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ASYMPTOTIC BEHAVIORS OF NONLINEAR NEUTRAL IMPULSIVE
DELAY DIFFERENTIAL EQUATIONS WITH FORCED TERM*

FANGFANG JIANG AND JIANHUA SHENT

Abstract

In this paper, we study the asymptotic behavior of solutions of a class of nonlinear
neutral impulsive delay differential equations with forced term of the form

[xX(8) + c(O)x(t — )] + p(t) f(x(t = 3)) = ¢(1), t> 1, t# b,
xX(t) = bx() + (1= bi) [1f 5 p(s +0) f(x(s)) ds
+ (b = 1) ;7 q(s) ds, keZs,.

Sufficient conditions are obtained for every solution of the equations that tends to a
constant as ¢ — 0.

1. Introduction and preliminaries

The theory of impulsive differential equations is now being recognized to be
not only richer than the corresponding theory of differential equations without
impulses but also represents a more natural framework for mathematical models
of many real-world phenomena [11]. The number of publications dedicated to
its investigation has grown constantly in the recent years and a well-developed
theory has taken in shape. See monographs [5, 11, 16] and references therein.
However, the theory of impulsive functional differential equations has been less
developed due to numerous theoretical and technical difficulties caused by their
peculiarities. There are a few publications on qualitative theory. In particular,
oscillation, stability theory and asymptotic behavior of solutions of some im-
pulsive delay differential equations have been studied by several authors (see
[4, 6, 7, 13, 15, 16, 18, 19]). Stability of some impulsive functional differential
equations in more general form also has been studied by some authors (for
example, see [1, 3, 8, 14, 17, 18]). However, by the best knowledge of author,
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there is little in the way of results for the asymptotic behavior of solutions of
impulsive neutral delay differential equations [13, 16]. In particular, on the
asymptotic behavior of solutions of nonlinear impulsive neutral differential
equations with forced term.

On the other hand, it is well known that the asymptotic constancy is widely
investigated for delay differential equations (with or without impulses). For
example, see [2, 16] and reference therein.

In this paper, we consider the asymptotic behavior of solutions of a class
of nonlinear neutral impulsive delay differential equation with forced term of the
form

(0) et — D)+ pOf(xlt—0) = a(t), 1210, 1 £ 1k
(L1)  x(t) = bax(t0) + (1= by) [} p(s +0)f(x(s)) ds
+ (b = 1) [ q(s) ds, keZ,,

where 7 >0, d > 0 ¢(7), p(t) € PC([to, ©),R), R denotes the set of all real num-
bers, p(t) >0, ¢(¢) > 0 is a continuous function, f : R — R is also a continuous
function. {#}, k€ Z,, denotes the impulsive sequence which satisfies 0 < 7, <
tre1 T o0 as k — oo, and by, ke Z,, are constants, Z, denotes the set of all
positive integers, PC([to, c0),R) denotes the set of all functions g : [fp,0) — R
such that g is continuous for # <7 < 41 and lim,,- g(7) = g(#;) exists for all
k>1,keZ,.

In system (1.1), the impulsive term is also delayed, that is, it contains an
integral term. When ¢(7) = 0, the corresponding results are obtained by Shen in
[16], and more general form was consider in [12, 17]. Moreover, the existence
and uniqueness of solutions and the stability were studied for the following more
general impulsive differential equation

X(t) = f(t,x), 1>ty t # I,
Ax(te) = Ie(t,x,), t=1t, k=1,23....

We note that in system (1.1), the impulse is a special form of the impulse
term form, the method given in this paper, which comes from the idea of Shen
[16], will mark this impulse term form. We should note that, the case of ¢(z) =0
is just the paper [16], and note that when all b, =1, k =1,2,..., system (1.1)
change into the following delay differential equation without impulses

[x(1) + e()x(t = ) + p(0) S (x(t = 0)) = q(1), 1= 1,

whose asymptotic behavior of solutions in some cases (for example, ¢(¢) = 0;
c(t) =¢; f(x) = x; and ¢(t), p(t) are continuous functions) have been investigated
by several authors (see [9, 10]). Noting that, we can apply our theorems to
systems without forced term and without impulses, and moreover, we improve
the results in [9, 16].

With Eq. (1.1), one associates an initial condition of the form

(1.2) X, = ¢(s), s€[-p,0], p=max{r,d},
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where x;,, = x(f) + ) for —p <s <0 and ¢ € PC([-p,0],R) ={¢p: [-p,0] = R, ¢
is continuous everywhere except at the finite number of points # and ¢(7;) =
lim,.- ¢(#) and @(f) = lim, . ¢(7) exists with o(tf) = o(t)}.

DeFINITION 1.1. A function x(#) is said to be a solution of Eq. (1.1)
satisfying the initial condition (1.2), if

(1) x(¢) = p(r —to) for ty —p <t <1y, x(¢) is continuous for ¢ > #y, 1 # t,
kel

(2) x(f) + c()x(t — 7) is continuously differentiable for ¢ >t#), ¢t #t, t— 1
#l, t—0 # Iy, keZ, and satisfies the first equation of system (1.1);

(3) x(z;) and x(7;) exist and x(7;) = x(#) hold and satisfy the second
equation of system (1.1).

DEFINITION 1.2. A solution of (1.1) is said to be non-oscillatory if it is
eventually positive or eventually negative. Otherwise, it will be called oscillatory.

2. Main results

In connection with the nonlinear function f(x), the impulsive perturbations
by and the impulsive points 7 in (1.1), we assume that

(H,) there is a constant M > 0 such that
(2.1) |x| < |f(x)] < M|x|, x€eR, and  xf(x) >0, x#0;

(H>) t — 7 is not an impulsive point, and 0 < by <1, ke Z;, > ;- (1 — by)
< 005

THEOREM 2.1. Let (H:) and (H)) hold. Assume that c(ty) = brc(t;),
J}w q(s)ds — 0 as t — oo and the following inequalities hold

(2.2) lim [e(1)] = p < 1,

. p(t+r+5)) J’*‘j ] 2
23 I R AURERLN I +6) ds| <=
23) ‘?lié‘%“( ooy )T PETOE] <5

Then every solution of (1.1) tends to a constant as t — oo.

Proof. Let x(t) be any solution of (1.1). We shall prove that the limit
lim, o, x(¢) exists and is finite. For this purpose, we rewrite (1.1) in the form

(2.4) {x(l) +e(O)x(t—1) — L& p(s+9)f(x(s)) ds + Jjo q(s) ds]
b+ f(x(D) =0, > 1o, £ # 1,
(2.5) (1) = bex(r) + (1 = by) J:ksp(s +0)/(x(s)) ds

0

+ (by — I)J q(s)ds, t=ty, keZ,.

173
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From (2.2) and (2.3), we can select an ¢ > 0 sufficiently small, such that

ut+e<l,
and
] p(l—‘r‘[—l-5) JHO i
(2.6) ll?lsggp[(ﬂ+8)<l+p(t+(5) )+ Hsp(eré) ds <3

On the other hand, we can also select a ¢* > fy sufficiently large, such that
(2.7) le(t)| <pu+e for t=>1t".
From (2.1) and (2.7), we have that

[Ax(t =) |c(2)] '
m >1> ,u+6’ t>1.
Moreover,
(2.8) (O = 1) < () f2(xle =), 131

In the following part, for the sake of convenience, when we write a func-
tional inequality without specifying its domain of validity, we mean that it holds
for all sufficiently large t.

Let V(r) = V() + Va(t), where

t 0 2
i) =[x+ ctomte=0) = [ pls+0)7tx(0) o+ |t ]
= [ pts+20) [ plu+ 01 duts =2 [ ts) [ pta+o

< S xl) s+ (t0) | plo+ 0 7)) .

-1

. . dv; .
For ¢ # t, calculating, respectively, — (i = 1,2) along the solution of (1.1)

dt
and using the inequality a? + b> > 2ab, we obtain
dv, f -
e 21x(t) + c(t)x(t — 1) — 5p(s +0)f(x(s)) ds+ | q(s) ds
1—0 t

X (=p(t+9)[(x(1)))
= —p(t+9) [2X(l)f(X(l)) + 2e(0)x(1 = 7)f (x(1)) - Jt p(s+9)

t—o0
0

< QNS 0)) s +2 [ 401 (1) ds}

t
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< —p(t+9) {2X(t)f(X(t)) —le(n)]x*(t =) — [e(D)]/* (x(1))

P60 | ptsrads—| plsar i) a
t—0 t—0

(4 8) £ (x(1) j 4(s) ds,

t

% = —p(t+9) L&p(s+5)f2(x(s)) ds + p(t+8)f2(x(1))

o0

X L(s p(s—+20) ds+ ZJ q(s)p(t+0)f(x(2)) ds

t

+ (e p(t+0+0)f2(x(1) = (u+e)p(t +0) £ (x(1 - 7).

Therefore, from the above two inequalities and (2.8), we obtain
dv . . .
29) G = bl 0) [0S0 = L) - S0

<[ psoras— e [ s+ )4

t—0

+(u+e)pt+6+71) 7 (x(1))

t+0
< plo+ 0 o) T~ Il = [ pto o) s
p(t+0+71)
-

< —p(t+0)*(x(1)) {% —(ute) <1 * %)

+0
- J p(s+0) ds] <0.
t—0

While for ¢ =1t,, we have

173 o0

(2.10) V(4) = [x(tk)—f—c(lk)x(tk 1) —J s +0) f(x(s)) ds+J a(s) ds]

tk—0 17

] ple20) | plu+0) £ duds + (-0

ti—0
0 s

x j pls+3+ 0 f2(x(s)) ds — 2 J 4(s) j Pl +8)f (x(u)) duds

I —7T
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— 25 + et~ - [ ptsranrie) i+ | a dsr

t—o0 17

Ik

+ Jrk p(s+29) J

ti—0 s

P+ 8) £2(x(u)) duds 2 jw o) | ptu+o)

173 17

173

S x() dds + (u5) | plo-+3-+ )£ (x(6)
< V(). k
From (2.6), (2.9) and (2.10), we can get
plt+0)F(x(0)) € L' (1, ).

Hence for any p > 0, we have

lim Jt (s +3)f2(x(s)) ds = 0.

— 0

t—p
Since
Jr s+ 20) J[ Pl +0) f2(x()) duds
t—0 s
< J p(s+29) dle p(u +0) £ (x(u)) du
t—0 t—o
<3| purar )
< ZJI p(u+0)f*(x(u)) du — 0 as t — oo,
t—0
and
t 5 3 t )
(e | pls+o+0f 60 dss 37| plst o (x(s) ds
— 0 as t— oo,
and

J e J P+ 0)f (x(w)) duds < r q(s) r pu+0)f (x(u)) duds

t t t

—0 as t— oo,

it follows that lim,,, V2(f) =0. On the other hand, by (2.6), (2.9) and (2.10),
we can find that V() is eventually descreasing. In view of ¥V >0, we know
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lim,_,, V(z) = p exists and is finite. Thus, lim,., V(¢) = lim,,,, V,(z) = f, that
is,

(2.11)  lim |x(¢) + c(t)x(t — 1) — Jl pls+9)f(x(s)) ds + J

— o0 -5

0

ﬂ@mrzﬂ

t

Next, we will show that the limit lim, ., x(¢) exists and is finite. We let

(0 = x(0) + c(tx(e —0) - |
then, in view of (2.11), we have

(2.12) lim y?(7) = B.

—o0

t o0

p(s+0)f (x(s)) ds + j 4(s) ds,

t—0 t

Furthermore, we have

(e 0]

p(s+0) £ (x(s)) ds + j g(s) ds

73

$(t) = x(te) + c(t)x(t — ) — J

t—0 I
= by [x(rm + ()l —7) - Jp( +0)f (x(s)) ds + J () ds]
= bky(tk_).

Then system (2.4)—(2.5) can be rewritten as
(2.13) y(t) +p(t+0)f(x(2) =0, =1y, t#t,
y(tx) = bry(ty), t=t, kelZ.,.

If #=0, then lim, ., y(r) =0.

If f>0, then there exists an enough large 7} such that y(r) #0 for
any ¢ > T). Therefore for # > Ty, t € [ty,t+1), we have y(¢) >0 or y(¢) <0,
because y(f) is continuous on [fy, fx11), without loss of generally, we assume that
() >0 on [, try1). It follows that y(tii1) = bry(t,,) >0 thus p(z) >0 on
[tks tes1]. By simple induction to k, we conclude that y(r) >0 on [t, o).
From (2.12), we have that

1

(2.14) lim y(z) = lim {x(t) +c(t)x(t—1) — J p(s+9)

t—0 t—o0 -6

o0

x f(x(s)) ds +J q(s) ds] =1

must exist and is finite. In view of (2.13), we have

t

j’ P+ () ds = y(t—3) — v+ 3 [(ew) — y()]

t—o0 —o<tp<t

= y(t=0) = y(t) = > (1=bu)y(t).

—o<typ<t
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Letting ¢ — oo, and noting that Y /7 (1 — bx) < oo, then we obtain

t
(2.15) llim J (s +0)/(x(s)) ds = 0.
—OJ-0
By condition lim, .., [ ¢(s) ds =0 and (2.14), we obtain
(2.16) thrp [x(2) + c(t)x(t —7)] = A.

Next, we shall prove that
(2.17) lim x(¢) exists and is finite.

[— o0

To this end, we need to show that |x(¢)| is bounded. In fact, if |x(7)| is
unbounded, then there exists a sequence {s,} such that s, — co and

|x(s, )] = o0 as n—
and

[x(s, )| = sup |x(z)],

ty<t<sy

where, if s, is not an impulsive point, then x(s,

[x(s,) 4 e(s, )x(s, = )| = [x(s, )] = les,
> |x(s, (1 = le(s,
> |x(s,)I(1 =

x(s,). Thus, we have
| 1x(s, =)
)
—¢)

— 00 as n — o0.

)=
»

This is a contradiction with (2.16). So |x(t)| is bounded.

If =0, clearly, lim,, x(¢#) = A, which shows that (2.17) holds.

If 0 <pu<1,itis easily to see that ¢(z) is eventually positive or negative.
Otherwise, there is a sequence 7i,72,...,7Tk,..., With 7z — o0 as k — oo such
that ¢(7x) =0, so ¢(7x) — 0, it is a contradiction with u > 0.

By condition (2.2), one can find a sufficiently large 7> such that

le(t)] <1, for t > T>.
Set

o= lign inf x(7), p=Ilimsup x(1),

1—00
then we can choose two sequence {u,} and {v,}, such that
Uy — 00, Uy, — 00 as n— o0,
and

o= lim x(u,), pf=lim x(v,).

t— o0 — 00

Now, we consider the following two possible cases
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Case 1. 0<c(r) <1 for t > T,, we have
A= lim [x(un) + c(un)X(un — 7)] < 004

and
A= lim [x(vy) + c(vn)x(vy — 7)] = f + uo.
Thus, we get f+ uo < A < o+ uf, that is, f(1 —p) < (1l — w).
Since 0 < u <1 and f > «, it follows that f=o. By (2.16), we obtain

p=o=2/(1+p),
which shows that (2.17) holds.

Case 2. —1<¢(t) <0 for t > T, we have
o= lim x(u,) = lim [x(u,) + c(un)x(un — 1) — () x (U — 7)]

= lim [x(u) + () (1, — )] — lim [e(an,)x(1t, — )]

=1+ nli_)rg[—c(u,,)x(u,, — 1) =2+ po,
and
p = lim x(v,) = lim [x(v,) + c(vn)x(vy, — T) — c(vy)x(vy — 7)]

n—oo n—oo

= nhjr;:[x(vn) + c(va)x(vn — 7)] = )Lrg[c(vn)x(vn —1)]

=+ Jin;[—c(v,ﬂx(vn — )] =2+ up,
therefore, we get o = f = 1/(1 —u). This shows that (2.17) holds.
According to the discussion above, we conclude that (2.17) holds, and so the
proof of Theorem 2.1 is complete. O

In the following theorem, we assume that the assumption (H,)* holds
which is different from the assumption (H;), in the sense that the condition
S (1= by) < oo is replaced by # — tx—1 ># for all k,keZ,.

(Hy)™ t; — 7 is not impulsive point for all k € Z, and 0 < by < 1 and there
exists a # > 0 such that # — #_; > # for all k.

THEOREM 2.2. Let (Hy) and (Hy)" hold.  Assume that

o0

() = bic(ry),fim | q(s) ds =0

t

and (2.2), (2.3) hold. Then every solution of (1.1) tends to a constant as t — oo.

Proof. From the proof of Theorem 2.1, we can also prove that (2.14) holds
by using the conditions of Theorem 2.2. We also note that in the proof of
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Theorem 2.1, the assumption y ;2 ,(1 —bx) < oo in (H,) was used only in the
proof of (2.15). Therefore, to complete the proof of Theorem 2.2, we only need
to prove that (2.15) holds by using assumption (H>)". In fact, since 7 — t4_1 >
n >0, it follows that the number of impulsive points in (f —0,¢) for t >ty +06

. 0 . .
is at most [—} = q. Without loss of generality, we set t —0 < t; < ;3] < -+ <
n

tivg <t, i=1i(t). Then, in view of (2.14), we have

lim >0 [p() = ()] = Jim [p(6) = p(t) + o+ pltieg) = $(t73,)] = 0.

Due to
j’ DS = (1-0)— 30+ 3 [v(n) ()]
- =<t <t

it follows that by passing to the limit both sides as z — oo, we conclude that
(2.15) holds, the remaining proof of Theorem 2.2 follows from that of the
Theorem 2.1, thus the proof of Theorem 2.2 is complete. O

By Theorem 2.1 and Theorem 2.2, we have the following asymptotic
behavior results immediately.

THEOREM 2.3. FEither the conditions of Theorem 2.1 or the conditions of
Theorem 2.2 imply that every oscillatory solution of (1.1) tends to zero as t — oo.

COROLLARY 2.1. Assume that

t+0 0
lim supj pls+9)ds<2, and lim J q(s)ds=0

— 0 —6 = ),

hold, then every oscillatory solution of x'(t) + p(t)x(t — ) = q(t) tends to zero as
t— 00.

THEOREM 2.4. The conditions in Theorem 1.1 together with

(2.18) J p(t) dt = oo,
to
imply that every solution of (1.1) tends to zero as t — oo.

Proof. By Theorem 2.3, we only have to prove that every non-oscillatory
solution of (1.1) tends to zero as t — oo. Without loss of generality, let x(¢) be
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an eventually positive solution of (1.1), we shall prove lim,,, x(¢) =0. As in
the proof of Theorem 2.1, we can rewrite (1.1) in the form (2.13). Integrating
from 7 to ¢ both sides of (2.13) yields

jt pls+0)£(x(s)) ds = y(to) — y(&) — 3 (1 - be)y(zg).

to ty<tx<t

By using (2.14) and Y /7, (1 — bx) < o0, we have

JwP(S +9)f(x(s)) ds < 0.

fo

Which, together with (2.18) yields liminf, .., f(x()) ds=0. We claim that
(2.19) liplinf x(£) =0.

To this end, we let {S,,} be a sequence, such that S,, — c0 as m — o
and lim,,— f(x(Sy)) =0. We must have liminf,, ., x(S,) =c=0. In fact,

if ¢ > 0, then there exists a subsequence {S,, } of {S,,} such that x(S,, ) > % for

k sufficiently large. By (H;), we have that f(x(S,,)) = ¢ for some ¢ > 0 and
sufficiently large k, which yields a contradiction because of limg_., f(x(Su,))
= 0. Therefore, (2.19) holds.

On the other hand, by Theorem 2.1, we have that lim,,., x(¢) exists. There-
fore, lim,_,, x(¢) =0. The proof of Theorem 2.4 is then complete. O
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