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Abstract

Let f : Rn ! R be a polynomial function of degree d with f ð0Þ ¼ 0: The classical

Łojasiewiz inequality states that there exist c > 0 and a > 0 such that j f ðxÞjb
cdðx; f �1ð0ÞÞa in a neighbourhod of the origin 0 A Rn, where dðx; f �1ð0ÞÞ denotes

the distance from x to the set f �1ð0Þ: We prove that the smallest such exponent a is

not greater than Rðn; dÞ with Rðn; dÞ :¼ maxfdð3d � 4Þn�1; 2dð3d � 3Þn�2g:

1. Introduction

Let f : U ! R be an analytic function defined in a neighborhood U of
the origin 0 A Rn, f ð0Þ ¼ 0, and let Z :¼ fx A U j f ðxÞ ¼ 0g: Then the classical
Łojasiewicz inequality ([29]) asserts that there exist constants r > 0, c > 0 and
a > 0 such that

j f ðxÞjb cdðx;ZÞa; for all kxka r;

where dðx;ZÞ :¼ inffkx� yk j y A Zg, and k � k denotes the usual Euclidean norm
in Rn:

The Łojasiewicz exponent of f at the origin 0 A Rn, denoted by af , is
the infimum of the exponents a satisfying the above Łojasiewicz’s inequality.
Bocknak and Risler [7] (see also [37]) proved that af is a rational number.
Moreover, the Łojasiewicz’s inequality holds with exponent af and some constant
c > 0:

The computation or estimation of the Łojasiewicz exponent is a quite
interesting problem. For instance, if f is a real polynomial of degree d in n
variables, one would like to have an explicit bound for af in terms of d and n:
The complex analytic variant of this question has been settled in the papers [1],
[2], [5], [6], [9], [10], [16], [19], [20], [22], [23], [24], [31], [33], [34], [36], [37].
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In the case n ¼ 2, a formula for computing the Łojasiewicz exponent af was
given by Kuo in [25]. A similar formula for the Łojasiewicz exponent at infinity
in the real plane is given in the paper [40] (see also [41]). However, it seems
more di‰cult to obtain e¤ective estimates in the general case.

We now assume that f is a real polynomial of degree d in n variables. It is
known that af can be bounded by some rational number depending only on n
and d (see, for example, [23], [38]). If f has an isolated zero at the origin (that
is, f has a strict local extremum at 0), then Gwoździewicz [13] (see also [24], [17])
established the following nice estimate:

af a ðd � 1Þn þ 1:

In this paper we consider the general case, that is, the case where f may
have a non-isolated zero at the origin. Precisely, for any integer db 2 and
for any polynomial f in n variables with deg f ¼ d and f ð0Þ ¼ 0 we have the
following explicit estimate:

af amaxfdð3d � 4Þn�1; 2dð3d � 3Þn�2g:

The proof of this inequality is based on an explicit bound for the Łojasiewicz
exponent in the gradient inequality for real polynomials [11] and the Ekeland’s
variational principle [14]. Note that this principle is also used recently by Tiep,
Vui and Thao [39] in order to study the (global) Łojasiewicz inequality for
polynomial functions.

The paper is organized as follows: The results are given in Section 2 and
the proofs are given in Section 3.

2. Results

Let f : U ! R be an analytic function defined in a neighborhood U of the
origin 0 A Rn and let Z :¼ fx A U j f ðxÞ ¼ 0g: We can write

f ¼ fm þ fmþ1 þ � � � ;

where fi is a homogeneous form of degree i, and fm 2 0: We denote by
mf :¼ m, the multiplicity of f : Note that mf b 1 with the equality if and only if
‘f ð0Þ0 0:

Theorem 2.1. Let f : U ! R be an analytic function defined in a neigh-
borhood U of the origin 0 A Rn, f ð0Þ ¼ 0: We have

(i) af bmf :
(ii) af ¼ 1 if and only if mf ¼ 1:

Remark 2.1. In the complex case, Risler and Trotman proved in [35] that
af ¼ mf :

The main result of this paper is as follows.
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Theorem 2.2. Let f : Rn ! R be a real polynomial of degree db 2:
Assume that f ð0Þ ¼ 0 and ‘f ð0Þ ¼ 0: Then the Łojasiewicz exponent af satisfies

af aRðn; dÞ;
where Rðn; dÞ :¼ maxfdð3d � 4Þn�1; 2dð3d � 3Þn�2g:

3. Proofs

3.1. Proof of Theorem 2.1. Let f : U ! R be an analytic function defined
in a neighborhood U of the origin 0 A Rn, f ð0Þ ¼ 0, and let Z :¼ fx A U j
f ðxÞ ¼ 0g: The directional set DðZÞ of Z at 0 A Rn is defined by

DðZÞ :¼ v A Sn�1 j bfxkgHZnf0g; xk ! 0 A Rn s:t:
xk

kxkk
! v; k ! y

� �
:

Here Sn�1 denotes the unit sphere centred at 0 A Rn: We refer the reader to [21]
for the basic properties of the directional set DðZÞ: We note that the set DðZÞ is
simply the intersection of the usual tangent cone of Z at 0 A Rn (i.e. the Painlevé-

Kuratowski upper limit: lim supt!0þ
1

t
ZÞ with the sphere Sn�1: Therefore, it

is straightforward that DðZÞ is a closed subanalytic subset of Sn�1 (since it is
described by a first-order formula and since Z is an analytic set). Moreover, we
have

Lemma 3.1. The directional set DðZÞ is a subanalytic set of dimensiona
n� 2:

Proof. See, for example, [27, Proposition 1], [21, Proposition 2.2], [28].
r

Proof of Theorem 2.1. (i) By Lemma 3.1, there is v A Sn�1nDðZÞ such that
fmf

ðvÞ0 0: We have, for all 0 < tf 1,

f ðtvÞ ¼ fmf
ðvÞtmf þ terms of higher in t:

Therefore

f ðtvÞF tmf for 0a tf 1:ð1Þ
On the other hand, by the monotonicity lemma (e.g. [12, Theorem 4.1], [8,

Theorem 2.1]), the function t 7! dðtv;ZÞ is analytic for 0a tf 1: We will prove
that there exists a constant c > 0 such that

dðtv;ZÞb ct for 0a tf 1:ð2Þ
By contrary, assume that

lim
t!0þ

dðtv;ZÞ
t

¼ 0:
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Let xðtÞ, 0a tf 1, be a curve in Z such that dðtv;ZÞ ¼ ktv� xðtÞk: Clearly,
xðtÞ0 0 for 0 < tf 1: Moreover, we have, for all 0 < tf 1,

dðtv;ZÞ
t

¼ ktv� xðtÞk
t

¼ v� xðtÞ
t

����
����b kvk � xðtÞ

t

����
����

����
���� ¼ 1� xðtÞ

t

����
����

����
����:

Consequently, limt!0þ
xðtÞ
t

¼ v and limt!0þ
kxðtÞk

t
¼ 1: Therefore

lim
t!0þ

xðtÞ
kxðtÞk ¼ lim

t!0þ

xðtÞ
t

t

kxðtÞk ¼ v;

which contradicts to the fact that v B DðZÞ:
Now it follows immediately from (1), (2) and the definition of the exponent

af that af bmf :
(ii) By the statement (i), if af ¼ 1 then mf ¼ 1:
We now assume that mf ¼ 1, which means that ‘f ð0Þ0 0: Then there exist

positive constants r and c such that

k‘f ðxÞkb c for all x A Bnð2rÞ:

Here and in the following BnðrÞ :¼ fx A Rn j kxka rg denotes the closed ball
centered at the origin with radius r:

Without loss of generality, we may assume that the function f is of class C1

on Rn:
Take any x A BnðrÞ: By [15, Corollary 16], there exists x 0 A Rn such

that

kx� x 0ka dðx;ZÞ;
k‘f ðx 0Þkdðx;ZÞa j f ðxÞj:

The first inequality implies that

kx 0ka kx 0 � xk þ kxka dðx;ZÞ þ kxka 2kxka 2r:

Thus

j f ðxÞjb k‘f ðx 0Þkdðx;ZÞb cdðx;ZÞ:ð3Þ

On the other hand, since the function f is of class C1, f is Lipschitz on the
closed ball Bnð2rÞ: That is there exists L > 0 such that

j f ðbÞ � f ðaÞjaLkb� ak for all a; b A Bnð2rÞ:

Let a A Z be such that kx� ak ¼ dðx;ZÞ: Observe that a A Bnð2rÞ: Hence

j f ðxÞj ¼ j f ðxÞ � f ðaÞjaLkx� ak ¼ Ldðx;ZÞ:ð4Þ

The desired result now follows immediately from (3), (4) and the definition of the
Łojasiewicz exponent af : r

314 tie½n so�n pha

˙

m



3.2. Proof of Theorem 2.2. Let f : Rn ! R be a real polynomial of degree
db 2: Assume that f ð0Þ ¼ 0, ‘f ð0Þ ¼ 0, and Z :¼ fx A Rn j f ðxÞ ¼ 0g: We
have

Lemma 3.2. Let r > 0, c > 0 and l > 0 be constants such that

k‘f ðxÞkb cdðx;ZÞ l for all x A Bnð2rÞ:
Then

j f ðxÞjb c 0dðx;ZÞ lþ1
for all x A BnðrÞ;

where c 0 :¼ c
l l

ðl þ 1Þ lþ1
:

Proof. This proof follows that of [42].
Let fðsÞ :¼ csl and cðsÞ :¼ max0alas lfðs� lÞ: Then it is easy to see that
(a) the function f is nondecreasing on ½0; r�;
(b) cðsÞ ¼ c 0slþ1; and
(c) for each s > 0 there exists l A ð0; sÞ such that

1

l
cðsÞa fðs� lÞ:

By the assumption, k‘f ðxÞkb fðdðx;ZÞÞ for all x A Bnð2rÞ: We will prove
the following inequality

j f ðxÞjbcðdðx;ZÞÞ; for all x A BnðrÞ:
By contrary, assume that there exists x0 A BnðrÞ such that

j f ðx0Þj < cðdðx0;ZÞÞ:
Then x0 B Z and cðdðx0;ZÞÞ > 0: Moreover, there exists c0 A ð0; 1Þ such that

j f ðx0Þj < c0cðdðx0;ZÞÞ:
Let e :¼ c0cðdðx0;ZÞÞ > 0 and s :¼ dðx0;ZÞ > 0:
In view of Item (c) above, it is clear that there exists l A R such that the

following inequalities hold

0 < l < s ¼ dðx0;ZÞ;
1

l
cðsÞa fðs� lÞ:

By the Ekeland’s variational principle ([14, Theorem 1.1]), there exists
x 0 A Rn such that

kx 0 � x0ka l;

j f ðx 0Þja j f ðx0Þj;

j f ðzÞj þ e

l
kz� x 0kb j f ðx 0Þj for all z A Rn:
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Consequently, we have

kx 0ka kx 0 � x0k þ kx0ka lþ kx0k < dðx0;ZÞ þ kx0ka 2kx0ka 2r;

and

dðx 0;ZÞb dðx0;ZÞ � kx 0 � x0kb dðx0;ZÞ � l > 0:

This implies that x 0 B Z; i.e., f ðx 0Þ0 0: We may assume that f ðx 0Þ ¼ j f ðx 0Þj >
0 (otherwise, we replace f by �f ). Then f ðzÞ ¼ j f ðzÞjb 0 for kz� x 0kf 1:
Therefore

f ðzÞ þ e

l
kz� x 0kb f ðx 0Þ for kz� x 0kf 1:

Take any u A Rn, and set z ¼ x 0 þ tu in the preceding inequality, with 0 < tf 1:
This yields

1

t
½ f ðx 0 þ tuÞ � f ðx 0Þ�b� e

l
kuk:

Letting t ! 0þ, we get

h‘f ðx 0Þ; uib� e

l
kuk:

Taking the infimum of both sides over all u A Rn with kuk ¼ 1, we get

�k‘f ðx 0Þkb� e

l
;

which means that

k‘f ðx 0Þka e

l
¼ c0cðdðx0;ZÞÞ

l
:

And thus we obtain the following contradiction

k‘f ðx 0Þkb fðdðx 0;ZÞÞb fðdðx0;ZÞ � lÞ

b
1

l
cðdðx0;ZÞÞ > c0

l
cðdðx0;ZÞÞb k‘f ðx 0Þk:

(The first inequality follows from the assumption and the fact that x 0 A Bnð2rÞ:)
r

Remark 3.1. In Lemma 3.2, we assume that f was polynomial function.
However, it is enough to assume that f is C1-function.

Proof of Theorem 2.2. The well known Łojasiewicz’s gradient inequality
([29] or [30]) states that there exist r > 0, c1 > 0, y > 0 such that for any
x A Bnð2rÞ we have

k‘f ðxÞkb c1j f ðxÞjy:ð5Þ
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Let yf be the infimum of the exponents y satisfying the Łojasiewicz’s gradient
inequality. It is known (see [29], [7], [3]) that yf A ð0; 1Þ and the inequality (5)
holds with the exponent yf and some constant c1 > 0: Moreover, D’Acunto and
Kurdyka proved [11] that

yf a 1� 1

Rðn; dÞ :ð6Þ

We observe from (5) that

fx A Bnð2rÞ j‘f ðxÞ ¼ 0gH fx A Bnð2rÞ j f ðxÞ ¼ 0g:
By Łojasiewicz’s inequality ([7], [3]), there exist constants c2 > 0, b > 0 such that
we have for any x A Bnð2rÞ,

k‘f ðxÞkb c2dðx;ZÞb:ð7Þ
Let bf be the infimum of the exponents b satisfying the inequality (7). It is
known (see, for example, [7]) that the inequality (7) holds with the exponent bf
and some constant c2 > 0, i.e.,

k‘f ðxÞkb c2dðx;ZÞbf for all x A Bnð2rÞ:
It follows from Lemma 3.2 that

j f ðxÞjb c 02dðx;ZÞbfþ1 for all x A BnðrÞ;

where c 02 :¼ c2
b
bf
f

ðbf þ 1Þbfþ1
: By the definition of the Łojasiewicz exponent af ,

then

bf þ 1b af :ð8Þ
On the other hand, we have for all kxka r,

j f ðxÞjb cdðx;ZÞaf ;
after perhaps reducing r: This yields

k‘f ðxÞkb c1j f ðxÞjyf b c1c
yf dðx;ZÞaf yf for all kxka r:

By the definition of bf , then

af yf b bf :

This, together with the inequality (8), implies that

af a
1

1� yf
:

The desired result follows immediately from the inequality (6). r

Remark 3.2. After the submission of this paper for publication we have
learnt that Theorem 2.2 was also proved by a di¤erent argument by Kurdyka and
Spodzieja [26] (see also [4, Theorem 2.8]).
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