AN EXPLICIT BOUND FOR THE LOJASIEWICZ EXPONENT OF REAL POLYNOMIALS

TiẾn Sơn PhạM

Dedicated to Professor Mutsuo Oka on the occasion of his 65th birthday

Abstract

Let $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ be a polynomial function of degree d with $f(0)=0$. The classical Łojasiewiz inequality states that there exist $c>0$ and $\alpha>0$ such that $|f(x)| \geq$ $c d\left(x, f^{-1}(0)\right)^{\alpha}$ in a neighbourhod of the origin $0 \in \mathbf{R}^{n}$, where $d\left(x, f^{-1}(0)\right)$ denotes the distance from x to the set $f^{-1}(0)$. We prove that the smallest such exponent α is not greater than $R(n, d)$ with $R(n, d):=\max \left\{d(3 d-4)^{n-1}, 2 d(3 d-3)^{n-2}\right\}$.

1. Introduction

Let $f: U \rightarrow \mathbf{R}$ be an analytic function defined in a neighborhood U of the origin $0 \in \mathbf{R}^{n}, f(0)=0$, and let $Z:=\{x \in U \mid f(x)=0\}$. Then the classical Łojasiewicz inequality ([29]) asserts that there exist constants $r>0, c>0$ and $\alpha>0$ such that

$$
|f(x)| \geq c d(x, Z)^{\alpha}, \quad \text { for all }\|x\| \leq r
$$

where $d(x, Z):=\inf \{\|x-y\| \mid y \in Z\}$, and $\|\cdot\|$ denotes the usual Euclidean norm in \mathbf{R}^{n}.

The Łojasiewicz exponent of f at the origin $0 \in \mathbf{R}^{n}$, denoted by α_{f}, is the infimum of the exponents α satisfying the above Łojasiewicz's inequality. Bocknak and Risler [7] (see also [37]) proved that α_{f} is a rational number. Moreover, the Łojasiewicz's inequality holds with exponent α_{f} and some constant $c>0$.

The computation or estimation of the Łojasiewicz exponent is a quite interesting problem. For instance, if f is a real polynomial of degree d in n variables, one would like to have an explicit bound for α_{f} in terms of d and n. The complex analytic variant of this question has been settled in the papers [1], [2], [5], [6], [9], [10], [16], [19], [20], [22], [23], [24], [31], [33], [34], [36], [37].

[^0]In the case $n=2$, a formula for computing the Łojasiewicz exponent α_{f} was given by Kuo in [25]. A similar formula for the Łojasiewicz exponent at infinity in the real plane is given in the paper [40] (see also [41]). However, it seems more difficult to obtain effective estimates in the general case.

We now assume that f is a real polynomial of degree d in n variables. It is known that α_{f} can be bounded by some rational number depending only on n and d (see, for example, [23], [38]). If f has an isolated zero at the origin (that is, f has a strict local extremum at 0), then Gwoździewicz [13] (see also [24], [17]) established the following nice estimate:

$$
\alpha_{f} \leq(d-1)^{n}+1 .
$$

In this paper we consider the general case, that is, the case where f may have a non-isolated zero at the origin. Precisely, for any integer $d \geq 2$ and for any polynomial f in n variables with $\operatorname{deg} f=d$ and $f(0)=0$ we have the following explicit estimate:

$$
\alpha_{f} \leq \max \left\{d(3 d-4)^{n-1}, 2 d(3 d-3)^{n-2}\right\} .
$$

The proof of this inequality is based on an explicit bound for the Łojasiewicz exponent in the gradient inequality for real polynomials [11] and the Ekeland's variational principle [14]. Note that this principle is also used recently by Tiep, Vui and Thao [39] in order to study the (global) Łojasiewicz inequality for polynomial functions.

The paper is organized as follows: The results are given in Section 2 and the proofs are given in Section 3.

2. Results

Let $f: U \rightarrow \mathbf{R}$ be an analytic function defined in a neighborhood U of the origin $0 \in \mathbf{R}^{n}$ and let $Z:=\{x \in U \mid f(x)=0\}$. We can write

$$
f=f_{m}+f_{m+1}+\cdots,
$$

where f_{i} is a homogeneous form of degree i, and $f_{m} \not \equiv 0$. We denote by $m_{f}:=m$, the multiplicity of f. Note that $m_{f} \geq 1$ with the equality if and only if $\nabla f(0) \neq 0$.

Theorem 2.1. Let $f: U \rightarrow \mathbf{R}$ be an analytic function defined in a neighborhood U of the origin $0 \in \mathbf{R}^{n}, f(0)=0$. We have
(i) $\alpha_{f} \geq m_{f}$.
(ii) $\alpha_{f}=1$ if and only if $m_{f}=1$.

Remark 2.1. In the complex case, Risler and Trotman proved in [35] that $\alpha_{f}=m_{f}$.

The main result of this paper is as follows.

Theorem 2.2. Let $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ be a real polynomial of degree $d \geq 2$. Assume that $f(0)=0$ and $\nabla f(0)=0$. Then the Lojasiewicz exponent α_{f} satisfies

$$
\alpha_{f} \leq R(n, d)
$$

where $R(n, d):=\max \left\{d(3 d-4)^{n-1}, 2 d(3 d-3)^{n-2}\right\}$.

3. Proofs

3.1. Proof of Theorem 2.1. Let $f: U \rightarrow \mathbf{R}$ be an analytic function defined in a neighborhood U of the origin $0 \in \mathbf{R}^{n}, f(0)=0$, and let $Z:=\{x \in U \mid$ $f(x)=0\}$. The directional set $D(Z)$ of Z at $0 \in \mathbf{R}^{n}$ is defined by

$$
D(Z):=\left\{v \in \mathbf{S}^{n-1} \mid \exists\left\{x_{k}\right\} \subset Z \backslash\{0\}, x_{k} \rightarrow 0 \in \mathbf{R}^{n} \text { s.t. } \frac{x_{k}}{\left\|x_{k}\right\|} \rightarrow v, k \rightarrow \infty\right\} .
$$

Here \mathbf{S}^{n-1} denotes the unit sphere centred at $0 \in \mathbf{R}^{n}$. We refer the reader to [21] for the basic properties of the directional set $D(Z)$. We note that the set $D(Z)$ is simply the intersection of the usual tangent cone of Z at $0 \in \mathbf{R}^{n}$ (i.e. the PainlevéKuratowski upper limit: $\left.\lim \sup _{t \rightarrow 0+} \frac{1}{t} Z\right)$ with the sphere \mathbf{S}^{n-1}. Therefore, it is straightforward that $D(Z)$ is a closed subanalytic subset of \mathbf{S}^{n-1} (since it is described by a first-order formula and since Z is an analytic set). Moreover, we have

Lemma 3.1. The directional set $D(Z)$ is a subanalytic set of dimension \leq $n-2$.

Proof. See, for example, [27, Proposition 1], [21, Proposition 2.2], [28].

Proof of Theorem 2.1. (i) By Lemma 3.1, there is $v \in \mathbf{S}^{n-1} \backslash D(Z)$ such that $f_{m_{f}}(v) \neq 0$. We have, for all $0<t \ll 1$,

$$
f(t v)=f_{m_{f}}(v) t^{m_{f}}+\text { terms of higher in } t
$$

Therefore

$$
\begin{equation*}
f(t v) \simeq t^{m_{f}} \quad \text { for } 0 \leq t \ll 1 . \tag{1}
\end{equation*}
$$

On the other hand, by the monotonicity lemma (e.g. [12, Theorem 4.1], [8, Theorem 2.1]), the function $t \mapsto d(t v, Z)$ is analytic for $0 \leq t \ll 1$. We will prove that there exists a constant $c>0$ such that

$$
\begin{equation*}
d(t v, Z) \geq c t \quad \text { for } 0 \leq t \ll 1 \tag{2}
\end{equation*}
$$

By contrary, assume that

$$
\lim _{t \rightarrow 0+} \frac{d(t v, Z)}{t}=0
$$

Let $x(t), 0 \leq t \ll 1$, be a curve in Z such that $d(t v, Z)=\|t v-x(t)\|$. Clearly, $x(t) \neq 0$ for $0<t \ll 1$. Moreover, we have, for all $0<t \ll 1$,

$$
\frac{d(t v, Z)}{t}=\frac{\|t v-x(t)\|}{t}=\left\|v-\frac{x(t)}{t}\right\| \geq\left|\|v\|-\left\|\frac{x(t)}{t}\right\|\right|=\left|1-\left\|\frac{x(t)}{t}\right\|\right| .
$$

Consequently, $\lim _{t \rightarrow 0+} \frac{x(t)}{t}=v$ and $\lim _{t \rightarrow 0+} \frac{\|x(t)\|}{t}=1$. Therefore

$$
\lim _{t \rightarrow 0+} \frac{x(t)}{\|x(t)\|}=\lim _{t \rightarrow 0+} \frac{x(t)}{t} \frac{t}{\|x(t)\|}=v
$$

which contradicts to the fact that $v \notin D(Z)$.
Now it follows immediately from (1), (2) and the definition of the exponent α_{f} that $\alpha_{f} \geq m_{f}$.
(ii) By the statement (i), if $\alpha_{f}=1$ then $m_{f}=1$.

We now assume that $m_{f}=1$, which means that $\nabla f(0) \neq 0$. Then there exist positive constants r and c such that

$$
\|\nabla f(x)\| \geq c \quad \text { for all } x \in \mathbf{B}^{n}(2 r) .
$$

Here and in the following $\mathbf{B}^{n}(r):=\left\{x \in \mathbf{R}^{n} \mid\|x\| \leq r\right\}$ denotes the closed ball centered at the origin with radius r.

Without loss of generality, we may assume that the function f is of class C^{1} on \mathbf{R}^{n}.

Take any $x \in \mathbf{B}^{n}(r)$. By [15, Corollary 16], there exists $x^{\prime} \in \mathbf{R}^{n}$ such that

$$
\begin{aligned}
\left\|x-x^{\prime}\right\| & \leq d(x, Z) \\
\left\|\nabla f\left(x^{\prime}\right)\right\| d(x, Z) & \leq|f(x)|
\end{aligned}
$$

The first inequality implies that

$$
\left\|x^{\prime}\right\| \leq\left\|x^{\prime}-x\right\|+\|x\| \leq d(x, Z)+\|x\| \leq 2\|x\| \leq 2 r
$$

Thus

$$
\begin{equation*}
|f(x)| \geq\left\|\nabla f\left(x^{\prime}\right)\right\| d(x, Z) \geq c d(x, Z) \tag{3}
\end{equation*}
$$

On the other hand, since the function f is of class C^{1}, f is Lipschitz on the closed ball $\mathbf{B}^{n}(2 r)$. That is there exists $L>0$ such that

$$
|f(b)-f(a)| \leq L\|b-a\| \quad \text { for all } a, b \in \mathbf{B}^{n}(2 r)
$$

Let $a \in Z$ be such that $\|x-a\|=d(x, Z)$. Observe that $a \in \mathbf{B}^{n}(2 r)$. Hence

$$
\begin{equation*}
|f(x)|=|f(x)-f(a)| \leq L\|x-a\|=L d(x, Z) \tag{4}
\end{equation*}
$$

The desired result now follows immediately from (3), (4) and the definition of the Łojasiewicz exponent α_{f}.
3.2. Proof of Theorem 2.2. Let $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ be a real polynomial of degree $d \geq 2$. Assume that $f(0)=0, \nabla f(0)=0$, and $Z:=\left\{x \in \mathbf{R}^{n} \mid f(x)=0\right\}$. We have

Lemma 3.2. Let $r>0, c>0$ and $l>0$ be constants such that

$$
\|\nabla f(x)\| \geq c d(x, Z)^{l} \quad \text { for all } x \in \mathbf{B}^{n}(2 r)
$$

Then

$$
|f(x)| \geq c^{\prime} d(x, Z)^{l+1} \quad \text { for all } x \in \mathbf{B}^{n}(r)
$$

where $c^{\prime}:=c \frac{l^{l}}{(l+1)^{l+1}}$.
Proof. This proof follows that of [42].
Let $\phi(s):=c s^{l}$ and $\psi(s):=\max _{0 \leq \lambda \leq s} \lambda \phi(s-\lambda)$. Then it is easy to see that
(a) the function ϕ is nondecreasing on $[0, r]$;
(b) $\psi(s)=c^{\prime} s^{l+1}$; and
(c) for each $s>0$ there exists $\lambda \in(0, s)$ such that

$$
\frac{1}{\lambda} \psi(s) \leq \phi(s-\lambda)
$$

By the assumption, $\|\nabla f(x)\| \geq \phi(d(x, Z))$ for all $x \in \mathbf{B}^{n}(2 r)$. We will prove the following inequality

$$
|f(x)| \geq \psi(d(x, Z)), \quad \text { for all } x \in \mathbf{B}^{n}(r)
$$

By contrary, assume that there exists $x_{0} \in \mathbf{B}^{n}(r)$ such that

$$
\left|f\left(x_{0}\right)\right|<\psi\left(d\left(x_{0}, Z\right)\right) .
$$

Then $x_{0} \notin Z$ and $\psi\left(d\left(x_{0}, Z\right)\right)>0$. Moreover, there exists $c_{0} \in(0,1)$ such that

$$
\left|f\left(x_{0}\right)\right|<c_{0} \psi\left(d\left(x_{0}, Z\right)\right)
$$

Let $\varepsilon:=c_{0} \psi\left(d\left(x_{0}, Z\right)\right)>0$ and $s:=d\left(x_{0}, Z\right)>0$.
In view of Item (c) above, it is clear that there exists $\lambda \in \mathbf{R}$ such that the following inequalities hold

$$
\begin{aligned}
& 0<\lambda<s=d\left(x_{0}, Z\right), \\
& \frac{1}{\lambda} \psi(s) \leq \phi(s-\lambda) .
\end{aligned}
$$

By the Ekeland's variational principle ([14, Theorem 1.1]), there exists $x^{\prime} \in \mathbf{R}^{n}$ such that

$$
\begin{aligned}
\left\|x^{\prime}-x_{0}\right\| & \leq \lambda \\
\left|f\left(x^{\prime}\right)\right| & \leq\left|f\left(x_{0}\right)\right|, \\
|f(z)|+\frac{\varepsilon}{\lambda}\left\|z-x^{\prime}\right\| & \geq\left|f\left(x^{\prime}\right)\right| \quad \text { for all } z \in \mathbf{R}^{n} .
\end{aligned}
$$

Consequently, we have

$$
\left\|x^{\prime}\right\| \leq\left\|x^{\prime}-x_{0}\right\|+\left\|x_{0}\right\| \leq \lambda+\left\|x_{0}\right\|<d\left(x_{0}, Z\right)+\left\|x_{0}\right\| \leq 2\left\|x_{0}\right\| \leq 2 r
$$

and

$$
d\left(x^{\prime}, Z\right) \geq d\left(x_{0}, Z\right)-\left\|x^{\prime}-x_{0}\right\| \geq d\left(x_{0}, Z\right)-\lambda>0 .
$$

This implies that $x^{\prime} \notin Z$; i.e., $f\left(x^{\prime}\right) \neq 0$. We may assume that $f\left(x^{\prime}\right)=\left|f\left(x^{\prime}\right)\right|>$ 0 (otherwise, we replace f by $-f$). Then $f(z)=|f(z)| \geq 0$ for $\left\|z-x^{\prime}\right\| \ll 1$. Therefore

$$
f(z)+\frac{\varepsilon}{\lambda}\left\|z-x^{\prime}\right\| \geq f\left(x^{\prime}\right) \text { for }\left\|z-x^{\prime}\right\| \ll 1
$$

Take any $u \in \mathbf{R}^{n}$, and set $z=x^{\prime}+t u$ in the preceding inequality, with $0<t \ll 1$. This yields

$$
\frac{1}{t}\left[f\left(x^{\prime}+t u\right)-f\left(x^{\prime}\right)\right] \geq-\frac{\varepsilon}{\lambda}\|u\|
$$

Letting $t \rightarrow 0+$, we get

$$
\left\langle\nabla f\left(x^{\prime}\right), u\right\rangle \geq-\frac{\varepsilon}{\lambda}\|u\| .
$$

Taking the infimum of both sides over all $u \in \mathbf{R}^{n}$ with $\|u\|=1$, we get

$$
-\left\|\nabla f\left(x^{\prime}\right)\right\| \geq-\frac{\varepsilon}{\lambda}
$$

which means that

$$
\left\|\nabla f\left(x^{\prime}\right)\right\| \leq \frac{\varepsilon}{\lambda}=\frac{c_{0} \psi\left(d\left(x_{0}, Z\right)\right)}{\lambda}
$$

And thus we obtain the following contradiction

$$
\begin{aligned}
\left\|\nabla f\left(x^{\prime}\right)\right\| & \geq \phi\left(d\left(x^{\prime}, Z\right)\right) \geq \phi\left(d\left(x_{0}, Z\right)-\lambda\right) \\
& \geq \frac{1}{\lambda} \psi\left(d\left(x_{0}, Z\right)\right)>\frac{c_{0}}{\lambda} \psi\left(d\left(x_{0}, Z\right)\right) \geq\left\|\nabla f\left(x^{\prime}\right)\right\| .
\end{aligned}
$$

(The first inequality follows from the assumption and the fact that $x^{\prime} \in \mathbf{B}^{n}(2 r)$.)

Remark 3.1. In Lemma 3.2, we assume that f was polynomial function. However, it is enough to assume that f is C^{1}-function.

Proof of Theorem 2.2. The well known Łojasiewicz's gradient inequality ([29] or [30]) states that there exist $r>0, c_{1}>0, \theta>0$ such that for any $x \in \mathbf{B}^{n}(2 r)$ we have

$$
\begin{equation*}
\|\nabla f(x)\| \geq c_{1}|f(x)|^{\theta} \tag{5}
\end{equation*}
$$

Let θ_{f} be the infimum of the exponents θ satisfying the Łojasiewicz's gradient inequality. It is known (see [29], [7], [3]) that $\theta_{f} \in(0,1)$ and the inequality (5) holds with the exponent θ_{f} and some constant $c_{1}>0$. Moreover, D'Acunto and Kurdyka proved [11] that

$$
\begin{equation*}
\theta_{f} \leq 1-\frac{1}{R(n, d)} \tag{6}
\end{equation*}
$$

We observe from (5) that

$$
\left\{x \in \mathbf{B}^{n}(2 r) \mid \nabla f(x)=0\right\} \subset\left\{x \in \mathbf{B}^{n}(2 r) \mid f(x)=0\right\} .
$$

By Łojasiewicz's inequality ([7], [3]), there exist constants $c_{2}>0, \beta>0$ such that we have for any $x \in \mathbf{B}^{n}(2 r)$,

$$
\begin{equation*}
\|\nabla f(x)\| \geq c_{2} d(x, Z)^{\beta} \tag{7}
\end{equation*}
$$

Let β_{f} be the infimum of the exponents β satisfying the inequality (7). It is known (see, for example, [7]) that the inequality (7) holds with the exponent β_{f} and some constant $c_{2}>0$, i.e.,

$$
\|\nabla f(x)\| \geq c_{2} d(x, Z)^{\beta_{f}} \quad \text { for all } x \in \mathbf{B}^{n}(2 r)
$$

It follows from Lemma 3.2 that

$$
|f(x)| \geq c_{2}^{\prime} d(x, Z)^{\beta_{f}+1} \quad \text { for all } x \in \mathbf{B}^{n}(r)
$$

where $c_{2}^{\prime}:=c_{2} \frac{\beta_{f}^{\beta_{f}}}{\left(\beta_{f}+1\right)^{\beta_{f}+1}}$. By the definition of the Łojasiewicz exponent α_{f},
then

$$
\begin{equation*}
\beta_{f}+1 \geq \alpha_{f} \tag{8}
\end{equation*}
$$

On the other hand, we have for all $\|x\| \leq r$,

$$
|f(x)| \geq c d(x, Z)^{\alpha_{f}}
$$

after perhaps reducing r. This yields

$$
\|\nabla f(x)\| \geq c_{1}|f(x)|^{\theta_{f}} \geq c_{1} c^{\theta_{f}} d(x, Z)^{\alpha_{f} \theta_{f}} \quad \text { for all }\|x\| \leq r
$$

By the definition of β_{f}, then

$$
\alpha_{f} \theta_{f} \geq \beta_{f}
$$

This, together with the inequality (8), implies that

$$
\alpha_{f} \leq \frac{1}{1-\theta_{f}}
$$

The desired result follows immediately from the inequality (6).
Remark 3.2. After the submission of this paper for publication we have learnt that Theorem 2.2 was also proved by a different argument by Kurdyka and Spodzieja [26] (see also [4, Theorem 2.8]).

Acknowledgments. The author is grateful to Professor Hà Huy Vui for pointing out the results of Ekeland [14], [15].

References

[1] O. M. Abderrahmane, On the Łojasiewicz exponent and Newton polyhedron, Kodai Math. Journal 28 (2005), 106-110.
[2] W. D. Brownawell, Bounds for the degrees in the Nullstellensatz, Ann. of Math. 126 (1987), 577-591.
[3] E. Bierstone and P. D. Milman, Semianalytic and subanalytic sets, Publ. Math. I.H.E.S. 67 (1988), 5-42.
[4] E. Bierstone and P. D. Milman, Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Invent. Math. 128 (1997), 207-302.
[5] C. Bivì̀-Ausina, Łojasiewicz exponents, the integral closure of ideals and Newton polyhedra, J. Math. Soc. Japan 55 (2003), 655-668.
[6] C. BiviÀ-Ausina, Jacobian ideals and the Newton non-degeneracy condition, Proc. Edinb. Math. Soc. 48 (2005), 21-36.
[7] J. Bochnak and J. J. Risler, Sur les exposants de Łojasiewicz, Comment. Math. Helv. 50 (1975), 493-507.
[8] M. Coste, An introduction to o-minimal geometry, RAAG Notes, Institut de Recherche Mathématiques de Rennes, November, 1999.
[9] E. Cygan, T. Krasiński and P. Tworzewski, Separation of algebraic sets and the Łojasiewicz exponent of polynomial mappings, Invent. Math. 136 (1999), 75-87.
[10] E. Cygan, A note on separation of algebraic sets and the Łojasiewicz exponent for polynomial mappings, Bull. Sci. Math. 129 (2005), 139-147.
[11] D. D'Acunto and K. Kurdyka, Explicit bounds for the Łojasiewicz exponent in the gradient inequality for polynomials, Ann. Pol. Math. 87 (2005), 51-61.
[12] L. van den Dries and C. Miller, Geometric categories and o-minimal structures, Duke Math. J. 84 (1996), 497-540.
[13] J. GwoźDziewicz, The Łojasiewicz exponent of an analytic function at an isolated zero, Comment. Math. Helv. 74 (1999), 364-375.
[14] I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324-357.
[15] I. Ekeland, Nonconvex minimization problems, Bull. AMS. 1 (1979), 443-474.
[16] T. Fukui, Łojasiewicz type inequalities and Newton diagrams, Proc. Amer. Math. 112 (1991), 1169-1183.
[17] A. Haraux and T. S. Phạ, On the gradient of quasi-homogeneous polynomials, Univ. Iagel. Acta Math. 49 (2011).
[18] H. Hironaka, Sub-analytic sets; number theory, algebraic geometry and commutative algebra, in honor of Y. Akisuki, Tokyo, 1973, 435-493.
[19] Z. Jelonek, On the effective Nullstellensatz, Invent. Math. 162 (2005), 1-17.
[20] Z. Jelonek, On the Łojasiewicz exponent, Hokkaido Math. J. 35 (2006), 471-485.
[21] S. Koike and L. Paunescu, The directional dimension of subanalytic sets is invariant under bi-Lipschitz homeomorphisms, Ann. Inst. Fourier (Grenoble) 59 (2009), 2445-2467.
[22] J. Kollár, Sharp effective Nullstellensatz, J. Amer. Math. Soc. 1 (1988), 963-975.
[23] S. Ji, J. Kollár and B. Shiffman, A global Łojasiewicz inequality for algebraic varieties, Trans. Amer. Math. Soc. 329 (1992), 813-818.
[24] J. Kollár, An effective Łojasiewicz inequality for real polynomials, Period. Math. Hungar. 38 (1999), 213-221.
[25] T. C. Kuo, Computation of Łojasiewicz exponent of $f(x, y)$, Comment. Math. Helv. 49 (1974), 201-213.
[26] K. Kurdyka and S. Spodzieja, Separation of real algebraic sets and the Łojasiewicz exponent, preprint, UŁ, 2011/7.
[27] T. L. LoI, Density of Morse functions on sets definable in o-minimal structures, Ann. Polon. Math. 89 (2006), 289-299.
[28] T. L. LoI, An observation on definable bi-Lipschitz homeomorphism, Vietnam J. Math. 38 (2010), 281-286.
[29] S. Łojasiewicz, Ensembles semi-analytiques, Publ. Math. I.H.E.S. (1964), preprint.
[30] S. Łojasiewicz, Sur les trajectoires du gradient d'une fonction analytique, Semin. Geom. Univ. Studi Bologna 1982/1983 (1984), 115-117.
[31] B. Lichtin, Estimation of Łojasiewicz exponents and Newton polygons, Invent. Math. 64 (1981), 417-429.
[32] J. Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies 61, Princeton University Press, 1968.
[33] A. Ploski, Sur l'exposant d'une application analytique, I, II, Bull. Polish Acad. Sci. Math. 32 (1984), 669-673, 33 (1985), 123-127.
[34] T. S. Phạ, On the effective computation of Łojasiewicz exponents via Newton polyhedra, Period. Math. Hungar. 54 (2007), 201-213.
[35] J.-J. Risler and D. Trotman, Bi-Lipschitz invariance of the multiplicity, Bull. London. Math. Soc. 29 (1997), 200-204.
[36] T. Rodak and S. Spodzieja, Effective formulas for the local Łojasiewicz exponent, Math. Z. 268 (2011), 37-44,
[37] S. Spodzieja, The Łojasiewicz exponent of subanalytic sets, Ann. Polon. Math. 87 (2005), 247-263.
[38] P. Solernó, Effective Łojasiewicz inequalities in semialgebraic geometry, Appl. Algebra Engrg. Comm. Comput. 2 (1991), 2-14.
[39] D. S. Tiep, H. H. Vui and N. T. Thao, Łojasiewicz inequality for polynomial functions on non compact domains, Internat. J. Math. 23, No. 4 (2012), 1250033.
[40] H. H. Vui and N. H. Duc, A formula for the Łojasiewicz exponent at infinity in the real plane via real approximations, Hokkaido Math. J. 38 (2009), 417-425.
[41] H. H. Vui and N. H. Duc, Łojasiewicz inequality at infinity for polynomials in two real variables, Math. Z. 266 (2010), 243-264.
[42] R. Zhang, Weakly upper Lipschitz multifunctions and applications in parametric optimization, Math. Program., Ser. A. 102 (2005), 153-166.

Tiến Sơn Phạm
Department of Mathematics
University of Dalat
1, Phu Dong Thien Vuong
Dalat
Vietnam
E-mail: sonpt@dlu.edu.vn

[^0]: 1991 Mathematics Subject Classification. Primary 32B20, 32S05; Secondary 14B05, 14P10.
 Key words and phrases. Łojasiewicz inequalities, real polynomials.
 This work was supported by the National Foundation for Science and Technology Development, Vietnam.

 Received July 19, 2011; revised October 21, 2011.

