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Abstract

In this paper we present various norm inequalities in framework Sobolev spaces by
using Holder’s inequality. In particular, we imply some of the corresponding results of
Saitoh whose proofs were based on Aronszajn’s theory of reproducing kernels.

1. Introduction and results

In a series of papers ([19], [20], [22], [23], [24], [25], [26], [28]) S. Saitoh
deduced various norm inequalities when he studied some concepts in sums,
products and other operators of reproducing kernels through transforms of the
Hilbert spaces by using Aronszajn’s theory of reproducing kernels ([2], [27]).
Some of these norm inequalities were generalized and reproved using various
technics. J. Burbea ([3], [4]) considered Saitoh’s norm inequalities for entire
functions and functions holomorphic in the unit disk while M. Cwikel and R.
Kerman ([5]) and K. F. Andersen ([1]) generalized some convolution inequalities
which were also studied later by S. Saitoh, V. K. Tuan and M. Yamamoto ([29],
[30], [31], [32]) and the authors ([6], [7], [16], [17], [18]). In this paper, based on
Holder’s inequality, we would like to present some more generalizations of
Saitoh’s inequalities.

First, we examine the Sobolev space Hﬁ p p>10onR consisting of all real-
valued and absolutely continuous functions f(x) with finite norm

0 1/p
(L1) ||f||H;fB={J{oc"|f’<x>|ﬂ+/ff’f(x>|"}dx} <o (f>0).

In the case of p =2, the Sobolev Hilbert space Hi s has been examined
extensively by many authors in view of Aronszajn’s theory of reproducing
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kernels. In [8], M. Hegland and J. T. Marti obtained the best constant of the
well-known Sobolev’s inequality

2
(12) (sup1rol) = Ul
xeR ’

Some extensions of the above result may be found in, for instance, [15], or in
[9, 10 11, 12], and the references there in. In [25], S. Saitoh found that if
feH ﬁ and gEH2 p, then fge H uﬁ’ where o = oo, f= o1, + wf,, and
moreover

(1.3) Ifgllzz, <ﬂ ﬂ>||f||H lglzz: ,

More generally, we have

Theorem 1.1. Let o; >0, f; >0 for j=1,2,...,m, and

m

oc—Hoc,, p= Zﬂ HOC,

j=1 i#j
If fie Hf/ 5, for all j=1,2,... ,m, then H/‘:rf/" e H? 5 and moreover,
B =1, ;

m

P
< [T 1Al
4

(1.4)

where
2p —2

(p—1)(m—1) p—1
C( ) <p> <Zj 1Hz¢]ﬁ) lf‘ 1<p7£27
p) =

1m1
<§> Z/ IHH&,ﬁ l]r p:2

Remark 1.2. (1) The case m =1 in inequality (1.4) is trivial.
(2) For p=2 and m # 1, unless f; =0 a.e. for some j, equatity holds in
(1.4) if and only if

fi(x) = Ce™ (By/a)lx—= ]

for some real constants C;, j =1,2,...,m, and some point y € R which
is independent of ;.

(3) Since lim,_, C(p) =2""1C(2) it follows that the above constant C(p),
for p#2 and m # 1, is not the best.

CONJECTURE 1.3. The best constant in the inequality (1.4) is

Cp) = (;)’" ‘(2p 2><,, Hom-1) (XM:H ) o
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Note that ([25])

1 1 (©  efx-y)
1.5 G, _ -y 7[ ety
( ) ‘sﬂ(xv y) 20(ﬂe 27'[ Y Oﬁzéz"‘ﬂz é

is the reproducing kernel for the Sobolev Hilbert space Hoi - Hence, any
member f eHi s 1s expressible in the form

L [(*  F(¢&)

I. =— ——t e
(16) 109 =0z | e
for a complex-valued function F satisfying

—o0 0287+
and furthermore we have the isometrical identity

> _ L7 FQP
(18) i, =52] o 46

Therefore, in the case of p =2, Theorem 1.1 can be transformed in the following
form by means of Fourier’s integral.

COROLLARY 1.4. For any complex-valued functions

Fre LR, (& + 7)1 de), j=1,2,....m,
m

and for the iterated convolution H;:1 x, we have the inequality

2

(& + ) dé

(L B©
(2n) ‘ (H o;,?£2+/3,-2> ©

J=1

[

ccoff[ P .
Jo o0 47E7 4

Unless m =1 or F; =0 a.e. for some j, equality holds here if and only if

(1.10) F(&) = D™

for some complex numbers D;, j=1,2,...,m, and some point y e R which is

independent of j.

Remark 1.5. Some generalized versions of the inequality (1.9) can be found
in [1] and [17].

Next, let @ be a weight, which means a positive continuous function on
(a,b) — R satisfying w € Li(a,b), and WZ2(a,b), p>1, be a weighted Sobolev
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space of a function f, real-valued absolutely continuous on (a, b), lim,_,, f(x) =0
and whose norm is

b / P 1/p
(1.11) ||f||w=<J Cf(g“)' dx> <o

In the case of w =1, this space is denoted by W?(a,b).
We note that W2(a,b) is a weighted Sobolev space admitting the reproduc-
ing kernel

min(x,s)
K(x,s) = J w(t) dt,
which was used in various contexts. Y. Sawano, H. Fujiwara and S. Saitoh [33]
investigated compactness of linear operators associated with the real inversion
formulas of the Laplace transform, coming with the space W2(0,0) while A.
Yamada [34] considered an elementary integral inequality which extends a norm
inequality of Saitoh and yields well-known Opial-type inequalities.
Our main theorem in this direction is:

THEOREM 1.6. For some weights w;, j=1,2,...,m, let us consider a new
weight

px) = (ﬁjxwxo dz) . xe(@b).

j=1a
Then, for f;e WL{J’/_(a7 b), j=1,2,...,m, we have H/'ilf/ € Wp”(a,b), and more-
over, ‘

(1.12) /i
Jj=1

m
< LA,
, =

Unless m =1 or fj =0 a.e. for some j, equality holds in (1.12) for f; e Waljj(a, b)
if and only if

min(x,s)
(1.13) f =6 wtar

a
for some real constants C; #0, j=1,2,...,m, and some point s € (a,b) which is
independent of j.

Remark 1.7. (1) The above result is known in the case p =2 and w; = o,
j=1,2,...,m, where it was proved by Saitoh [23].

(2) From Theorem 1.6 we can obtain many interesting norm inequalities
by investigating various weights. We refer to [33, Section 3] for some
typical weights.

In the simple case of Theorem 1.6, when f; = f and w; =1 on (a,b) for
j=1,2,...,m, we obtain the following corollary.
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CorOLLARY 1.8. For f e WP(a,b), we have
b |{f(x)M}/|p b m
p—1 l V4
(1.14) L —(x BT dx <m Ua |£' ()] dx} .

The constant mP~" is the best possible. Moreover, the extremal function is of the
form f(x) = C[min(x,s) —a] a.e., where C is a constant and s € (a,b).

In connection with Fourier sine and Fourier cosine transforms, let us
consider the integral transform

. 2 (“ F(t) sin xt
1.1 - "
(1.15) 1) nJO T, x>0
for real-valued functions F(7) satisfying
o0 F 2
(1.16) J | 5?' dt < 0.
0

Then (see [21]), f(x) is absolutely continuous, lim,_o f(x) =0, f’(x) € L,(0, o0)
and

(1.17) Jw |f’(x)|2dx:zjoo FOF 4
0

TJo 12

In view of Corollary 1.8, we have

COROLLARY 1.9.  For any real-valued functions F(t) satisfying (1.16), we have
the inequality

2
© 1P F . © F 2 o |\F 2
(Lig) 5[4 g [ EO e g | [TEL o)
n?)o x1Jo 5 0 o 1
The equality holds here if and only if
(1.19) F(t) = Csinst on (0,0),

where C is a constant and s € (0, 00).

Remark 1.10. The equality statement in Corollary 1.9 is proved as follows.
The equatity holds in (1.18) if and only if

f0=2]

T Jo

*© F(t) sin xt .
%dt:Cmm(x,s) on (0, ),

where C is a constant and se (0,00). Thus we have

2J”F(r) cos xt

- dit = Cy(x;(0,5])

0
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and so, by the inverse Fourier cosine transform,

F(r) = CIJ x(x; (0, 5]) cos xt dx = C sin st.
0

Conversely, it is easy to see that for F(¢) = C sin st, equality holds in (1.18).

2. Proof of Theorem 1.1

We begin with the following lemma:

LemMa 2.1. For all f; e j=12,....m and x € R we have

o'/i’

2.1) {H } H
< (iﬂﬂ (fj 917+ LGP T ooB? ™ 1) )
j=1i#j j=1 i#]
and so
m 12 m 2
(22) ? {Hfj(X)} i e
Jj=1 j=1

(ZH )(ZW )+ B0 [ [ bl /(%) )

Jj=1 l#J i)

p (H m(x)z) |

Proof. By the Leibniz rule we have

m "e m
r {Hfj(x)} = Z H“zfz
J=1 J=1 i#]
m l 1/p|P
= /:Zl[ajjz-’( >111;[/[ 0l "B i) 2 5T

On applying Holder’s inequality we get

p{ﬁlﬁ(x)}’” (ZH> <Z'f l”Haiﬁf’Hﬁ(x)P).

j=1 196] i#j
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Since

() (S S

j=1 i#] j=1i#j j=1 1#]

it follows that

e
=1

which together with (2.3) yield (2.1).
In the case of p =2, we have

ﬂ[’

:<i1;[ > Zﬁ”|f RIS

J=1i#j Jj= i#]

m ! 2 m 2
o {H/.’/(X)} +8 ([ /5(x)
j=1 j=1
< (Z F) (Z[ THCTEYAVOIR | BTV )
=1 i) =1 i#]
= (Z ) <Z[%f( )+ BL1 = B () T bl fitx )
=1 i#jPi) \j=1 i#)
( ) (Z o6 (%) + Bifi(0)1” [ [ bl il ) - aﬁ(H If;(X)|2>-
Jj=1 wﬁ/ j= i#] j=1
This completes the proof of Lemma 2.1. O
LeEmMMA 2.2. For all feHx 5y j=1,2,....,m, and x € R we have
p-1 p (P e ' P
eo el < (U0 ] 0+ B0 o
Proof. The proof immediate from the following
50 = [ Bty 00+ Bl ay
G J—o0
and Holder’s inequality. O

Now, from Lemmas 2.1 and 2.2 we have
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Lemma 2.3.  For all ]j-eHU”j g> J=12,....m, and x € R we have
5 Pj

2.5) v {ﬁf,m} e
=1 =1
< C(p) (Hj WO + RGO dy>
jer e
and
m ,2 m 2
0o {Hfj(X)} e
=l =1
< @) (ﬁ [ s+ gseor dy> _p (ﬁ m(x)z) |
Jj=1v-% j=1

The theorem now follows from Lemma 2.3 and the following
!
2.7) J (H | f;(x)|2> dx =0
—oo \ji
and

(2.8) r i) + Bf () d

o0

| WP+ B0 [ g 500R) e

-

~ | GHSWR+ B WP

for all j=1,2,...,m.

3. Proof of Theorem 1.6

Since f; is absolutely continuous with lim,_, fj(x) =0, it follows that

fj(x)zj fi(s)ds, xe(ab), j=12,....m.

Then, for f; e W({j/,(a, b), j=1,2,...,m, by Holder’s inequality, we obtain

foj’(s) ds| < J: |/ (s)| ds

(2982 (o)™

G- &)=

IA
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o () (o))
= i j£k é)pl a

Y £ (s) P 1/p N (r=1/p7*
Z|fk {HJ (lufl(s)l)ll ds} {HJ wj(s) ds} ]

and thus,

{1}
j=1

IA

IA

j#k

m |fk/(x)‘p Y| /(S)|P ds} ol

b m ¢ np b m s
R

=1 wr(x J#k

LG o«

Hence,

which gives (1.12).

Next we determine under what conditions equality can hold in (1.12).
Equahty in (1 12) implies that equality holds in (3.1) for each x e (a,b) and
j=1,2,...,m. This happens only if for each xe (¢,b) and j=1,2,...,m

bl

(3.2) J £7(s) ds| = J 1£7(5)] ds
and

e
(3.3) Ajw = Bjwy(s)

almost everywhere on (a, x|, where 4; and B; are real constants.
By continuity of w; on (a,b), the condltlons (3.2) and (3.3) imply that there
exist some real constants C;, j=1,2,...,m, such that

£ (s) = Ciowj(s)(s; (a,x])  for each x e (a,b),

which establishes the formula (1.13).
Conversely, we see directly that for f;, j=1,2,...,m, satisfying (1.13),
equality holds in (1.12).
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