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FEKETE-SZEGO PROBLEM FOR A CLASS DEFINED
BY AN INTEGRAL OPERATOR

AKSHAYA KUMAR MISHRA AND PRIYABRAT GOCHHAYAT!

Abstract

By making use of an integral operator due to Noor, a new subclass of analytic
functions, denoted by k — %7, (neNy:={0,1,2,...};0 <k < 00); is introduced.
For this class the Fekete-Szegd problem is completely settled. The results obtained
here also give the Fekete-Szegd inequalities for the classes of k-uniformly convex
functions and k-parabolic starlike functions.

1. Introduction and definitions
Let o/ denote the family of functions analytic in the open unit disk
U .={z:zeC,|z| < 1}

and let .o/, be the class of functions f in .o/ satisfying the normalization condition
f(0)=f'(0) —1=0. Thus, the functions in <%, are given by the power series

(1.1) fE) =2+ a" (ze).
n=2
Let 2" : oy — o7y be the operator defined by
zZ
9"f(z) =—————x f(z) n>-—1
1) = e G
=k -1
:z+kz_;( Zfl )akzk, (f € dop,neNy = 1{0,1,2,...}),
where '+’ denotes the convolution or (})Iadamard product. We note that
n—1 n
9°% = f, 2'f =zf" and @’ff:%. The operator 2"f is called the
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Ruscheweyh derivative of n”* order of f. Analogous to 2"f, Noor [13] defined
an integral operator .4, : /) — o/, as follows:
Write f,(z) =z/(1 —z)""" and let f;| be defined by the relation

(1.2) 1) = =
For f e .o let
(1.3) Sf () = 1) 5 1),

Note that 4 f(z) =zf'(z) and 4, f(z) = f(z). The operator .%,f defined by
(1.3) is called n” order Noor integral operator of f. For details see (cf. [13],
[14], also see [15]).

For any real or complex numbers «, b, ¢ other than 0,—1,—2,..., the Gauss
hypergeometric series is defined by

ab  ala+1)b(b+1) z?

(1.4) 2F1(abcz)—1+— + C(C-l—l) 2
We can write (1.3) as
(1.5) Inf(z) = [22F1(2,1;n+ 1;2)] + f(2)
Z n+k—1) RNC

k=2

Let &, &*, €7, U€Y and ¥Z denote, respectively the subclasses of .27, con-
sisting of functions which are univalent, starlike, convex (cf. [4]), uniformly convex
(cf. [6]) and parabolic starlike (cf. [16])) in %. For fixed k (0 <k < o), the
function f e .o/ is said to be in k—X€7"; the class of k-uniformly convex
functions in 9, if the image of every circular arc y contained in %, with centre
& where |£| < k, is a convex arc. This interesting unification of the concepts of
convex functions and uniformly convex functions is due to [8]. The class k — 2,
consisting of k-parabolic starlike functions, is defined from k — %%V~ via the
Alexander’s transform (see [9]) i.e.

(1.6) fek—UtV < gek—SP, where g(z) =zf'(z) (zeW).

The one variable characterization theorem (cf. [8]) of the the class k — %% 7"
gives that f ek — %7 (respectively f €k — F2P) if only if the values of
7/"(2) ( (2))
piz)=1+ respectively zeU
&=+ @) F<Y

lie in the conic region € in the w-plane, where

Qi={w=u+iveC:u*>k>(u—17>+k**0<k < 0}
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For details of the geometric description of Q see [8, 9]. Taking cue from (1.6),
we now define a new subclass of analytic functions by using the linear operator
I

DermNITION 1. The function f € .o/, is said to be in the class k — %€,
(0<k<oo;neNy) if 4,f ek —FP?. Or equivalently

ére((ff)()> PEEIE

D)) G

Note that the class kK — %%, unifies many subclasses of .o/, related to &. In
particular, for k=0, n=0:0—%%7, := €7, the class of univalent convex
functions (see [4]); for k=1, n=0:1—-U€?V := U€ Y, the class of uniformly
convex functions (see [6]); for k=0, n=1:0—%€77 := %", the class of uni-
valent starlike functions (see [4]); for k=1, n=1:1—U%€71 := S P, the class of
parabolic starlike functions (see [16]); for k #0, n=0:k —UCVy =k — UCYV
(see [8]); for k #0, n=1:k—UCV) :=k — FP (see [§)]).

It is well known (cf. [4]) that for fe.% and given by (1.1), the sharp
inequality |a; —a3| <1 holds. Fekete-Szegd, in their seminal work [5], found
sharp bounds for a3 — as], (ke R,0 < u < 1), for f € . Thus, for any family
Z of functions in .¢7), the problem of finding sharp estimates on the nonlinear
functional |ua3 —as|, (xeR or peC) is popularly known as the Fekete-Szegd
problem for #. Recently the present authors [12] settled this problem for the
classes k — #€7, k— SP and some related classes defined using fractional
calculus. One may also see [7, 10, 11, 17, 18] for some interesting results
on this topic. In the present paper the Fekete-Szegd problem for the class
k—U€v, (0<k< oo;neNy) is settled completely. For k=1, n=0 and
n=0; n=1, the result on Fekete-Szegé inequalities obtained here include,
respectively, earlier results of Ma and Minda [11] on #% 7" and recent results
of the authors on k — %%+ and k — % in [12]. For values of n > 1 our results
provide new information.

In the present investigation we also need the following definitions and
notations, for the presentation of our results.

The Jacobi elliptic integral (or normal elliptic integral) of first kind (¢f- [1],
[2], also see [19, p. 50]) is defined by

F(o,1) = J dx
’ o /(1= x2)(1 = 2x2)
The function Z (1,1) := #(¢) is called the complete elliptic integral of the
first kind. Changing to the variable ¢/ = V1 — 2, 1€ (0,1), we write #” () :=
A'(t"). Tt should be emphasized here that the symbol 7 (prime) does not stand
for derivative. The following properties of #'(¢) and #"'(¢) are well known (cf.

[7D)-

(zel).

0<t<).

lim %(z):g lim (1) = o.

t—0t t—1-
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Moreover the function
A
=220
2 H(1)
strictly decreases from oo to 0 as ¢t moves from 0 to 1. Therefore every positive
number k can be expressed as
(1.7) k = cosh(v(1))

for some unique € (0,1).
Define the function ¥ on % by

(1.8) %(z):[zzFl(n+1,1;2;2)]*{zexp(£&21d§>}, (zeU),

where ¢, is the function defined in Lemma 1 (below) and write the function
V(z,0,n) in k—U€Y, by

(te(0,1))

a%g+m>_qg%

(1.9) lp(Z,H,ﬂ)Z[ZzFl(”"'1715292)]*267‘1’(];[(1"( 1+ 7¢ ¢

O<o<2m0<p<l).
Note that y(z,0,1) = 9(z) defined by (1.8) and ¥(z,0,0) is an odd function.
2. Preliminary lemmas
We need the following results in our investigation:

LemmA 1 [7]. Let k € [0, 00) be fixed and qi be the Riemann map of % on to
Q, satisfying qi(0) =1 and q;(0) > 0. If

(2.1) () =14+ Q12+ Q2> +---, (z€W)
then
12%;2; 0<k<l,
0= %5 k=1,
72
we DoV b
(AZ;Z)QI; 0<k<l,
0 = %Ql; k=1,
2 2 2
o ks
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where

2
(2.2) A = — arccos k,
T

and A (t) is the complete elliptic integral of first kind.

LemMa 2 [10].  Let h be analytic, with h(0) = 1, R(h(z)) > 0 and given by the
series

(2.3) hz)=1+ciz4+ >+ (ze).
Then
(2.4) leal €2 (meN),

2 1, |e1]
(2.5) lc2—c¢7] <2 and €2 =56 £2—T

3. Fekete-Szego inequalities

The following calculations shall be used in each of the proofs of Theorems 1,
2 and 3.

By Definition 1 there exists a function w € .o/ satisfying the conditions of the
Schwarz lemma such that

(A f ()
31) S ()

where ¢, is the function defined as in Lemma 1.
Let the function p; be defined by

_1+w(z)
mz) = 1 —w(z)
so that R(pi(z)) > 0. This gives
¢ 1 c?
w(z) :Elz—’_i <02 —?>z +-

Substituting this in the series (2.1) we get

=qr(w(z)) (zeu),

=l4ciz4+a?+---, (zel),

2
(3.2) (Jk(W(Z)):1+Q1{%Z+%(62—%>2 +. }
) 2
+Q2{—z+%< Cz>z +- } T
qu { <Cz—>Q1+ Cle}Z +
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Using the expansion (1.5) in (3.1) and equating coefficients we find that

(33) o= DG
4
and
2.2 2 2
PR RS GRS 1 S Y

We have the following:

THEOREM 1. Let the function f given by (1.1) be in the class k — UV,
(0<k<1). Then

(n+1)(n+2)4% [ 6(n+1)4%u
6(1 — k2) (m+ma—ka
2+ 4?) 247\ -
T3 _aka) =
2
63)  lua} —an| ={ PEAOEDL n<psam,
(n+1)(n+2)4% [ 247
6(1— k2 (Uk%
2+4%) 6+ DA
T3 ’Xn+ma_ka>’“s“%

where the constant A is given by (2.2),

(n+2) ((5+A4*)(1-k*) 1

G0 = k) (n+1)< 1842 +§)
2) (1 (1—43)(1 -k

and az(k):EZLiG_%)'

Each of the estimates in (3.5) is sharp.

Proof. Putting the value of Q; and @, for 0 <k <1 from Lemma 1 in
(3.3) and (3.4) we get
_(n+ 1A%
L0k @

and

=B 1))
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Therefore

4(1 — k2)? “ 12(1 - k2)

2
é<(1‘42)16—Ak2>“2}‘
DAt (e D(n+2)4
_‘{4(1—k2)2ﬂ+ 72(1- ) ((1_A2)

642 )}2 (n+ 1)(n +2) 4>

2 440 2
a2 — a| = (n+1)°"A% (n+1)(n+2)4 {62

TR0k @

(1-42%)

(n+1)(n+2)4% | 6(n+1)4%u
24(1 — k2) { n+2)(1— k)

+% ((1 A - (1614]2(2)) }cf — 26,

(n+1)(n+2)A% | 6(n+1)4%u
24(1 — k?) {(n+2)(1—k2)
1 - 42 242 202 o
+ 3 _(l—kz)_ }c1+ ] —2¢
(n+1)(n+2)4>

24(1 — k2) {
5+4% 24
3 (1-kY)

(3.7) -

6(n+1)A4°u
(n+2)(1-£k2)

(3.8) <

\012| + 2|Cl2 — Cz|}.

Now we note that
6(n+ 1A% 5+ A4° 24

(39) -k 3 -k ="
. n+2) ((5+4)(1—k*) 1
provided u > Enili <( * 18)1512 )+3> = 0.

Thus if g > o, the expression inside the first modulus symbol on the right hand
side of (3.8) is non negative. An application of Lemma 2 yields,

(n+1)(n+2)4? 6(n+1)4%u
24(1 — k2) { <(n +2)(1 —k2)

54 A2 242
B <1—k2>)4+4}

(3.10) a3 — a <
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<(n+1)(n+2)A2 6(n+1)A4%u
= 6(1—k?) (n+2)(1—k2)

2+4> 247

3 (1—k?)

which is the first part of assertion (3.5).
Rewriting (3.7)

(n + 1)(n+2)4?

242 1 — 42
11 ;—as] = —2¢, — -
(3.11) |uay — a3 24(1 - k2) @ {(1k2) 3
n+1A2 }
(21K

_(n+1) A2 242 17A2

N 241—k2 (1—£k?)

- s n—|—1 } 426,

Now if u < ap, where oy is given by (3.6), then

() +2)A2 ([ 242 1- 22
ey = asl = 2 e {((11@)‘ 3

6(n+1)A4%u
‘Xn+ma—k%>“”+””@

Applying Lemma 2, we get

(n+1)(n+2)A2{( 242 1- A2

(3.12)  |ua3 —a3) <

24(1 — k2) (1-k2) 3
6(n+1)A4%u
‘Xn+2x1—ka)4+4}

C(n+D)(n+2)42 ( 247 2+A4*  6(n+ 1)A%u
=TS -1 ((1—k2)+ 3 _(n+2)(1—k2))

which is the third part of the assertion (3.5).
Lastly from (3.11), write

(n+1)(n+2)4>
C24(1-k2)

6t 1A% }2
(n+2)(1 —k?)

(313)  |uad—a| =

2%, + 242 _I—A2
Tl =k) 3

317
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2
- (n+1)(n+2)4 5
24(1 — k?)

242 n 2+ 42 6
(1 —k?) 3 (n
Observe that oy < u < oy gives

242 N 2447 6(n+1)A%u
(1 —k?) 3 (n+2)(1 —k?)
Therefore an application of Lemma 2 in (3.13) gives
(n+1)(n+2)4>

6(1 —k?)
which is the second part of assertion (3.5).

We next discuss the sharpness of (3.5).

If 14 > a1, equality holds in (3.5) if and only if equality holds in (3.10). This
happens if and only if |¢;| =2 and |¢} — ¢2] =2. Thus w(z) = z. Equivalently
the extremal function is %(z) defined by (1.8) or one of its rotations.

If u <oy then equality holds in (3.12) if and only if ¢} =-4and ¢, = -2
in (3.7) if and only if ¢; = 2¢™/? or ¢; = 2¢*"/? which also gives ¢; = —2. Thus

1
(&) *EC%

(n+1)4%u
21— k)

c%|}.

)

(3.14) <l

(3.15) a3 — x| <

) 3 .
w(z) = ez where 0 :g or 0 = 77[ and the extremal function is y(z,0,1) or one
of its rotations.
If = oy, the equality holds if and only if |c;| =2. Equivalently, we have

l+n (142 l—-n(l—-z
_ lizeq).
1(2) 5 (l_z)+ 5 (1+Z) O<n<lized)

Thus the extremal function f is ¥(z,0,7) or one of its rotations.
Similarly if u = o, is equivalent to
6(n+1)A’u  5+4° 247 o
(n+2)(1 — k?) 3 (1—-k2)
Therefore equality holds true in (3.10) if and only if |¢? — ¢2| =2 in (3.8). This
happens if and only if

I l4n(l+42\ 1-n(1-z
- Lize).
pl(Z) 2 (12>+ 2 <1+Z> (O<}7< ,ZG?/)

Thus the extremal function is y/(z,7,%) or one of its rotations.
Lastly if a < pu <o, then equality holds true if |¢;| =0 and |c;| =2.
Equivalently we have

_1+7722
1 —pz?

pi(z) O<n<lizeu).

Thus the function f is ¥(z,0,0) or one of its rotation. The proof of Theorem 1
is complete. ]
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Taking n =0 and » =1 in Theorem 1, we get the Fekete-Szegd inequalities
for the classes k — %%+ and k — 92 (0 < k < 1) respectively, obtained earlier

by the authors [12].

COROLLARY 1.

Let the function f given by (1.1) be in the class k — UC V"

0<k<l1). Then
242 N Gy SO SO W
31— k) \2(1 k) 6(1—k2) 3) H=%
2 A° . .
luay — as| < m; 0y S pu <o,
242 1+(7—k2)A2 3% N
31—k \3 61—k 20-k2)) H=%
where the constant A is given by (2.2),
o SU=R) Tk Tk 1k
N VE g M Ty 942

The result is best possible.

COROLLARY 2. Let the function f given by (1.1) be in the class k — P

0<k<l1). Then
242 [ 24%  (T—Kk¥)42 1 .
- -3 ) u=oa,
(1-k2)\(1—-k* 6(1—k% 3
2 < A2 *ok Kk
|pay — as| < - o' <p <oy,
242 (1 (T—kH)A>  24% »
7T - N 1 oy,
(1-k%)\3 6(1—-Kk?) (1-£k?)
where the constant A is given by (2.2),
5(1—k%) 7—k2 (7—k>) 1-k2
VY E o Mn 2 4

The result is best possible.

THEOREM 2. Let the function f given by (1.1) be in the class k — UV,

(k=1,neN). Then
dn+1)(n+2) (12n+p 1 4\
3n2 (n+2)7> 3 7)) w=p
2n+1)(n+2
(16 fud - < 2EDUED g
dn+1)(n+2) (4 1 12n+ 1w\
3n2 273 (n+2)n2 )’ n=h
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where,

n 77:2 n
b= bl =) (G +3) and pr= a0 = (o) 5

Each of the estimates in (3.16) is sharp.

Proof. We put the values of Q) and Q; for k =1 given in (3.5) and (3.6).

By following the lines of proof of Theorem 1 the result follows.

Taking n = 0 in Theorem 2, we get the Fekete-Szego inequalities for the class
A€ obtained earlier by Ma and Minda [11]. Similarly the choice n = 1 yields
a result for the class #Z obtained recently by the present authors [12], which is

as follows:

COROLLARY 3. Let the function f given by (1.1) be in the class SP. Then

8 [8u 1 4 N
;(F—g—;§ u=py,
4

a3 — as| < = B <u<p,
8 /4 1 8u N
;(ﬁ+§_ﬁ? u< By,

where,

The result is best possible.

THEOREM 3. Let the function f given by (1.1) be in the class k — U€ 7,

(k>1). Then

(n+ 1)(n+2)0 (3(n+1)ﬂQ1_Ql

12 (n+2)

440 +6t+1) —n2
- ) :uZyla

244 ()V1(1 4 1)

1 2
G17) e — e <§ CEDUERC oy

12 2442 ()V1(1 + 1)

3(n+ u _
(’H‘Z)Ql) H=< 7,

(n+1)(n+2)0 (Q A2 +61+1) —
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where A (t) is the complete elliptic integral of the first kind, Q) is given in (2.1),
(n+2) 42 (1) + 61+ 1) — n2>

n=nk) =350 (1 T 24420 v/i(1 + 1)

and

B  (n+2) AR+ 6e+1) —n
yz'_y2(k)_3Q1(n+1)<Ql S i 1 1 )

Each of the estimates in (3.17) is sharp.

Proof. We follow the lines of proof of Theorem 1 and give here only the
essential steps. Putting the value of Q, for k > 1 from Lemma 1 in (3.4) we get

ay = Ql(n4+ l)cla
P IR IGRP) Qic} L1 (cz _c_%) +4:%f2(z)(12 +6t41) - il
12 4 2 2 284 (OVi(1+1) 4
Therefore
2 _(+Dm+2)01 | ] 30i(n+ Du
(318) ‘tua2 - Cl3| - 48 { (I’l 4 2)

B A6+ ) —at\ | 5,
(Ql M i 1 1 )}61 22

(n+1)(n+2)0 | |30i(n+ D
(3.19) < A3 { 3 -0
4 ) (P +61+1)— 72|, 2
_ AT+ ) le7] 4+ 2]ey — cz|}.
Let
(n+2) A2 +6t+1) — a2\
(320) U > m <1 + Ql + 24%2(2‘)\/2(1 T [) > =" (SaY)

Observe that if x> y;, then the expression inside the first modulus of right-hand
side (3.19) is non negative. Thus by applying Lemma 2 we get

(n+1)(n+2)0 <3Q1(n+ e

2
. — <
(3 21) |lua2 a3| — 12 (n+2)

O

4402 +6t+1) —n2
24472 (0)V1(1 + 1)
which is the first part of the assertion (3.17).
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-2 _{Ql -1

A2+ 6t+1)—72 301 (n+ 1) }62
- 1

Rewriting (3.18)

n+1)(n+2)0
a3 — ) = DD

24472 (0)/1(1 + 1) (n+2)
(3.22) - % 2, + {Ql 1
AP +6t+1) - 3Qi(n+Du| ,
2442 (0)Vi(1 + 1) n+2) [
6.2 . <+1>g48+2>Q{ 01
A2 +61+1) —a* 301(n+ u 2]+ 2lea]
2402 (0i(1 + 0 (mt2) |70
Let,

T 301(n+1) 2442 ()11 + 1)
If i < y,, then the expression inside the first modulus of right hand side of (3.23)
is non negative. Thus by applying Lemma 2 we get
(n+1)(n+2)0 0 +4%'2(Z)(t2+6t+1)77z2
12 2447 (1)\/1(1 + 1)

-2
(324) ux (n+2) <Q1—1+4'%/ (t)(t2+6l+1)—7z2>:y2 ay

(3.25)  |ua} - a| =

~30i(n+ Du
(n+2) '

Which is the third part of assertion (3.17). Lastly (3.22) gives
1 2 1
(n+1)(n+2)0 2<02_§clz)

48
AR +6t+1)—a 301+ D) ,
+ <Q1 + 24.472(0)V1(1 + 1) n+2) )cl

(326)  |ud — a3 =

(&) ——Clz

_ (D +2)0; {2 !

= 48

40 +6t+1) =2 3Qi(n+

M 2442 (0)V1(1 + 1) (n+2)

O+

|c%|}.
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Notably y, < u <y, gives

A2 +61+1) —a* 301(n+ u

242 ()V/i(1 + 1) nvy | =h

O+

Therefore, if y, < u < y;, an application of Lemma 2 in (3.26) yields

(n+1D)(n+2)0 1
luas — a3 < BT — 2\¢z —5612 + |e?|
<+ Dn+2)0
< B :

This is the middle part of the assertions in (3.17). The sharpness of each
estimate in (3.17) can be established as in Theorem 1. The proof of Theorem 3
is complete. ]

Taking n =0 and » =1 in Theorem 3, we get the Fekete-Szegd inequalities
for the classes k — %% and k — 2 respectively obtained recently by the present
authors [12]. We list them here for the sake of completeness.

COROLLARY 4. Let the function [ given by (1.1) be in the class k — UCYV”
(k>1). Then

)] 3Q1,u_Q _49{2(t)(t2+6t+1)—n2 s
6 B 1 24,%/‘2(1‘)\/2(14—[) ) :u—yl7
ua; — as| < %; 7s Su<yf,
Ax°N(2+6i+1)—n2 3
6 2447 (0)V/1(1 + 1) 2

where A'(t) is the complete elliptic integral of the first kind, Qy is given in
2.1),

2
7 <1+Q1+

B 440+ 6t +1) —n2
' 300

2407 (1)V1(1 + 1)
and

.2 4201+ 61+ 1) — 72
" _3—Q1<Q1 e oviaey )

Each of the estimates is sharp.
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COROLLARY 5. Let the function f given by (1.1) be in the class k — 9P
(k>1). Then

2 2 .2
O 2001— 0, Ax (t)(t2 +6t+1)—= T
2 2477 (0)V/1(1 + 1)
uay — a3 < %; %< u <oy,
0 440+ 6t +1) —n2
> (@ Y ONET) Qi) w<y;

where A'(t) is the complete elliptic integral of the first kind, Q) is given in (2.1),

1 Ax2() (> + 61+ 1) — 2
1

240 (1)V1(1 + 1)

and

e L 442 (1)(2 + 61+ 1) —
2 730, (QI_H U420Vl +1) )

Each of the estimates is sharp.

4. Remarks on main results

In this section we discuss some improvements of the middle inequalities in
(3.5), (3.16) and (3.17) respectively.

Remark 1. The second part of assertion in (3.5) can be improved as follows:

n —A%)(1 -k
(@1 i + - 0D (1 0=V
S%; oy < pu <3,
and
2 1.2
4.2) ﬂag_a3|+{EZﬁ;G+(5+Al;;12 k)>_ﬂ}la§
< U +6(11)(n;§)/12’ oy S U o,

where o3 is given by

43) " ::n+2<1 (2+A2)(1—k2))'

3 1842
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Proof.  Suppose o» < u <oj. We continue with the estimate in (3.13) and
write

a3 — as| + (1 — m)|a|?

= |pa; — a3 +{u

24> 244> 6(nt1)A
TR =) R S Py gy

(1 =AY — O\ |(n+1)*a%e?
w0 |

4(1 — k2)?
247 2+4%  6(n+1)4%u
+((1—k2)+ 3 _(n+2)(1—k2)>|"%

6(n+ DA% 642 (1 (1—A%)(1—K)
+{(n+2)(1 ) 0-k) <§_ 1842 )}'Cﬂ}

2
C2— 1

1 1=K\,
(5_ 18A2 )}'“2|
1,

(n+
(n+
(n+1 )(n+2)A4?
<
l—k2

(n+2) (1
+{"(n+1) (3
(1 D)(n+2)4% [

=T 0 -0

|c%|}

1
(&) _5(;12

2
< (n+ Dint2)47 241()1("_;22)) {2 e —%cf + |612|}
(n+1)(n+2)42
61—k

We get (4.1). On the other hand suppose a3 < u < oy. In this case we estimate
\ua? — az| + (1 — w)|aa|*. Now following the lines of proof for (4.1) with
obvious changes we get (4.2).

The proof of next two remarks are same as in Remark 1. Therefore we
omit details.

Remark 2. The second part of assertion in (3.16) can be improved as
follows:

2
I P e L e VR ¥

n+1\3 72 3n2
and
n+2 (5z= 1 2n+ 1)(n+2)
45 i el + {257 (72 3) —afla < 2D <,

where f; is given by

n+2 /1 =
(4.6) B e <§+%)
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Remark 3. The second part of assertion in (3.17) can be improved as
follows:

n+2 AX*(0 (P + 61+ 1) —n?
(4.7) |ﬂa§—a3+{ﬂ—73Q(1(::+)1)<Q1—1+ 222;2(;\[;(?&) )}x|a§|

- (n+1)(n+2)01
12 '

yZS:uSy.’n

and

2
(4.8)  |ua; — as] +{(n—|—2) (Ql +1+4f (O + 60+ 1) _n2> —,u}x |a3 |

301(n+1) 247 (1)V/1(1 + 1)

n+1)(n+2)Q
S%; V3SH=T,

where y; is given by

(4.9) Y3t

n+2 (1 AP+ 6r+1) -7
S+ 1\3 0 20 (Vi + 1)

5. An alternate method

Let 2(qx) denote the subclass of o7, consisting of functions A(z) < gx(z) in
U, where qi(z) is as in Lemma 1 and < denotes subordination. We need the
following result:

LemMa 3 [7]. Let k €0, 0) be fixed and the function h € P(qy) be given by
the series expansion

(5.1) h(z)=14biz+byz*+---, (zeU)
then

01 (k) — uQf (k); u<0,
(52) |b2 — ub| < 4 Q1 (k); ue(0,1],

O1(k) + (u—1)Qi(k); u=>1,
where Qy(k) is as in Lemma 1. If 0 <u <1 then equality holds in (5.2) if
/’l(Z) = qk(Zz).

Now replacing gi(w(z)) by A(z) in the equation (3.1) we get

n+1
azz( 3 >b1

(n+1)(n+2)
12

(b7 + b2)

ay =
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and

2
Ha;, —az =

(e =

An application of Lemma 3 with,
n+1
=3 -1
! (n+2>”
yields

(5.3) |ua§—a3|=%§21(l€) if %<ﬂ$§(’;if>

Putting the values of Q;(k) from Lemma | for 0 <k <1, k=1 and k> 1 the
estimate (5.3) simplifies to the middle inequalities in (3.5), (3.16) and (3.17) re-
spectively. However, following the lines of proof Theorem 3.1 in [7] it can be
shown that

2

oy (k), By(k), p1 (k) > 3 (: I f)

and

1l /n+2
()10 120 < 5 (27
for every 0 < k < oo where o;(k),a2(k); p,(k),p,(k) and y,(k),y,(k) are defined
as in Theorems 3.1, 3.2 and 3.3 respectively. Thus the methods of proof adopted
for Theorems 3.1, 3.2 and 3.3 yield larger interval for u than the interval obtained
for the estimates of |ua3 —as| in (5.3).
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