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Abstract

Let /: R" — R be a polynomial function of degree d with f(0) =0. The classical
Lojasiewiz inequality states that there exist ¢ >0 and o >0 such that |f(x)|>
cd(x, £71(0))* in a neighbourhod of the origin 0 e R", where d(x, f~'(0)) denotes
the distance from x to the set f~'(0). We prove that the smallest such exponent o is
not greater than R(n,d) with R(n,d) := max{d(3d —4)""',2d(3d — 3)"*}.

1. Introduction

Let f: U — R be an analytic function defined in a neighborhood U of
the origin 0 e R”, f(0) =0, and let Z :={xe U| f(x) =0}. Then the classical
Lojasiewicz inequality ([29]) asserts that there exist constants r >0, ¢ > 0 and
o > 0 such that

|f(x)] = cd(x,2)*, for all ||x|| <r,

where d(x,Z) := inf{||x — y||| y€ Z}, and || - || denotes the usual Euclidean norm
in R”.

The FLojasiewicz exponent of f at the origin 0€R", denoted by oy, is
the infimum of the exponents « satisfying the above Lojasiewicz’s inequality.
Bocknak and Risler [7] (see also [37]) proved that o, is a rational number.
Moreover, the Lojasiewicz’s inequality holds with exponent oy and some constant
c>0.

The computation or estimation of the Lojasiewicz exponent is a quite
interesting problem. For instance, if f is a real polynomial of degree d in n
variables, one would like to have an explicit bound for oy in terms of 4 and .
The complex analytic variant of this question has been settled in the papers [1],
(2], [3], [6], [9], [10], [16], [19], [20], [22], [23], [24], [31], [33], [34], [36], [37].
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In the case n = 2, a formula for computing the Lojasiewicz exponent o, was
given by Kuo in [25]. A similar formula for the Lojasiewicz exponent at infinity
in the real plane is given in the paper [40] (see also [41]). However, it seems
more difficult to obtain effective estimates in the general case.

We now assume that f is a real polynomial of degree d in n variables. It is
known that oy can be bounded by some rational number depending only on n
and d (see, for example, [23], [38]). If f has an isolated zero at the origin (that
is, f has a strict local extremum at 0), then Gwozdziewicz [13] (see also [24], [17])
established the following nice estimate:

a < (d—1)"+1.

In this paper we consider the general case, that is, the case where f may
have a non-isolated zero at the origin. Precisely, for any integer d > 2 and
for any polynomial f in » variables with deg f =d and f(0) =0 we have the
following explicit estimate:

oy < max{d(3d —4)"' 2d(3d — 3)"*}.

The proof of this inequality is based on an explicit bound for the tLojasiewicz
exponent in the gradient inequality for real polynomials [11] and the Ekeland’s
variational principle [14]. Note that this principle is also used recently by Tiep,
Vui and Thao [39] in order to study the (global) Lojasiewicz inequality for
polynomial functions.

The paper is organized as follows: The results are given in Section 2 and
the proofs are given in Section 3.

2. Results

Let f: U — R be an analytic function defined in a neighborhood U of the
origin 0 e R"” and let Z:={xe U] f(x) =0}. We can write

f:fn1+f;n+l+"'7

where f; is a homogeneous form of degree i, and f,, #0. We denote by
my := m, the multiplicity of f. Note that my > 1 with the equality if and only if
V£ (0) # 0.

THEOREM 2.1. Let f: U — R be an analytic function defined in a neigh-
borhood U of the origin 0 e R", f(0) =0. We have

(1) o =my.

(ii) ar =1 if and only if m; = 1.

Remark 2.1. 1In the complex case, Risler and Trotman proved in [35] that
oy = my.

The main result of this paper is as follows.
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THEOREM 2.2. Let f:R" — R be a real polynomial of degree d > 2.
Assume that f(0) =0 and Vf(0) =0. Then the Lojasiewicz exponent oy satisfies

o < R(I’l, d),
where R(n,d) := max{d(3d —4)"",2d(3d — 3)""*}.

3. Proofs

3.1. Proof of Theorem 2.1. Let f: U — R be an analytic function defined
in a neighborhood U of the origin 0eR", f(0)=0, and let Z:={xe U|
f(x) =0}. The directional set D(Z) of Z at 0 e R" is defined by

D(Z) = {v eS"™ 1 3x} « Z\{0}, x5 — 0 e R” s.t. ﬁ — ok — oo}.
k

Here S"~! denotes the unit sphere centred at 0 € R”. We refer the reader to [21]
for the basic properties of the directional set D(Z). We note that the set D(Z) is
simply the intersection of the usual tangent cone of Z at 0 € R” (i.e. the Painlevé-

. o . 1 . .
Kuratowski upper limit: limsup,_, ;Z) with the sphere S"~!. Therefore, it

is straightforward that D(Z) is a closed subanalytic subset of S"~! (since it is
described by a first-order formula and since Z is an analytic set). Moreover, we
have

Lemma 3.1.  The directional set D(Z) is a subanalytic set of dimension <
n—2.

Proof.  See, for example, [27, Proposition 1], [21, Proposition 2.2], [28].
O

Proof of Theorem 2.1. (i) By Lemma 3.1, there is v € S""'\D(Z) such that
Jm;(v) #0. We have, for all 0 <z«1,
S () = fo,(0)1" + terms of higher in .
Therefore

(1) f(tv) =™ for 0 <r« .

On the other hand, by the monotonicity lemma (e.g. [12, Theorem 4.1], [8,
Theorem 2.1]), the function ¢ +— d(tv, Z) is analytic for 0 <« 1. We will prove
that there exists a constant ¢ > 0 such that

(2) d(tv,Z) = ct for 0 <r« 1.

By contrary, assume that

lim M =0.
—0+ t
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Let x(7), 0 <r« 1, be a curve in Z such that d(tv,Z) = ||tv — x(¢)||. Clearly,
x(t) #0 for 0 < t« 1. Moreover, we have, for all 0 <7« 1,

d(rv,Z>|tv—x<r>||Hvx<r>H2‘v| x(1) Hl *(1) ’
t t t t t
Consequently, limH(Hilt> =v and limH(Hmlt)H = 1. Therefore
x(1) i x() ¢ .
=0 I o Ix@)

which contradicts to the fact that v ¢ D(Z).

Now it follows immediately from (1), (2) and the definition of the exponent
oy that oy > my.

(ii) By the statement (i), if ar =1 then m, = 1.

We now assume that m, = 1, which means that Vf(0) # 0. Then there exist
positive constants r and ¢ such that

IVf(x)|| = ¢ for all xeB"(2r).

Here and in the following B"(r) := {x e R"|||x|| <r} denotes the closed ball
centered at the origin with radius r.

Without loss of generality, we may assume that the function f is of class C!
on R".

Take any xeB"(r). By [15, Corollary 16], there exists x’ € R" such
that

lx = x| < d(x,2),
IV/(x)ld(x, Z) <1/ (x)]-
The first inequality implies that
X' < Nl = x| + llxl| < d(x, Z) + |lx]| < 2)|x]| < 2r.
Thus
3) SO = IVf(X)ld(x, Z) > cd(x, Z).

On the other hand, since the function f is of class C', f is Lipschitz on the
closed ball B"(2r). That is there exists L > 0 such that

|f(0) — f(a)] < L||b—a|| for all a,beB"(2r).
Let a € Z be such that ||x —«|| = d(x,Z). Observe that a € B"(2r). Hence
(4) ) =1f(x) = fa)] < Llx — al| = Ld(x, Z).

The desired result now follows immediately from (3), (4) and the definition of the
Lojasiewicz exponent oy. O
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3.2. Proof of Theorem 2.2. Let f: R” — R be a real polynomial of degree
d>2. Assume that f(0)=0, Vf(0)=0, and Z:={xeR"|f(x)=0}. We
have

LEmMMA 3.2. Let r>0, ¢ >0 and | > 0 be constants such that
IVf(x)|| = cd(x,Z)" for all x eB"(2r).
Then
1f(x)| = d(x,2)™" for all xeB"(r),
ll

where ¢' == ¢c——.
(l—|— 1)/+1

Proof. This proof follows that of [42].

Let ¢(s) := cs’ and Y(s) := maxg<;<; Ad(s — 1). Then it is easy to see that
(a) the function ¢ is nondecreasing on [0, r];

(b) Y(s) = ¢'s'™!; and

(c) for each s> 0 there exists 1€ (0,s) such that

—lﬁ( ) < ¢(s — 4).

By the assumption, ||V/(x)|| = ¢(d(x,Z)) for all x e B"(2r). We will prove
the following inequality
|f(x)] = y(d(x,Z)), for all xeB"(r).

By contrary, assume that there exists xo € B"(r) such that

|/ (x0)| < ¥(d(x0,Z)).
Then xo ¢ Z and y(d(xp,Z)) > 0. Moreover, there exists ¢y € (0,1) such that

|/ (x0)| < coy(d(x0, Z)).

Let ¢ := coy(d(x0,Z)) > 0 and s:=d(x9,Z) > 0.
In view of Item (c) above, it is clear that there exists 1€ R such that the
following inequalities hold

0<i<s=d(xy,2),
S < 9l ).

By the Ekeland’s variational principle ([14, Theorem 1.1]), there exists
x" € R" such that

[x" = xol < 4,
If (D] < 1/ (%)l
u@n+%p—fnzvum for all z e R".
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Consequently, we have
2]l < 1Ix" = xol| + [|xo]l < 2+ [|x0]| < d(x0,2Z) + ||| < 20|l < 2r,
and
d(x',Z) > d(x0,Z) — ||x" — xo|| = d(x0,2Z) — 2> 0.

This implies that x" ¢ Z; i.e., f(x’) #0. We may assume that f(x') = |f(x')| >
0 (otherwise, we replace f by —f). Then f(z) =|f(z)] =0 for |z — x| <« I.
Therefore

f@)+5lz =¥ = f(x) for 2= x|l < 1.

Take any u € R”, and set z = x’ + tu in the preceding inequality, with 0 < 7 « 1.
This yields

| , &
SO ) = f(] = == ul].
Letting 7 — 0+, we get
€
CVf () > = =% Jul.

Taking the infimum of both sides over all u e R" with [ju|| =1, we get

IV = =,
which means that
e coy(d(x0, Z))
I/ < & = REe D,

And thus we obtain the following contradiction

IV (DI = ¢ld(x', 2)) = $(d(x0, Z) = 4)
1

> Iwz(xo,z» > Sd(x0, 2)) = [V ()]l

(The first inequality follows from the assumption and the fact that x’ € B"(2r).)
O

Remark 3.1. In Lemma 3.2, we assume that f was polynomial function.
However, it is enough to assume that f is C'-function.

Proof of Theorem 2.2. The well known Lojasiewicz’s gradient inequality
([29] or [30]) states that there exist r >0, ¢; >0, € >0 such that for any
x € B"(2r) we have

(5) IV ()] = erlf(x)]".



LOJASIEWICZ EXPONENT OF REAL POLYNOMIALS 317

Let 0, be the infimum of the exponents @ satisfying the Lojasiewicz’s gradient
inequality. It is known (see [29], [7], [3]) that O, € (0,1) and the inequality (5)
holds with the exponent 0 and some constant ¢; > 0. Moreover, D’Acunto and
Kurdyka proved [11] that

(6) Op <1-—

R(n,d)’
We observe from (5) that
{xeB"(2r)|Vf(x) =0} = {x e B"(2r)| f(x) = 0}.

By Lojasiewicz’s inequality ([7], [3]), there exist constants ¢ > 0, f > 0 such that
we have for any x € B"(2r),

() IVf ()l = e2d(x, 2)".

Let B, be the infimum of the exponents f satisfying the inequality (7). It is
known (see, for example, [7]) that the inequality (7) holds with the exponent f,
and some constant ¢, > 0, i.e.,

IVA(x)|| = c2d(x, Z)"  for all x e B"(2r).
It follows from Lemma 3.2 that
1/ (x)] = ¢bd(x, 2)P for all x e B"(r),

By
where ¢ := cz(ﬂﬁfw. By the definition of the Lojasiewicz exponent oy,
then 1)

On the other hand, we have for all ||x|| <r,
()] = ed(x,2)",
after perhaps reducing r. This yields
IV ()l = el FIY > ered(x,2)" for all x| <r.
By the definition of f,, then

%0 = Py
This, together with the inequality (8), implies that
1
S
The desired result follows immediately from the inequality (6). O

Remark 3.2. After the submission of this paper for publication we have
learnt that Theorem 2.2 was also proved by a different argument by Kurdyka and
Spodzieja [26] (see also [4, Theorem 2.8]).
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