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BANACH SPACES OF BOUNDED DIRICHLET FINITE
HARMONIC FUNCTIONS ON RIEMANN SURFACES

MITSURU NAKAI

Abstract

The Banach space of bounded Dirichlet finite harmonic functions on an open
Riemann surface will be seen to be reflexive and also separable if and only if the
underlying Riemann surface does not carry any unbounded Dirichlet finite harmonic
function.

1. Introduction

There are many properties commonly considered for general Banach spaces
such as separability, reflexivity, uniform convexity, and many others. It is not
only interesting in its own right but also important and quite useful to know
whether a given special space enjoys these properties or not. Having the
intention to apply to the harmonic classification theory of Riemann surfaces
we have considered the separability and the reflexivity for the spaces HB(R) and
HD(R) (cf. [11], [12]) explained below.

We denote by H(R) the linear space of real valued harmonic functions u
on an open (i.e., noncompact) Riemann surface R ([1]). Two major important
linear subspaces of H(R) repeatedly considered thus far in the classification
theory of Riemann surfaces are HB(R) and HD(R). The former space HB(R)
consists of bounded harmonic functions # on R and forms a Banach space under
the supremum norm |ju||,, ie.,

(1.1) ]l g = sup [u(z)]-
zeR
The letter B in HB(R) is thus used to suggest the initial of boundedness. This

space is important in view of the normal family argument for harmonic functions.
The latter space HD(R) is the family of Dirichlet finite harmonic functions u
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16 MITSURU NAKAI
on R, where a ue H(R) is said to be Dirichlet finite if the Dirichlet integral
D(u; R) of u taken over R is finite, i.e.,

(1.2) D(u; R) := J du A xdu = JR \Vu(z)|* dxdy < +o0 (2 = x + iy).

R
Then HD(R) forms a Banach space, and actually a Hilbert space equipped with
the inner product (u,v), for u and v in HD(R) given by

(1.3) (u,v) gyp = u(a)v(a) + D(u,v; R),

where D(u,v; R) is the mutual Dirichlet integral of u and v in HD(R) defined by
(1L.4) D(u,v; R) := J

du A xdv = J Vu(z) - Vu(z) dxdy (z=x+iy)

R R

so that D(u;R) = D(u,u; R) and a is an arbitrarily chosen and then fixed
reference point in R. The choice of a is not essential in the sense that the
change of a only produces the homeomorphically linear isomorphic Hilbert
space. Of course, the norm ||ul|,, of u is given by |lu|p = /(u,u),p. The
letter D in HD(R) is used as in the case of HB(R) to suggest the initial D of
Dirichlet finiteness. This space is important in connection with the so called
Dirichlet principle in the harmonic function thory.

For these two spaces HB(R) and HD(R) we considered the separability and
the reflexivity as Banach spaces and we obtained the result as indicated in the
following table ([11], [12]).

Table 1.5
space HB(R) (dim < o) | HB(R) (dim = o) | HD(R) (dim < o0)
reflexivity yes no yes
separability yes no yes

Here, for example, HB(R) (dim < c0) means that dim HB(R) < oo, where dim X
for a linear space X is the linear dimension of X. Thus HD(R) (dim < o)
means that dim HD(R) < oo or equivalently that unconditional for the dimen-
sion of HD(R). Recall that any general finite n dimensional (n € N: the set of
positive integers) Banach space is homeomorphically linear isomorphic to the n
dimensional Euclidean space R” so that it is always separable and also reflexive.
One of our motivations of deriving the above table was to give a short, sim-
ple, and easy proof to the useful Masaoka theorem [6] that the identity
HB(R) = HD(R) as sets holds if and only if dim HB(R) = dim HD(R) < 0.
The essential part of the proof of this result is the implication of the latter
assertion dim HB(R) = dim HD(R) < oo from the former condition of set iden-
tity HB(R) = HD(R). By the open mapping principle, HB(R) = HD(R) assures
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that HB(R) and HD(R) are homeomorphically linear isomorphic as Banach
spaces and thus either parts of reflexivity or separability of the table 1.5 shows
that dim HB(R) = dim HD(R) < oo, as required. Our proof is thus ultrasimple.
And the more, as an effect of our proof in [11] and [12], what we have really
proven above is the following generlization of the Masaoka result.

The following 3 conditions are equivalent by pairs: (i) the Banach spaces HB(R)
and HD(R) are isomorphic as topological linear spaces; (ii) HB(R) = HD(R) as
sets; (iii) dim HB(R) = dim HD(R) < 0.

The significance of this generalization reveals itself in the fact that the method of
the original proof in [6] or that of relatively simplified proof of it in [8] cannot at
all take care of the above generalization.

In treating spaces HB(R) and HD(R) it is not only useful and convenient but
also important to consider the third Banach space

(1.6) HBD(R) := HB(R)N HD(R),
which forms a Banach space under the combined norm

(1.7) lellzgp = supu(z)| + v/ D(w; R)

for ue HBD(R). Since, in general, we always have two inclusion relations
HBD(R) « HB(R) and HBD(R) = HD(R), the condition HB(R) = HD(R) is
identical with two inverse inclusions HBD(R) = HB(R) and HBD(R) = HD(R).
In this sense the above Masaoka theorem falls in the category of the inverse
inclusion problem in the classification theory of Riemann surfaces.

The purpose of the present paper is to discuss the reflexivity and the
separability of the Banach space HBD(R). Since the parents HB(R) and HD(R)
of their child HBD(R) have entirely opposite characters with respect to both of
reflexivity and separability, the question is which endowments of his (or her)
parents the child HBD(R) inherits more. Even for the simplest Riemann surface
D, the unit disc, it seems to be considerably hard to tell wether HBD(D) is
reflexive or not and also separable or not. The possibility of representing the
Banach aspace HBD(D) isometrically and linear isomorphically as the Banach
space of Borel functions f on ¢D with finite norm | f]|, the supremum and
Douglas combined norm, given by

_ U (7 Ie) — f(e)P
11 .essé;up|f+\/gjo [

does not seem to be too much helpful. We will establish a complete solution to
the question mentioned above for general Riemann surfaces R (cf. Theorem 2.8
in the next section 2). Based upon this general solution it turns out that the
following table 1.8 is obtained for the Riemann surface D (cf. Section 6).

: — dsdt < o
0 ‘em‘ 7ezl|
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Table 1.8
space HB(D) | HD(D) | HBD(D)
reflexivity no yes no
separability no yes no

2. Prediction based upon examples

There is an open Riemann surface Wp with the following two properties
(00):
(2.1) HBD(Wpg) = HB(Wg);
(2.2) dim HBD(Wp) = o0.

From (2.1), (2.2) and the table 1.5 it trivially follows the validity of the following
table.

Table 2.3
space HB(Wg) | HD(Wg) | HBD(Wp)
reflexivity no yes no
separability no yes no

In contrast with the above Wz we have also constructed an open Riemann
surface Wp with the following two properties ([13]):

(2.4) HBD(Wp) = HD(Wp);
(2.5) dim HBD(Wp) = .

By the above conditions (2.4), (2.5) and Table 1.5 we can off hand give the
following table.

Table 2.6
space HB(Wp) | HD(Wp) | HBD(Wp)
reflexivity no yes yes
separability no yes yes

Constructing Wp was really a painstaking task but that of Wy was relatively
easy. Anyway, then, what is the essential distinction between Wpg and Wp?
Clearly (2.4) is equivalent to saying that Wp does not admit any unbounded
Dirichlet finite harmonic function on Wp. On the other hand (2.1) means that
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HB(Wpg) @ HD(Wp). If the inclusion is not proper so that HB(Wg) = HD(Wg),
then by the Masaoka theorem stated and proved in Section 1 we must conclude

dim HB(Wjg) = dim HD(W3) < o0,

which yields dim HBD(Wp) < co. This contradicts (2.2). Hence we can say
that Wy admits an unbounded Dirichlet finite harmonic function on it. Let us
consider the condition

(2.7) HD(R) = HBD(R)

for general open Riemann surfaces R. Then Wp (resp. Wp) falls in the class of
open Riemann surfaces R for which (2.7) is invalid (resp. valid). Based upon
this observation accompanied with Tables 2.3 and 2.6 it may not be too bold
to conjecture that HBD(R) is (resp. is not) reflexive and also separable if the
condition (2.7) is (resp. is not) satisfied by R. Hereafter we proceed along this
line until we fortunately come to the stage that we can say the above conjecture is
certainly the case. For the sake of convenience for reference and also to make
the relevant situation impressive, we wish to propose in this occasion to call
Riemann surfaces R satisfying the condition (2.7) HD-singular, i.e., a Riemann
surface R is HD-singular if there is no unbounded Dirichlet finite harmonic
function on R. After all, we will prove the following result as the main assertion
of this paper.

THEOREM 2.8 (The main theorem). The following three conditions are
equivalent by pairs:

(a) the Banach space HBD(R) is reflexive;

(b) the Banach space HBD(R) is separable;

(c) the base Riemann surface R is HD-singular: HD(R) = HBD(R).

In the next section 3 we will consider capacities cap(K) for compact subsets K
of the Royden harmonic boundary ¢ of the Riemann surface R. In terms of
capacities we consider one more condition on R
(d) infres cap({C}) >0

in addition to those (a), (b), and (c) above. In the later sections 4 and 5 we will
prove Theorem 4.1 maintaining the equivalence of (a), (c), and (d) above by pairs
and then Theorem 5.1 asserting the equivalence of (b), (c), and (d) above by
pairs, from which we can derive four conditions (a), (b), and (c) in the above
theorem and (d) just added above are altogether equivalent by pairs. The proof
of the above main theorem of this paper will be complete in this fashion.

3. The capacity on the Royden harmonic boundary

First we recall the definition of the capacity cap(K) for compact subsets K
of the Royden harmonic boundary 6 of the Riemann surface R in question
and certain related properties of them. We call a function f belonging to
L'“2(R)NC(R) a Royden function on R, where L'?(R) is the Dirichlet space
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(cf. [4]) on R which consists of local Sobolev functions f € le)"cz(R) on R with
D(f;R) < co. The Royden compactification R* of R is the smallest compacti-
fication of R such that every Royden function on R can be uniquely extended to
R* 50 as to be a [—o0, +o0]-valued continuous function on R* which is unique up

to homeomorphisms; we denote by
y=7R:=R"\R
the Royden boundary of R and by
0=0R

the Royden harmonic boundary of R which is the totality of regular points in y
with respect to the harmonic Dirichlet problem in the sense of the Perron-
Wiener-Brelot method; ¢ is a compact subset of R* and § = @ if and only if R
is parabolic, R e O in notation, characterized by the nonexistence of Green
functions on R (cf. e.g. [2], [14], [5], etc.). Hereafter, unless the contrary is
explicitly stated, we assume that R is hyperbolic, i.e., R ¢ Og.

An end W of R is a subregion of R such that W = R\ Ry with Ry a regular
subregion of R, i.e., Ry is a relatively compact subregion of R whose relative
boundary 0R consists of a finite number of mutually disjoint analytic Jordan
curves so that 0W = 0Ry as sets and thus W is surrounded by the relative
boundary dW and the Royden boundary y of R. The relative class HD(W; 0W)
of the absolute class HD(R) is given by

(3.1) HD(W;0W) := {ue HD(W)N C(R) : u|R\W = 0},

which forms a Banach space and actually a Hilbert space equipped with the norm
v/D(u; R). The canonical isomorphism 7 of the relative class HD(W;0W) to the
absolute class HD(R) is given by

(3:2) ()]0 = uld

for every ue HD(W;0W). It is easily seen (cf. e.g. [1]) that 7 is bijective from
HD(W;0W) to HD(R); T and ™! are linear isomorphisms between HD(W ;W)
and HD(R); 7 and ! are order preserving, i.e., Tu = 0 on R if and only if u >0
on R; t and t~! are homeomorphisms between HD(W;0W) and HD(R), i.e.,
there exists a constant C € [1,00) such that

(3.3) C2D(u; R) < (tu)(a)* + D(tu; R) < C*D(u; R)

for every ue HD(W;0W). In short, Banach spaces HD(W;0W) and HD(R)
are homeomorphically and linearly isomorphic by the canonical isomorphism 7.
As the relative class corresponding to the absolute class HBD(R) we also consider
the class

HBD(W;0W) := {ue HBD(W)N C(R) : u|R\W = 0},

which also forms a Banach space equipped with the norm (1.7). As above we
also conclude that Banach spaces HBD(W ;W) and HBD(R) are homeomorph-
ically linear isomorphic by the canonical isomorphism 7 in (3.2).
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For a compact subset K < ¢ the capacity cap(K) of K relative to an end W
of R is given by

(3.4) cap(K) := il}f D(f:R),

where f runs over every Royden function f on R such that f|K =1 and
SIR\W < 0. Properties cap(K) =0 or cap(K) > 0 for any compact set K <
do not depend upon the choice of W (cf. e.g. [10], [5]). It is easily seen (cf.
e.g. [10]) that there is a Cauchy sequence (v,),.n in HD(W;0W)" such that
0<uv,R=Z1, v,|K=1, and

(3.5) lim D(v,; R) = cap(K).

n— o0

ne

Using this simple observation we can show the following fact.

PropPoOSITION 3.6. A compact subset K <0 is of vanishing capacity, ie.,
cap(K) =0, if and only if there exists an he HD(R) such that h|K = +oo.

Before giving a proof to the above assertion we add the following remark.
The spaces L''?(R)NC(R) and HD(R) (and also HBD(R)) form vector lattices
(i.e., Riesz spaces) with respect to the usual function ordering. We denote by

fUg=sup(f,g) and fNg=inf(f,g)
the lattice operations in LN C(R) and by
uvv=sup(u,v) and wuAv=inf(u,v)

in HD(R) (and also in HBD(R)) so that e.g. (fUg)(z) = max(f(z),¢g(z)) for
every ze R but uvwv is the least harmonic majorant of # and v and thus
(uUv)(z) < (uvo)(z) for every u and v in HD(R) (and also in HBD(R)) and for

every ze R but (uvv)({) = (uUv)({) for every { €. We know (cf. e.g. [2], [4])
that

(3.7) D(fUg;R) + D(fNg;R) = D(f;R) + D(g; R)

for every f and g in LY>NC(R). From the above relation (3.7), by using the
Dirichlet principle, it follows that

(3.8) D(uvuv;R)+ D(unv;R) < D(u; R) + D(v; R)

for every u and v in HD(R) (and also in HBD(R)). Based upon (3.8) we can
replace 1 € HD(R) in the above proposition by 47 e HD(R)" since we only have
to take i v 0 because /v 0|0 = max(h,0) on 6. We can also replace & € HD(R)
in the above proposition by /e HD(W : dW)"* in view of (3.2) and the fact
D(tu; R) < D(u; R) for every u in HD(W;0W).

Proof of Proposition 3.6. Suppose first that cap(K) = 0 for a given compact
subset K =J. Then we can find a Cauchy sequence (u,),.n in HD(W;0W)"
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such that u,|K =1 (neN) and lim,_,, D(u,; R) = cap(K) =0. By choosing a
subsequence, if necessary, we can assume that D(u,; R) < 1/4" (neN) so that
D nen Un is convergent in HD(W;0W). Then u:= ), _xu, is locally uniformly
convergent on R and ue HD(W;0W)". For any { e K we have

for every meN and therefore u({) =+oo, ie., u|K =+40. Thus h:=twe
HD(R)" is the required function.

Conversely suppose the existence of an ke HD(R) such that h|K = 4o0.
Let u := t—'h, which belongs to HD(W;0W) and u|K = h|K = +o0. Then uNn
is a Royden function on R with uNn=0 on R\W and D(uNn;R) < D(u: R).
Let v, be the harmonic part of the (relative) Royden decomposition of uNn with
respect to W (cf. [14]) so that v, € HD(W;3W), v, = (uNn)|d = min(u|d,n) and
in particular v,|K =n, and D(v,; R) < D(uNn; R) < D(u; R). Finally let u, :=
vo/n. Then w, e HD(W;0W), u,|K =1, and D(u,; R) £ n~2D(u; R). Thus u,
is one of the competing functions determining cap(K) so that we can conclude
that

cap(K) < D(uy; R) < D(u; R) /n*

for every ne N and a fortiori cap(K) =0 as required. O

As a consequence of Proposition 3.6 we state the following characterization
of (2.7), i.e. the HD-singularity of R, in terms of the capacity on the harmonic
boundary 6 =JR of R.

PropoSITION 3.9.  The following four conditions are equivalent by pairs:
(a) HD(R) = HBD(R), ie., R is HD-singular;

(b) HD(W;0W) = HBD(W;3W);

(c) cap({¢}) > 0 for every { in o,

(d) infres cap({(}) > 0.

Proof. The canonical isomorphism 7 of HD(W;dW) onto HD(R) sends its
subspace HBD(W ;W) onto HBD(R) and therefore the conditions (a) and (b)
are seen to be equivalent to each other by observing one more fact, the Royden-
Virtanen theorem that HBD(R) (resp. HBD(W;0W)) is dense in the Hilbert
space HD(R) (resp. HD(W;0W)). Proposition 3.6 assures the equivalence of
the conditions (a) and (c). It is trivial that (d) implies (c) and hence the proof
of the whole theorem will be over if we show that (c) implies (d). Contrariwise
we assume that inf;cs cap({{}) = 0 although the condition (c) is supposed to be
valid. Then we can find {, € for each n e N such that

0 < cap({¢,}) < (1/2) - (256)".
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As a competing function to determine cap({{,}) we can find (cf. [10]) a u, €
HD(W;0W)" such that 0 <u, <1 on R, u,({,) =1, and D(u,; R) < (256)".
Observe that

D(4"u, : R) = (16)"D(uy,; R) < (16)" - (256) " = (16) ™"
and clearly 4"u,((,) =4". We can define

u:= Z 4"y,

neN

on R because the estimate

VD;R) < > /DA, R) <Y 4" =1/3<

neN neN

assures that the above series defining u converges locally uniformly on R so that
ue HD(W;0W)". Observe that

u(,) = 4"u,(g,) = 4"

for every neN and thus supp u =maxs u = +oo. Then there exists a (€
such that u({) = +o0 so that, again by Proposition 3.6, we must conclude that
cap({{}) =0, contradicting (c). O

4. Reflexivity

In this section we will prove that the Banach space HBD(R) is reflexive if and
only if the base Riemann surface R is HD-singular, i.c., there is no unbounded
Dirichlet finite harmonic function on R. We start by recalling the reflexivity
of Banach spaces. Let X be a Banach space and we denote by X* the dual
space of X, i.e., the space of bounded linear functional x* on X and the value
of x* at xe X is denoted by {x,x*). An xe X can be viewed as a functional
X on X* given by <{x*,x) := {x,x*) for every x* € X*. We denote by X :=
{X:xeX} cX™ and the isometric linear mapping x — % of X into X** is
referred to as the natural embedding of X into X** i.e., by identifying X with
X we consider X < X*., When X = X*, we say that the Banach space X is
reflexive. A typical situation occurs when X is a Hilbert space: a Hilbert space
X is always reflexive in view of its Riesz self duality: X = X*. We will use the
following characterization of the reflexivity of X (see [3, p. 425]): X is reflexive
if and only if the closed unit ball in X is weakly compact. The main assertion
of this section is the following result.

THEOREM 4.1. The following three conditions are equivalent by pairs:
(a) the Banach space HBD(R) is reflexive;

(b) the base Riemann surface R is HD-singular, i.e., HD(R) = HBD(R);
(c) the Royden harmonic boundary 6 of R satisfies infycs cap({(}) > 0.
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Proof. The equivalence of (b) and (c) is established in Proposition 3.9.
Suppose the validity of (b): HD(R) = HBD(R). Since the identity mapping
1: HBD(R) — HD(R) given by 1(u) = u for every u e HBD(R) is clealy a linear
isomorphism of HBD(R) onto HD(R). Since

1) llap = \/1)(@) + D(a(w); R) = \Ju(a)® + Dw; R)
< sup | + /D0 B) = [l 1o

for every u e HBD(R), 1 is a continuous bijective mapping of HBD(R) to HD(R)
so that the Banach open mapping principle assures that :~! is continuous.
Hence the Banach space HBD(R) is homeomorphically linear isomorphic with
the Hilbert space HD(R), which is reflexive and a fortiori HBD(R) is reflexive:
(b) implies (a). Conversely, supposing (a) is valid the proof will be complete if
we show the validity of (b), or equivalently, that of (c). We will show this by
contradiction so that we assume the existence of a point & € & with cap({¢}) =0
in spite of that HBD(R) is reflexive, i.e., the closed unit ball HBD(R), of
HBD(R) is weakly compact in the Banach space HBD(R).

For any open neighborhood V' of ¢ and for any positive number & we
maintain the existence of u € HBD(R) with the following 4 properties: 0 <u <1
on R, u(¢)=1; ulo\V =0; D(u;R) <e. In fact, we first take a ve HBD(R)
such that 0 <v =<1 on R, v(&) =1, and v|o\V =0. Since cap({&}) =0, there
exists a competing Cauchy sequence (w,),.n = HD(W;0W) for cap({{}) con-
verging to zero, i.e., lim,_ D(w,; R) =0. We can assume that 0 <w, <1 on
R and w,(¢) =1. Then the sequence (w,),.n also converges to zero locally
uniformly on R. Put f, :=w,v for each ne N. We see that 0 < f, <1 on R,

Ju(&) =w,(Ev(&) =1, fulo\V = wy - (v|6\V) =0, and
[VIal < wa|Vo| + 0| Vw,| £ w,|Vo| + [V,

on R. Since wﬁ <w, on R, we see that
(4.2) D(f,;R) < zj wa|Vo(2)|* dxdy + 2D(wy; R) (2 = x + iy)
R

for every ne N. Since [,1- \Vu(z)|* dxdy = D(v; R) < +00, 0 < w,(z) <1 on R,
and wy(z) = 0 (n— o0) locally uniformly on R, the Lebesgue convergence
theorem assures that the first term of the right hand side of (4.2) tends to
zero as n — oo. This with lim,_ ., D(w,; R) =0 implies that

(4.3) lim D(f; R) = 0.

We denote by u, the harmonic part and by g, the potential part of the Royden
decomposition (cf. e.g. [14]) of f, for each n e N so that f, =u, + g, on R and
guld =0 or f,|0 =u,l0. We can thus find an ne N such that D(u,;R) <e.
Then u :=u, is a required one.

We denote by A4 the totality of open neighborhoods « of £ €. We make 4
an ordered set by giving an order on 4 by o <o, if o > . For each o e 4
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we let 2u, be the function u constructed in the foregoing paragraph for V = «
and ¢=1 so that u,€ HBD(R), 0 Su, <1/2 on R, uy(&) =1/2, uyulo\a =0,
and D(u,;R) < 1/4. In particular, ||u,| 4zp < 1, i.e., the directed net (u,),., is
contained in the closed unit ball HBD(R), of HBD(R), which is weakly compact
as a consequence of (a): the Banach space HBD(R) is reflexive. Therefore the
directed net (u,),., contains a weakly convergent subnet (up);_p, where B is
a cofinal subnet of 4 so that B forms a base of neighborhood system of &
consisting of certain open neighborhoods f of £, We denote byvf the Dirac
measure on R* having its support at { € d so that, as is easily seen, { € HBD(R)".
Let he HBD(R) be the weak limit of (ug)s.p. Then

() = &> = h};n ug, &> = li[gn ug({)

for every (€0, ie., (“ﬁ)ﬁeB converges to & pointwise on o. If {ed\{&}, then
(¢p for every fe B with = f, for some S, B. Hence h({) =0 since
uglo\f =0 (> fy). Needless to say, up(é)=1/2 for every fe B implies
that A(¢) = 1/2. In view of he HBD(R) |6 = C(0) with hlo\{&} =0 and A(¢) =
1/2, we conclude that ¢ is an isolated point in 6. Hence hm({¢}), the harmonic
measure of {£}, must be strictly positive. Since there exists a constant 7 € (0, +00)
depending upon R and W such that

hm(K)? < 7 - cap(K)
for every compact subset K = (cf. [10]), we must conclude that

0 < hm({¢})* < - cap({¢}),

which contradicts the starting assumption of cap({£}) =0 in the present part
of proving the implication (b), or equivalently (c), from (a), by contradiction.

O

5. Separability

In this section we will prove that the Banach space HBD(R) is separable if
and only if the base Riemann surface R is HD-singular, i.e., there is no unbounded
Dirichlet finite harmonic function on R so that HD(R) = HBD(R). We have
seen in the foregoing section 4 as Theorem 4.1 that HBD(R) is reflexive if and
only if R is HD-singular. Therefore the result in this section assures that the
reflexivity and the separability are equivalent in the case of the Banach space
HBD(R). Thus the proof of Theorem 2.8, the main assertion of this paper, will
also be completed in this section. Namely we will prove the following result as
the main assertion of this section.

THEOREM 5.1. The following three conditions are equivalent by pairs:
(a) the Banach space HBD(R) is separable;

(b) the base Riemann surface R is HD-singular, i.e., HD(R) = HBD(R);
(c) the Royden harmonic boundary 6 of R satisfies inf;cs cap({(}) > 0.
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Proof. The equivalence of (b) and (c) is established in Proposition 3.9.
The condition (b) assures, as we saw in the proof of Theorem 4.1, that Banach
spaces HD(R) and HBD(R) are homeomorphically linear isomorphic. Since
HD(R) is separable (see [12]), we can conclude that HBD(R) is separable, i.c.,
(b) implies (a). To complete the proof we thus have to show that (a) implies
(b), or equivalently, the negation of (b), i.e., HD(R)\HBD(R) # 0, implies the
negation of (a), i.e., HBD(R) is not separable. Thus we assume the existence
of an he HD(R) with supg|h| =4oco0. Since HD(R) forms a vector lattice,
we can assume the existence of an he HD(R)™ with supg & = +00. We say
(e,a) € (0,+00) x (1,400) is an admissible couple. When an admissible couple
(e,a) is given, a pair (a,b) € R x R will be referred to as an (e, o)-pair if it satisfies
the following three conditions:

(5.2) o< a<3a<b;
a+b € h(o):
(5.4) D(h;{zeR:h(z) >a}) <e

where /(0) is the range set {h({) : { €d}. We first show the existence of an (g, a)-
pair (a,b) for any given admissible couple (¢,0). Let V,:={ze R:h(z) > a}
for any a € (a,+00). In view of V, | 0 as a | +co0, we see that D(h,V,) | 0 as
a1 4oo. This shows the existence of an @ € (o, +00) such that the condition (5.4)
is satisfied. Fixing the a € (a,+o0) just found, we put K, := {{ €0 : h({) = 3a}.
Since 1 e HD(R)"\HBD(R), K, is the closure of the nonempty open subset
{Ced:h({)>3a} of 6 and hence cap(K,) > 0. Thus we see the existence of
an s € K, such that 3a < h(s) < 400. Otherwise K, = {{€d:h({) =+c0} and
hence cap(K,) =0 by Proposition 3.6, contradicting cap(K,) > 0. Let

b:=2h(s)—a>2-3a—3a=3a,

which satisfies (5.2), and moreover (a + b)/2 = h(s) € h(0), i.e., (5.3) is fulfilled.
We have thus established the existence of an (g, o)-pair (a,b).
Suppose an (g, o)-pair (a,b) is given. We call the compact subset

(5.5) E={Ced:ash() <h)

of 6 the (a,b)-set. A function ee HBD(R)" will be referred to as an (a,b)-
Sfunction if it satisfies the following 4 conditions:

(5.6) 0<elR=1;
(5.7) e|o\E = 0;
(5.8) 1/4 € e(9);
(5.9) D(e;R) < ¢
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We now prove the existence of an (a,b)-function e for any given (g, a)-pair (a,b).
To begin with we consider the function

(hUa)Nb —a)-(b— (hUa)Nb)
(b—a)’

(5.10) "=

on R based upon 4. On setting
f=((hUa)Nb—-a)/(b—a) and g:=(b—- (hUa)Nb)/(b—a)
on R, we see that 0 < f <1 and 0<g=<1on R Then u=f-g on R and
Vul> = [V(f - g)I* = (/1Vg] + gl V/1)?
< (49’ IV((hUa)Nb)*/(b— a)* < 4|V((hUa) Nb)[*/(b - a)’.
In view of b—a>=3a—a =2, we have 4/(b —a)2 <1 and a fortiori
[Vul® < V((hUa) NB)[*.
Hence, by (5.4), we conclude that
(5.11) D(u; R) £ D((hUa)Nb;R) < D(hUa; R) = D(h; V,,) < e.
By the existence of an sed with i(s) = (a+b)/2 € (a,b), we see

b —da 2 2
u(s) = 3 (b—a)y =1/4
so that we obtain

(5.12) 1/4 € u(o).

Finally we let ¢ be the harmonic part of the Royden decomposition of u on R so
that e € HBD(R) and

(5.13) elo = ulo.

Since 0 <u <1 on R and then on R*, we have 0 Su<londsothat 0 <e <1
on 0. The maximum principle (cf. [14]) yields that 0 <e¢ <1 on R and a for-
tiori e HBD(R)" and (5.6) is deduced. By the definition (5.10) of u we see
ulp\E =0 and thus, by (5.13), we infer (5.7). Conditions (5.12) and (5.13)
assures the validity of (5.8). The Dirichlet principle D(e; R) < D(u; R) and (5.11)
conclude (5.9). We have thus established the existence of an (a,b)-function e
for any (e, a)-pair (a,b).

We choose an arbitrary but then fixed sequence (g,),. N Of strictly positive
numbers &, such that

(5.14) > Ve < +o0.

neN

We also take arbitrarily and then fix a number by € (1,4+00). Viewing (&1, bp)
as an admissible couple, we take an (g, bg)-pair (aj,b;). With respect to the
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new admissible couple (&,b;) we take an (&,b)-couple (az,b;). Next for
the admissible couple (e3,b2) we choose an (&3, by)-pair (a3, b3). Repeating this
process, when an (g,, b,_)-pair (a,,b,) is obtained, we produce an (&, 1, b,)-pair
(@ny1,bnt1). Inductively we have thus constructed two sequences (ay),.n and
(bn), N such that (ay,b,) is an (g, b,—1)-pair for each ne N so that

(5.15) by<ay <b <ay<by<---<a,<by,<ayy <byy <---.
From (5.9) and (5.14) it follows that

Dhi{zeR:h(z) >ay}) <& —0 (n— 40)
so that we can conclude

(5.16) lim a, = lim b, = +c0.

n— o0 n— o0

For each ne N we denote by E, the (a,,b,)-set (cf. (5.5)) and by e, an
(ay, b,)-function (cf. (5.6)—(5.9)) so that e, e HBD(R)", 0 £ e¢,|R £ 1, e,|0\E, = 0,
1/4€e,(d), and D(e,; R) <¢,. Let I be the open interval (0,1) =R and
(5.17) A=00Ay-

be the infinite dyadic fractional expression of A € I so that 4; € {0,1} for all jeN
and there are at least one A; = 0 and infinitely many 4; = 1. For each A eI with
(5.17) we can define the function

(5.18) L= e
jeN
on R, which is in HBD(R)" and satisfies 0 < f; <1 on R. In fact, since
0 é Z),,-ej é Zé’j é 1
j=n j=n

on R for every neN and partial sums > ., 4e; (n€N) form an increasing
sequence (3, 4€),en in H(R), the Harnack principle assures that the series

> jen 4¢ in (5.18) is locally uniformly convergent on R and defines a function f;
in H(R) with 0 < f; <1 on R. By virtue of (5.14), we infer that

\% D(ﬁvR) é Z\/D()LjEj;R) é Z,/D(gj;R) é Z\/g< +o0,
JEN JjeN jeN

i.e., f, € HD(R) so that f; e HBD(R)", as required. We denote by F the totality
of such f), ie.,

F:={f,:1el}.
Choose any u eI different from 1 el with (5.17) and let

w=0.ppy -y
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be the infinite dyadic fractional expression of . Then A # u is equivalent to the
existence of a jeN such that [4; — | =1. Then we see that

= Sul = YV = mler Z 13 — le; = ¢

ieN
on ¢ and the maximum principle with (5.8) yields
SIIJQPIfa — Jul = sup \fr = ful 2 SUp ¢ = 1/4.
A fortiori we obtain that

(5.19) 1fo = fullusp 2 1/4 (4 # ).

Finally we choose an arbitrary dense subset G of HBD(R). Since the closure
of G in HBD(R) is HBD(R), there is a g € G such that ||g — f;||yzp < 1/16 for
any f;, € F, or rather for any 1€ 1. We choose and then fix one such g and
denote it by g, € G so that ||g; — fillggp < 1/16. For any (4,u4) eI x I with
A # u, we see, by (5.19), that

||g,1 - g/lHHBD 2 Hfi - ﬁlllHBD - ||gi. - f)t“HBD - ”g# - fAHHBD
1 1 1 1

This assures that the mapping A+— g, of I to G is injective and therefore the
cardinal number #G of G is at least the cardinal number #I of I, which is the
cardinal number Y of continuum, i.e., #G = X. Thus we have seen that any
dense subset of HBD(R) cannot be countable so that HBD(R) is not separable,
which was to be shown. O

6. Surfaces of almost finite genus

In the introduction we stated that HBD(D) is neither reflexive nor separ-
able (cf. Table 1.8). In view of Theorems 4.1 and 5.1 the above assertion is
equivalent to the existence of a point of vanishing capacity in the Royden
harmonic boundary 6D of D. Actually not only some single point but also every
point in 6D is of vanishing capacity. In this section this fact is shown for a
certain class of Riemann surfaces including the unit disc D. In this fashion the
proof of Table 1.8 will also be complete in this last section 6.

A Riemann surface R is said to be of almost finite genus if there exists a
finite or countably infinite sequence (A4,), of relatively compact annuli 4, in R
such that

(“) AnmAm = (Z) (l’l * Wl);

(8) R\{J, A, is a planar subregion of R;

() >.,1/mod 4, < +co0.

n
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By an annulus 4, on a Riemann surface R we mean a subregion which is
conformally equivalent to a doubly connected plane region so that, if both
components of 0A4, are nondegenerate continua, then it has the canonical
conformal representation {1 < |z| < u,} and its modulus mod 4, = log i,. The
notion for Riemann surfaces to be of almost finite genus was first introduced in
[7] as a generalization of surfaces to be of finite genus related to the classification
theory of Riemann surfaces. Thus surfaces of finite genus including those of
zero genus, of course, are of almost finite genus but our main concern related to
this notion lies in the nontrivial case of infinite genus. In this section we prove
the following result.

THEOREM 6.1. Every point in the Royden harmonic boundary é of any open
Riemann surface R of almost finite genus is of vanishing capacity.

It is known (cf. [14]) that every point in 6 of R of almost finite genus is of
vanishing harmonic measure. Since we have (cf. Section 4) the inequality
hm(K)? <« - cap(K) for every compact subset K of d, where hm(K) is the
harmonic measure of K and « is a constant independent of K, the above theorem
6.1 is a generalization of our former result just stated above.

Proof of Theorem 6.1. We assume that the sequence (4,), of annuli 4,
in R satistying («), (f), and (p) is infinite one so that (4,), = (4,),.n- Each
argument in the proof we are going to develope in the case of infinite genus can
be easily or rather trivially modified so as to be applicable to the case of finite
genus. Thus the condition (y) above takes the following form

(6.2) > 1/mod 4, < .
neN

On replacing 4, by a bit smaller annulus in A4, for each n € N we may assume
that each component of 04, is an analytic Jordan curve. For each ne N we
take a nondividing analytic Jordan curve o, < 4, such that «, separates one of
two disjoint components of 04, from the other. We denote by 4,; (j=1,2)
two annuli which are two components of 4,\x,. We could also have chosen a,
so as to make the following relations hold:

1
mod A4, =5 mod 4, (j=1,2).

We then set

o= U oy

neN

By virtue of the condition (f) we see that R\« is a planar subregion of R, i.e.,
R\o can be embedded in the Riemann sphere C = CU {o0}.
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In addition to the original sequence (A,),.n We further take two more
sequences (By),.n and (C,),.n of annuli B, and C, as follows. The curve «,
is contained in C, and o, separates one component of dC, from the other;
C, c B, and C, separates one component of 0B, from the other; B, = 4, and B,
separates one component of 04, from the other. Thus we have

anCCnCéncBnCBI1CAn

for each ne N. We denote by (An\Bn)j the component of A,\B, contained in
A4y (j=1,2) and similarly we denote by (B,\C,); the component of B,\C,
contained in 4,; (j=1,2). We could also have chosen the above B, and C, so
as to satisfy the following two relations:

_ 1
(6.4) mod(4,\B,); = 1 mod 4, (j=1,2)
and similarly

- 1
(6.5) mod(B,\Cy); = 3 mod 4, (j=1,2).

_For each neN we take a function ¢, e C(R) such that ¢,|R\4, =0,
¢,|B, =1, and ¢, € H(A4,\B,). By the choice of B, satisfying (6.4), we have
so that by (6.2) we have
(6.6) D(Z (pn;R> = D(g,; A\B,) = 16n > 1/mod 4, < +o0.

neN neN neN

Thus ¢ :=}_, N, is a Royden function on R. Since ), _, ¢, has a compact
support for every meN and ) _, ¢, T ¢ on R locally uniformly and

D(w—an;R>l0

n=m

as m T o0, we conclude that ¢ is a Royden potential (i.e., Dirichlet potential) on

R so that ¢|0 = 0 (cf. [14]). Clearly ¢|| ), _x B, =1 and a fortiori ¢|| ), B, = 1.
Therefor we conclude that

(6.7) ( U E’,,) No=0
neN
in R*.
We repeat the same construction for B,\C, as we have done above for
A,\B,. For each ne N we take a function , € C(R) such that ,|R\B, =0,
¥,|Cy =1, and , € H(B,\C,). By the choice of (6.5) we have

D(lﬁn; R) = D(lﬁn; Bn\én) = 327[/m0d Ay
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so that by (6.2) we conclude that

(6.8) D(Z Vi R) => DW,;B,\Cy) =322 1/mod 4, < +o0.

neN neN neN

Thus :=3,.n¥, is a Royden function on R. As in the case of ¢, since
> n<m W, has a compact support in R for every me N and »_, _, ¥, T ¥ locally
uniformly on R and

D(sﬁ—an;R)lo

as m 1 400, we can conclude that i is a Royden potential on R so that y|0 = 0.
Clearly y|( ), .nCn=1. Let

(69) X:::l_ﬁk
which will play very important role later based upon the properties
xle=x U C,=0
neN
and

10 =le\W :;(|R\ U 4. =1.

neN neN

Let (R\a)" be the Royden compactification of R\o as an abstract Riemann
surface. The surface R\o is a subregion of R* and we denote by R\a = R\a*
the closure of R\a as a subset of R*. On the other hand, since R\« is planar,
R\oe may be viewed as a subregion of the Riemann sphere C:= CU {0} and we
denote by R\a = R\a€ the closure of R\ as a subset of C. We need to know
the relations between (R\x)* and R\«® and also between (R\a)* and R\aC.
We start from the former relation.

First we recall the following general observation (see [14, SB-5E]). Let S be
a subregion of any open Riemann surface R in general, where we do not exclude
the case S=R. We denote by S (or S if we need to be more precise) the
closure of S in R* and by S* the Royden compactification of S considered as
an abstract Riemann surface. As for the relation between S* and S = SR we
know the unique existence of the projection

j=j(8*8):8* =8

characterized by the following two conditions: j:S* — S is a surjective con-
tinuous mapping; j fixes S pointwise, i.e.,

(6.10) Jj|S =id. (the identity mapping).
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We distinguish a part of the boundary S\S as follows:

(6.11) bs := (5\0S) Ny,

where 0S is the relative boundary (S\S)NR of S relative to R and y = yR =
R*\R, the Royden boundary of R. Then we see that

(6.12) SU ' (bs) ~ SUbsg,

i.e., the projection j:SUj~!(bs) — SUbs is a homeomorphism (i.e., bijective
and bicontinuous mapping) so that j:SU;j !(bs) — SUbs and j~':SUbs —
SU j~!(bs) are bijective and continuous.

We particularize the above general observation to our present situation of R
of almost finite genus and its subregion S := R\a. Then clearly

§— 5K — Rk = R*

and we see the unique existence of the projection
J:(R\®)" — R,
which is a surjective continuous mapping with j|R\o = id., the identity mapping.
In this case we see that
bs = (S\3S)Ny = (R\&) Ny = y\&
so that
(R U (\@) — (R\2) U ()\3) = R"\&

is a homeomorphism with j|R\o = id., or equivalently
(6.13) JTHERNE = (R\o) U (\2) = (R\e)”

is a homeomorphism with j~'|R\« = id.

___ Having finished the clarification as (6.13) of the relation between (R\a)" and
R\o®", we turn next to the task of unravelling the relation between (R\x)" and
R\«€ by bringing the fact that R\« is a planar region into our consideration,
ie, R\ c C=CU{}. We use the proper coordinate z on C so that C =
{z:]z2] £+o} and C={z:|z| < +o0}. We denote by A(c,r) the disc in C with
radius 0 < r < oo centered at ¢ € C so that A(c,r) ={zeC:|z—¢|<r} forceC
and A(oo,r) ={zeC:|z| > 1/r}. Hence 1/z is used as a local parameter at co.
We set A(c,r) := A(c,r)€. We denote by I the identity mapping of C, ie.,
I(z) =z for ze C. We maintain that the identity mapping 7 : R\ — R\« is
continued to a continuous surjective mapping

(6.14) T:(R\0)" — R\a€, TIR\a=1I.

To see this fix an arbitrary point a e (R\a)NC and suppose A(a,p) = R\«
(0<p< o). Let

p
z—a

T(z) :=
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and G:=T(R\x), a subregion of C. By the conformal invariance of
Royden compactifications, T : R\a — G can be continued to a homeomorphism
T*:(R\a)" — G*. It is entirely clear that T~!: G — R\u« can be continued to
a homeomorphism 7-!: G¢ — R\a€. We denote by Is: G — G the identity
mapping /. We show that /s can be continued to a continuous surjective
mapping I : G* — GC. Observe that A(co,1) = G and therefore

D(1g; G\A(0,r)) = 2 Area(G\A(0,r)) < +00

for every 0 <r < 1. Hence I can be modefied on Z(oo, 1) as a function g
such that I5;|G\A(o0,1) =T and Is is a Royden function on G. Thus I is
continuous on G* and a fortiori I is continuous on G*. Hence we have
seen that Ig: G — G can be continued to a continuous surjective mapping
I;: G* — GC. Hence we can conlude that

I=T'olsoT:R\u— R\u
can be continued to the continuous surjective mapping
I=T TolgoT": (R\a)" — R\aC
(cf. Fig. 6.15). Thus (6.14) is established.
Fig. 6.15

(R\)* - G*

il lE

R_\cxé — G¢
T-1

Finally consider the mapping
(6.16) J:=Toj':R\a— mé.

In view of (6.13) and (6.14), we see that the mapping J in (6.16) is continuous,
surjective, and J|R\a = id. Choose an arbitrary point { € =JR. Our plan in
the rest of this proof is to establish cap({(}) =0. Let &:=J({). Since {(} is
not Gs (cf. [14]) while every {z} with ze R is G5, & cannot be in R because
J|R\oo = id. By virtue of (6.7) we have

< R*\ |J B,=R"\z
neN
and therefore & ¢ a either, or more accurately ¢ does not belong to any component
of the boundary (R\ax)€\(R\x) of R\« lying over o. We fix a disc A(a,p) with
radius 0 < p < oo centered at a point a € (R\a) NC such that A(a,p) = R\e.
We choose two strictly decreasing zero sequences (f;);.n and (&), .y in the

interval (0,1) such that A(,#;)NA(a,p) =0. Define the function’ fii € C(C)

such that f,Aé\Z(f, Z,‘) = O, fﬂﬁ(é, Zié‘j) = l, and ﬁ/ € H(A(f, l‘,’)\Z(é, liﬁj)). Then
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D(fi;;€) = D(fi: A(E, t)\A(E, tie;))
= 2r/mod(A(, 4)\A(E, 1igy)) = 2m/log(1/z).

The function f;joJ may be viewed as a Royden function on R\o because of
(6.16) and D(fj; R\a) < D(f;;;C) < +0o but not on R since f;joJ may be
discontinuous at . The function y in (6.9) vanishes in an open neighborhood
of o« and y itself is a Royden function on R. Both of fj; oJ and y are bounded.
Therefore, if we define

gij =x-(fijoJ)
on R, then g; is a Royden function on R. Clearly g;({) = x() - f; ]( )=1-1=1
and g; |A(a p)=x-(fioJ|Ala,p))=yx-0=0. Thus each g; is a competmg

function in the Varla‘uon to determine cap({(}) with respect to the end R\A(a, p),
ie.,

cap({¢}) = D(gy; R)

for every (i,j) e Nx N.
We can find an increasing sequence (k(7));,.n = N such that k(i) T +oo as
iToo and

(6.17) A(E 1) ﬂ< U (Bn\oc”)> = 0.
n<k(i)
Aiming to estimate D(g;; R) we infer that
Vgil® = Vi + fiVal® < 20211 + fF

on R and hence

/)

D(gy; R) §2JRX(Z)2|VJ‘1( ) dxdy+2j (2’ IVx(@))? dxdy (2= x+iy).

Observe that 0 < y <l and 0 < f; <1 on R. Using D(fj; C) = 2r/log(1/¢;) w
see that

ij<z)2|Vﬁ,-(z>|2 dxdy = jR 222V (2)|? dxdy

\ ot

< | 1P ddy = 2n/10g(1/5).
C

Clearly supp fij = A(&,1;) and supp|V;(|2 c UneNB” and thus (6.17) yields

supp f7|Vx|* = A(&, 1) N ( U l?n>
neN

= A(éa ZI) N U B}’l < U E}ﬁ
n=k(i) n=k(i)
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where supp F for a function F indicates the support of F. Because of this and
Vx> = |Vi,|* on B, we sce that

| servaor asar = p@v) sy

Unzk() B,

< Vr() 2 dxdy = 3 j V0, (2)|? dxdy

n=k(i)” Bn n2k(i)

= Y D(,;B,) = Y _ 32n/mod A,.

n=k(i) n=k(i)

After all we conclude that

D(gyj; R) < 4n/log(1/e;) + 64n > 1/mod 4,
n=k(i)

so that

cap({¢}) < 4n/log(1/¢;) +64n Y 1/mod 4,.
n=k(i)

By (6.2) and ¢ | 0 as j 1 +oo, by letting i +c0 and j1 +oco in the above
inequality, we conclude that cap({(}) =0, which was to be shown. O
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