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ON HOPF HYPERSURFACES IN A NON-FLAT COMPLEX SPACE

FORM WITH h-RECURRENT RICCI TENSOR

Song-How Kon and Tee-How Loo

Abstract

Baikoussis, Lyu and Suh [1] showed that a Hopf hypersurface M in a non-flat

complex space form MnðcÞ with constant mean curvature and with h-recurrent Ricci

tensor is locally congruent to one of real hypersurfaces of type A and B. They also

conjectured that the same result can be obtained even without the constancy assumption

on the mean curvature (cf. [1, Remark 5.1.]). The purpose of this paper is to answer

this question in the a‰rmative.

1. Introduction

Let MnðcÞ be an n-dimensional non-flat complex space form with constant
holomorphic sectional curvature 4c. A complete and simply connected non-flat
complex space form is either a complex projective space CPn or a complex
hyperbolic space CHn, according to as c > 0 or c < 0. Let M be a real hyper-
surface in MnðcÞ. Then the complex structure J of MnðcÞ induces an almost
contact metric structure ðf; x; h; h ; iÞ on M. If the structure vector field x of M
is principal then M is called a Hopf hypersurface. Typical examples of Hopf
hypersurfaces in MnðcÞ are the homogeneous one with constant principal curva-
tures, nowadays known as real hypersurfaces of type A1, A2, B, C, D, E when the
ambient space is CPn; and of type A0, A1, A2, B when the ambient space is CHn

(cf. [2, 12]).
In the following, we denote by GðVÞ the module of all di¤erentiable sections

on the vector bundle V over M.
It is well known that there are no real hypersurfaces M in MnðcÞ with

parallel Ricci tensor S, i.e., ‘S ¼ 0 (cf. [6]), where ‘ denotes the Levi-Civita
connection on M. Consequently, it is natural to consider a weaker form of the
parallelism condition on S for real hypersurfaces in MnðcÞ. The holomorphic
distribution D on M is the distribution that is orthogonal to x, i.e.,

Dx ¼ fX A TxM j hX ; xi ¼ 0g; x A M:
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In [11], Suh weakened the parallelism condition on S to so-called h-parallelism
condition i.e., the Ricci tensor S is said to be h-parallel if

hð‘XSÞY ;Zi ¼ 0

for any X , Y and Z A GðDÞ; and gave a classification of Hopf hypersurfaces in
MnðcÞ with h-parallel Ricci tensor.

The Ricci tensor S of a real hypersurface M is said to be recurrent if there
exists a 1-form c on M such that

‘S ¼ Snc:

The parallelism on S may be regarded as a special case of recurrence on S. The
non-existence problem of real hypersurfaces with recurrent Ricci tensor in MnðcÞ
was initiated by Hamada [5], and it has been solved in [4] and [8].

On the other hand, Baikoussis, Lyu and Suh introduced a weaker notion of
h-recurrence on S, i.e., the Ricci tensor S is said to be h-recurrent if there exists a
1-form c on M such that (cf. [1])

hð‘XSÞY ;Zi ¼ cðXÞhSY ;Zi

for any X ;Y ;Z A GðDÞ, where D is the holomorphic distribution on M defined as
follows

Dx ¼ fX A TxM j hX ; xi ¼ 0g; x A M:

In [1], Baikoussis, Lyu and Suh proved the following

Theorem 1.1. Let M be a Hopf hypersurface in MnðcÞ, nb 3, with constant
mean curvature. If the Ricci tensor S is h-recurrent, then M is locally congruent
to one of the following real hypersurfaces:

(a) For c > 0:
(A1) a tube over hyperplane CPn�1;
(A2) a tube over totally geodesic CPk, where 1a ka n� 2;
(B) a tube over complex quadric Qn�1.

(b) For c < 0:
(A0) a horosphere;
(A1) a geodesic hypersphere or a tube over hyperplane CHn�1;
(A2) a tube over totally geodesic CHk, where 1a ka n� 2;
(B) a tube over totally real hyperbolic space RHn.

They also conjectured that the same result can be obtained even without the
constancy assumption on the mean curvature (cf. [1, Remark 5.1.]). The purpose
of this paper is to answer this question in the a‰rmative, i.e., we shall slightly
improve Theorem 1.1 to the following

Theorem 1.2. Let M be a Hopf hypersurface in MnðcÞ, nb 3. If the Ricci
tensor S is h-recurrent, then M is locally congruent to one of the following real
hypersurfaces:
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(a) For c > 0:
(A1) a tube over hyperplane CPn�1;
(A2) a tube over totally geodesic CPk, where 1a ka n� 2;
(B) a tube over complex quadric Qn�1.

(b) For c < 0:
(A0) a horosphere;
(A1) a geodesic hypersphere or a tube over hyperplane CHn�1;
(A2) a tube over totally geodesic CHk, where 1a ka n� 2;
(B) a tube over totally real hyperbolic space RHn.

2. Preliminaries

Let M be a connected real hypersurface in MnðcÞ, nb 3, and let N be a
unit normal vector field on M. Denote by �‘‘ and ‘ respectively the Levi-Civita
connection on MnðcÞ and the connection induced on M. Then the Gauss and
Weingarten formulae are given respectively by

�‘‘XY ¼ ‘XY þ hAX ;YiN

�‘‘XN ¼ �AX

for any X ;Y A GðTMÞ, where h ; i denotes the Riemannian metric of M induced
from the Riemannian metric of MnðcÞ. Now, we define a tensor field f of type
ð1; 1Þ, a vector field x and a 1-form h by

JX ¼ fX þ hðX ÞN; JN ¼ �x; hðX Þ ¼ hx;Xi:ð1Þ
Then the set of tensors (f; x; h; h ; i) satisfy the following

f2X ¼ �X þ hðX Þx; fx ¼ 0; hðfX Þ ¼ 0; hðxÞ ¼ 1ð2Þ
ð‘XfÞY ¼ hðY ÞAX � hAX ;Yix; ‘Xx ¼ fAX :ð3Þ

Let R be the curvature tensor of M. Then the equations of Gauss and
Codazzi are given respectively by

RðX ;Y ÞZ ¼ cfhY ;ZiX � hX ;ZiY þ hfY ;ZifX � hfX ;ZifY

� 2hfX ;YifZg þ hAY ;ZiAX � hAX ;ZiAY

ð‘XAÞY � ð‘YAÞX ¼ cfhðXÞfY � hðY ÞfX � 2hfX ;Yixg:

It follows from the Gauss equation that the Ricci tensor S of M is given by

SX ¼ cfð2nþ 1ÞX � 3hðX Þxg þ hAX � A2X :ð4Þ

where h ¼ trace A, called the mean curvature on M, and the covariant derivative
of the Ricci tensor S is given by

ð‘XSÞY ¼ �3cfhfAX ;Yixþ hðYÞfAXg þ ðXhÞAYð5Þ
þ ðhI � AÞð‘XAÞY � ð‘XAÞAY :
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Further, we define the second covariant derivative ‘X‘YS by

ð‘X‘YSÞZ ¼ ‘Xfð‘YSÞZg � ð‘‘XYSÞZ � ð‘YSÞ‘XZ:

The Ricci tensor S of M is said to be h-parallel if

hð‘XSÞY ;Zi ¼ 0

for any X , Y and Z A GðDÞ.
An eigenvalue of the shape operator tensor A of M is called a principal

curvature and a principal curvature vector is an eigenvector of A. A real
hypersurface M in MnðcÞ is called a Hopf hypersurface if the structure tensor
field x is principal, i.e., we have Ax ¼ ax, where a ¼ hðAxÞ. The following
theorem characterized Hopf hypersurfaces M in MnðcÞ with h-parallel Ricci
tensor.

Theorem 2.1 ([11]). Let M be a Hopf hypersurface in MnðcÞ, nb 3, with
h-parallel Ricci tensor. Then M is locally congruent to one of real hypersurfaces
of type A1, A2 and B ( for c > 0); or type A0, A1, A2 and B ( for c < 0).

3. Basic properties of Hopf hypersurfaces

In this section, we shall derive some basic properties about Hopf hyper-
surfaces M in MnðcÞ. In the following, we suppose M is a connected Hopf
hypersurface in MnðcÞ. Further, we denote by SpecAðDÞ and SpecSðDÞ respec-
tively the spectrum of AjD and SjD. For each l A SpecAðDÞ, we denote by Tl the
subbundle of D foliated by the eigenspace of AjD corresponding to l.

We first recall

Lemma 3.1 ([7], [10]). Let M be a Hopf hypersurface in MnðcÞ. Then
1. the principal curvature a is constant;
2. 2ðAfA� cfÞ ¼ aðfAþ AfÞ;
3. if Y A Tl and fY A T~ll, then 2ðl~ll� cÞ ¼ aðlþ ~llÞ
4. ‘xA ¼ ða=2ÞðfA� AfÞ.

Consider a unit principal vector field Y A Tl, it follows from the above
lemma that

xl ¼ hð‘xAÞY ;Yi ¼ a

2
hðfA� AfÞY ;Yi ¼ 0:

This implies that xh ¼ 0. Further, by (4) we can see that each principal curva-
ture of M induces an eigenvalue of S, i.e., SY ¼ sY , where s ¼ ð2nþ 1Þcþ
hl� l2, for l A SpecAðDÞ and Y A Tl; and Sx ¼ nx, where n ¼ ð2n� 2Þcþ ha�
a2. Since xa ¼ xl ¼ xh ¼ 0, we also obtain xs ¼ xn ¼ 0. On the other hand, it
follows from the Codazzi equation, (5) and Lemma 3.1(4) that we have
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‘xS ¼ a

2
ðfS � SfÞ

ð‘XSÞx ¼ cf�3fAX � ðh� aÞfX þ AfXg þ aðXhÞx

þ a

2
ððh� aÞI � AÞðfA� AfÞX

for any X A GðTMÞ. We summarize the above observation in the following
lemma.

Lemma 3.2. Let M be a Hopf hypersurface in MnðcÞ. Then
1. The principal curvatures, eigenvalues of S and the mean curvature h are

constant along the integral curves of x;
2. ‘xS ¼ ða=2ÞðfS � SfÞ;
3. for any X A GðTMÞ, we have

ð‘XSÞx ¼ cf�3fAX � ðh� aÞfX þ AfXg þ aðXhÞx

þ a

2
ððh� aÞI � AÞðfA� AfÞX :

4. Principal curvatures of Hopf hypersurfaces with h-recurrent Ricci tensor

In this section, we shall begin the proof of Theorem 1.2, which will be
completed in the next section. Our plan goes as follows: we first prove that
under the assumptions of Theorem 1.2, the Ricci tensor S is h-parallel; and then
by invoking Theorem 2.1, we conclude that M is either of type A (i.e., A1, A2 for
c > 0 and A0, A1, A2 for c < 0) or B.

Throughout this section, we suppose M is a connected Hopf hypersurface in
MnðcÞ, nb 3, with h-recurrent Ricci tensor.

For any s A SpecSðDÞ with SY ¼ sY , where Y is a unit vector field in GðDÞ,
it follows from the h-recurrency condition that

Xs ¼ XhSY ;Yi ¼ hð‘XSÞY ;Yi ¼ cðXÞhSY ;Yi ¼ scðXÞ

for any X A GðDÞ. Together with the fact that xs ¼ 0, we may define a 1-form
C as follows: CðxÞ ¼ 0 and CðXÞ ¼ cðXÞ, for any X A GðDÞ so that we have

ds ¼ sCð6Þ

and the h-recurrent condition on S can be rewritten as

hð‘YSÞZ;Wi ¼ CðYÞhSZ;Wið7Þ

for any Y ;Z;W A GðDÞ.
Now, from the equation (6) we obtain

0 ¼ d 2s ¼ ds5Cþ s dC ¼ s dC:ð8Þ

244 song-how kon and tee-how loo



Next, for l1; . . . ; l2n�2 A SpecAðDÞ (here, each lj A SpecAðDÞ not necessarily
distinct), we denote by sj A SpecSðDÞ that correspond to lj, i.e.,

sj ¼ ð2nþ 1Þcþ hlj � l2jð9Þ
for 1a ja 2n� 2. Moreover, we put Gj ¼ fx A M j sjðxÞ0 0g and G the union
of these open sets Gj . In the rest of this section, unless otherwise stated, we
restrict our arguments on the open set G.

We now prove the following

Lemma 4.1. On the open set G, we have

hðRðX ;YÞSÞZ;Wi ¼ hðfAþ AfÞX ;Yihð‘xSÞZ;Wi

þ hfAX ;Zihð‘YSÞx;Wi� hfAY ;Zihð‘XSÞx;Wi

þ hfAX ;Wihð‘YSÞZ; xi� hfAY ;Wihð‘XSÞZ; xi

for any X ;Y ;Z;W A GðDÞ.

Proof. Note that at each point x A G, there is at least one s A SpecSðDÞ
such that sðxÞ0 0. Hence, on the open set G, it follows from (8) that dC ¼ 0,
or equivalently, ð‘XCÞY ¼ ð‘YCÞX , for any X ;Y A GðTMÞ.

By di¤erentiating (7) in the direction of X A GðDÞ, we obtain

hð‘X‘YSÞZ þ ð‘‘XYSÞZ þ ð‘YSÞ‘XZ;Wiþ hð‘YSÞZ;‘XWið10Þ
¼ fð‘XCÞY þCð‘XYÞghSZ;WiþCðYÞfhð‘XSÞZ;Wi

þ hS‘XZ;Wiþ hSZ;‘XWig

for any Y ;Z;W A GðDÞ. On the other hand, by using (2) and (3), we have

‘XY ¼ ð‘XYÞ� þ hð‘XYÞx; ðwhere ð‘XYÞ� ¼ �f2‘XYÞ
¼ ð‘XYÞ� � hfAX ;Yix;

for any X ;Y A GðDÞ. This, together with (7), (10) and the fact that SX ? x, for
X ? x, give

hð‘X‘YSÞZ;Wi� hfAX ;Yihð‘xSÞZ;Wi� hfAX ;Zihð‘YSÞx;Wi

� hfAX ;Wihð‘YSÞZ; xi

¼ ð‘XCÞY � hSZ;WiþCðYÞCðXÞhSZ;Wi:

By taking account of the Ricci identity, ðRðX ;YÞSÞZ ¼ ð‘X‘YSÞZ � ð‘Y‘XSÞZ
and the above equation, we obtain the statement. r

Lemma 4.2. If l A SpecAðDÞ and l0 a=2, then

ðl� ~llÞðh� l� ~llÞðaðlþ ~llÞ þ 4cÞ ¼ 0

on G, where ~ll ¼ ðalþ 2cÞ=ð2l� aÞ.
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Proof. Let Y be a unit vector field in GðTlÞ. Then by Lemma 3.1,

AfY ¼ ~llfY . Moreover, from Lemma 3.2 we obtain

hð‘xSÞY ; fYi ¼ a

2
ðl� ~llÞðh� l� ~llÞ

hð‘YSÞx; fYi ¼ ð�3l� ðh� aÞ þ ~llÞcþ a

2
ðl� ~llÞðh� a� ~llÞ

hð‘fYSÞY ; xi ¼ ð3~llþ ðh� aÞ � lÞcþ a

2
ðl� ~llÞðh� a� lÞ:

Next, by putting X ¼ W ¼ fY , Z ¼ Y in Lemma 4.1, making use of the Gauss
equation and the above three equations, we have

ðl� ~llÞðh� l� ~llÞð4cþ l~llÞ

¼ � a

2
ðlþ ~llÞðl� ~llÞðh� l� ~llÞ � ~llfð�3l� ðh� aÞ þ ~llÞc

þ a

2
ðl� ~llÞðh� a� ~llÞg � lfð3~llþ ðh� aÞ � lÞcþ a

2
ðl� ~llÞðh� a� lÞg

¼ �ðl� ~llÞðh� l� ~llÞðaðlþ ~llÞ þ cÞ þ aðl� ~llÞ cþ a

2
ðlþ ~llÞ � l~ll

� �
:

By using Lemma 3.1(3), this equation reduces to

ðl� ~llÞðh� l� ~llÞðaðlþ ~llÞ þ 4cÞ ¼ 0: r

Lemma 4.3. If a=2 A SpecAðDÞ then C ¼ 0 on G.

Proof. Suppose a=2 A SpecAðDÞ, then by putting l ¼ a=2 in Lemma 3.1(3)
we get a2 ¼ �4c and so c < 0, (without lose of generality, we assume c ¼ �1),
hence, we get a2 ¼ 4. If SpecAðDÞ ¼ fa=2g, then our statement is clearly true.

Now, suppose that there exists l A SpecAðDÞ, l0 a=2 and let Y A GðTlÞ. It
follows from Lemma 3.1 that we have

l� a

2

� �
~ll ¼ a

2
l� 2

a

� �
:

By making use of the fact that a=2 ¼ 2=a, we get ~ll ¼ a=2. Furthermore, since

both l� ~ll and aðlþ ~llÞ þ 4c are nonzero, from Lemma 4.2 we get h� l� ~ll ¼ 0,
and hence l ¼ h� a=2, which means that M admits at most three distinct
principal curvatures, a with multiplicity 1, l1 ¼ a=2, with multiplicity 2n� 2�m
and l2 ¼ h� a=2 with multiplicity m. Next, observe that

h ¼ aþ ð2n� 2�mÞl1 þml2:

Thus, we obtain ð1�mÞh ¼ aðn�mÞ and so by (9), we obtain s1 ¼ �ð2nþ 1Þ�
2ðn�mÞ=ðm� 1Þ � 1, which is locally a nonzero constant on G. Consequently,
we get C ¼ 0 by using (6). r
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Lemma 4.4. If a=2 B SpecAðDÞ then C ¼ 0 on G.

Proof. We consider the open subset Hj ¼ fx A G j ðlj � ~lljÞðh� lj � ~lljÞ0 0g.
Then on such open subset Hj, we have aðlj þ ~lljÞ þ 4c ¼ 0, so both lj, ~llj are
locally constant and a0 0. Moreover, from Lemma 3.1, lj and ~llj can also be
related by lj ~llj þ c ¼ 0. Now, by using (6), we get

d½ð2nþ 1Þcþ ljh� l2j � ¼ ½ð2nþ 1Þcþ ljh� l2j �C:

As lj is a constant, we have

lj dh ¼ ½ð2nþ 1Þcþ ljh� l2j �C:

Similarly, we also have

~llj dh ¼ ½ð2nþ 1Þcþ ~lljh� ~ll2j �C:

These imply that ðlj � ~lljÞ dh ¼ ðlj � ~lljÞðh� lj � ~lljÞC. Since lj 0 ~llj, we obtain

dh ¼ ðh� lj � ~lljÞC:

On the other hand, taking account of lj ~llj ¼ �c, we have

ðlj þ ~lljÞ dh ¼ 4ncCþ ðlj þ ~lljÞðh� lj � ~lljÞC:

From the above two equations, we obtain C ¼ 0 on Hj, for 1a ja 2n� 2.
Next, we look at the interior set, IntðG�HÞ of G�H, where H ¼

6fHj j 1a ja 2n� 2g. From Lemma 4.2, each l A SpecAðDÞ is the solution of

ðl� ~llÞðh� l� ~llÞ ¼ 0:

Hence, M has at most five distinct principal curvatures: a (with multiplicity
1); l1 (with multiplicity 2m1); l2 (with multiplicity 2m2); l3, l4 ¼ ~ll3 (both with
multiplicity m3), where n� 1 ¼ m1 þm2 þm3; l1, l2 are the solutions of l� ~ll ¼
0 and h� l3 � ~ll3 ¼ 0.

By making use of Lemma 3.1(3), the equations

l� ~ll ¼ 0 and h� l� ~ll ¼ 0

can be rewritten as

l2 � al� c ¼ 0ð11Þ
and

2l2 � 2hlþ ðhaþ 2cÞ ¼ 0;ð12Þ

respectively. Since l1 and l2 are the solutions of the equation (11), we can see
that both l1, l2 are locally constant and these principal curvatures satisfy the
following relationship

l1 þ l2 ¼ a; l1l2 þ c ¼ 0:
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Similarly, since l3 and l4 are the solutions of the equation (12), we also get

l3 þ ~ll3 ¼ h; 2l3~ll3 ¼ haþ 2c:

Moreover, we have

h ¼ aþ 2m1l1 þ 2m2l2 þm3ðl3 þ ~ll3Þ

¼ ð2m1 þ 1Þl1 � ð2m2 þ 1Þ c

l1
þm3ðl3 þ ~ll3Þ:

Since h ¼ l3 þ ~ll3, we obtain

ð2m1 þ 1Þl1 � ð2m2 þ 1Þ c

l1
þ ðm3 � 1Þh ¼ 0:ð13Þ

Now, we consider two cases: (i) m3 0 1 and (ii) m3 ¼ 1.

Case (i): m3 0 1. The equation (13) shows that h is locally constant and
hence from Lemma 4.2, we see that all l A SpecAðDÞ are also locally constant on
IntðG�HÞ. From these observations, together with (6) and (9), give C ¼ 0 on
IntðG�HÞ.

Case (ii): m3 ¼ 1. In this case, the equation (13) reduces to ð2m1 þ 1Þl1 �
ð2m2 þ 1Þðc=l1Þ ¼ 0. Therefore, we obtain

l21 ¼ 2m2 þ 1

2m1 þ 1
c:ð14Þ

This implies that c > 0 (for convenience, we assume c ¼ 1). Next, by using
Lemma 3.1, the scalar curvature r (:¼ trace S) is given by

r ¼ 4n2 � 4þ h2 � hA;Ai

¼ 4n2 � 4þ ðl3 þ ~ll3Þ2 � a2 � 2m1l
2
1 � 2m2l

2
2 � l23 � ~ll23

¼ 4n2 � 2þ ha� a2 � 2m1l
2
1 � 2m2

1

l21
:

Let n ¼ hSx; xi ¼ 2n� 2þ ha� a2. Then by the above equation, (14) and the
fact that n� 1 ¼ m1 þm2 þ 1

r� n ¼ 4n2 � 2n� 2m1l
2
1 � 2m2

1

l21
ð15Þ

¼ 4n2 � 4nþ 2þ l21 þ
1

l21
:

On the other hand, we have

r� n ¼ 2m1s1 þ 2m2s2 þ s3 þ ~ss3
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where ~ss3 ¼ 2nþ 1þ h~ll3 � ~ll23 . It follows from (6) and the above equation that

dðr� nÞ ¼ ðr� nÞC:

By (15), we can see that r� n is locally a positive constant, together with the
above equation, yield C ¼ 0 on IntðG�HÞ. Hence, by the continuity of C, we
conclude that C ¼ 0 on G. r

5. Proof of Theorem 1.2

Note that on the interior set IntðM � GÞ of M � G, the Ricci tensor S is of
the form

SX ¼ aX þ nhðXÞx
for any X A GðTMÞ, with a ¼ 0 and n ¼ ð2n� 2Þcþ ha� a2. This shows that
each connected component of IntðM � GÞ is congruent to an open part of a
pseudo-Einstein real hypersurface (for precise definition of pseudo-Einstein real
hypersurfaces, see [3] and [9]) and according to [10, Theorem 6.12], the Ricci
tensor S of a pseudo-Einstein real hypersurface in MnðcÞ is h-parallel. Thus,
we get C ¼ 0 on IntðM � GÞ. Moreover, by the results in Section 4 and the
continuity of C, we obtain that C is identically zero on the whole of M, i.e., the
Ricci tensor S is h-parallel. Hence, our statement follows from Theorem 2.1.
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