx; tiÞnDðx; tiejÞÞ ¼ 2p=logð1=ejÞ:

The function fij � J may be viewed as a Royden function on Rna because of
(6.16) and Dð fij ;RnaÞeDð fij; ĈCÞ < þy but not on R since fij � J may be
discontinuous at a. The function w in (6.9) vanishes in an open neighborhood
of a and w itself is a Royden function on R. Both of fij � J and w are bounded.
Therefore, if we define

gij :¼ w � ð fij � JÞ
on R, then gij is a Royden function on R. Clearly gijðzÞ ¼ wðzÞ � fijðxÞ ¼ 1 � 1 ¼ 1
and gij jDða; rÞ ¼ w � ð fij � J jDða; rÞÞ ¼ w � 0 ¼ 0. Thus each gij is a competing
function in the variation to determine capðfzgÞ with respect to the end RnDða; rÞ,
i.e.,

capðfzgÞeDðgij;RÞ
for every ði; jÞ A N�N.

We can find an increasing sequence ðkðiÞÞi AN HN such that kðiÞ " þy as
i "y and

Dðx; tiÞV 6
n<kðiÞ

Bnnan
� 	 !

¼ j:ð6:17Þ

Aiming to estimate Dðgij;RÞ we infer that

j‘gijj2 ¼ jw‘fij þ fij‘wj2 e 2ðw2j‘fij j2 þ f 2ij j‘wj
2Þ

on R and hence

Dðgij ;RÞe 2

ð
R

wðzÞ2j‘fijðzÞj2 dxdyþ 2

ð
R

fijðzÞ2j‘wðzÞj2 dxdy ðz ¼ xþ iyÞ:

Observe that 0e we 1 and 0e fij e 1 on R. Using Dð fij ; ĈCÞ ¼ 2p=logð1=ejÞ we
see that ð

R

wðzÞ2j‘fijðzÞj2 dxdy ¼
ð
Rna

wðzÞ2j‘fijðzÞj2 dxdy

e

ð
ĈC

j‘fijðzÞj2 dxdy ¼ 2p=logð1=ejÞ:

Clearly supp fij HDðx; tiÞ and suppj‘wj2 H6
n AN Bn and thus (6.17) yields

supp f 2
ij j‘wj

2 HDðx; tiÞV 6
n AN

Bn

 !

¼ Dðx; tiÞV 6
nfkðiÞ

Bn

 !
H 6

nfkðiÞ
Bn;
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where supp F for a function F indicates the support of F . Because of this and
j‘wj2 ¼ j‘cnj

2 on Bn we see thatð
R

fijðzÞ2j‘wðzÞj2 dxdy ¼
ð
6nfkðiÞ Bn

fijðzÞ2j‘wðzÞj2 dxdy

e
X

nfkðiÞ

ð
Bn

j‘wðzÞj2 dxdy ¼
X

nfkðiÞ

ð
Bn

j‘cnðzÞj
2
dxdy

¼
X

nfkðiÞ
Dðcn;BnÞ ¼

X
nfkðiÞ

32p=mod An:

After all we conclude that

Dðgij ;RÞe 4p=logð1=ejÞ þ 64p
X

nfkðiÞ
1=mod An

so that

capðfzgÞe 4p=logð1=ejÞ þ 64p
X

nfkðiÞ
1=mod An:

By (6.2) and ej # 0 as j " þy, by letting i " þy and j " þy in the above
inequality, we conclude that capðfzgÞ ¼ 0, which was to be shown. r
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