ON HOPF HYPERSURFACES IN A NON-FLAT COMPLEX SPACE FORM WITH η -RECURRENT RICCI TENSOR

SONG-HOW KON AND TEE-HOW LOO

Abstract

Baikoussis, Lyu and Suh [1] showed that a Hopf hypersurface M in a non-flat complex space form $M_n(c)$ with constant mean curvature and with η -recurrent Ricci tensor is locally congruent to one of real hypersurfaces of type A and B. They also conjectured that the same result can be obtained even without the constancy assumption on the mean curvature (cf. [1, Remark 5.1.]). The purpose of this paper is to answer this question in the affirmative.

1. Introduction

Let $M_n(c)$ be an n-dimensional non-flat complex space form with constant holomorphic sectional curvature 4c. A complete and simply connected non-flat complex space form is either a complex projective space $\mathbb{C}P^n$ or a complex hyperbolic space $\mathbb{C}H^n$, according to as c>0 or c<0. Let M be a real hypersurface in $M_n(c)$. Then the complex structure J of $M_n(c)$ induces an almost contact metric structure $(\phi, \xi, \eta, \langle , \rangle)$ on M. If the structure vector field ξ of M is principal then M is called a *Hopf hypersurface*. Typical examples of Hopf hypersurfaces in $M_n(c)$ are the homogeneous one with constant principal curvatures, nowadays known as real hypersurfaces of type A_1 , A_2 , B, C, D, E when the ambient space is $\mathbb{C}P^n$; and of type A_0 , A_1 , A_2 , B when the ambient space is $\mathbb{C}H^n$ (cf. [2, 12]).

In the following, we denote by $\Gamma(\mathscr{V})$ the module of all differentiable sections on the vector bundle \mathscr{V} over M.

It is well known that there are no real hypersurfaces M in $M_n(c)$ with parallel Ricci tensor S, i.e., $\nabla S = 0$ (cf. [6]), where ∇ denotes the Levi-Civita connection on M. Consequently, it is natural to consider a weaker form of the parallelism condition on S for real hypersurfaces in $M_n(c)$. The holomorphic distribution D on M is the distribution that is orthogonal to ξ , i.e.,

$$D_x = \{X \in T_x M \mid \langle X, \xi \rangle = 0\}, \quad x \in M.$$

²⁰⁰⁰ Mathematics Subject Classification. Primary 53C40; Secondary 53C15. Key words and phrases. Complex space form, Hopf hypersurfaces, η-recurrent Ricci tensor. Received January 20, 2009.

In [11], Suh weakened the parallelism condition on S to so-called η -parallelism condition i.e., the Ricci tensor S is said to be η -parallel if

$$\langle (\nabla_X S) Y, Z \rangle = 0$$

for any X, Y and $Z \in \Gamma(D)$; and gave a classification of Hopf hypersurfaces in $M_n(c)$ with η -parallel Ricci tensor.

The Ricci tensor S of a real hypersurface M is said to be *recurrent* if there exists a 1-form ψ on M such that

$$\nabla S = S \otimes \psi$$
.

The parallelism on S may be regarded as a special case of recurrence on S. The non-existence problem of real hypersurfaces with recurrent Ricci tensor in $M_n(c)$ was initiated by Hamada [5], and it has been solved in [4] and [8].

On the other hand, Baikoussis, Lyu and Suh introduced a weaker notion of η -recurrence on S, i.e., the Ricci tensor S is said to be η -recurrent if there exists a 1-form ψ on M such that (cf. [1])

$$\langle (\nabla_X S) Y, Z \rangle = \psi(X) \langle SY, Z \rangle$$

for any $X, Y, Z \in \Gamma(D)$, where D is the holomorphic distribution on M defined as follows

$$D_x = \{ X \in T_x M \mid \langle X, \xi \rangle = 0 \}, \quad x \in M.$$

In [1], Baikoussis, Lyu and Suh proved the following

THEOREM 1.1. Let M be a Hopf hypersurface in $M_n(c)$, $n \ge 3$, with constant mean curvature. If the Ricci tensor S is η -recurrent, then M is locally congruent to one of the following real hypersurfaces:

- (a) For c > 0:
 - (A_1) a tube over hyperplane $\mathbb{C}P^{n-1}$;
 - (A₂) a tube over totally geodesic $\mathbb{C}P^k$, where $1 \le k \le n-2$;
 - (B) a tube over complex quadric Q_{n-1} .
- (b) *For* c < 0:
 - (A_0) a horosphere;
 - (A_1) a geodesic hypersphere or a tube over hyperplane $\mathbb{C}H^{n-1}$;
 - (A₂) a tube over totally geodesic CH^k , where $1 \le k \le n-2$;
 - (B) a tube over totally real hyperbolic space $\mathbf{R}H^n$.

They also conjectured that the same result can be obtained even without the constancy assumption on the mean curvature (cf. [1, Remark 5.1.]). The purpose of this paper is to answer this question in the affirmative, i.e., we shall slightly improve Theorem 1.1 to the following

Theorem 1.2. Let M be a Hopf hypersurface in $M_n(c)$, $n \ge 3$. If the Ricci tensor S is η -recurrent, then M is locally congruent to one of the following real hypersurfaces:

(a) *For* c > 0:

 (A_1) a tube over hyperplane $\mathbb{C}P^{n-1}$;

(A₂) a tube over totally geodesic $\mathbb{C}P^k$, where $1 \le k \le n-2$;

(B) a tube over complex quadric Q_{n-1} .

(b) *For* c < 0:

(A₀) a horosphere;

 (A_1) a geodesic hypersphere or a tube over hyperplane CH^{n-1} ;

(A₂) a tube over totally geodesic CH^k , where $1 \le k \le n-2$;

(B) a tube over totally real hyperbolic space $\mathbf{R}H^n$.

2. Preliminaries

Let M be a connected real hypersurface in $M_n(c)$, $n \ge 3$, and let N be a unit normal vector field on M. Denote by $\overline{\nabla}$ and ∇ respectively the Levi-Civita connection on $M_n(c)$ and the connection induced on M. Then the Gauss and Weingarten formulae are given respectively by

$$ar{\mathbf{\nabla}}_X Y = \mathbf{\nabla}_X Y + \langle AX, Y \rangle N$$

 $ar{\mathbf{\nabla}}_X N = -AX$

for any $X, Y \in \Gamma(TM)$, where \langle , \rangle denotes the Riemannian metric of M induced from the Riemannian metric of $M_n(c)$. Now, we define a tensor field ϕ of type (1,1), a vector field ξ and a 1-form η by

(1)
$$JX = \phi X + \eta(X)N, \quad JN = -\xi, \quad \eta(X) = \langle \xi, X \rangle.$$

Then the set of tensors $(\phi, \xi, \eta, \langle , \rangle)$ satisfy the following

(2)
$$\phi^2 X = -X + \eta(X)\xi, \quad \phi\xi = 0, \quad \eta(\phi X) = 0, \quad \eta(\xi) = 1$$

(3)
$$(\nabla_X \phi) Y = \eta(Y) AX - \langle AX, Y \rangle \xi, \quad \nabla_X \xi = \phi AX.$$

Let R be the curvature tensor of M. Then the equations of Gauss and Codazzi are given respectively by

$$\begin{split} R(X,Y)Z &= c\{\langle Y,Z\rangle X - \langle X,Z\rangle Y + \langle \phi Y,Z\rangle \phi X - \langle \phi X,Z\rangle \phi Y \\ &- 2\langle \phi X,Y\rangle \phi Z\} + \langle AY,Z\rangle AX - \langle AX,Z\rangle AY \\ (\nabla_X A)Y - (\nabla_Y A)X &= c\{\eta(X)\phi Y - \eta(Y)\phi X - 2\langle \phi X,Y\rangle \xi\}. \end{split}$$

It follows from the Gauss equation that the Ricci tensor S of M is given by

(4)
$$SX = c\{(2n+1)X - 3\eta(X)\xi\} + hAX - A^2X.$$

where h = trace A, called the *mean curvature* on M, and the covariant derivative of the Ricci tensor S is given by

(5)
$$(\nabla_X S) Y = -3c \{ \langle \phi AX, Y \rangle \xi + \eta(Y) \phi AX \} + (Xh)AY + (hI - A)(\nabla_X A) Y - (\nabla_X A)AY.$$

Further, we define the second covariant derivative $\nabla_X \nabla_Y S$ by

$$(\nabla_X \nabla_Y S)Z = \nabla_X \{(\nabla_Y S)Z\} - (\nabla_{\nabla_X Y} S)Z - (\nabla_Y S)\nabla_X Z.$$

The Ricci tensor S of M is said to be η -parallel if

$$\langle (\nabla_X S) Y, Z \rangle = 0$$

for any X, Y and $Z \in \Gamma(D)$.

An eigenvalue of the shape operator tensor A of M is called a principal curvature and a principal curvature vector is an eigenvector of A. A real hypersurface M in $M_n(c)$ is called a Hopf hypersurface if the structure tensor field ξ is principal, i.e., we have $A\xi = \alpha \xi$, where $\alpha = \eta(A\xi)$. The following theorem characterized Hopf hypersurfaces M in $M_n(c)$ with η -parallel Ricci tensor.

THEOREM 2.1 ([11]). Let M be a Hopf hypersurface in $M_n(c)$, $n \ge 3$, with η -parallel Ricci tensor. Then M is locally congruent to one of real hypersurfaces of type A_1 , A_2 and B (for c > 0); or type A_0 , A_1 , A_2 and B (for c < 0).

Basic properties of Hopf hypersurfaces

In this section, we shall derive some basic properties about Hopf hypersurfaces M in $M_n(c)$. In the following, we suppose M is a connected Hopf hypersurface in $M_n(c)$. Further, we denote by $\operatorname{Spec}_A(D)$ and $\operatorname{Spec}_S(D)$ respectively the spectrum of $A|_D$ and $S|_D$. For each $\lambda \in \operatorname{Spec}_A(D)$, we denote by T_λ the subbundle of D foliated by the eigenspace of $A|_D$ corresponding to λ .

We first recall

LEMMA 3.1 ([7], [10]). Let M be a Hopf hypersurface in $M_n(c)$.

- 1. the principal curvature α is constant;
- 2. $2(A\phi A c\phi) = \alpha(\phi A + A\phi);$
- 3. if $Y \in T_{\lambda}$ and $\phi Y \in T_{\tilde{\lambda}}$, then $2(\lambda \tilde{\lambda} c) = \alpha(\lambda + \tilde{\lambda})$ 4. $\nabla_{\xi} A = (\alpha/2)(\phi A A\phi)$.

Consider a unit principal vector field $Y \in T_{\lambda}$, it follows from the above lemma that

$$\xi\lambda = \langle (\nabla_{\xi}A)Y, Y \rangle = \frac{\alpha}{2} \langle (\phi A - A\phi)Y, Y \rangle = 0.$$

This implies that $\xi h = 0$. Further, by (4) we can see that each principal curvature of M induces an eigenvalue of S, i.e., $SY = \sigma Y$, where $\sigma = (2n+1)c +$ $h\lambda - \lambda^2$, for $\lambda \in \operatorname{Spec}_A(D)$ and $Y \in T_{\lambda}$; and $S\xi = v\xi$, where $v = (2n-2)c + h\alpha - (2n-2)c + h\alpha$ α^2 . Since $\xi \alpha = \xi \lambda = \xi h = 0$, we also obtain $\xi \sigma = \xi v = 0$. On the other hand, it follows from the Codazzi equation, (5) and Lemma 3.1(4) that we have

$$egin{aligned}
abla_{\xi}S &= rac{lpha}{2}(\phi S - S\phi) \\ (
abla_X S)\xi &= c\{-3\phi AX - (h-lpha)\phi X + A\phi X\} + lpha(Xh)\xi \\ &+ rac{lpha}{2}((h-lpha)I - A)(\phi A - A\phi)X \end{aligned}$$

for any $X \in \Gamma(TM)$. We summarize the above observation in the following lemma.

LEMMA 3.2. Let M be a Hopf hypersurface in $M_n(c)$. Then

- 1. The principal curvatures, eigenvalues of S and the mean curvature h are constant along the integral curves of ξ ;
- 2. $\nabla_{\xi} S = (\alpha/2)(\phi S S\phi);$
- 3. for any $X \in \Gamma(TM)$, we have

$$(\nabla_X S)\xi = c\{-3\phi AX - (h-\alpha)\phi X + A\phi X\} + \alpha(Xh)\xi + \frac{\alpha}{2}((h-\alpha)I - A)(\phi A - A\phi)X.$$

4. Principal curvatures of Hopf hypersurfaces with η -recurrent Ricci tensor

In this section, we shall begin the proof of Theorem 1.2, which will be completed in the next section. Our plan goes as follows: we first prove that under the assumptions of Theorem 1.2, the Ricci tensor S is η -parallel; and then by invoking Theorem 2.1, we conclude that M is either of type A (i.e., A_1 , A_2 for c > 0 and A_0 , A_1 , A_2 for c < 0) or B.

Throughout this section, we suppose M is a connected Hopf hypersurface in $M_n(c)$, $n \ge 3$, with η -recurrent Ricci tensor.

For any $\sigma \in \operatorname{Spec}_S(D)$ with $SY = \sigma Y$, where Y is a unit vector field in $\Gamma(D)$, it follows from the η -recurrency condition that

$$X\sigma = X\langle SY, Y\rangle = \langle (\nabla_Y S)Y, Y\rangle = \psi(X)\langle SY, Y\rangle = \sigma\psi(X)$$

for any $X \in \Gamma(D)$. Together with the fact that $\xi \sigma = 0$, we may define a 1-form Ψ as follows: $\Psi(\xi) = 0$ and $\Psi(X) = \psi(X)$, for any $X \in \Gamma(D)$ so that we have

(6)
$$d\sigma = \sigma \Psi$$

and the η -recurrent condition on S can be rewritten as

(7)
$$\langle (\nabla_Y S)Z, W \rangle = \Psi(Y)\langle SZ, W \rangle$$

for any $Y, Z, W \in \Gamma(D)$.

Now, from the equation (6) we obtain

(8)
$$0 = d^2\sigma = d\sigma \wedge \Psi + \sigma d\Psi = \sigma d\Psi.$$

Next, for $\lambda_1, \ldots, \lambda_{2n-2} \in \operatorname{Spec}_A(D)$ (here, each $\lambda_j \in \operatorname{Spec}_A(D)$ not necessarily distinct), we denote by $\sigma_j \in \operatorname{Spec}_S(D)$ that correspond to λ_j , i.e.,

(9)
$$\sigma_j = (2n+1)c + h\lambda_j - \lambda_j^2$$

for $1 \le j \le 2n-2$. Moreover, we put $\mathscr{G}_j = \{x \in M \mid \sigma_j(x) \ne 0\}$ and \mathscr{G} the union of these open sets \mathscr{G}_j . In the rest of this section, unless otherwise stated, we restrict our arguments on the open set \mathscr{G} .

We now prove the following

Lemma 4.1. On the open set \mathcal{G} , we have

$$\langle (R(X,Y)S)Z, W \rangle = \langle (\phi A + A\phi)X, Y \rangle \langle (\nabla_{\xi}S)Z, W \rangle$$

$$+ \langle \phi AX, Z \rangle \langle (\nabla_{Y}S)\xi, W \rangle - \langle \phi AY, Z \rangle \langle (\nabla_{X}S)\xi, W \rangle$$

$$+ \langle \phi AX, W \rangle \langle (\nabla_{Y}S)Z, \xi \rangle - \langle \phi AY, W \rangle \langle (\nabla_{X}S)Z, \xi \rangle$$

for any $X, Y, Z, W \in \Gamma(D)$.

Proof. Note that at each point $x \in \mathcal{G}$, there is at least one $\sigma \in \operatorname{Spec}_S(D)$ such that $\sigma(x) \neq 0$. Hence, on the open set \mathcal{G} , it follows from (8) that $d\Psi = 0$, or equivalently, $(\nabla_X \Psi) Y = (\nabla_Y \Psi) X$, for any $X, Y \in \Gamma(TM)$.

By differentiating (7) in the direction of $X \in \Gamma(D)$, we obtain

(10)
$$\langle (\nabla_{X}\nabla_{Y}S)Z + (\nabla_{\nabla_{X}Y}S)Z + (\nabla_{Y}S)\nabla_{X}Z, W \rangle + \langle (\nabla_{Y}S)Z, \nabla_{X}W \rangle$$

$$= \{ (\nabla_{X}\Psi)Y + \Psi(\nabla_{X}Y)\} \langle SZ, W \rangle + \Psi(Y)\{ \langle (\nabla_{X}S)Z, W \rangle$$

$$+ \langle S\nabla_{X}Z, W \rangle + \langle SZ, \nabla_{X}W \rangle \}$$

for any $Y, Z, W \in \Gamma(D)$. On the other hand, by using (2) and (3), we have

$$abla_X Y = (\nabla_X Y)^\circ + \eta(\nabla_X Y)\xi, \quad (\text{where } (\nabla_X Y)^\circ = -\phi^2 \nabla_X Y)$$

$$= (\nabla_X Y)^\circ - \langle \phi AX, Y \rangle \xi,$$

for any $X, Y \in \Gamma(D)$. This, together with (7), (10) and the fact that $SX \perp \xi$, for $X \perp \xi$, give

$$\langle (\nabla_{X}\nabla_{Y}S)Z, W \rangle - \langle \phi AX, Y \rangle \langle (\nabla_{\xi}S)Z, W \rangle - \langle \phi AX, Z \rangle \langle (\nabla_{Y}S)\xi, W \rangle$$
$$- \langle \phi AX, W \rangle \langle (\nabla_{Y}S)Z, \xi \rangle$$
$$= (\nabla_{X}\Psi)Y \cdot \langle SZ, W \rangle + \Psi(Y)\Psi(X)\langle SZ, W \rangle.$$

By taking account of the Ricci identity, $(R(X, Y)S)Z = (\nabla_X \nabla_Y S)Z - (\nabla_Y \nabla_X S)Z$ and the above equation, we obtain the statement.

Lemma 4.2. If
$$\lambda \in \operatorname{Spec}_A(D)$$
 and $\lambda \neq \alpha/2$, then
$$(\lambda - \tilde{\lambda})(h - \lambda - \tilde{\lambda})(\alpha(\lambda + \tilde{\lambda}) + 4c) = 0$$
 on \mathscr{G} , where $\tilde{\lambda} = (\alpha\lambda + 2c)/(2\lambda - \alpha)$.

Proof. Let Y be a unit vector field in $\Gamma(T_{\lambda})$. Then by Lemma 3.1, $A\phi Y = \tilde{\lambda}\phi Y$. Moreover, from Lemma 3.2 we obtain

$$\begin{split} \langle (\nabla_{\xi}S)\,Y,\phi\,Y\rangle &= \frac{\alpha}{2}(\lambda-\tilde{\lambda})(h-\lambda-\tilde{\lambda}) \\ \langle (\nabla_{Y}S)\xi,\phi\,Y\rangle &= (-3\lambda-(h-\alpha)+\tilde{\lambda})c + \frac{\alpha}{2}(\lambda-\tilde{\lambda})(h-\alpha-\tilde{\lambda}) \\ \langle (\nabla_{\phi Y}S)\,Y,\xi\rangle &= (3\tilde{\lambda}+(h-\alpha)-\lambda)c + \frac{\alpha}{2}(\lambda-\tilde{\lambda})(h-\alpha-\lambda). \end{split}$$

Next, by putting $X = W = \phi Y$, Z = Y in Lemma 4.1, making use of the Gauss equation and the above three equations, we have

$$\begin{split} &(\lambda-\tilde{\lambda})(h-\lambda-\tilde{\lambda})(4c+\lambda\tilde{\lambda})\\ &=-\frac{\alpha}{2}(\lambda+\tilde{\lambda})(\lambda-\tilde{\lambda})(h-\lambda-\tilde{\lambda})-\tilde{\lambda}\{(-3\lambda-(h-\alpha)+\tilde{\lambda})c\\ &+\frac{\alpha}{2}(\lambda-\tilde{\lambda})(h-\alpha-\tilde{\lambda})\}-\lambda\{(3\tilde{\lambda}+(h-\alpha)-\lambda)c+\frac{\alpha}{2}(\lambda-\tilde{\lambda})(h-\alpha-\lambda)\}\\ &=-(\lambda-\tilde{\lambda})(h-\lambda-\tilde{\lambda})(\alpha(\lambda+\tilde{\lambda})+c)+\alpha(\lambda-\tilde{\lambda})\left(c+\frac{\alpha}{2}(\lambda+\tilde{\lambda})-\lambda\tilde{\lambda}\right). \end{split}$$

By using Lemma 3.1(3), this equation reduces to

$$(\lambda - \tilde{\lambda})(h - \lambda - \tilde{\lambda})(\alpha(\lambda + \tilde{\lambda}) + 4c) = 0.$$

LEMMA 4.3. If $\alpha/2 \in \operatorname{Spec}_4(D)$ then $\Psi = 0$ on \mathscr{G} .

Proof. Suppose $\alpha/2 \in \operatorname{Spec}_A(D)$, then by putting $\lambda = \alpha/2$ in Lemma 3.1(3) we get $\alpha^2 = -4c$ and so c < 0, (without lose of generality, we assume c = -1), hence, we get $\alpha^2 = 4$. If $\operatorname{Spec}_A(D) = \{\alpha/2\}$, then our statement is clearly true.

Now, suppose that there exists $\lambda \in \operatorname{Spec}_A(D)$, $\lambda \neq \alpha/2$ and let $Y \in \Gamma(T_\lambda)$. It follows from Lemma 3.1 that we have

$$\left(\lambda - \frac{\alpha}{2}\right)\tilde{\lambda} = \frac{\alpha}{2}\left(\lambda - \frac{2}{\alpha}\right).$$

By making use of the fact that $\alpha/2=2/\alpha$, we get $\tilde{\lambda}=\alpha/2$. Furthermore, since both $\lambda-\tilde{\lambda}$ and $\alpha(\lambda+\tilde{\lambda})+4c$ are nonzero, from Lemma 4.2 we get $h-\lambda-\tilde{\lambda}=0$, and hence $\lambda=h-\alpha/2$, which means that M admits at most three distinct principal curvatures, α with multiplicity 1, $\lambda_1=\alpha/2$, with multiplicity 2n-2-m and $\lambda_2=h-\alpha/2$ with multiplicity m. Next, observe that

$$h = \alpha + (2n - 2 - m)\lambda_1 + m\lambda_2$$
.

Thus, we obtain $(1-m)h = \alpha(n-m)$ and so by (9), we obtain $\sigma_1 = -(2n+1) - 2(n-m)/(m-1) - 1$, which is locally a nonzero constant on \mathscr{G} . Consequently, we get $\Psi = 0$ by using (6).

LEMMA 4.4. If $\alpha/2 \notin \operatorname{Spec}_A(D)$ then $\Psi = 0$ on \mathscr{G} .

Proof. We consider the open subset $\mathscr{H}_j = \{x \in \mathscr{G} \mid (\lambda_j - \tilde{\lambda}_j)(h - \lambda_j - \tilde{\lambda}_j) \neq 0\}$. Then on such open subset \mathscr{H}_j , we have $\alpha(\lambda_j + \tilde{\lambda}_j) + 4c = 0$, so both λ_j , $\tilde{\lambda}_j$ are locally constant and $\alpha \neq 0$. Moreover, from Lemma 3.1, λ_j and $\tilde{\lambda}_j$ can also be related by $\lambda_j \tilde{\lambda}_j + c = 0$. Now, by using (6), we get

$$d[(2n+1)c + \lambda_j h - \lambda_j^2] = [(2n+1)c + \lambda_j h - \lambda_j^2]\Psi.$$

As λ_j is a constant, we have

$$\lambda_j dh = [(2n+1)c + \lambda_j h - \lambda_j^2] \Psi.$$

Similarly, we also have

$$\tilde{\lambda}_j dh = [(2n+1)c + \tilde{\lambda}_j h - \tilde{\lambda}_i^2]\Psi.$$

These imply that $(\lambda_j - \tilde{\lambda}_j) dh = (\lambda_j - \tilde{\lambda}_j)(h - \lambda_j - \tilde{\lambda}_j)\Psi$. Since $\lambda_j \neq \tilde{\lambda}_j$, we obtain $dh = (h - \lambda_i - \tilde{\lambda}_i)\Psi$.

On the other hand, taking account of $\lambda_i \tilde{\lambda}_i = -c$, we have

$$(\lambda_i + \tilde{\lambda}_i) dh = 4nc\Psi + (\lambda_i + \tilde{\lambda}_i)(h - \lambda_i - \tilde{\lambda}_i)\Psi.$$

$$(\lambda - \tilde{\lambda})(h - \lambda - \tilde{\lambda}) = 0.$$

Hence, M has at most five distinct principal curvatures: α (with multiplicity 1); λ_1 (with multiplicity $2m_1$); λ_2 (with multiplicity $2m_2$); λ_3 , $\lambda_4 = \tilde{\lambda}_3$ (both with multiplicity m_3), where $n-1=m_1+m_2+m_3$; λ_1 , λ_2 are the solutions of $\lambda-\tilde{\lambda}=0$ and $\lambda-\lambda_3-\tilde{\lambda}_3=0$.

By making use of Lemma 3.1(3), the equations

$$\lambda - \tilde{\lambda} = 0$$
 and $h - \lambda - \tilde{\lambda} = 0$

can be rewritten as

$$\lambda^2 - \alpha \lambda - c = 0$$

and

$$(12) 2\lambda^2 - 2h\lambda + (h\alpha + 2c) = 0,$$

respectively. Since λ_1 and λ_2 are the solutions of the equation (11), we can see that both λ_1 , λ_2 are locally constant and these principal curvatures satisfy the following relationship

$$\lambda_1 + \lambda_2 = \alpha$$
, $\lambda_1 \lambda_2 + c = 0$.

Similarly, since λ_3 and λ_4 are the solutions of the equation (12), we also get

$$\lambda_3 + \tilde{\lambda}_3 = h$$
, $2\lambda_3\tilde{\lambda}_3 = h\alpha + 2c$.

Moreover, we have

$$h = \alpha + 2m_1\lambda_1 + 2m_2\lambda_2 + m_3(\lambda_3 + \tilde{\lambda}_3)$$

= $(2m_1 + 1)\lambda_1 - (2m_2 + 1)\frac{c}{\lambda_1} + m_3(\lambda_3 + \tilde{\lambda}_3).$

Since $h = \lambda_3 + \tilde{\lambda}_3$, we obtain

(13)
$$(2m_1+1)\lambda_1 - (2m_2+1)\frac{c}{\lambda_1} + (m_3-1)h = 0.$$

Now, we consider two cases: (i) $m_3 \neq 1$ and (ii) $m_3 = 1$.

Case (i): $m_3 \neq 1$. The equation (13) shows that h is locally constant and hence from Lemma 4.2, we see that all $\lambda \in \operatorname{Spec}_A(D)$ are also locally constant on $\operatorname{Int}(\mathscr{G} - \mathscr{H})$. From these observations, together with (6) and (9), give $\Psi = 0$ on $\operatorname{Int}(\mathscr{G} - \mathscr{H})$.

Case (ii): $m_3 = 1$. In this case, the equation (13) reduces to $(2m_1 + 1)\lambda_1 - (2m_2 + 1)(c/\lambda_1) = 0$. Therefore, we obtain

(14)
$$\lambda_1^2 = \frac{2m_2 + 1}{2m_1 + 1}c.$$

This implies that c > 0 (for convenience, we assume c = 1). Next, by using Lemma 3.1, the scalar curvature ρ (:= trace S) is given by

$$\rho = 4n^2 - 4 + h^2 - \langle A, A \rangle$$

$$= 4n^2 - 4 + (\lambda_3 + \tilde{\lambda}_3)^2 - \alpha^2 - 2m_1\lambda_1^2 - 2m_2\lambda_2^2 - \lambda_3^2 - \tilde{\lambda}_3^2$$

$$= 4n^2 - 2 + h\alpha - \alpha^2 - 2m_1\lambda_1^2 - 2m_2\frac{1}{\lambda_1^2}.$$

Let $v = \langle S\xi, \xi \rangle = 2n - 2 + h\alpha - \alpha^2$. Then by the above equation, (14) and the fact that $n - 1 = m_1 + m_2 + 1$

(15)
$$\rho - \nu = 4n^2 - 2n - 2m_1\lambda_1^2 - 2m_2\frac{1}{\lambda_1^2}$$
$$= 4n^2 - 4n + 2 + \lambda_1^2 + \frac{1}{\lambda_1^2}.$$

On the other hand, we have

$$\rho - \nu = 2m_1\sigma_1 + 2m_2\sigma_2 + \sigma_3 + \tilde{\sigma}_3$$

where $\tilde{\sigma}_3 = 2n + 1 + h\tilde{\lambda}_3 - \tilde{\lambda}_3^2$. It follows from (6) and the above equation that $d(\rho - \nu) = (\rho - \nu)\Psi$.

By (15), we can see that $\rho - \nu$ is locally a positive constant, together with the above equation, yield $\Psi = 0$ on $\text{Int}(\mathcal{G} - \mathcal{H})$. Hence, by the continuity of Ψ , we conclude that $\Psi = 0$ on \mathcal{G} .

5. Proof of Theorem 1.2

Note that on the interior set $Int(M - \mathcal{G})$ of $M - \mathcal{G}$, the Ricci tensor S is of the form

$$SX = aX + v\eta(X)\xi$$

for any $X \in \Gamma(TM)$, with a = 0 and $v = (2n-2)c + h\alpha - \alpha^2$. This shows that each connected component of $\operatorname{Int}(M - \mathcal{G})$ is congruent to an open part of a pseudo-Einstein real hypersurface (for precise definition of pseudo-Einstein real hypersurfaces, see [3] and [9]) and according to [10, Theorem 6.12], the Ricci tensor S of a pseudo-Einstein real hypersurface in $M_n(c)$ is η -parallel. Thus, we get $\Psi = 0$ on $\operatorname{Int}(M - \mathcal{G})$. Moreover, by the results in Section 4 and the continuity of Ψ , we obtain that Ψ is identically zero on the whole of M, i.e., the Ricci tensor S is η -parallel. Hence, our statement follows from Theorem 2.1.

REFERENCES

- C. BAIKOUSSIS, S. M. LYU AND Y. J. SUH, Real hypersurfaces in complex space forms with η-recurrent Ricci tensor, Math. J. Toyama Univ. 23 (2000), 41–61.
- [2] J. Berndt, Real hypersurfaces with constant principal curvatures in complex hyperbolic space, J. Reine Angewe. Math. 395 (1989), 132–141.
- [3] T. E. CECIL AND P. J. RYAN, Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc. 269 (1982), 481–499.
- [4] T. Hamada, Note on real hypersurfaces of complex space forms with recurrent Ricci tensor, Differ. Geom. Dyn. Syst. 5 (2003), 27–30.
- [5] T. HAMADA, Real hypersurfaces in a complex projective space with recurrent Ricci tensor, Glasg. Math. J. 41 (1999), 297–302.
- [6] U. H. KI, Real hypersurfaces with parallel Ricci tensor of a complex space form, Tsukuba J. Math. 13 (1989), 73–81.
- [7] H. S. Kim and Y. S. Pyo, On real hypersurfaces of type A in a complex space form (III), Balkan J. Geom. Appl. 3 (1998), 101-110.
- [8] T. H. Loo, Real hypersurfaces in a complex space form with recurrent Ricci tensor, Glasg. Math. J. 44 (2002), 547–550.
- [9] S. Montiel, Real hypersurfaces of a complex hyperbolic space, J. Math. Soc. Japan 37 (1985), 515-535.
- [10] R. Niebergall and P. J. Ryan, Real hypersurfaces in complex space forms, Tight and Taut Submanifolds, Math. Sci., Res. Inst. Publ. 32, Cambridge Univ. Press, Cambridge, 1997, 233– 305.
- [11] Y. J. Suh, On real hypersurfaces of a complex space form with η-parallel Ricci tensor, Tsukuba J. Math. 14 (1990), 27–37.

[12] R. Takagi, Real hypersurfaces in a complex projective space with constant principal curvatures I, J. Math. Soc. Japan 27 (1975), 43–53.

Song-How Kon
Institute of Mathematical Sciences
University of Malaya
50603 Kuala Lumpur
Malaysia
E-mail: shkon@um.edu.my

Tee-How Loo Institute of Mathematical Sciences University of Malaya 50603 Kuala Lumpur Malaysia

E-mail: looth@um.edu.my