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CONSTRUCTION OF EQUIVALENCE MAPS IN PSEUDO-HERMITIAN

GEOMETRY VIA LINEAR PARTIAL DIFFERENTIAL EQUATIONS

Tetsuya Ozawa* and Hajime Sato**

Abstract

We discuss an equivalence problem of pseudo-Hermitian structures on 3-

dimensional manifolds, and develop a method of constructing equivalence maps by

using systems of linear partial di¤erential equations. It is proved that a pseudo-

Hermitian structure is transformed to a standard model of pseudo-Hermitian structure

constructed on the Heisenberg group if and only if it has the vanishing pseudo-

Hermitian torsion and the pseudo-Hermitian curvature. A system of linear partial

di¤erential equations whose coe‰cients are associated with a given pseudo-Hermitian

structure is introduced, and plays a central role in this paper. The system is integrable

if and only if the pseudo-Hermitian structure has vanishing torsion and curvature. The

equivalence map is constructed by using a normal basis of the solution space of the

system.

1. Introduction

In a series of papers [2], [3], [4], and [5], Cartan elaborated the equivalence
problem of geometric structures. He gave an algorithm of solving the problem
by using absorptions of torsions, prolongations, group reductions and fixing
connections, etc. Necessary conditions are given by invariants for an existence
of a local equivalence. But Cartan’s method does not lead directly to a concrete
construction of equivalence. A method of a quadrature should be contrived
depending on each geometric structure.

In classical complex function theory, a conformal equivalence is given by the
projectification of solutions of the linear second order di¤erential equation using
the Schwarzian derivative as the coe‰cients. For higher dimensional confor-
mal geometry and the contact projective geometry, Schwarzian derivatives and
systems of linear di¤erential equations are settled by several authors, so that the
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projectification of solutions gives an equivalence of the structure (see Gunning
[8], Matsumoto et al. [9], Yoshida [15], Ozawa et al. [10], and Sato et al. [12],
[13]).

In this paper, we study the pseudo-Hermitian geometry under equivalence
via contact di¤eomorphism. Since the problem is local, we consider the structure
on an open set U in the 3-dimensional Heisenberg group H (see §2.1 for basics
on Heisenberg group). We take the standard left invariant frame vi ði ¼ 1; 2; 3Þ
and coframe ai ði ¼ 1; 2; 3Þ. We fix the contact structure ker a3. For a complex
valued function s on U , we denote Zs and Zs the complex vector fields defined
by Zs ¼ v1 þ sv2 and Zs ¼ v1 þ sv2, respectively. If the imaginary part of a
complex valued function s on U does not vanish, then s induces a decomposition
of the complexified contact plane field Cn ker a3;

Cn ker a3 ¼ CZs lCZs:

(See §2.2.) Thus we have a correspondence between a function s and a CR-
structure which has the underlying contact structure equal to ker a3. The CR
structure ðU ; s; hÞ together with a fixed contact form eha3 gives a pseudo-
Hermitian structure. The unique canonical linear connection ‘ on a pseudo-
Hermitian structure is defined by Tanaka and Webster so that the contact form
and the CR structure are parallel with respect to ‘ (see Tanaka [14], Webster [16]
and Dragomir et al. [7, Theorem 1.3])

Let T be the Reeb vector field of the contact form eha3 (see equation
(2)). The pseudo-Hermitian torsion t and the Tanaka-Webster curvature k (or
p-H torsion and T-W curvature for short, respectively) are calculated in Lemmas
2 and 3 as

t ¼ �1

s� s
ðTðsÞ � sZsðv2ðe�hÞÞ � Zsðv1ðe�hÞÞÞ

k ¼ �ZsðsÞ þ ZsðmÞ þmðs�mÞ �
ffiffiffiffiffiffiffi
�1

p
hp:

where m ¼ �ZsðsÞ � ZsðsÞ
s� s

� ZsðhÞ; s ¼ v2ðsÞ þ 2ZsðhÞ;

h ¼
ffiffiffiffiffiffiffi
�1

p
ðs� sÞeh; and p ¼ sZsðv2ðe�hÞÞ þ Zsðv1ðe�hÞÞ � TðsÞ

s� s

(For a more explicit formula, see Proposition 1.)
A Sasakian structure is defined by specializing a metric structure on a

pseudo-Hermitian structure. We use the terminology in a slightly di¤erent con-
text where ðU ; s; hÞ is a Sasakian structure if the torsion t of the Tanaka-Webster
connection vanishes. If s is equal to the constant function s0 ¼ �

ffiffiffiffiffiffiffi
�1

p
on H,

then ðH; s0; h ¼ 0Þ is a Sasakian structure with a vanishing T-W curvature. We
regard ðH; s0; 0Þ as the standard flat Sasakian structure.

Let sj be complex valued functions, and let hj be real valued functions
on Uj, respectively ( j ¼ 1; 2). Then we have two pseudo-Hermitian structures
ðUj; sj; e

hja3Þ. If a di¤erentiable map j : U1 ! U2 satisfies
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eh1a3 ¼ j�ðeh2a3Þ
j�ðCðv1 þ s1v2ÞÞ ¼ Cðv1 þ s2v2Þ;

then j is called a pseudo-Hermitian map.
Let ðU ; s; hÞ be a pseudo-Hermitian structure. It is well known that there

exists a pseudo-Hermitian map j : ðU ; s; hÞ ! ðH;�
ffiffiffiffiffiffiffi
�1

p
; 0Þ if and only if the p-H

torsion and the T-W curvature of ðU ; s; hÞ vanish (see Blair et al. [1] and Cho
et al. [6].) We will construct the pseudo-Hermitian map from ðU ; s; hÞ to

ðH;�
ffiffiffiffiffiffiffi
�1

p
; 0Þ by using a system of linear partial di¤erential equations. For this

purpose, given a pseudo-Hermitian structure ðU ; s; hÞ, consider the following
system of linear partial di¤erential equations:

0 ¼ Zsð f Þ
0 ¼ Z2

sð f Þ � ðv2ðsÞ þ 2ZsðhÞÞZsð f Þ;

�
ðFÞ

where f is a complex valued unknown function on U . We prove the following
result in Section 4.

Theorem 1. If the pseudo-Hermitian structure ðU ; s; hÞ satisfies t ¼ k ¼ 0,
then the system of equations (F) is integrable.

In Section 5, we define a normality condition for a basis of the solution
space of (F) and prove the following:

Theorem 2. Suppose that a pseudo-Hermitian structure ðU ; s; hÞ on an
open set U in the Heisenberg group H satisfies t ¼ k ¼ 0. Then there exists
a normal basis f f1; f2; f3g of the solution space of (F) such that f1 is a constant
function equal to 1

2 . For such solutions f2 and f3, the map F :¼ ðTð f3Þ�1=2
f2;

Tð f3Þ�1<ð f3ÞÞ : ðU ; s; hÞ ! ðH;�
ffiffiffiffiffiffiffi
�1

p
; 0Þ is a pseudo-Hermitian map, where T is

the Reeb vector field of the contact form eha3, and <ð f3Þ is the real part of f3.

2. CR and pseudo-Hermitian structures

We introduce a left invariant contact structure on the 3-dimensional Heisen-
berg group, by using a standard frame fv1; v2; v3g and coframe fa1; a2; a3g. And
then we summarize basic facts on CR and pseudo-Hermitian structures.

2.1. Heisenberg group and frames. The set H ¼ ClR endowed with the
product structure

ðz; tÞ � ðw; sÞ ¼ ðzþ w; tþ s� 2=ðzwÞÞ for ðz; tÞ; ðw; sÞ A ClR

is called the Heisenberg group. By identifying H with R3 and using coordinates
ðx; y; tÞ ¼ ðz; tÞ, we introduce the vector fields

v1 ¼
1

2

q

qx
þ y

q

qt
; v2 ¼

1

2

q

qy
� x

q

qt
; v3 ¼

q

qt
ð1Þ
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on H. They form a left invariant frame, and satisfy the so-called Heisenberg’s
relation;

½v2; v1� ¼ v3; ½v3; v1� ¼ ½v3; v2� ¼ 0:

In the following, we call fv1; v2; v3g the Heisenberg frame. The real 1-forms

a1 ¼ 2 dx; a2 ¼ 2 dy; a3 ¼ dtþ 2ðx dy� y dxÞ ¼ dtþ
ffiffiffiffiffiffiffi
�1

p
ðz dz� z dzÞ

on H are left invariant. They form the dual frame to the Heisenberg frame
(i.e. aiðvjÞ ¼ dij for i; j ¼ 1; 2; 3), and satisfy the relations

da3 ¼ a15a2; da1 ¼ da2 ¼ 0

We call fa1; a2; a3g the Heisenberg coframe.
The plane field spanned by v1 and v2 defines a contact structure on H, which

we denote by D. Throughout the paper, we fix the contact structure D on
H. For any real valued function h, a 1-form eha3 is a contact form of D.

The Reeb vector field (or the characteristic vector field ) T of a contact form a
is the uniquely determined vector field satisfying the equations

iTa ¼ 1; iTðdaÞ ¼ 0;

where i is the interior product. The Reeb vector field T of the contact form
eha3 is given by

T ¼ e�hv2ðhÞv1 � e�hv1ðhÞv2 þ e�hv3:ð2Þ

Especially, v3 is the Reeb vector field of the contact form a3.

2.2. CR structures based on D. A CR structure based on the given contact
structure ðH;DÞ is a direct sum decomposition of the complexification of D into
1-dimensional subspaces;

CnD ¼ Dð1;0Þ lDð0;1Þ:

Let f and g be complex valued functions on H. The line fields Dð1;0Þ ¼
Cð fv1 þ gv2Þ and Dð0;1Þ ¼ Cð f v1 þ gv2Þ intersect only at the zero section if and
only if the imaginary part of f g doesn’t vanish. If it is the case, f itself doesn’t
vanish, and the vector field v1 þ ðg=f Þv2 gives the same decomposition of CnD.
Therefore a CR structure based on D uniquely corresponds to a complex valued
function s (¼ g=f ) with non-vanishing imaginary part =ðsÞ. Putting Zs ¼
v1 þ sv2, we have the following one-to-one correspondence:

fCR structures based on ðH;DÞg $ fs : H ! C;=ðsÞ0 0g

CZs lCZs $ s;

where Zs ¼ Zs ¼ v1 þ sv2. For an open set U HH and a smooth function
s : U ! C with non-vanishing imaginary part, we denote by ðU ; sÞ the CR
structure based on the contact structure D on U defined by the complex vector
field Zs ¼ v1 þ sv2.
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By definition, a complex valued function f is called a CR function with
respect to the CR structure defined by s if f satisfies Zsð f Þ ¼ 0. Let Ui be open
subsets of H and si : Ui ! C be smooth functions with non-vanishing imaginary
part for i ¼ 1; 2. A contact map is necessarily a local di¤eomorphism. If the
di¤erential j� : TU1 ! TU2 of a contact map j : U1 ! U2 preserves the decom-
positions CZsi lCZsi , then j is called a CR map.

For the CR-structure defined by s, there exists a unique complex structure

Js along D whose complexification has Zs and Zs as the
ffiffiffiffiffiffiffi
�1

p
and �

ffiffiffiffiffiffiffi
�1

p

eigenvectors, respectively. If we write s ¼ aþ
ffiffiffiffiffiffiffi
�1

p
b, then the explicit formula

of Js is given by

Jsðpv1 þ qv2Þ ¼ � a

b
pþ 1

b
q

� �
v1 þ � a2 þ b2

b
pþ a

b
q

� �
v2:

If s1�
ffiffiffiffiffiffiffi
�1

p
, then the complex structure J�

ffiffiffiffiffi
�1

p maps v1 and v2 to

J�
ffiffiffiffiffi
�1

p ðv1Þ ¼ v2 and J�
ffiffiffiffiffi
�1

p ðv2Þ ¼ �v1;

respectively. We will regard the CR structure ðH;�
ffiffiffiffiffiffiffi
�1

p
Þ as a standard model of

CR structure.
By using the complex structure Js on the contact plane field D, the notions

of CR functions and maps are explained as follows. A complex valued function
f is a CR function if and only ifffiffiffiffiffiffiffi

�1
p

vð f Þ ¼ JsðvÞð f Þ

holds for all contact elements v A D. Suppose two complex valued functions
si with i ¼ 1; 2 define CR structures on open sets Ui HH, respectively. Let
j : U1 ! U2 be a contact map with respect to the contact plane field D. Then j
is a CR map if and only if

Js2ðj�ðvÞÞ ¼ j�ðJs1ðvÞÞ

holds for all contact elements v A D.
Originally CR structure was introduced as an abstraction of real hyper-

surfaces in complex spaces. Here we briefly explain it for a 3-dimensional real
hypersurface M in the 2-dimensional complex space C2. At each point p of M,
the intersection

Dp ¼ TpM V
ffiffiffiffiffiffiffi
�1

p
TpM

is necessarily a 2-dimensional real subspace in TpM, and induces a contact
structure D ¼ 6

p AM Dp on M. Since Dp is closed under the multiplication

J ¼ �
ffiffiffiffiffiffiffi
�1

p
, J defines a complex structure on each plane Dp, and thus a CR

structure on M. We call it the natural CR structure on the real hypersurface
M. Let f and g be CR functions on an open set U HH with respect to a CR
structure defined by s. Suppose the image M of the map j ¼ ð f ; gÞ : U ! C2 is
an embedded real hypersurface. Then j is a CR map from ðU ; sÞ to M with the
natural CR structure.
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2.3. Pseudo-Hermitian structure. A pseudo-Hermitian structure ðU ; s; f a3Þ
is a CR structure together with a fixed contact form f a3. For the sake of
simplicity, we consider only the case where

=ðsÞ < 0 and f > 0:ð3Þ

Let ðUi; si; e
hia3Þ be pseudo-Hermitian structures (i ¼ 1; 2). A CR map

j : ðU1; s1; e
h1a3Þ ! ðU2; s2; e

h2a3Þ is called a pseudo-Hermitian map if it satisfies

j�ðeh2a3Þ ¼ eh1a3:

Let s : U ! C be a complex valued function with negative imaginary part,
and h : U ! R be a real valued function. We use the abbreviation

ðU ; s; hÞ

for a pseudo-Hermitian structure on an open set U HH based on the contact
structure D which consists of a decomposition

CnD ¼ Cðv1 þ sv2ÞlCðv1 þ sv2Þ

and a prescribed contact form eha3.
For a given pseudo-Hermitian structure ðU ; s; hÞ, we use the frame

fZs;Zs;Tg formed by vector fields

Zs ¼ v1 þ sv2; Zs ¼ v1 þ sv2;

T ¼ e�hv2ðhÞv1 � e�hv1ðhÞv2 þ e�hv3
ð4Þ

of the complexified tangent bundle CnTU . Here T is the Reeb vector field of
the contact form eha3 (see (2)).

The Levi form L of a pseudo-Hermitian structure ðU ; s; hÞ is the restriction
to CnD of the Hermitian form

LðV ;WÞ ¼ �
ffiffiffiffiffiffiffi
�1

p
dðeha3ÞðV ;WÞ:

The real coe‰cient h of the Levi form L with respect to the frame fZs;Zs;Tg is
given by

h :¼ LðZs;ZsÞ ¼
ffiffiffiffiffiffiffi
�1

p
ðs� sÞeh:ð5Þ

By the hypothesis (3), the function h is positive valued.
The dual frame fy1; y1; yg of the frame fZs;Zs;Tg is given by the 1-forms

y1 ¼ 1

s� s
ð�sa1 þ a2 þ ZsðhÞa3Þ;

y1 ¼ 1

s� s
ðsa1 � a2 � ZsðhÞa3Þ; y ¼ eha3:

ð6Þ

The frames fZs;Zs;Tg and fy1; y1; yg will be referred to as the canonical
frame and the canonical coframe of the pseudo-Hermitian structure ðU ; s; hÞ. Let
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m be the function defined by

m ¼ ZsðsÞ � ZsðsÞ
s� s

� ZsðhÞ:ð7Þ

Then the Lie brackets of vector fields in the canonical frame fZs;Zs;Tg are
equal to

½Zs;Zs� ¼ �mZs þmZs �
ffiffiffiffiffiffiffi
�1

p
hT

½Zs;T � ¼ pZs � qZs;

½Zs;T � ¼ �qZs þ pZs

8><
>:ð8Þ

where p and q are the functions defined by

p ¼ ðsZsðv2ðe�hÞÞ þ Zsðv1ðe�hÞÞ � TðsÞÞ=ðs� sÞ;
q ¼ ðsZsðv2ðe�hÞÞ þ Zsðv1ðe�hÞÞ � TðsÞÞ=ðs� sÞ:

�
ð9Þ

Since fZs;Zs;Tg is dual to fy1; y1; yg, and satisfy (8), the exterior derivatives

of the 1-forms in the canonical coframe fy1; y1; yg are equal to

dy ¼
ffiffiffiffiffiffiffi
�1

p
hy15y1

dy1 ¼ �py15yþmy15y1 � qy5y1

dy1 ¼ qy15y�my15y1 þ py5y1:

8><
>:ð10Þ

3. Tanaka-Webster connection

Let ðU ; s; hÞ be a pseudo-Hermitian structure on an open set U HH. In
this section, we give explicit formulas of the pseudo-Hermitian torsion t (or p-H
torsion for short) and the curvature k of Tanaka-Webster connection (or T-W
curvature for short) in terms of the functions s and h.

Proposition 1. The p-H torsion t and the T-W curvature k are explicitly
given by

t ¼ �e�h

s� s
ðv2ðhÞv1ðsÞ � v1ðhÞv2ðsÞ � ðv1ðhÞ þ sv2ðhÞÞ2

þ v1v1ðhÞ þ s2v2v2ðhÞ þ v3ðsÞ þ sv4ðhÞÞ

k ¼ �2ðsv2ðsÞ � sv2ðsÞÞ2=ðs� sÞ2

þ ð4ðsv2ðsÞ � sv2ðsÞÞv1ðhÞ þ 4ðs2v2ðsÞ � s2v2ðsÞÞv2ðhÞ
� v1ðsÞv2ðsÞ þ v1ðsÞv2ðsÞ � v1v1ðs� sÞ

þ s2v2v2ðsÞ � s2v2v2ðsÞ � sv4ðsÞ þ sv4ðsÞÞ=ðs� sÞ
� ð2ðv1v1 þ ssv2v2ÞðhÞ þ ðsþ sÞv4ðhÞ

þ v1ðhÞ2 þ ssv2ðhÞ2 þ ðsþ sÞv1ðhÞv2ðhÞ þ v1ðsþ sÞv2ðhÞÞ
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where v1, v2, and v3 are the left invariant vector fields on the Heisenberg group H
given by (1), and v4 denotes the second order operator v1v2 þ v2v1;

v4 ¼
1

2

q2

qxqy
� x

q2

qxqt
þ y

q2

qyqt
� 2xy

q2

qt2
:

The proposition will be proved in successive subsections.

3.1. Tanaka-Webster connection. There exists a unique 1-form o such that

dy1 ¼ y15oþ ty5y1; oþ o ¼ h�1 dh;ð11Þ
where h is the real coe‰cient of the Levi form (see (5)). By using o, we define a
connection ‘ on the complexified tangent bundle CnTU by

‘Zs ¼ onZs; ‘Zs ¼ onZs; ‘T ¼ 0:

The connection ‘ is called the Tanaka-Webster connection (or T-W connection
for short) of the pseudo-Hermitian structure ðU ; s; hÞ, and the 1-form o is called
the connection form of ‘ with respect to the canonical frame fZs;Zs;Tg. The
coe‰cient t is called the pseudo-Hermitian torsion of the connection ‘. See
Tanaka [14], Webster [16], and Dragomir et al. [7], for details of Tanaka-Webster
connection.

Let m and p be the functions defined in (7) and (9), respectively. Define a
function s by

s ¼ v2ðsÞ þ 2ZsðhÞ:ð12Þ

Lemma 1. The connection form of T-W connection of the pseudo-Hermitian
structure ðU ; s; hÞ is given by

o :¼ sy1 � pyþmy1:

Proof. We will show that o satisfies (11). For the first equation, we have

y15oþ ty5y1 ¼ y15ðsy1 � pyþmy1Þ � qy5y1

¼ �py15yþmy15y1 � qy5y1:

In view of (10), we see the first equation holds. For the second, we use the
following expression:

h�1 dh ¼ h�1ZsðhÞy1 þ h�1ZsðhÞy1 þ h�1TðhÞy:

It is easy to verify that

sþm ¼ ZsðhÞ þ
Zsðs� sÞ
s� s

¼ h�1ZsðhÞ:ð13Þ

By equation (9), it holds that
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pþ p ¼ 1

s� s
ðsZsðv2ðe�hÞÞ � sZsðv2ðe�hÞÞ

þ Zsðv1ðe�hÞÞ � Zsðv1ðe�hÞÞ � Tðs� sÞÞ

¼ 1

s� s
ðse�hðv1ðhÞv2ðhÞ � v1v2ðhÞÞ þ sse�hðv2ðhÞv2ðhÞ � v2v2ðhÞÞ

� se�hðv1ðhÞv2ðhÞ � v1v2ðhÞÞ � sse�hðv2ðhÞv2ðhÞ � v2v2ðhÞÞ

þ e�hðv1ðhÞ2 � v1v1ðhÞÞ þ se�hðv2ðhÞv1ðhÞ � v2v1ðhÞÞ

� e�hðv1ðhÞ2 � v1v1ðhÞÞ � se�hðv2ðhÞv1ðhÞ � v2v1ðhÞÞÞ �
Tðs� sÞ
s� s

¼ �e�hv3ðhÞ �
Tðs� sÞ
s� s

:

Since equation (2) implies TðhÞ ¼ e�hv3ðhÞ, we have

pþ p ¼ �TðhÞ � Tðs� sÞ
s� s

¼ �h�1TðhÞ:ð14Þ

From (13) and (14), it follows that

oþ o ¼ h�1 dh:

This completes the proof. r

3.2. Pseudo-Hermitian torsion. Let fZs;Zs;Tg and fy1; y1; yg be the
canonical frame and coframe of ðU ; s; hÞ defined in (4) and (6), respectively.

Lemma 2. The p-H torsion t of the pseudo-Hermitian structure ðU ; s; hÞ is
equal to �q, that is,

t ¼ �1

s� s
ðTðsÞ � sZsðv2ðe�hÞÞ � Zsðv1ðe�hÞÞÞ:ð15Þ

Proof. Let Tor be the torsion of the T-W connection;

TorðX ;YÞ ¼ ‘XY � ‘YX � ½X ;Y �:
Then the p-H torsion t is defined by the following equation:

TorðT ;ZsÞ ¼ tZs:

From equations (8) and (10), we have

TorðT ;ZsÞ ¼ ‘TZ � ‘Zs
T � ½T ;Zs�

¼ oðTÞZs þ ðpZs � qZsÞ

¼ �qZs:

Therefore the p-H torsion t is equal to �q. r
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3.3. Tanaka-Webster curvature. By definition, the T-W curvature k is the

coe‰cient of y15y1-component in the exterior derivative do of the connection
form o.

Lemma 3. The T-W curvature k of a pseudo-Hermitian structure ðU ; s; hÞ is
given by

k ¼ �ZsðsÞ þ ZsðmÞ þmðs�mÞ �
ffiffiffiffiffiffiffi
�1

p
hp:ð16Þ

Proof. The exterior derivative do of the connection form o obtained in

Lemma 1 is equal to do :¼ ds5y1 � dp5yþ dm5y1, where ds ¼ ZsðsÞy1 þ
ZsðsÞy1 þ TðsÞy, and dp and dm are similar. Therefore the exterior derivative
do is equal to

do ¼ �ðTðsÞ þ psþ ZsðpÞÞy15y

þ ð�ZsðsÞ þ ZsðmÞ þmðs�mÞ �
ffiffiffiffiffiffiffi
�1

p
hpÞy15y1

þ ðZsðpÞ þ TðmÞ þ pmÞy5y1

Thus we find the T-W curvature is as given in (16). r

Proof. (Proposition 1) By a simple calculation, we verify that t and k
obtained in Lemmas 2 and 3 is equal to the formula in the proposition. r

Let w and w 0 be the coe‰cients of y15y- and y5y1-components in do,
respectively;

w ¼ �TðsÞ � ps� ZsðpÞ;
w 0 ¼ ZsðpÞ þ TðmÞ þ pm:

�
ð17Þ

We will use the following lemma in Subsection 4.2:

Lemma 4. If the p-H torsion t vanishes, then w ¼ w 0 ¼ 0.

Proof. Suppose t ¼ 0. Then we have dy1 ¼ y15o, and thus

0 ¼ d 2y1 ¼ dðy15oÞ ¼ �y15do;

which implies w 0 ¼ 0. Since dy1 ¼ y15o ¼ y15ðh�1 dh� oÞ, we have

0 ¼ d 2y1 ¼ dðy15oÞ ¼ �y15do ¼ y15do;

which implies w ¼ 0. r

Remark 1. It is well known that there exists a unique contact Riemannian
structure on a pseudo-Hermitian structure. If the pseudo-Hermitian torsion
vanishes, then the resulting contact Riemannian structure is called a Sasakian
structure. In this sense a pseudo-Hermitian structure with t ¼ k ¼ 0 is nothing
but a flat Sasakian structure (see for instance Dragomir et al. [7]).
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By Proposition 1, the p-H torsion and the T-W curvature of the left invariant
pseudo-Hermitian structure ðH;�

ffiffiffiffiffiffiffi
�1

p
; 0Þ vanish, because s ¼ �

ffiffiffiffiffiffiffi
�1

p
and h ¼ 0

are constant. We regard ðH;�
ffiffiffiffiffiffiffi
�1

p
; 0Þ as the standard model of a pseudo-

Hermitian structure and also a flat Sasakian structure.

4. Fundamental system of equations

Let ðU ; s; hÞ be a pseudo-Hermitian structure on an open set U HH.
Throughout this section, we fix the canonical frame fZs;Zs;Tg of ðU ; s; hÞ
defined in (4). The following system of equations (F) will be called the funda-
mental system of equations of the pseudo-Hermitian structure ðU ; s; hÞ:

0 ¼ Zsð f Þ
0 ¼ Z2

sð f Þ � ðv2ðsÞ þ 2ZsðhÞÞZsð f Þ:

�
ðFÞ

If the dimension of the solution space of the system of equations is maximal, then
we say that it is integrable. As we will see shortly, the complex dimension of the
solution space of (F) is at most 3. We will prove that, if the pseudo-Hermitian
structure has the vanishing p-H torsion and the vanishing T-W curvature, the
system (F) is integrable.

4.1. Matrix form. In order to investigate the integrability of (F) and to
apply Proposition 2, we convert (F) into a matrix form. Let h, m, p, and s be
the functions defined in (5), (7), (9), and (12), respectively.

Lemma 5. Suppose ðU ; s; hÞ is a pseudo-Hermitian structure with t ¼ k ¼ 0.
Let A, B, and C be matrices defined by

A ¼
0 1 0

0 s 0

0 0 0

0
@

1
A; B ¼

0 0 0

0 m
ffiffiffiffiffiffiffi
�1

p
h

0 0 0

0
@

1
A; C ¼

0 0 1

0 �p 0

0 0 0

0
@

1
A;

and let ~ff denote the column vector ð f Zsð f Þ Tð f ÞÞ t. Then the system of
equations (F) is equivalent to the following system of equations:

Zsð ~ff Þ ¼ A~ff ; Zsð ~ff Þ ¼ B~ff ; Tð ~ff Þ ¼ C~ff ;ð18Þ

Proof. Let ðU ; s; hÞ be a pseudo-Hermitian structure with p-H torsion t ¼ 0
on an open set U HH. The condition t ¼ 0 implies that the Lie bracket ½Zs;T �
is equal to

½Zs;T � ¼ pZs

(see equation (8) and Lemma 2). Let f be a solution of (F). By di¤erentiating
f by ½Zs;Zs� in (8), we have

ZsZsð f Þ ¼ mZsð f Þ þ
ffiffiffiffiffiffiffi
�1

p
hTð f Þ;ð19Þ
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which we di¤erentiate by Zs and Zs to obtain

ZsZsZsð f Þ ¼ ðZsðmÞ þmsÞZsð f Þ þ
ffiffiffiffiffiffiffi
�1

p
ZsðhÞTð f Þ þ

ffiffiffiffiffiffiffi
�1

p
hZsTð f Þ:

We di¤erentiate the second equation of (F) by Zs to obtain

ZsZsZsð f Þ ¼ ðZsðsÞ þmsÞZsð f Þ þ
ffiffiffiffiffiffiffi
�1

p
hsTð f Þ:

Subtracting the above two equations, we obtain

½Zs;Zs�Zsð f Þ ¼ ðZsðmÞ � ZsðsÞÞZsð f Þ þ
ffiffiffiffiffiffiffi
�1

p
ðZsðhÞ � hsÞTð f Þ þ

ffiffiffiffiffiffiffi
�1

p
hZsTð f Þ:

On the other hand, we have, by di¤erentiating Zsð f Þ by the vector field ½Zs;Zs�
in view of (8),

½Zs;Zs�Zsð f Þ ¼ �mðs�mÞZsð f Þ þ
ffiffiffiffiffiffiffi
�1

p
hmTð f Þ �

ffiffiffiffiffiffiffi
�1

p
hTZsð f Þ:

If k ¼ 0, the above two expressions of ½Zs;Zs�Zsð f Þ yield

ZsTð f Þ þ TZsð f Þ ¼ �pZsð f Þ;ð20Þ

where we used the identity ZsðhÞ ¼ hðsþmÞ. By di¤erentiating f by the vector
field ½Zs;T �, we have ZsTð f Þ � TZsð f Þ ¼ pZsð f Þ. Thus we get

ZsTð f Þ ¼ 0; TZsð f Þ ¼ �pZsð f Þ:ð21Þ

The hypothesis t ¼ 0 implies ½Zs;T � ¼ pZs, and thus, since f is a solution of
(F), we have ½Zs;T �ð f Þ ¼ pZsð f Þ ¼ 0 and TZsð f Þ ¼ 0. Therefore we obtain

ZsTð f Þ ¼ 0:ð22Þ

By di¤erentiating Tð f Þ by ½Zs;Zs�, we also find

T 2ð f Þ ¼ 0:

The equations so obtained as above

ZsZsð f Þ ¼ mZsð f Þ þ
ffiffiffiffiffiffiffi
�1

p
hTð f Þ;

ZsTð f Þ ¼ ZsTð f Þ ¼ TZsð f Þ þ pZsð f Þ ¼ T 2ð f Þ ¼ 0

imply that any solution f of (F) satisfies equations (18). The inverse implication
is obvious. r

4.2. Integrability. Now we prove the following:

Theorem 1. If a pseudo-Hermitian structure ðU ; s; hÞ has vanishing p-H
torsion and vanishing T-W curvature, then the system of equations (F) for ðU ; s; hÞ
is integrable.

116 tetsuya ozawa and hajime sato



Proof. From Proposition 2, it su‰ces to show the following three equalities

ZsðBÞ � ZsðAÞ � ½A;B� ¼ �mAþmB�
ffiffiffiffiffiffiffi
�1

p
hCð23Þ

ZsðCÞ � TðAÞ � ½A;C� ¼ pAð24Þ

ZsðCÞ � TðBÞ � ½B;C� ¼ pB:ð25Þ

The subtraction of both sides of (23) has only two non-trivial entries. Thus to
verify (23), it su‰ces to show

0 ¼ ZsðmÞ � ZsðsÞ þmðs�mÞ �
ffiffiffiffiffiffiffi
�1

p
hpð26Þ

0 ¼ ZsðhÞ � hðsþmÞð27Þ

that are the ð2; 2Þ-component and the ð2; 3Þ-component. The equation (26) is
equivalent to k ¼ 0, and (27) is an identity. Thus (23) is verified. For equation
(24), the subtraction of both sides has only one non-trivial entry, and it su‰ces to
show

0 ¼ �ZsðpÞ � TðsÞ � psð28Þ
that are the ð2; 2Þ-component. The right hand side of (28) is equal to the
coe‰cient w in (17), which vanishes, because we are supposing that the p-H
torsion t and the T-W curvature k of ðU ; s; hÞ are equal to 0 (see Lemma 4).
Thus (24) is verified. Again the subtraction of both sides of (25) has two non-
trivial entries. Here it remains to show

0 ¼ ZsðpÞ þ TðmÞ þ pmð29Þ
0 ¼ �TðhÞ � hðpþ pÞð30Þ

that are the ð2; 2Þ-component and the ð2; 3Þ-component. The right hand side
of (29) is equal to the coe‰cient w 0 in (17), which vanishes, because t ¼ 0 and
k ¼ 0, and (30) holds identically, as shown in (14). This completes the proof.

r

5. Construction of pseudo-Hermitian map

We introduce a Hermitian inner product on the solution space of the
fundamental system of equation (F) of a pseudo-Hermitian structure ðU ; s; hÞ.
By using the Hermitian inner product, we will construct a pseudo-Hermitian map
from ðU ; s; hÞ into the standard pseudo-Hermitian structure ðU ;�

ffiffiffiffiffiffiffi
�1

p
; 0Þ, pro-

vided the p-H torsion t and the T-W curvature k of the pseudo-Hermitian
structure ðU ; s; hÞ vanish. We continue using the canonical frame ðZs;Zs;TÞ of
ðU ; s; hÞ defined in (4).

5.1. Hermitian inner product on solution space. Define an inner product on
the solution space of (F) by

h f ; gi ¼ �
ffiffiffiffiffiffiffi
�1

p
ð fTðgÞ � Tð f ÞgÞ þ h�1Zsð f ÞZsðgÞ:ð31Þ
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Lemma 6. The above inner product h f ; gi is constant for any solutions f and
g of the fundamental system of equations (F) of ðU ; s; hÞ.

Proof. Let f and g be solutions of (F). Then the di¤erential of h f ; gi by
Zs is equal to

Zsðh f ; giÞ ¼ �
ffiffiffiffiffiffiffi
�1

p
ðZsð f ÞTðgÞ þ fZsTðgÞ � ZsTð f Þg� Tð f ÞZsðgÞÞ

� h�2ZsðhÞZsð f ÞZsðgÞ þ h�1sZsð f ÞZsðgÞ þ h�1Zsð f ÞZsZsðgÞ:

By equations (19), (21) and (22), we have ZsZsð f Þ ¼ mZsð f Þ þ
ffiffiffiffiffiffiffi
�1

p
hTð f Þ,

ZsTð f Þ ¼ 0 and ZsTð f Þ ¼ 0. Hence

Zsðh f ; giÞ ¼ �h�2ðZsðhÞ � hðsþmÞÞZsð f ÞZsðgÞ:

Since it identically holds that sþm ¼ h�1ZsðhÞ, we get Zsðh f ; giÞ ¼ 0. The
inner product satisfies h f ; gi ¼ hg; f i. Thus, by taking the complex conjugate
of Zsðh f ; giÞ ¼ 0, we also get Zsðh f ; giÞ ¼ 0 for any solutions f and g of (F).
Any function f that satisfies Zsð f Þ ¼ Zsð f Þ ¼ 0 must be constant. Therefore
h f ; gi must be constant. r

For each function f , we denote by ~ff the column vector ð fZsð f ÞTð f ÞÞ t. By
using a Hermitian matrix H defined by

H :¼
0 0

ffiffiffiffiffiffiffi
�1

p

0 h�1 0

�
ffiffiffiffiffiffiffi
�1

p
0 0

0
B@

1
CA;

we may write

h f ; gi ¼ ~ff tH~gg:

We will say a basis f f1; f2; f3g of the solution space of (F) is normal if the inner
products satisfy

ðh fi; fjiÞi; j ¼
0 0

ffiffiffiffiffiffiffi
�1

p

0 1 0

�
ffiffiffiffiffiffiffi
�1

p
0 0

0
B@

1
CA:ð32Þ

5.2. Construction. By using a normal basis, we construct, in the following
theorem, a pseudo-Hermitian map. Let <ð f Þ denote the real part of f .

Theorem 2. Suppose that a pseudo-Hermitian structure ðU ; s; hÞ on an open
set U in the Heisenberg group H has t ¼ 0 and k ¼ 0. Then there exists a normal
basis f f1; f2; f3g of the solution space of (F) with f1 a constant function equal
to 1

2 . For such solutions f2 and f3, the map F :¼ ðTð f3Þ�1=2
f2;Tð f3Þ�1<ð f3ÞÞ :

ðU ; s; hÞ ! ðH;�
ffiffiffiffiffiffiffi
�1

p
; 0Þ is a pseudo-Hermitian map.
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Proof. Solutions f of the system (F) are uniquely determined by the initial
value ~ff ðpÞ ¼ ð f ðpÞZsð f ÞðpÞTð f ÞðpÞÞ t at an arbitrarily chosen point p A U .
Since ðU ; s; hÞ has t ¼ 0 and k ¼ 0, the solution space of (F) is of dimension 3
(see Theorem 1 and Corollary 3). Thus for any linear basis f f1; f2; f3g of solu-
tions of (F), the initial values of these solutions at p form a regular three-by-
three matrix ð ~ff1ðpÞ ~ff2ðpÞ ~ff3ðpÞÞ. Therefore we may choose the solutions f1, f2,
and f3 so that their initial values at p have the form

ð ~ff1ðpÞ ~ff2ðpÞ ~ff3ðpÞÞ ¼
1=2 0 0

0
ffiffiffiffiffiffiffiffiffi
hðpÞ

p
0

0 0 �2

0
@

1
A:ð33Þ

Notice that the function f1 is a constant function equal to 1=2. From Lemma 6,
it follows that the inner products of those functions satisfy equation (32), that
is, f f1; f2; f3g is a normal basis. We denote by I the matrix on the right-hand
side of (32); ðh fi; fjiÞi; j ¼ I . Now consider the matrix F :¼ ð ~ff1 ~ff2

~ff3Þ for these
solutions. Then we have FtHF ¼ I , and thus

FIFt ¼ FIðH�1ðFtÞ�1
IÞ t ¼ FI 2F�1ðH�1Þ t ¼ ðH�1Þ t:ð34Þ

Among the componentwise equations, we use the following

ð1; 1Þ-component : �=ð f3Þ þ j f2j2 ¼ 0

ð1; 2Þ-component : �
ffiffiffiffiffiffiffi
�1

p

2
Zsð f3Þ þ f2Zsð f2Þ ¼ 0

ð1; 3Þ-component : �
ffiffiffiffiffiffiffi
�1

p

2
Tð f3Þ þ f2Tð f2Þ ¼ �

ffiffiffiffiffiffiffi
�1

p

ð3; 3Þ-component : jTð f2Þj2 ¼ 0:

By using those solutions f2 and f3, we define a map F : U ! H by

Fðz; tÞ :¼ ð f2ðz; tÞ;<ð f3ðz; tÞÞÞ:ð35Þ

and will show that F is a pseudo-Hermitian map from ðU ; s; hÞ to the standard
model ðH;�

ffiffiffiffiffiffiffi
�1

p
; 0Þ. We will prove this in two steps.

Step 1. We show that the map F in (35) satisfies F�ða3Þ ¼ eha3.

Let fy1; y1; yg be the dual coframe to the frame fZs;Zs;Tg of the com-
plexified tangent space CnTH of the Heisenberg group H. Then the exterior

derivative of any function f is expressed as df ¼ Zsð f Þy1 þ Zsð f Þy1 þ Tð f Þy.
Putting w ¼ f2ðz; tÞ and u ¼ <ð f3ðz; tÞÞ ¼ 1

2 ð f3ðz; tÞ þ f3ðz; tÞÞ, we may calculate

the pullback F�ða3Þ ¼ duþ
ffiffiffiffiffiffiffi
�1

p
ðw dw� w dwÞ of the contact form a3 ¼
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dtþ
ffiffiffiffiffiffiffi
�1

p
ðz dz� z dzÞ and find that the y, y1, and y1-components of

duþ
ffiffiffiffiffiffiffi
�1

p
ðw dw� w dwÞ are respectively as follows:

y-component :
1

2
Tð f3 þ f3Þ þ

ffiffiffiffiffiffiffi
�1

p
ð f2Tð f2Þ � f2Tð f2ÞÞ

y1-component :
1

2
Zsð f3 þ f3Þ þ

ffiffiffiffiffiffiffi
�1

p
ð f2Zsð f2Þ � f2Zsð f2ÞÞ

y1-component :
1

2
Zsð f3 þ f3Þ þ

ffiffiffiffiffiffiffi
�1

p
ð f2Zsð f2Þ � f2Zsð f2ÞÞ:

Since y equals eha3, it su‰ces, for the proof of Step 1, to show that the y1-

component and the y1-component vanish, and that the y-component is equal to
1. Since the functions f2 and f3 are solutions of the system (F), they satisfy
Zsð fiÞ ¼ 0 ¼ Zsð fiÞ. From the ð1; 2Þ-component of (34), we deduce that the

y1- and the y1-components are equal to 0, that is, F is a contact map. From
the ð1; 3Þ and the ð3; 3Þ-component of (34), it follows that Tð f2Þ ¼ 0 and
Tð f3Þ ¼ 2. Thus we find that the y-component is equal to 1. Therefore F
satisfies F�ða3Þ ¼ eha3.

Step 2. We show that the map F : ðU ; sÞ ! ðH; s0Þ is a CR map.
Since the functions f2 and f3 satisfy the equation Zsð fiÞ ¼ 0, the map

j ¼ ð f2; f3Þ : U ! C2 is Js-holomorphic, namely j satisfies j�ðJsðvÞÞ ¼
ffiffiffiffiffiffiffi
�1

p
j�ðvÞ

for all contact element v of U . By the ð1; 1Þ-component of (34), the image of j
is contained in the real hypersurface M ¼ fðz1; z2Þ A C2;=ðz2Þ ¼ jz1j2g. On the
other hand, for the standard CR structure s0, the map j0 : H ! C2 defined by
j0ðz; tÞ ¼ ðz; tþ

ffiffiffiffiffiffiffi
�1

p
jzj2Þ is Js0 -holomorphic, and is a bijection between H and

the hypersurface M. Since F is equal to the composition ðj0Þ
�1 � j, it commutes

with Js and Js0 ; Js0ðF�ðvÞÞ ¼ F�ðJsðvÞÞ for all contact element v. This proves
the claim of Step 2, and completes the proof. r

From Theorem 2, we directly deduce the following result (see, for example,
Blair et al. [1] and Cho et al. [6]).

Corollary 1. For a pseudo-Hermitian structure ðU ; s; hÞ, there exists a
pseudo-Hermitian map from ðU ; s; hÞ to the standard model ðH;�

ffiffiffiffiffiffiffi
�1

p
; 0Þ if and

only if ðU ; s; hÞ has t ¼ 0 and k ¼ 0.

Corollary 2. Any two 3-dimensional flat Sasakian structures are locally
equivalent by a di¤eomorphism which preserves the underlining contact structures.

6. Appendix

In the proof of the integrability of (F) in §4, we used a basic fact on
existence and uniqueness of solutions of a system of linear partial di¤erential
equations. Although it follows familiar lines, we give a proof here.
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Let M be a connected and simply connected manifold of dimension n whose
tangent bundle is trivial. Let fv1; . . . ; vng be a frame field of the complexified
tangent space CnTM, and gkij the functions defined by

½vi; vj� ¼
Xn
k¼1

gkij vk:

Consider the following system of linear partial di¤erential equations:

við f Þ ¼ Si f for i ¼ 1; . . . ; n;ð36Þ

where the unknown function is a vector-valued function f : M ! Cm, and Si are
square matrices of order m whose entries are smooth functions on U . Denote by
½Si;Sj�ba the ða; bÞ-component of the commutator matrix ½Si;Sj� ¼ SiSj � SjSi for
a; b ¼ 1; . . . ;m.

Proposition 2. Suppose the matrices Si satisfy

viðSjÞ � vjðSiÞ þ ½Sj;Si� ¼
Xn
k¼1

gkij Sk for all i; j ¼ 1; . . . ; n:ð37Þ

Then, for each ðp; yÞ A M � Cm, the initial value problem f ðpÞ ¼ y of the system
(36) has a unique solution f on entire M. Therefore there exists a one-to-one
correspondence between the solution space of the system (36) and the set of initial
values f f ðpÞ A Cmg through the initial value problem.

Proof. Let ðy1; . . . ; ymÞ be the canonical coordinate system of Cm, and
sbia the ða; bÞ-component of the matrix Si; smooth functions on M. Define the
vector fields ~vvi on M � Cm by

~vvi ¼ vi;
Xm
a;b¼1

sbia y
a q

qyb

 !
A TMlTCm ¼ TðM � CmÞ for i ¼ 1; . . . ; n:

A function f satisfies equation við f Þ ¼ Si f , if and only if the graph of f is
tangent to the vector field ~vvi. Therefore, if the vector fields ~vvi satisfy the
Frobenius condition

½~vvi; ~vvj�1 0 mod ~vv1; . . . ; ~vvn for all i; j ¼ 1; . . . ; n;ð38Þ

then the integral manifolds of the plane field spanned by the vector fields ~vvi
are graphs of solutions of the system (36). Now we calculate the Lie bracket
½~vvi; ~vvj�;
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½~vvi; ~vvj � ¼ ½vi; vj� þ
Xm
a;b¼1

ðviðsbjaÞ � vjðsbiaÞÞya q

qyb
þ
Xm

a;b; c¼1

ðscjbsbia � scibs
b
jaÞya q

qyc

¼
Xn
k¼1

gkij vk þ
Xm
a;b¼1

ðviðsbjaÞ � vjðsbiaÞ þ ½Sj ;Si�ba Þya q

qyb
:

This shows that, if the matrices Si satisfy the condition (37), we have

½~vvi; ~vvj � ¼
Xm
k¼1

gkij ~vvk

and thus find that the vector fields ~vvi satisfy the Frobenius condition (38). The
n-dimensional plane field spanned by ~vvi is integrable if and only if they satisfy
the Frobenius condition. On the other hand, the vector fields ~vvi are projected
down to the vector fields vi by the projection p : M � Cm ! M to the first factor.
Therefore each integral manifold of the plane field spanned by the vector fields
~vvi is projected down to M by the projection p, and is the graph of a solution of
the system (36). For each point ðp; yÞ A M � Cm, there exists a unique integral
manifold through ðp; yÞ, which means the existence and uniqueness of the initial
value problem of the system (36). r

The above proof also shows the following:

Corollary 3. The maximal dimension of the solution space of (36) is equal
to m.
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