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CONSTRUCTION OF EQUIVALENCE MAPS IN PSEUDO-HERMITIAN
GEOMETRY VIA LINEAR PARTIAL DIFFERENTIAL EQUATIONS

TeTsSUYA OzZAWA* AND HAJIME SATO**

Abstract

We discuss an equivalence problem of pseudo-Hermitian structures on 3-
dimensional manifolds, and develop a method of constructing equivalence maps by
using systems of linear partial differential equations. It is proved that a pseudo-
Hermitian structure is transformed to a standard model of pseudo-Hermitian structure
constructed on the Heisenberg group if and only if it has the vanishing pseudo-
Hermitian torsion and the pseudo-Hermitian curvature. A system of linear partial
differential equations whose coefficients are associated with a given pseudo-Hermitian
structure is introduced, and plays a central role in this paper. The system is integrable
if and only if the pseudo-Hermitian structure has vanishing torsion and curvature. The
equivalence map is constructed by using a normal basis of the solution space of the
system.

1. Introduction

In a series of papers [2], [3], [4], and [5], Cartan elaborated the equivalence
problem of geometric structures. He gave an algorithm of solving the problem
by using absorptions of torsions, prolongations, group reductions and fixing
connections, etc. Necessary conditions are given by invariants for an existence
of a local equivalence. But Cartan’s method does not lead directly to a concrete
construction of equivalence. A method of a quadrature should be contrived
depending on each geometric structure.

In classical complex function theory, a conformal equivalence is given by the
projectification of solutions of the linear second order differential equation using
the Schwarzian derivative as the coefficients. For higher dimensional confor-
mal geometry and the contact projective geometry, Schwarzian derivatives and
systems of linear differential equations are settled by several authors, so that the

2000 Mathematics Subject Classification. Primary 32V05, 53C21; Secondary 53B15, 58A15.

*Partly supported by Grant-in-Aid for Scientific Research (No. 16540085), Japan Society for the
Promotion of Science.

**Partly supported by Grand-in-Aid for Scientific Research (No. 21540076), Japan Society for the
Promotion of Sciences.

Received April 7, 2010.

105



106 TETSUYA OZAWA AND HAJIME SATO

projectification of solutions gives an equivalence of the structure (see Gunning
[8], Matsumoto et al. [9], Yoshida [15], Ozawa et al. [10], and Sato et al. [12],
[13)).

In this paper, we study the pseudo-Hermitian geometry under equivalence
via contact diffeomorphism. Since the problem is local, we consider the structure
on an open set U in the 3-dimensional Heisenberg group H (see §2.1 for basics
on Heisenberg group). We take the standard left invariant frame v; (i = 1,2,3)
and coframe o; (i =1,2,3). We fix the contact structure ker z3. For a complex
valued function ¢ on U, we denote Z, and Z, the complex vector fields defined
by Z, =v; +ov, and Z, = v; + Gv,, respectively. If the imaginary part of a
complex valued function ¢ on U does not vanish, then ¢ induces a decomposition
of the complexified contact plane field C ® ker as;

C®keray=CZ, ®CZ,.

(See §2.2.) Thus we have a correspondence between a function ¢ and a CR-
structure which has the underlying contact structure equal to ker a3. The CR
structure (U, o,n) together with a fixed contact form e”a; gives a pseudo-
Hermitian structure. The unique canonical linear connection V on a pseudo-
Hermitian structure is defined by Tanaka and Webster so that the contact form
and the CR structure are parallel with respect to V (see Tanaka [14], Webster [16]
and Dragomir et al. [7, Theorem 1.3])

Let 7 be the Reeb vector field of the contact form e”us; (see equation
(2)). The pseudo-Hermitian torsion 7 and the Tanaka-Webster curvature x (or
p-H torsion and T-W curvature for short, respectively) are calculated in Lemmas
2 and 3 as

= 6(T(6) —6Z,(02(e)) — Zo(v1(e7)))
Kk = —Z4(s) + Z,(m) + m(s — in) — \/jlhp.

Z,(6) — Z,(0)

where m = — P —Z4(n), s =v2(0) + 2Z,(n),
h= \/—_1(0 —a)e’, and p= 7Zs(v2(e™)) +0_Z_r7(;’1(37”)) —T(o)

(For a more explicit formula, see Proposition 1.)

A Sasakian structure is defined by specializing a metric structure on a
pseudo-Hermitian structure. We use the terminology in a slightly different con-
text where (U, g,#) is a Sasakian structure if the torsion 7 of the Tanaka-Webster
connection vanishes. If ¢ is equal to the constant function oy = —v/—1 on H,
then (H, 09,7 =0) is a Sasakian structure with a vanishing T-W curvature. We
regard (H,00,0) as the standard flat Sasakian structure.

Let o; be complex valued functions, and let #; be real valued functions
on Uj, respectively (j =1,2). Then we have two pseudo-Hermitian structures
(Uj,05,e"a3). If a differentiable map ¢ : Uy — U, satisfies
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eMay = p*(e™23)
(p*(C(Ul + 0’11)2)) = C(U] + (721)2),

then ¢ is called a pseudo-Hermitian map.

Let (U,o0,7n) be a pseudo-Hermitian structure. It is well known that there
exists a pseudo-Hermitian map ¢ : (U,o,n) — (H,—/—1,0) if and only if the p-H
torsion and the T-W curvature of (U,o,n) vanish (see Blair et al. [1] and Cho
et al. [6].) We will construct the pseudo-Hermitian map from (U,o,7) to
(H,—/—1,0) by using a system of linear partial differential equations. For this
purpose, given a pseudo-Hermitian structure (U,a,7), consider the following
system of linear partial differential equations:

0 = Za(f)
(F) {o = Z;(f) = (02(0) +2Z,(n)) Z(f),

where f is a complex valued unknown function on U. We prove the following
result in Section 4.

THEOREM 1. If the pseudo-Hermitian structure (U,o,n) satisfies 1 =r =0,
then the system of equations (F) is integrable.

In Section 5, we define a normality condition for a basis of the solution
space of (F) and prove the following:

THEOREM 2. Suppose that a pseudo-Hermitian structure (U, o,n) on an
open set U in the Heisenberg group H satisfies T =1 =0. Then there exists
a normal basis {f1, f>, f3} of the solution space of (F) such that f\ is a constant
function equal to L. For such solutions f> and fs, the map ® := (T(fg)_l/zfz,
T(f3) 'R(f3)) : (U,0,57) — (H,—/—1,0) is a pseudo-Hermitian map, where T is
the Reeb vector field of the contact form eos, and R(f3) is the real part of f3.

2. CR and pseudo-Hermitian structures

We introduce a left invariant contact structure on the 3-dimensional Heisen-
berg group, by using a standard frame {v;,v;,v3} and coframe {o;,0,03}. And
then we summarize basic facts on CR and pseudo-Hermitian structures.

2.1. Heisenberg group and frames. The set H = C @ R endowed with the
product structure

(z,8) - (w,8) = (z4+w,t +5—23(zw)) for (z,¢),(w,5) eCAR
is called the Heisenberg group. By identifying H with R and using coordinates
(x,y,1) = (z,1), we introduce the vector fields
1 ¢ 0 10 0 0

1 e o0 10 o0 0
(1) NEr e RTae Yw BT a
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on H. They form a left invariant frame, and satisfy the so-called Heisenberg’s
relation;

[v2,01] = v3, [vs,v1] = [v3,02] = 0.
In the following, we call {v},v,,v3} the Heisenberg frame. The real 1-forms
o =2dx, awp=2dy, os=dt+2(xdy—ydx)=dt+V-1(zdz—zdz)

on H are left invariant. They form the dual frame to the Heisenberg frame
(i.e. o;(vj) =0y for i,j=1,2,3), and satisfy the relations

dO(3 = o] A0, dOCl ZdOQ:O

We call {o,0,03} the Heisenberg coframe.

The plane field spanned by v; and v, defines a contact structure on H, which
we denote by 2. Throughout the paper, we fix the contact structure & on
H. For any real valued function #, a 1-form e’03 is a contact form of Z.

The Reeb vector field (or the characteristic vector field) T of a contact form o
is the uniquely determined vector field satisfying the equations

ira =1, 1p(do) =0,

where 1 is the interior product. The Reeb vector field T of the contact form
e'oz is given by

(2) T = e "vy(n)vy — e o1 (n)va + e "vs.

Especially, v; is the Reeb vector field of the contact form os.

2.2. CR structures based on &. A CR structure based on the given contact
structure (H,2) is a direct sum decomposition of the complexification of & into
1-dimensional subspaces;

CROZ=%1,0D %0,

Let /" and g be complex valued functions on H. The line fields (o) =
C(fv1 +gv2) and Z g1y = C(fv1 + gv) intersect only at the zero section if and
only if the imaginary part of g doesn’t vanish. If it is the case, f itself doesn’t
vanish, and the vector field vy + (g/f)v, gives the same decomposition of C ® Z.
Therefore a CR structure based on £ uniquely corresponds to a complex valued
function ¢ (=g/f) with non-vanishing imaginary part (o). Putting Z, =
v] + ovy, we have the following one-to-one correspondence:

{CR structures based on (H,Z)} < {o: H— C;S(0) # 0}
CZ,®CZ, < o,

where Z, =Zs = v, +6v,. For an open set U c H and a smooth function
o: U — C with non-vanishing imaginary part, we denote by (U,s) the CR
structure based on the contact structure & on U defined by the complex vector
field Z, = v; + ov,.



CONSTRUCTION OF EQUIVALENCE MAPS 109

By definition, a complex valued function f is called a CR function with
respect to the CR structure defined by o if f satisfies Z,(f) =0. Let U; be open
subsets of H and a; : U; — C be smooth functions with non-vanishing imaginary
part for i=1,2. A contact map is necessarily a local diffecomorphism. If the
differential ¢, : TU; — TU, of a contact map ¢ : U; — U, preserves the decom-
positions CZ,, @ CZ,,, then ¢ is called a CR map.

For the CR-structure defined by o, there exists a unique complex structure
J, along & whose complexification has Z, and Z, as the V=1 and —v/—1
eigenvectors, respectively. If we write ¢ = a + v/—1b, then the explicit formula
of J, is given by

Jo(pv1 + qua) = -4 Jrl v+—M +24)v
s\ PU1 T q2) = bp b 1 b P b 2
If 0 = —v—1, then the complex structure J_ ,— maps v; and vy to

Jf\/i_l(vl) = and Jﬁ\/i—l(yz) = —vy,

respectively. We will regard the CR structure (H, —/—1) as a standard model of
CR structure.

By using the complex structure J, on the contact plane field &, the notions
of CR functions and maps are explained as follows. A complex valued function
f is a CR function if and only if

V=To(f) = J5(0)(/f)

holds for all contact clements v € &. Suppose two complex valued functions
o; with i =1,2 define CR structures on open sets U; = H, respectively. Let
¢ : Uy — U, be a contact map with respect to the contact plane field . Then ¢
is a CR map if and only if

Jor (04 (0)) = 0. (S, (v))

holds for all contact elements v € &.

Originally CR structure was introduced as an abstraction of real hyper-
surfaces in complex spaces. Here we briefly explain it for a 3-dimensional real
hypersurface M in the 2-dimensional complex space C>. At each point p of M,
the intersection

D, = T,MNV=1T,M

is necessarily a 2-dimensional real subspace in 7,M, and induces a contact
structure & = Upe uZp on M. Since ¥, is closed under the multiplication
J = xv/—1, J defines a complex structure on each plane 2,, and thus a CR
structure on M. We call it the natural CR structure on the real hypersurface
M. Let f and g be CR functions on an open set U < H with respect to a CR
structure defined by 0. Suppose the image M of the map ¢ = (f,g): U — C?is
an embedded real hypersurface. Then ¢ is a CR map from (U,0) to M with the
natural CR structure.
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2.3. Pseudo-Hermitian structure. A pseudo-Hermitian structure (U, o, fo3)
is a CR structure together with a fixed contact form fu3;. For the sake of
simplicity, we consider only the case where

(3) (o) <0 and f>0.

Let (Ui, 0,€e%u3) be pseudo-Hermitian structures (i =1,2). A CR map

¢ : (U, o1,eM03) = (Uz,02,e™a3) is called a pseudo-Hermitian map if it satisfies
p*(e™az) = eMos.

Let 0: U — C be a complex valued function with negative imaginary part,
and #: U — R be a real valued function. We use the abbreviation

(U,o,1)

for a pseudo-Hermitian structure on an open set U = H based on the contact
structure & which consists of a decomposition

C® 2 =C(v + o) ® C(v) + v2)

and a prescribed contact form e”us3.
For a given pseudo-Hermitian structure (U,0,7), we use the frame
{Z;,Z,, T} formed by vector fields

(4) ZO' =1 + UUZa ZO‘ =101 + 6027
T = e "vy(n)vy — e o1 (n)vy + € s
of the complexified tangent bundle C ® TU. Here T is the Reeb vector field of
the contact form e’u3 (see (2)).
The Levi form L of a pseudo-Hermitian structure (U, o,7) is the restriction
to C® 2 of the Hermitian form

LV, W) =—V-1d(e"oa3)(V, W).
The real coefficient & of the Levi form L with respect to the frame {Z,, Z,, T} is
given by
(5) h:=L(Zs,Z;) =V—1(c —a)e".

By the hypothesis (3), the_function / is positive valued.
The dual frame {0',0',0} of the frame {Z,, Z,, T} is given by the 1-forms

1 _
0' = p— (=G0 + o2 + Zs(n)03),

o' = — (oo — 0y — Zg(n)az), 6= e'us.

The frames {Z,,Z,, T} and {01,01,(9} will be referred to as the canonical
frame and the canonical coframe of the pseudo-Hermitian structure (U, o,7). Let
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m be the function defined by
() m==""" 0~ Z,(n).
Then the Lie brackets of vector fields in the canonical frame {Z,, Z,, T} are
equal to

Z,,Z,) = —mZ, +mZ, —/—1hT
(8) [Zav T] = pZa' - qu

[Zm T] =—qZ;+ ﬁZ,;
where p and ¢ are the functions defined by
9) {P = (0Zs(v2(e™)) + Z5(v1(e™)) = T(0))/ (0 - 0)

q = (0Z5(v2(e™)) + Zs(vi(e7™")) = T(0))/(0 - )

Since {Z,, Z,, T} is dual to {01 , (9], 0}, and satisfy (8), the exterior derivatives
of the I-forms in the canonical coframe {#',0', 6} are equal to

d0 = —1ho" A0 ] 7
(10) d0' = —p0' A0+ mO' A0 — GO A O
do' = g0' A0 —m0' AO" + pOAO".

3. Tanaka-Webster connection

Let (U,o,7) be a pseudo-Hermitian structure on an open set U = H. In
this section, we give explicit formulas of the pseudo-Hermitian torsion 7 (or p-H
torsion for short) and the curvature x of Tanaka-Webster connection (or T-W
curvature for short) in terms of the functions ¢ and #.

PI;OPOSITION 1. The p-H torsion t and the T-W curvature x are explicitly
given by
7 () (2) — va(n)es(s) — (0a(n) + 0a ()
+ v101() + 670202 () + v3(G) + Gua(n))
K= =2(60:(0) — 002(6))* /(0 — &)
+ (4(002(7) — Gva(0)) o1 (1) + 4(0%02(3) — G v2(0)) 2 ()
—v1(@)v2(0) + v1(0)v2(6) — v1v1(0 — )
+070202(6) — G2 0202(0) — Gua(0) + 004(7)) /(0 — 7)
= (2(v1v1 + 0Gv202) () + (0 + G)va(n)

+01(n)? + 0a02(1)* + (0 + &)o1(M)2() + 01 (0 + F)va(n))

T =
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where vy, vy, and vs are the left invariant vector fields on the Heisenberg group H
given by (1), and vy denotes the second order operator vivy + vyv1;

1 @ 0* N o 5 0?
= — — X — XY =5

20xay  Toxar  Yapar T TV ar

U4

The proposition will be proved in successive subsections.

3.1. Tanaka-Webster connection. There exists a unique 1-form @ such that
(11) d0' = 0' ho £ OA0", w+@=h""dh,

where 7 is the real coefficient of the Levi form (see (5)). By using w, we define a
connection V on the complexified tangent bundle C® TU by

VZ,=0®Z, VZ,=®6®Z, VT =0.

The connection V is called the Tanaka-Webster connection (or T-W connection
for short) of the pseudo-Hermitian structure (U, g,7), and the 1-form o is called
the connection form of V with respect to the canonical frame {Z,, Z,, T}. The
coefficient 7 is called the pseudo-Hermitian torsion of the connection V. See
Tanaka [14], Webster [16], and Dragomir et al. [7], for details of Tanaka-Webster
connection.

Let m and p be the functions defined in (7) and (9), respectively. Define a
function s by

(12) s = (o) +2Z,(n).

Lemma 1. The connection form of T-W connection of the pseudo-Hermitian
structure (U,o,n) is given by

w:=s0" — p9+m91.
Proof. We will show that w satisfies (11). For the first equation, we have
0' Ao+ 70A0" =0 A (0! —p0+m01) —670/\9i
= —p0' AO+mO' AO" —GOND".

In view of (10), we see the first equation holds. For the second, we use the
following expression:

WV dh = h=' Z,(h)0" + h™ Z,(h)0" + h~'T(h)0.
It is easy to verify that

Z;(og — &)
g—0

(13) s+im=Z,(n)+ =nh1Z,(h).

By equation (9), it holds that
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1

ptpr=_——= (GZ4(v2(e™)) — 0Zg(v2(e™"))
+Z5(vi(e™) = Zo(v1(e™")) = T(0 — G))
= 1 = (e (o1 (n)v2() — v102(n)) + Goe™ (v2(1)v2(y) — v202(1)
—ae”"(vi(n)v2(n) — viva(n)) — Goe™" (v2(n)v2(n) — v202(77))
+e (o1 (n)? = viv1(n)) + oe " (v2(n)v1 () — w201 (1))
0 (n)* — v () — e o2l () — oo () — D)
Since equation (2) implies 7'(57) = e "v3(7), we have
(14) ptp=-T0) - D i,
From (13) and (14), it follows that
o+a=h"dh
This completes the proof. Ol

3.2. Pseudo-Hermitian torsion. Let {Z,,Z,, T} and {0170179} be the
canonical frame and coframe of (U,o,7) defined in (4) and (6), respectively.

LemMMA 2. The p-H torsion t of the pseudo-Hermitian structure (U,o,n) is
equal to —gq, that is,

(15) r=—L (T(8) = 6Zs(v2(e™")) = Zs(vr(e7™"))).

Proof. Let Tor be the torsion of the T-W connection;
Tor(X,Y)=VyY —VyX — [X, Y].
Then the p-H torsion 7 is defined by the following equation:
Tor(T,Z,) = 1Z,.
From equations (8) and (10), we have
Tor(T,Z,) =V Z -V, T — [T, Z,]
=o(T)Z; + (PZs — 4Z,)
= —qZ,.

Therefore the p-H torsion 7 is equal to —g. O
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3.3. Tanaka-Webster curvature. By definition, the T-W curvature i is the
coefficient of 6" /\Hl-component in the exterior derivative dw of the connection
form w.

LemMmA 3. The T-W curvature x of a pseudo-Hermitian structure (U,o,n) is
given by
(16) Kk = —Z4(8) + Zs(m) + m(s — m) — vV—1hp.

Proof. The exterior derivative dw of the connection form « obtained in
Lemma 1 is equal to dw:=dsA0' —dpAO+dmal', where ds= Z,(s)0" +

Z,(s)0" + T(s)0, and dp and dm are similar. Therefore the exterior derivative
dow is equal to

do> = —(T(5) + ps + Zu(p))0' 0
+ (= Zo(5) + Zo(m) +m(s — i) — V—1hp)0' A0

+(Zo(p) + T(m) + pm)0 £ 0"
Thus we find the T-W curvature is as given in (16). O

Proof. (Proposition 1) By a simple calculation, we verify that ¢ and x
obtained in Lemmas 2 and 3 is equal to the formula in the proposition. []J

Let w and w’ be the coefficients of 6' A 0- and 0 A 0'-components in dw,
respectively;

(17) {W:_T(s)_ps_zﬂ'(p)v

w' = Z,(p) + T(m) + pm.

We will use the following lemma in Subsection 4.2:
LemMmA 4. If the p-H torsion t vanishes, then w=w' = 0.

Proof. Suppose 7 =0. Then we have d0' = 0' A, and thus
0=d’0" =d(0' rw) = —0"' rdo,
which implies w' = 0. Since d0' = 0' A& = 0' A (h™' dh — w), we have
0=d?*0' =d(0' ") = —0' nd = 0" Adw,

which implies w = 0. O

Remark 1. 1Tt is well known that there exists a unique contact Riemannian
structure on a pseudo-Hermitian structure. If the pseudo-Hermitian torsion
vanishes, then the resulting contact Riemannian structure is called a Sasakian

structure. In this sense a pseudo-Hermitian structure with 7 = x = 0 is nothing
but a flat Sasakian structure (see for instance Dragomir et al. [7]).
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By Proposition 1, the p-H torsion and the T-W curvature of the left invariant
pseudo-Hermitian structure (H,—+/—1,0) vanish, because ¢ = —v/—1 and # =0
are constant. We regard (H,—/—1,0) as the standard model of a pseudo-
Hermitian structure and also a flat Sasakian structure.

4. Fundamental system of equations

Let (U,o,n7) be a pseudo-Hermitian structure on an open set U < H.
Throughout this section, we fix the canonical frame {Z,,Z,,T} of (U, a,n)
defined in (4). The following system of equations (F) will be called the funda-
mental system of equations of the pseudo-Hermitian structure (U, a,7):

0= Z2(f) - (12(0) + 2Z, () Zo (1 ).

If the dimension of the solution space of the system of equations is maximal, then
we say that it is integrable. As we will see shortly, the complex dimension of the
solution space of (F) is at most 3. We will prove that, if the pseudo-Hermitian
structure has the vanishing p-H torsion and the vanishing T-W curvature, the
system (F) is integrable.

(F)

4.1. Matrix form. In order to investigate the integrability of (F) and to
apply Proposition 2, we convert (F) into a matrix form. Let 4, m, p, and s be
the functions defined in (5), (7), (9), and (12), respectively.

LemMa 5. Suppose (U,a,n) is a pseudo-Hermitian structure with T =i = 0.
Let </, B, and € be matrices defined by

01 0 0 0 0 0 0 1
gd=(0 s 0|, =10 m -1h|, €=10 —p 0],
0 0 0 0 0 0 0 0 0

and let f denote the column vector (f Z,(f) T(f))'. Then the system of
equations (F) is equivalent to the following system of equations:

(18) er(f) - ,ssz, Za(f) = %’f7 T(f) = (gj;v

Proof. Let (U,0,n) be a pseudo-Hermitian structure with p-H torsion t =0
on an open set U < H. The condition 7 = 0 implies that the Lie bracket [Z,, T
is equal to

[Zm T} = pZa

(see equation (8) and Lemma 2). Let f be a solution of (F). By differentiating
f by [Z,,Z,] in (8), we have

(19) Z,Z5(f) = mZ,(f) + V-1hT(f),
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which we differentiate by Z, and Z, to obtain
Z:252Z5(f) = (Zs(m) + m$)Zs(f) + NV =1Zo(W)T(f) + V=1hZ,T(f).
We differentiate the second equation of (F) by Z, to obtain
ZoZ5Z5(f) = (Zo(s) + ms) Zy(f) + V=1hsT(f).
Subtracting the above two equations, we obtain
Zo, Z\Z5(f) = (Zo(m) = Zo(5)) Zo(f) + V=UZo(h) = h)T(f) + V=1hZ,T(f).

On the other hand, we have, by differentiating Z,(f) by the vector field [Z,, Z,]
in view of (8),

Z0, Z5)Zo(f) = —=m(s = M) Zo(f) + V1T (f) = V=1hTZ,(f).
If k=0, the above two expressions of [Z,,Z,]Z,(f) yield
(20) ZUT<f) + TZU(f) = _ng(f),

where we used the identity Z,(h) = h(s+ m). By differentiating f by the vector
field [Z,, T], we have Z,T(f) — TZ;(f) = pZs(f). Thus we get

(21) Z;T(f) =0, TZ,(f)=—pZs(f)

The hypothesis © =0 implies [Z,,T] = pZ,, and thus, since f is a solution of
(F), we have [Z,, T|(f) = pZ,(f) =0 and TZ,(f) =0. Therefore we obtain

(22) Z,T(f) =0.
By differentiating T'(f) by [Z,,Z,], we also find
T*(f) = 0.
The equations so obtained as above
ZsZo(f) = mZo(f) + V=1T(f),
Z,T(f) = Z;T(f) = TZ,(f) + pZo(f) = T*(f) = 0

imply that any solution f of (F) satisfies equations (18). The inverse implication
is obvious. U

4.2. Integrability. Now we prove the following:
THEOREM 1. If a pseudo-Hermitian structure (U,o,n) has vanishing p-H

torsion and vanishing T-W curvature, then the system of equations (F) for (U,o,n)
is integrable.
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Proof. From Proposition 2, it suffices to show the following three equalities

(23) Zo(B) — Z,(A) — | A, B) = —mod + B — NV —1h%
(24) Zﬂ'((g) - T("Q{) - [&{7%} = P&/
(25) Z,(%) = T(#) — |8,%] = pB.

The subtraction of both sides of (23) has only two non-trivial entries. Thus to
verify (23), it suffices to show

(26) 0= Z,(m) — Z,(s) + m(s — m) —V—1hp
27) 0 = Z,(h) — h(s + )

that are the (2,2)-component and the (2,3)-component. The equation (26) is
equivalent to k = 0, and (27) is an identity. Thus (23) is verified. For equation
(24), the subtraction of both sides has only one non-trivial entry, and it suffices to
show

(28) 0=—Z;(p) = T(s) — ps

that are the (2,2)-component. The right hand side of (28) is equal to the
coefficient w in (17), which vanishes, because we are supposing that the p-H
torsion 7 and the T-W curvature x of (U,o,5) are equal to 0 (see Lemma 4).
Thus (24) is verified. Again the subtraction of both sides of (25) has two non-
trivial entries. Here it remains to show

(29) 0= Z,(p)+ T(m)+ pm
(30) 0=—T(h) —h(p+ p)

that are the (2,2)-component and the (2,3)-component. The right hand side
of (29) is equal to the coefficient w’ in (17), which vanishes, because =0 and
x =0, and (30) holds identically, as shown in (14). This completes the proof.

O

5. Construction of pseudo-Hermitian map

We introduce a Hermitian inner product on the solution space of the
fundamental system of equation (F) of a pseudo-Hermitian structure (U,a,7).
By using the Hermitian inner product, we will construct a pseudo-Hermitian map
from (U,a,7) into the standard pseudo-Hermitian structure (U, —+v/—1,0), pro-
vided the p-H torsion 7 and the T-W curvature x of the pseudo-Hermitian
structure (U, o,7) vanish. We continue using the canonical frame (Z,,Z,, T) of
(U,o,n) defined in (4).

5.1. Hermitian inner product on solution space. Define an inner product on
the solution space of (F) by

(31) frogy = —V=1(T(@) — T(f)F) + "' Zs(f)Zs(7)-
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LEMMA 6. The above inner product {f,g) is constant for any solutions f and
g of the fundamental system of equations (F) of (U,a,n).

Proof. Let f and g be solutions of (F). Then the differential of {f,g) by
Z, is equal to

Z,(f,9)) = —V=UZ,(NT(G) + [Z:sT(G) — Z,T(/)G — T(f)Z(3))
- hiZZa(h)ZJ(f)ZU(g) + Iflsza(f‘)za(g) + hilZa(f)ZJZU(g)-

By equations (19), (21) and (22), we have Z,Z,(f) =mZ,(f)+ V—1hT(f),
Z,T(f) =0 and Z,T(f)=0. Hence

Zo({f,90) = —hH(Zg(h) = h(s + ) Z5(f) Z()-

Since it identically holds that s+ m = h~'Z,(h), we get Z,({f,g>) =0. The
inner product satisfies {f,g» = <g, f>. Thus, by taking the complex conjugate
of Z,({f,9>) =0, we also get Z,({f,gy) =0 for any solutions " and g of (F).

Any function f that satisfies Z,(f) = Z,(f) =0 must be constant. Therefore
{f,g> must be constant. 0

For each function f, we denote by f the column vector (fZ,(f)T(f))". By
using a Hermitian matrix # defined by

0 0 v-1
%:: 0 h_l 0 )
-1 0 0
we may write
Sogy=T'7g.

We will say a basis {fi, f2, f3} of the solution space of (F) is normal if the inner
products satisfy

0 0 v-1
(32) (<fh]§>),/ = 0 1 0
V=1 0 0

5.2. Construction. By using a normal basis, we construct, in the following
theorem, a pseudo-Hermitian map. Let R(f) denote the real part of f.

THEOREM 2. Suppose that a pseudo-Hermitian structure (U,a,n) on an open
set U in the Heisenberg group H has 1 =0 and k = 0. Then there exists a normal
basis {f1, f2, f3} of the solution space of (F) with fi a constant function equal
to L. For such solutions f, and f3, the map ® := (T((}%)fl/zfz,T(ﬁ)*lﬂ?(ﬁ)):
(U,o,n) — (H,—v—1,0) is a pseudo-Hermitian map.



CONSTRUCTION OF EQUIVALENCE MAPS 119

Proof.  Solutions f of the system (F) are uniquely determined by the initial

value f(p) = (f(p)Z:(f)(p)T(f)(p))" at an arbitrarily chosen point pe U.
Since (U,o,1) has t =0 and x = 0, the solution space of (F) is of dimension 3

(see Theorem 1 and Corollary 3). Thus for any linear basis {fi, f2, f3} of solu-
tions of (F), the initial values of these solutions at p form a regular three-by-
three matrix (f;(p) f2(p) f3(p)). Therefore we may choose the solutions f, f5,
and f;3 so that their initial values at p have the form

o /20 0
(33) (fi(p) £2(p) £5(P)) = ( 0 hp) 0 )
o 0 -2

Notice that the function fj is a constant function equal to 1/2. From Lemma 6,
it follows that the inner products of those functions satisfy equation (32), that
is, {f1, /2, f3} is a normal basis. We denote by / the matrix on the right-hand
side of (32); (<fi, /j»);;=1. Now consider the matrix 7 := (f; f, f3) for these
solutions. Then we have Z'#% =1, and thus

(34) FIF = FI(# " (F) ') =717 (") = (# )"
Among the componentwise equations, we use the following
(1, 1)-component : —=S(f3) + [ /5> = 0

(1,2)-component : —~——Z,(f3) + f2Z,(f,) =0

(1,3)-component : —
(3,3)-component : |T(f2)|* =
By using those solutions f, and f;, we define a map ®: U — H by

(35) @(z,1) := (fa(z, 1), R(f3(2, 1)))-

and will show that @ is a pseudo-Hermitian map from (U, o,7) to the standard
model (H,—v—1,0). We will prove this in two steps.

Step 1. We show that the map ® in (35) satisfies @*(a3) = e'o3.

Let {0',0',0} be the dual coframe to the frame {Z,,Z,, T} of the com-
plexified tangent space C ® TH of the Heisenberg group H. Then the exterior
derivative of any function f is expressed as df = Z,(f)0' + Z,(f)0" + T(f)0.
Putting w = f5(z,7) and u = R(f3(z,1)) =1(f3(z, 1) + f3(z,1)), we may calculate
the pullback ®*(x3) = du+/—1(wdw — i dw) of the contact form oz =
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dt++/—=1(zdz—zdz) and find that the 6, 6', and Hi-components of
du+v—1(wdw — W dw) are respectively as follows:

O-component : %T(ﬁ + A)+V=1AETS) — AHT(fH))
0'-component : %Zg(fz + )+ V=1U$HZ(f) — HZo(12))
Oi—component : %ZJ(fg + /) +V=UAHZ(f) — HhZs (1))

Since 0 equals eas, it suffices, for the proof of Step 1, to show that the 0'-
component and the 0'-component vanish, and that the f-component is equal to
1. Since the functions f; and f; are solutions of the system (F), they satisfy
Z,(f})=0=Z,(f;). From the (1,2)-component of (34), we deduce that the
0'- and the 0'-components are equal to 0, that is, @ is a contact map. From
the (1,3) and the (3,3)-component of (34), it follows that 7'(f;) =0 and
T(f;) =2. Thus we find that the f-component is equal to 1. Therefore ®
satisfies @*(o3) = e'us.

Step 2. We show that the map ®: (U,0) — (H,00) is a CR map.

Since the functions f, and f; satisfy the equation Z,(f;) =0, the map
9= (f, ) : U— C?*is J,-holomorphic, namely ¢ satisfies ¢, (J,(v)) = v—1¢,(v)
for all contact element v of U. By the (1,1)-component of (34), the image of ¢
is contained in the real hypersurface M = {(z1,z,) € C*S(z,) = |z1/*}. On the
other hand, for the standard CR structure gy, the map ¢, : H — C? defined by
0o(z,1) = (z,t + V/—1|z|?) is J,-holomorphic, and is a bijection between H and
the hypersurface M. Since ® is equal to the composition (goo)_l o @, it commutes
with J, and J,; J5, (®.(v)) = @.(J5(v)) for all contact element v. This proves
the claim of Step 2, and completes the proof. O

From Theorem 2, we directly deduce the following result (see, for example,
Blair et al. [1] and Cho et al. [6]).

CorOLLARY 1. For a pseudo-Hermitian structure (U,o,n), there exists a
pseudo-Hermitian map from (U,a,n) to the standard model (H,—+/—1,0) if and
only if (U,o,n) has t=0 and x =0.

COROLLARY 2. Any two 3-dimensional flat Sasakian structures are locally
equivalent by a diffeomorphism which preserves the underlining contact structures.

6. Appendix

In the proof of the integrability of (F) in §4, we used a basic fact on
existence and uniqueness of solutions of a system of linear partial differential
equations. Although it follows familiar lines, we give a proof here.
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Let M be a connected and simply connected manifold of dimension » whose
tangent bundle is trivial. Let {v,...,v,} be a frame field of the complexified
tangent space C ® TM, and yf; the functions defined by

Ul) Uj E V,/ Uk-

Consider the following system of linear partial differential equations:

(36) vi(f)=Sif fori=1,...,n,

where the unknown function is a vector-valued function f : M — C™, and S; are

square matrices of order m whose entries are smooth functions on U. Denote by

[S,,S] the (a,b)-component of the commutator matrix [S;, S;] = S;S; — S;S; for
a,b=1,.

PROPOSITION 2. Suppose the matrices S; satisfy
(37) vi(S)) — vi(Si) + [S), Si] ZV,,Sk for all i,j=1,.

Then, for each (p,y) e M x C", the initial value problem f(p) = y of the system
(36) has a unique solution f on entire M. Therefore there exists a one-to-one
correspondence between the solution space of the system (36) and the set of initial
values {f(p) € C"} through the initial value problem.

Proof. Let (yi,...,ym) be the canonical coordinate system of C™, and
s? the (a,b)-component of the matrix S;; smooth functions on M. Define the
vector fields &; on M x C™ by

(U,,Zsmy P )eTM@TC’”T(Mme) fori=1,...,n.
a,b=1

A function f satisfies equation v;(f) = S;f, if and only if the graph of f is
tangent to the vector field #;. Therefore, if the vector fields o; satisfy the
Frobenius condition

(38) [0,0] =0 mod oy,...,0, forallij=1,...,n,
then the integral manifolds of the plane field spanned by the vector fields o;

are graphs of solutions of the system (36). Now we calculate the Lie bracket
[51' ) 5.1];
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e e - D a a & c C a a
(03, 0] = [vi, ] + Z _U_/(Szga))y P Z (Sjbsz'[; _sibsjel)y e
— ay d ay
a,b=1 a,b,c=1
0
_Zyyvk+ Z Ul - (la) [SJJS] ) W
a,b=1 y

This shows that, if the matrices S; satisfy the condition (37), we have

[0, 0] = E 75 Ok

and thus find that the vector fields 9; satisfy the Frobenius condition (38). The
n-dimensional plane field spanned by #; is integrable if and only if they satisfy
the Frobenius condition. On the other hand, the vector fields v; are projected
down to the vector fields v; by the projection 7 : M x C" — M to the first factor.
Therefore each integral manifold of the plane field spanned by the vector fields
v; is projected down to M by the projection 7z, and is the graph of a solution of
the system (36). For each point (p,y) € M x C™, there exists a unique integral
manifold through (p, y), which means the existence and uniqueness of the initial
value problem of the system (36). O

The above proof also shows the following:

COROLLARY 3. The maximal dimension of the solution space of (36) is equal
to m.
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