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ON HOPF HYPERSURFACES IN A NON-FLAT COMPLEX SPACE
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Abstract

Baikoussis, Lyu and Suh [1] showed that a Hopf hypersurface M in a non-flat
complex space form M,(c) with constant mean curvature and with #-recurrent Ricci
tensor is locally congruent to one of real hypersurfaces of type 4 and B. They also
conjectured that the same result can be obtained even without the constancy assumption
on the mean curvature (cf. [1, Remark 5.1.]). The purpose of this paper is to answer
this question in the affirmative.

1. Introduction

Let M,(c) be an n-dimensional non-flat complex space form with constant
holomorphic sectional curvature 4c. A complete and simply connected non-flat
complex space form is either a complex projective space CP”" or a complex
hyperbolic space CH", according to as ¢ >0 or ¢ < 0. Let M be a real hyper-
surface in M,(c). Then the complex structure J of M,(c) induces an almost
contact metric structure (¢, &, n,<,>) on M. If the structure vector field & of M
is principal then M is called a Hopf hypersurface. Typical examples of Hopf
hypersurfaces in M,(c) are the homogeneous one with constant principal curva-
tures, nowadays known as real hypersurfaces of type A;, A,, B, C, D, E when the
ambient space is CP"; and of type Ay, 41, A2, B when the ambient space is CH”
(cf. [2, 12]).

In the following, we denote by T'(#") the module of all differentiable sections
on the vector bundle ¥~ over M.

It is well known that there are no real hypersurfaces M in M,(c) with
parallel Ricci tensor S, ie., VS =0 (cf. [6]), where V denotes the Levi-Civita
connection on M. Consequently, it is natural to consider a weaker form of the
parallelism condition on S for real hypersurfaces in M,(c). The holomorphic
distribution D on M is the distribution that is orthogonal to &, i.e.,

D, ={XeT:M|{X,&>=0}, xeM.
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In [11], Suh weakened the parallelism condition on S to so-called #-parallelism
condition i.e., the Ricci tensor S is said to be y-parallel if

(Vx8)Y,Z) =0

for any X, Y and Z e I'(D); and gave a classification of Hopf hypersurfaces in
M, (c) with n-parallel Ricci tensor.

The Ricci tensor S of a real hypersurface M is said to be recurrent if there
exists a 1-form ¢ on M such that

VS=S®y.

The parallelism on S may be regarded as a special case of recurrence on S. The
non-existence problem of real hypersurfaces with recurrent Ricci tensor in M,(c)
was initiated by Hamada [5], and it has been solved in [4] and [8].

On the other hand, Baikoussis, Lyu and Suh introduced a weaker notion of
n-recurrence on S, i.e., the Ricci tensor S is said to be y-recurrent if there exists a
I-form ¥ on M such that (cf. [1])

for any X, Y,Z e I'(D), where D is the holomorphic distribution on M defined as
follows

DX:{AIET‘xl‘l|<1Yv,f>:0}7 xe M.
In [1], Baikoussis, Lyu and Suh proved the following

THEOREM 1.1. Let M be a Hopf hypersurface in M,(c), n > 3, with constant
mean curvature. If the Ricci tensor S is n-recurrent, then M is locally congruent
to one of the following real hypersurfaces:

(a) For ¢>0:

(A1) a tube over hyperplane CP"';

(A2) a tube over totally geodesic CP*, where 1 <k <n—2;

(B) a tube over complex quadric Qy_i.

(b) For ¢ <0:

(Ao) a horosphere;
(A1) a geodesic hypersphere or a tube over hyperplane CH"™';
(As) a tube over totally geodesic CH*, where 1 <k <n—2;
(B) a tube over totally real hyperbolic space RH".

They also conjectured that the same result can be obtained even without the
constancy assumption on the mean curvature (cf. [1, Remark 5.1.]). The purpose
of this paper is to answer this question in the affirmative, i.e., we shall slightly
improve Theorem 1.1 to the following

THEOREM 1.2. Let M be a Hopf hypersurface in M,(c), n > 3. If the Ricci
tensor S is n-recurrent, then M is locally congruent to one of the following real
hypersurfaces:
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(a) For ¢>0:
(A1) a tube over hyperplane CP"';
(As) a tube over totally geodesic CP*, where 1 <k <n—2;
(B) a tube over complex quadric Q,_i.

(b) For ¢ < 0:
(Ao) a horosphere;
(A1) a geodesic hypersphere or a tube over hyperplane CH"™';
(As) a tube over totally geodesic CH*, where 1 <k <n—2;
(B) a tube over totally real hyperbolic space RH".

2. Preliminaries

Let M be a connected real hypersurface in M,(c), n >3, and let N be a
unit normal vector field on M. Denote by V and V respectively the Levi-Civita
connection on M,(c¢) and the connection induced on M. Then the Gauss and
Weingarten formulae are given respectively by

VY =VyY +{4X YIN
VyN = —AX

for any X,Y e I'(TM), where <, ) denotes the Riemannian metric of M induced
from the Riemannian metric of M,(c). Now, we define a tensor field ¢ of type
(1,1), a vector field & and a 1-form 7 by

(1) JX =X +n(X)N, JN=-¢ n(X)=<X).
Then the set of tensors (¢, <&, 7, (, ») satisfy the following

(2) PN =X +9(X)E, ¢gE=0, n(¢X)=0, n(¢) =1
3) (Vi)Y = n(Y)AX — CAX, YD, Vi€ = pAX.

Let R be the curvature tensor of M. Then the equations of Gauss and
Codazzi are given respectively by

RX,Y)Z =Y, Z)X —{X,Z)Y +{pY,Z)¢pX — {$pX,Z)pY
—2pX, YYPZ} +AY , ZYAX — {AX,ZYAY
(VxA)Y = (VyA)X = c{n(X)pY —n(Y)pX — 2{pX, Y )<}
It follows from the Gauss equation that the Ricci tensor S of M is given by
4) SX =c{(2n+ 1)X —3p(X)E} + hAX — A°X.

where & = trace A, called the mean curvature on M, and the covariant derivative
of the Ricci tensor S is given by

(5) (VxS)Y = =3c{{pAX, Y D¢+ n(Y)pAX} + (Xh)AY
4 (W — A)(VyA)Y — (VyA)AY.
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Further, we define the second covariant derivative VxVyS by
(VxVyS8)Z = Vx{(VyS)Z} — (Vy,vS)Z — (VyS)Vx Z.
The Ricci tensor S of M is said to be y-parallel if
{(VxS)Y,Z>=0

for any X, Y and Z e T'(D).

An eigenvalue of the shape operator tensor 4 of M is called a principal
curvature and a principal curvature vector is an eigenvector of 4. A real
hypersurface M in M,(c) is called a Hopf hypersurface if the structure tensor
field ¢ is principal, i.e., we have A& = aé, where o =7n(A&). The following
theorem characterized Hopf hypersurfaces M in M,(c) with gp-parallel Ricci
tensor.

THEOREM 2.1 ([11]). Let M be a Hopf hypersurface in M,(c), n >3, with
n-parallel Ricci tensor. Then M is locally congruent to one of real hypersurfaces
of type A1, Ay and B (for ¢ > 0); or type Ay, A1, A2 and B (for ¢ <0).

3. Basic properties of Hopf hypersurfaces

In this section, we shall derive some basic properties about Hopf hyper-
surfaces M in M,(c). In the following, we suppose M is a connected Hopf
hypersurface in M,(c). Further, we denote by Spec,(D) and Specg(D) respec-
tively the spectrum of A|, and S|,. For each 1 € Spec,(D), we denote by T the
subbundle of D foliated by the eigenspace of A|, corresponding to A.

We first recall

Lemma 3.1 ([7], [10]). Let M be a Hopf hypersurface in M,(c). Then
1. the principal curvature o is constant;

2. 2ApA — cf) = a(pA+ AP )

3.if YeT; and ¢Y € T;, then 2(Ah —c) = a(L+ A)
4. VeA = (a/2)(¢pA — Ag).

Consider a unit principal vector field Y e T}, it follows from the above
lemma that

G=(VeA)Y, Yy = 2{(pA — AP) Y, ¥> = 0.

N R

This implies that & = 0. Further, by (4) we can see that each principal curva-
ture of M induces an eigenvalue of S, ie., SY =g¥, where 0 = 2n+ 1)c+
hi.— )%, for 4 eSpec,(D) and Y € T;; and S& = v, where v = (2n — 2)c + ho—
o?. Since o= &L= ER =0, we also obtain éo = &y =0. On the other hand, it
follows from the Codazzi equation, (5) and Lemma 3.1(4) that we have
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VeS =3 (45— 59)
(VyS)E = c{=3¢AX — (h— 0)pX + AX} + a(Xh)E

5 ((h = 2)T = A)(pd — A$)X

for any X e ['(TM). We summarize the above observation in the following
lemma.

Lemma 3.2. Let M be a Hopf hypersurface in M,(c). Then

1. The principal curvatures, eigenvalues of S and the mean curvature h are
constant along the integral curves of &;

2. VeS = (2/2)(4S — S9);

3. for any X e I'(TM), we have

(ViS)E = c{—3¢AX — (h — 0)pX + APX} + a(XR)E
+ g (h— )l — A)(pA — AP)X.

4. Principal curvatures of Hopf hypersurfaces with »-recurrent Ricci tensor

In this section, we shall begin the proof of Theorem 1.2, which will be
completed in the next section. Our plan goes as follows: we first prove that
under the assumptions of Theorem 1.2, the Ricci tensor S is #-parallel; and then
by invoking Theorem 2.1, we conclude that M is either of type 4 (i.e., 41, A, for
¢>0 and Ay, A;, A, for ¢ <0) or B.

Throughout this section, we suppose M is a connected Hopf hypersurface in
M,(c), n =3, with y-recurrent Ricci tensor.

For any o € Specg(D) with SY = ¢, where Y is a unit vector field in I'(D),
it follows from the y-recurrency condition that

Xo = X(SY, V)= ((VxS)Y, ¥ = y(X)(SY, ¥ = ay(X)

for any X e I'(D). Together with the fact that g = 0, we may define a 1-form
Y as follows: W¥(&) =0 and W(X) = y(X), for any X € ['(D) so that we have

(6) do =ad¥
and the #-recurrent condition on S can be rewritten as
() AVyS)Z, W) =Y(Y){SZ, W)

for any Y, Z, W eI'(D).
Now, from the equation (6) we obtain

(8) 0=d’c=doA¥ +cd¥ =cd¥.
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Next, for Ai,...,42,-2€Spec,(D) (here, each A; € Spec,(D) not necessarily
distinct), we denote by o; € Specg(D) that correspond to 4;, i.e.,
(9) oj = (2n+V)c+hi; — i}

for 1 <j<2n—2. Moreover, we put 4; = {x € M |g;(x) # 0} and 4 the union
of these open sets %;. In the rest of this section, unless otherwise stated, we
restrict our arguments on the open set .

We now prove the following

Lemma 4.1. On the open set 9, we have
+ (PAX, ZH{(VyS)E, W) = (pAY  ZH{(Vx S)E, W
+PAX, WH{(VyS)Z, &) — (gAY , W)H{(VxS)Z, &)
for any X, Y, Z, W e (D).
Proof. Note that at each point x € ¢, there is at least one o € Specg(D)
such that o(x) # 0. Hence, on the open set ¥, it follows from (8) that d¥ = 0,

or equivalently, (VW)Y = (Vy¥)X, for any X, Y e I'(TM).
By differentiating (7) in the direction of X € I'(D), we obtain

(10) AVxVyS)Z + (Vv vS)Z + (VyS)VxZ, W) + (V¥ S)Z,Vx W)
= {(Vx®)Y + ¥(Vx Y)}(SZ, W) + ¥(Y){{(VXS)Z, W)
+(SVxZ, W) +<(SZ,Vx W)}
for any Y,Z, W eI'(D). On the other hand, by using (2) and (3), we have
Vx¥ = (VxY)° +5(VxY)E, (where (VxY)° = —4°VyY)
= (VxY)" = (94X, Y)¢,

for any X, Y e I'(D). This, together with (7), (10) and the fact that SX L &, for
X L ¢, give

(VVyS)Z, Wy — (PAX, YIVS)Z, Wy — (AX, ZH{(VyS)E W
— (PAX, WH(VyS)Z, &
= (VxW)Y - (SZ, W)+ Y(Y)¥(X){(SZ, W).
By taking account of the Ricci identity, (R(X, Y)S)Z = (VxVyS)Z — (VyVxS)Z
and the above equation, we obtain the statement. O
Lemma 4.2. If . eSpec,(D) and A # o/2, then
(A=) (h=2=2)(a(h+2)+4c)=0
on 4, where A= (ah+2¢)/(24 — ).
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Proof. Let Y be a unit vector field in T'(7;). Then by Lemma 3.1,
ApY = A¢Y. Moreover, from Lemma 3.2 we obtain

UVeS)Y, Yy == (= A)(h— 2 — 1)

R

(VyS)EPY> = (=32 (h =)+ e+ (= A)(h—a— 1)

((VyyS)Y,E> = (3i+ (h—a) — /l)c—&—%(i “Dh—a—2).

Next, by putting X = W =¢Y, Z =Y in Lemma 4.1, making use of the Gauss
equation and the above three equations, we have

(A=) (h—= 2= X)(4c+ 7A)
A4+ —=2)(h—A—=2) = 2{ (=34 — (h— o) + A)c

| R NI R

- (i—i)(h—oc—i)}—i{(31+(h—oc)—i)c—k%(/l—i)(h—oc—/l)}

2

:—(z—i)(h—x—a)(a(zu)ﬂ)+a(z—i)(c+%(z+i)—u).

By using Lemma 3.1(3), this equation reduces to
(= 2)(h— 2= ) (@ + ) +4c) = 0. O
LemmMa 4.3. If a/2 € Spec (D) then ¥ =0 on %.

Proof. Suppose «/2 € Spec (D), then by putting A = /2 in Lemma 3.1(3)
we get a®> = —4c and so ¢ < 0, (without lose of generality, we assume ¢ = —1),
hence, we get o> =4. If Spec, (D) = {«/2}, then our statement is clearly true.

Now, suppose that there exists A € Spec,(D), 4 # o/2 and let Y e T(T}). It
follows from Lemma 3.1 that we have

(=303

By making use of the fact that «/2 =2/a, we get 4 =a/2. Furthermore, since
both 4 — 4 and a4 + A) 4 4¢ are nonzero, from Lemma 4.2 we get 1 — . — 1 =0,
and hence 2 =h—o/2, which means that M admits at most three distinct
principal curvatures, o with multiplicity 1, A4; = /2, with multiplicity 2n — 2 —m
and Ay = h— o/2 with multiplicity m. Next, observe that

h=o+4 (2n—2—m)l +mi,.

Thus, we obtain (1 —m)h = a(n — m) and so by (9), we obtain g = —(2n+ 1) —
2(n—m)/(m — 1) — 1, which is locally a nonzero constant on 4. Consequently,
we get ¥ =0 by using (6). O
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Lemma 4.4. If o/2 ¢ Spec, (D) then ¥ =0 on %.

Proof. We consider the open subset #; = {x e 9| (4; — A i) (h— 2 — 2 ) # 0}.
Then on such open subset #;, we have oz(/l +4)) +4c=0, so both A, /1 are
locally constant and o # 0. Moreover from Lemma 3.1, 4; and /1 can also be
related by /1/1 +c¢=0. Now, by using (6), we get

d[(2n+ V) + ih — 2J] = [(2n+ V) + Ajh — A]]¥

As J; is a constant, we have

Aj dh = [(2n + 1)c + Jih — 77]%
Similarly, we also have

Jj dh = [(2n+ 1)c+ Aih — A]]¥
These imply that (4; — 4;) dh = (4 — A;)(h — 4 — 4))¥. Since 4 # J;, we obtain

dh = (h— 7 — ;)¥
On the other hand, taking account of A4, = —c, we have
(4 + 4) dh = 4nc¥ + (O + ) (h — 4 — A)P

From the above two equations, we obtain ¥ =0 on 4, for 1 < j <2n-—2.
Next, we look at the interior set, Int(¢9 — #) of ¥ — #, where # =
({#;|1 <j<2n-2}. From Lemma 4.2, each 4 € Spec,(D) is the solution of

(A=2)(h—2—2)=0.

Hence, M has at most five distinct principal curvatures: o (with multiplicity
1); A1 (with multiplicity 2m,); A» (with multiplicity 2my); A3, /14 = A3 (both with
multiplicity mj3), where n — 1 = my + my + m3; A1, A, are the solutions of 1 — )=
0and h— A3 — A3 =0.

By making use of Lemma 3.1(3), the equations

J—J4=0 and h—A—1=0

can be rewritten as

(11) P —al—c=0
and
(12) 232 = 2hi + (ha +2¢) =0,

respectively. Since A, and /1, are the solutions of the equation (11), we can see
that both /4;, A, are locally constant and these principal curvatures satisfy the
following relationship

M+l = o, AMAry+c=0.
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Similarly, since A3 and A4 are the solutions of the equation (12), we also get
I3tz =h, 2ads = ho+ 2.
Moreover, we have
h= o+ 2miA +2mady + ms(As + 13)
= 2my + 1)y — (2my + 1)%+m3(13 + 1),

Since h = A3 + 13, we obtain
c

il+(M3_1)h:O.

(13) (2]’}’1] + 1)/11 — (21’7’12 + 1)
Now, we consider two cases: (i) m3 # 1 and (i) m3 = 1.

Case (i) m3 # 1. The equation (13) shows that / is locally constant and
hence from Lemma 4.2, we see that all 1 € Spec,(D) are also locally constant on
Int(9 — #). From these observations, together with (6) and (9), give ¥ =0 on
Int(% — #).

Case (ii): m3 = 1. In this case, the equation (13) reduces to (2m; + 1)4; —
(2my 4+ 1)(¢/A1) = 0. Therefore, we obtain

ZM2+IC
2my + 1 ’

(14) A=

This implies that ¢ > 0 (for convenience, we assume ¢ = 1). Next, by using
Lemma 3.1, the scalar curvature p (:= trace S) is given by

p=4dn* —4+h*—<{4,4)
=4n® — 4 + (43 +i3)2 — o’ —2m1/112 —2mz)~§ —)é —ig
1
=d4n* =2+ ho— o? —2m1},12 —2my—.
1

Let v= (S& &Y =2n—2+hoa—a?. Then by the above equation, (14) and the
fact that n—1=my +my +1

, 1
(15) p—v:4n2—2n—2mm12—2m2?
1

1
=4n* —4n+2+ 7 +—.
j’l

On the other hand, we have

p—Vv=2ma| + 2myo; + g3 + G3
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where 63 = 2n+ 1+ hi; — A2, Tt follows from (6) and the above equation that
dip—v)=(p—mY.

By (15), we can see that p — v is locally a positive constant, together with the
above equation, yield ¥ = 0 on Int(% — #). Hence, by the continuity of ¥, we
conclude that ¥ =0 on 9. O

5. Proof of Theorem 1.2

Note that on the interior set Int(M — %) of M — %, the Ricci tensor S is of
the form

SX =aX +wy(X)<E

for any X e I(TM), with a=0 and v= (2n — 2)c + ha — o>. This shows that
each connected component of Int(M — %) is congruent to an open part of a
pseudo-Einstein real hypersurface (for precise definition of pseudo-Einstein real
hypersurfaces, see [3] and [9]) and according to [10, Theorem 6.12], the Ricci
tensor S of a pseudo-Einstein real hypersurface in M,(c) is y-parallel. Thus,
we get ¥ =0 on Int(M — ¥). Moreover, by the results in Section 4 and the
continuity of W, we obtain that ¥ is identically zero on the whole of M, i.e., the
Ricci tensor S is m-parallel. Hence, our statement follows from Theorem 2.1.
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