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THE UNIQUENESS PROBLEM FOR MEROMORPHIC MAPPINGS
WITH TRUNCATED MULTIPLICITIES

FenGg LU

Abstract

The purpose of this work is twofold. The first is to solve a uniqueness problem of
meromorphic mappings posed by T. Cao and H. Yi in [1]. The second is to generalize
several previous uniqueness theorems of meromorphic mappings “‘partially” sharing a
few moving targets, which were given by Z. Chen and M. Ru [2], Z. Chen and Q. Yan
(3], D. Thai and S. Quang [13].

1. The uniqueness problem for hyperplanes

In 1926, R. Nevanlinna [10] showed that if two meromorphic functions have
the same inverse images for five distinct values, then these two functions must
be identical. In 1975, the Nevanlinna’s result was generalized to the case of
meromorphic mappings of C” into P"(C) by H. Fujimoto [6]. In fact, he
obtained that for two linearly non-degenerate meromorphic mappings f and g of
C™ into P"(C), if they have the same inverse images counted with multiplicities
for 3n + 2 hyperplanes in general position in P"(C), then f =g¢g. Over the last
few decades, there have been a lot of results related this problem. (see H.
Fujimoto [7], S. Ji [9], M. Ru [I1], Z. Chen and Q. Yan [15])

Let f be a linearly non-degenerate meromorphic mapping of C™ into
P"(C). For each hyperplane H we denote by v(s p) the map of C™ into Ny
such that v, z)(a) (a € C™) is the intersection multiplicity of the image of f and
H at f(a). Take ¢ hyperplanes Hi,...,H, in P"(C) in general position and a
positive integer /.

Consider the family ﬁgm({l{,};’:l, f,lp) of all linearly non-degenerate mero-
morphic mappings g : C" — P"(C) satisfying the conditions:
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(a) 1).<m> o} = min{v s i) <m, lo} for all je{l,... g},

(b) dim(f~ (H)ﬂf ( )) <m—2, for all 1 <i< j<g, and

() f(z) =g(z) on UL 1{2 0 < v(s,m) <mj.

In partlcular if m= o0, we omit it for brevity.

In 1983, L. Smiley [12] showed that

THEOREM A. If ¢ >3n+2, then g, = gy for any ¢g,,¢> € f({[-lj}]q:l,f, 1).

In [8], P. Hu obtained anther uniqueness result of meromorphic functions on
C™ with the idea of truncated multiplicities.

THEOREM B. Let f and g be two meromorphic functions in C™, let a; € P'(C)

i=1,...,q) be q distinct elements, and let my >my > --- > m, be ositive
(J q q g be qp

. 1 . m;

;ﬂig;rs or 0. va(lvaj)‘Sm/ = Uy 1), <m (j=1,....q9) and 31, T > 2, then

In order to deduce the more smaller number ¢, T. Cao and H. Yi [l]
deduced the following result. They generalized Theorem B from meromorphic
functions to meromorphic mappings of C” into P"(C).

THEOREM C. Let f and g be two linearly non-degenerate meromorphic map-
pings of C" into P"(C), let H; (1 <j<gq) be q(=2n) hyperplanes in general
position such that dim f~'(H;NH;) <n—2 for i # j, and let my >my > -+ >
my = n be q integers or co. Assume that

(a) U(lfH)<mj: (IJH) (j=1,...,q) and

(b) f(z) =g(z) on |J 1{Z€C 10 <uvipmy(z) <mt I 301

where

+1
(n—lg+n+1 4n-1) 1 1

A pr—
0 n g+2n-2 m1+l+m2+l’

then f=g.

In the paper [1], the authors pointed out that if » = 1 in Theorem C, then the
m; m; 1 1
> Ay red to that >2 .
m; + 1 o reduces to that 3.1, m; + 1 +m1+1+m2+1
But it dot not coincide with the related condltlon in Theorem B. So, they
asked whether one can deduce a better result. In this section, we solve the

problem and obtain the following theorem.

condition 7,

THEOREM 1.1.  With the same assumptions (a), (b) as in Theorem C, if

T omy (n=1Dg+n+1 2n-1) 4n-1) n
> > A = - - 1— :
m; + 1 n m+1 q+2n-2 my + 1
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Remark 1. Noting that g > 2n, we have
4(n—1) n__ 4n—1) n - 4n—1) n - 2(n—1)

g+2n—2m+1 "~ g m+1" 2n m+1" m+1"
Then, compare Theorem C to Theorem 1.1, we derive
1 1 2(n—=1) 4(n-1) n
Ay — Ay = _
oA T Tl mt 1l grm—2m ]
1 1

= +—.
mp+1 m+1

Obviously, the number A; is smaller than 4y. So, we improve Theorem C.

Remark 2. When n = 1, we see that the condition >/ , mmJlr 1> Aj reduces
to Y1, mm—',— ] > 2. Thus, we solve the above problem posed by T. Cao and
H. Yi in [1].

By Theorem 1.1, we obtain the following corollaries which are improvements
of the related corollaries in [1].

COROLLARY 1.2. If ¢ =2n+3, then F.n({H;}L,,f,1) =1, where

(n—1)q*>— (n—3)g+2n*-2

M =) g —21-2)

CoROLLARY 1.3. If ¢ =3n+2, then Q¢Sm({Hj}f:1,f, 1) =1, where

92 +2n—1
dn +1

COROLLARY 1.4. If g=2n+3, then .@Sm({b[j};’:l,f, 1) =1, where
4n® +8n* -2
3n+2

CoroLLARY 1.5. If q=3n+1 and n>2, then F.,({H;}/, f,1)=1,
where

9n? —dn+3

" A

COROLLARY 1.6. If ¢ =3n and n >3, then F<,({H;}L,, f,1) =1, where

93 —10n2 +9n -2
(4n—1)(n-2)
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CoroLLARY 1.7. If q=3n—1 and n>4, then F<,({H;}/, f,1)=1,
where
9n® — 160> +17n— 6
(4n—2)(n—13)

m >

2. The uniqueness problem for moving targets

Recently, motivated by the establishment of the second main theorem of
value distribution theory for moving targets, the study of the uniqueness problem
of meromorphic mappings from C" into P”(C) intersecting a finite set of moving
targets has started. At the same time, many outstanding results were derived.
(See Z. Chen and Q. Yan [2, 3], Z. Tu [14].)

In this section, we still focus on the uniqueness problem for moving targets.
In order to state our results, we recall the following.

Let ay,...,a, (9 = n+1) be ¢ meromorphic mappings from C™ into P"(C)
with reduced representations a; = (aj:---:a,) (j=1,...,q9). We say that
a,...,a, are located in general position if det(ay) #0 for any 1< jo<
< <jn<q.

Let f be a linearly non-degenerate meromorphic mapping from C™ into
P"(C). We say that g; is “small” (with respects of f) if T, (r) = o(Ty(r)) as
r— 0.

Let M,, be the field of all meromorphic functions on C™”. Denote by

R({a;} ;’:1) < M, the smallest subfield which contains C and all al( with ay # 0.

aji
Let f be a meromorphic mapping of C” into P"(C) with reduced representation
f=o:-:fu). We say that f is linearly non-degenerate over R({q/}le) if

fo,- -, fu are linearly independent over R({a;}/,).

Suppose that f be a meromorphic mapping from C™” into P"(C) and d be
a positive integer. Let {aj}]flzl be ‘“small” (with respect to f) meromorphic
mappings from C” into P"(C) in general position such that

dim{ze C": (f,a)(2) = (f,a)(z) =0} <m—2 (1<i#j<q).

Assume that f is linearly non-degenerate over R({aj};’:l). Consider the
family 7 ({a;}/,, f,d) of all linearly non-degenerate over R({s;}/,) meromor-
phic mappings ¢ : C" — P"(C) satisfying the conditions: '

(I) min{v 4)(z),d} = min{v s ,)(2),d} for all je{l,...,q};

() /() =g(z) on U2 {z: (f.a)(z) = 0}.

In [2], Z. Chen and M. Ru studied the uniqueness problem of holomorphic
curves and proved the following.

THEOREM D.  If q = 2n* +4n, then #7F ({a;}}, f,2) <2

In 2007, D. Thai and S. Quang [13] improved Theorem D and obtain the
following theorem.
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TurOREM E. If ¢ > 2n* +4n and n =2, then #7 ({a;}],, f,1) =

In 2006, Z. Chen and Q. Yan [3] considered the uniqueness problem of
meromorphic mappings in another direction. In fact, they weakened the as-
sumption of sharing moving targets to “partially” sharing moving targets. Here,
we say that two meromorphic mappings f, g partially share a moving target a
if E(a,f) < E(a,g), where E(a,h) = {ze C" : (h,a)(z) = 0} for a meromorphic
mapping & from C™ into P”(C). Their result can be described as follows.

THEOREM F. Let f and g be two meromorphic mappings, let {a,} *, be q
“small” (with respect to f) meromorphic mappings of C" into P"(C) in general
position such that (f,a;) #0 and (g,a;) #0 (1 < j <gq), and let f, g be linearly
non-degenerate over R({a;}' ). Assume that
(1) E(f,4) = E(9,q) 1<j<gq;
(2) dim E(f,a))NE(f,a)) <m—2 for 1 <i# j<gq;
() 1) =g(z) on UL {zeC" s (f.a)(z) = Ok If q=20% +4n+1 and

nn+2)
hfgloprNfa /ZNM/ 7(11—#2)—1—17
then f=g.

Nowadays, to seek the smaller number ¢ in the above theorems becomes an
interesting and meaningful job. In the section, the aim is to replace the number
¢ by a smaller one in Theorem E and F. In fact, we obtain the following two
results.

TurOREM 2.1. If q > 2n* +2n+ 3, then #7 ({a;}],, f,1) =

THEOREM 2.2. Assume that the conditions are stated as in Theorem F. If
q>2n*+2n+3, then f =g.

Remark 3. 1f n > 2, our results are improvements of Theorem E and F,
respectively.

3. Preliminaries and some lemmas

Set |lzll = (|21 + -+ + |zl )2

for z=(z1,...,2,) and define
B(ry={zeC":|z|l<r}, SF)={zeC":|z|l=r} (0<r< ),
and
_ ¢ 2ym—1 _ g 2 c 2\m—1
Oom-1(2) = (dd*||2||")™,  om(z) = d* log]|z[|" A (dd* log]|z[|")

on C™\{0}.
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Let f be a non-constant meromorphic mapping of C” into P"(C). We take
the holomorphic functions fy,..., f, on C" such that ., = {ze C": fo(z) =---
Jfa(z) = 0} is of dimension at most m — 2, and f = {fo,..., f,} is called a reduced
representation of f. The characteristic function of f is defined as

7}(V)::J;()logﬂfﬂ0h1—-JSU)IOngHUm-

Note that Ty(r) is independent of the choice of the reduced representation of f.
For a divisor v on C™ and positive integers k, p (or k, p = o0), we define
some divisors as follows.

o0, if v(z) >k,
O = {0, i ok
» _ [vP(2), if v(z) > k,
“*@)_{07 if v(z) < k.

Define n(f) by

n(t) = {f\mB V(Z)Um—la %f m>2,
2= v(2), it m=1.
(

t
Similarly, we define n”(z), n”, (1), n” (r). Define the counting function of v as

N(r,v) = J tz;gt) dt (1 <r< o).

Similarly, we define N(r,v?), N(r,v2,), N(r,v’,) and denote them by N”(r,v),
N2, (r,v), N2, (r,v), respectively.
Let ¢: C™ — P'(C) be a meromorphic function. Define

Nlﬁ(r) ZN(V,V¢), N(;i)(r) :N”(r,v¢),

N(]zsk(r) :Ngk(rvv¢)> N¢ (1) = NL(r,vy).

In order to prove our results, we need the second main theorem for mero-
morphic mappings.

Lemma 3.1 [13]. Let f:C"™ — P"(C) be a linearly non-degenerate mero-
morphic mapping and H,,...,H, be q hyperplanes in general position in P"(C).
Then

q
I (g=n—=DT5(r) < Y N g (r) + o(Ty(r)).
j=1

As usual, by the notation ‘|| P” we mean the assertion P holds for all
re0,0) excluding a Borel subset E of the interval [0, 00) with [, dr < oo.
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The following lemma is a modification of the second main theorem, which is
essential to the proof of Theorem 1.1.

Lemma 3.2. Let f: C" — P"(C) be a linearly non-degenerate meromorphic
mapping and Hy,...,H, be g hyperplanes in general position in P"(C). Then
i=3

q
< - N, + o(Ty(r)),

where m; >my >,---, > my > n are integers.

4. p 2n

—n—1- _— | T
=" Zmﬁ—l my + 1 f(r)

Proof:  With Lemma 3.1, we have

G1) | (g—n—DT,()
< > Nl (1) +o(Ty(r)

=
< 3 [V om0 2 Ny 0]+ 00
=1 j
q
=D Ny sy, () g NG () = N o ()] 0( ()
j=1 i)
q
< D Nl em () mjil[Nu.H)() Nl y,<m (D] + 0(T7 (1))

q
= Z[l - }me«n,(r) Ny (1) + 0T (1))

mj + 1 m; + 1

q
<Y [1 - —} Nl 1) <y () —— T (r) + (T (1)

m; + 1 m; + 1

J
n q
< |:1 m T 1:|N (f, Hy) <m1 +Zz|: e T 1:| (f,Hj).,Smj(r)
J:

3 T 0+ )
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n n n
<2 " |7 '/}
< [m2+1 m1—|—1] f(r)+Z[ m2+1] (r. 1), <m (T)

which implies that the conclusion of Lemma 3.2 holds.
Hence, we finish the proof of this lemma.

Lemma 3.3 [13]. Let f be a meromorphic mapping, and {a,} be ¢
(= 2n+ 1) meromorphic mappings from C" into P"(C) in general posztlon such
that f is linearly non-degenerate over R({a]}]:I) Then

q
n+2 Ty(r ;N(/‘a, +07}())+0<1r£]a§q Taj())

4. The proof of Theorem 1.1

On the contrary, suppose that f # g. In the following, we use the methods
of Z. Chen and Q. Yan [4], T. Cao and H. Yi [1], G. Dethloff and T. Tan [5] to
handle the problem.

We first introduce an equivalence relation on L := {1,..., ¢} as follows i ~ j

U, H) _ (0. H) 0. Set {L ,Ls} = L/~. Since and
.H) (9 H) o k) = H S 7
{H,; } !, are in general position, we have that #L; <n for all ke {l,...,s}.
Without loss of generahty, we assume that Ly := {ir_; + 1,...,ix} (ke {l,...,s})
where 0 =iy < - <ig=gq.

Define the map o: {1,...,q} — {l,...,¢} by

if and only if

. {i—i—n, ifi+n<gy,
o(i) =« . o
i+n—q, ifi+n>q.

It is easy to see that o is bijective and |o(i) — i| > n (note that ¢ >2n). This
implies that i and o(i) belong two distinct sets of {Li,...,L;} and

(/. Hi)  (9.H)

# 0.
(f7 Ho‘(l)) (ga Ho’(i))

(4.1)
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Let P, = (f, H;)(g, Hy(s)) — (9, Hi)(f, Hy1)).  Obviously, P; # 0. With the Jensen
formula, we obtain

(4.2) Js log|P|g,, + O(1)

< s 10g (f, H| +[(f Hy(i))| )l/zam

+J()log<|< H) + (g, Ho)2) o + O(1)
< Tf(r) + Tg(r) +0(1)=T(r)+ O(1),

where T'(r) = Ty(r) + Ty(r).

Let k € {i,o(i)}. Since v (o H) <me = (1q Hy),<mg> We have that a zero point z
of (f,H) with multlphclty <my is a zero point of (g, H;) with multiplicity
<m. Then zy is a zero point of P with multiplicity > min{v, g,)(z0),
Vg, ) (20)} (outside an analytic set of codimension > 2).

We also have

(43) min{v(ﬁ Hy) (Z()), U(g’ Hy) (Z())}

1
2 V(s )< (20) + 0 1), <m (20) = 1005 1) <, (20)-

For any je{l,....q\ia()}, by f(z)=g(z) on Uf {zeC":0<
v(r,m)(2) <m;}, we have that a zero point zy of (f, H;) with multiplicity < m;
is a zero point of P; (outside an analytic set of codimension > 2).

From the above discussions, we deduce

(44) Nt 1y <m (1) + NG 11y, <m (1) — nN(lf,H,),gn1,( )+ Ny, Hay),<mag (r)

1
+ N(g H(iy), <mg ;) (}") - nN(/' H(,(i)),gm(,(, Z N (f,Hj),<m; )
j#i,0(i)

< Np(r) < T(r).

By taking the sum of both sides of (4.4) over (1 <i<g), we have

q
(45) 2 Z[N(’;, H;),Sm,-(r) + N(Iicl] H,-),Sm,-(r)}

i=1
q

+(q=2n=2) > Nl gy < (1) < aT().
i=1

Similarly, we deduce that
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(4.6) 2

1

N(f H;) <mr +Ng H;) <m,( )]

q
i=1

q

+(q—2n-2) Z Ny y.<m (1) < 4T (1)
i=1

.. 1 .
Combining (4.5), (4.6) and N/, _, (r) = EN(”/-_ 1).<m (1) yields that

q-+ 2n—2 . n n
(4.7) ?Z[N(g,&),sm[(r) + N ), <m (D] < 29T (r).

i=1

Rewriting (4.7) as

(43) - > I, m0) Ny 20
=3 +22€;nf 2 {1 - m2n+ 1] ).

With Lemma 3.2 and (4.8), we get

(4.9) 1 §q: " 2| 1)
. -n—-1-» ———
1 —mi+1 m+1
2gn n
< 1 - T T(r)).
_q+2n2< m2+1> (r) +o(T(r))

Furthermore, we obtain

a4 n 2n

(4.10) [qnlz

L ——
2 1 mpr1| )

[n<q—2>—z " nlg-2tg-n—1-—" 1)

i:3m,-—|—1 my +1

_lnz i —(nfl)q+nflfm2n T(r)
z

=3 I’I/lj+ 1

-~ el (1= 57) [T+ otro,
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which implies that

zq: m; <(nfl)q+n+l 2(n—=1) 4(n-1) 1 n
—m+1 " n m+1 q+2n—2 m+1)

It contradicts with assumption.
Hence, we complete the proof of Theorem 1.1.

5. The proof of Theorem 2.1

On the contrary, suppose that f,ge #({a;}/,f,1) such that f #g.
Similarly as above, we first introduce an equivalence relation on L :=

oa) _19.:@) o ser qr,,..., L)

(f.7 aj) (gaaj)
=L/~. Since f # g and {aj};’:] are in general position, we have that #L; <n
for all ke {l,...,s}. Without loss of generality, we assume that L; := {ir_; +
L...yix} (ke{l,...,s}) where 0 =iy <--- <i;=q.

Define the map o: {1,...,q} — {l,...,q} by

{1,...,q} as follows i ~ j if and only if

) {i—i—n, if i+n<yq,
o(i) =< . o
i+n—q, ifi+n>q.

It is easy to see that o is bijective and |o(i) — i| > n (note that ¢ > 2n* + 2n + 2
> 2n). This implies that i and o(i) belong two distinct sets of {L;,..., L}
and

(f’ai) _ (gvai)

(f’ a”(i)) (gaao(i)) . 0-
Let
(5.1) p— @) _ (9.a)

(fa aa'(l')) (ga aa(i)) .
Obviously, P; # 0.

Since min{v(s ,)(2),1} = min{vy, ,)(2),1}, we obtain from (5.1) that
(52) vp, (Z()) > min{li(f7u’.)(20), U(gﬂi)(Zo)}

= 0y (20) + Vg (0) = 10l 4 (20).

For any je{l,...,q}\{i,0(i)}, by the assumption (II) and (5.1), we have
that a zero point zo of (g,a;) is a zero point of P; (outside an analytic set of
codimension > 2).

From the above discussions, we deduce
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(5.3) N ap(r) + Ny o (r) — Z N(g )
J#1, a

< Ny(r) < Th(r) < m(r, P) + Nl/p,(r)
< T(}") - N(fsaa(i))(r) - N<gvaa(i)>(r) + NI/P[(V) + 0(1)7
where T(r) = Ty(r) + T,4(r). Obviously,
(5~4) Ul/P;(Z) - U(/}aa(f))(z) - U(gvan(i)>(z)
= max{v(f,aaa))(z)’ U(gvan(i))(z)} - U(fv“a(i)>(z) - U(gv%m)(z)
= _rnin{v(fy(la(i))(Z)7 U(%aa(f))(z)}
= _U(f-ua(i))(z) - U(g-r”a(i))(z) + nv(lg‘ag(n)(z)'
Combing (5.3) and (5.4) yields that
(5:5) Ny (1) + N ) (1) = 1N (g 0 (1) + N{y 4, (1)
q
+ N(!Iaa (i) >(r) o nN(lgja”([))(r) + Z N(l%aj) (r)
J#i,a(i)
T(r)+ O(1).
By taking the sum of both sides of (5.5) over (1 <i <g¢), we have

q q
(5.6) H 2D NG (1) Ny (D] + (g = 2n=2) > NE, 0 (r)

i=1 i=1
q
<qT(r)+0(1) < (n+2)) [N/ (g.a) (")) + o(T(r)),
i=1
which implies that

(57 | a-2-2 3 N0

i=1

IA

a) (1) + Nig 0y ()] + o(T(r))

IA

nZ[N(
i=1
q
n’ Z[N(lf,af)(r) + N(lg.a,v)(r)] +o(T(r))
i—1

<2n? ; Ny (1) + o(T(r)).
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Noting that ¢ >2n*+2n+3 and (5.7), we deduce that > 7, @ al)(r) =
YN ( )=0(T(r)). By Lemma 3.3, we derive a contradlctlon
hus we finish the proof of Theorem 2.1.

6. The proof of Theorem 2.2

In the following, we will prove Theorem 2.2 as the way in Theorem 2.1.

Obviously, the inequality (5.2) still holds.

For any je{l,...,q}\{i,a(i)}, by the assumption E(f,a;) < E(g,a;) and
(5.1), we have that a zero point zy of (f,a;) is a zero point of P; (outside an
analytic set of codimension > 2).

From the above discussions, we derive that

q

(6.1) N{y a)( )+N(q an (1) _nN(lg,a,»)(r) + z:()N(lf,a,)(r)
J#io(i

< Np(r) < Tp(r) <m(r,P;) + Nyp(r)
T(r) = N(f.a50) (1) = Nig.a,) (1) + Niyp (r) + O(1),
where T'(r) = T¢(r) 4+ Ty(r). Obviously,
(6.2) 01/2.(2) = V(1,40 (2) — V(g,a,9) (2)
< Max{0(1,a,) (2); 0(g,a) ()} = 0(1.000) (2) = Vi) (2)
= —min{v(1,a,) (2)s Ug.a) (2)}

IA

1
= —U(f-”a(i))(z) - v(g-,lla<i))(z) + nv(g‘aa(i))(z)-

Combing (6.1) and (6.2) yields that

(6'3) N(}?/}ai)(r) + N(r{llﬂi)(r) B nN(lgaai) (}’) + N(nfsaa(i)>(r)
q
NG (1) = Nl () Y Ny (1)
Lol
T(r)+ O(1).

By taking the sum of both sides of (6.3) over (1 <i <g), we have

q

q
(64) || 23V N1 =203 N0+ (=23 N0

i=1 i=1

<qT(r) + (n+2) Z (g.an (] +0(T(r)),

i=1
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which implies that

(6.5) H “2n Ny () + (G =2) D N (1)
i=1 i

It follows from (6.5) that

q q
(6.6) H Z: Cran(r) < (07 42n) Y ONL (1) + o(T(r)),

i=1

which indicates that

1 n(n—|—2)
lim inf N} —_— .
mn ; (fa) /Z (g.a)\") = q—n2—2

For ¢ > 2n> 4+ 2n + 3, we obtain that

q
o | nn+2)
fminf 2 Nirao ) /ZNM ST
=

which contradicts with the assumption.
Thus, we finish the proof of Theorem 2.2.
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